1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
47 #define R5L_POOL_SIZE 4
49 static char *r5c_journal_mode_str
[] = {"write-through",
52 * raid5 cache state machine
54 * With the RAID cache, each stripe works in two phases:
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
75 * Stripes in writing-out phase handle writes as:
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
87 sector_t device_size
; /* log device size, round to
89 sector_t max_free_space
; /* reclaim run if free space is at
92 sector_t last_checkpoint
; /* log tail. where recovery scan
94 u64 last_cp_seq
; /* log tail sequence */
96 sector_t log_start
; /* log head. where new data appends */
97 u64 seq
; /* log head sequence */
99 sector_t next_checkpoint
;
101 struct mutex io_mutex
;
102 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
104 spinlock_t io_list_lock
;
105 struct list_head running_ios
; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios
; /* io_units which have been completely
109 * written to the log but not yet written
111 struct list_head flushing_ios
; /* io_units which are waiting for log
113 struct list_head finished_ios
; /* io_units which settle down in log disk */
114 struct bio flush_bio
;
116 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
118 struct kmem_cache
*io_kc
;
123 struct md_thread
*reclaim_thread
;
124 unsigned long reclaim_target
; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * dones't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
131 wait_queue_head_t iounit_wait
;
133 struct list_head no_space_stripes
; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock
;
136 bool need_cache_flush
;
139 enum r5c_journal_mode r5c_journal_mode
;
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list
;
144 spinlock_t stripe_in_journal_lock
;
145 atomic_t stripe_in_journal_count
;
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work
;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work
;
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock
;
154 struct radix_tree_root big_stripe_tree
;
158 * Enable chunk_aligned_read() with write back cache.
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
188 #define R5C_RADIX_COUNT_SHIFT 2
191 * calculate key for big_stripe_tree
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
195 static inline sector_t
r5c_tree_index(struct r5conf
*conf
,
198 sector_div(sect
, conf
->chunk_sectors
);
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
212 struct page
*meta_page
; /* store meta block */
213 int meta_offset
; /* current offset in meta_page */
215 struct bio
*current_bio
;/* current_bio accepting new data */
217 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
218 u64 seq
; /* seq number of the metablock */
219 sector_t log_start
; /* where the io_unit starts */
220 sector_t log_end
; /* where the io_unit ends */
221 struct list_head log_sibling
; /* log->running_ios */
222 struct list_head stripe_list
; /* stripes added to the io_unit */
226 struct bio
*split_bio
;
228 unsigned int has_flush
:1; /* include flush request */
229 unsigned int has_fua
:1; /* include fua request */
230 unsigned int has_null_flush
:1; /* include null flush request */
231 unsigned int has_flush_payload
:1; /* include flush payload */
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
236 unsigned int io_deferred
:1;
238 struct bio_list flush_barriers
; /* size == 0 flush bios */
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state
{
243 IO_UNIT_RUNNING
= 0, /* accepting new IO */
244 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
250 bool r5c_is_writeback(struct r5l_log
*log
)
252 return (log
!= NULL
&&
253 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
256 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
259 if (start
>= log
->device_size
)
260 start
= start
- log
->device_size
;
264 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
270 return end
+ log
->device_size
- start
;
273 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
277 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
280 return log
->device_size
> used_size
+ size
;
283 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
284 enum r5l_io_unit_state state
)
286 if (WARN_ON(io
->state
>= state
))
292 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
)
294 struct bio
*wbi
, *wbi2
;
298 while (wbi
&& wbi
->bi_iter
.bi_sector
<
299 dev
->sector
+ RAID5_STRIPE_SECTORS(conf
)) {
300 wbi2
= r5_next_bio(conf
, wbi
, dev
->sector
);
301 md_write_end(conf
->mddev
);
307 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
308 struct stripe_head
*sh
, int disks
)
312 for (i
= sh
->disks
; i
--; ) {
313 if (sh
->dev
[i
].written
) {
314 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
315 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
]);
316 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
317 RAID5_STRIPE_SECTORS(conf
),
318 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
324 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
);
326 /* Check whether we should flush some stripes to free up stripe cache */
327 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
331 if (!r5c_is_writeback(conf
->log
))
334 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
335 atomic_read(&conf
->r5c_cached_full_stripes
);
338 * The following condition is true for either of the following:
339 * - stripe cache pressure high:
340 * total_cached > 3/4 min_nr_stripes ||
341 * empty_inactive_list_nr > 0
342 * - stripe cache pressure moderate:
343 * total_cached > 1/2 min_nr_stripes
345 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
346 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
347 r5l_wake_reclaim(conf
->log
, 0);
351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352 * stripes in the cache
354 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
356 if (!r5c_is_writeback(conf
->log
))
360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361 * or a full stripe (chunk size / 4k stripes).
363 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf
),
365 conf
->chunk_sectors
>> RAID5_STRIPE_SHIFT(conf
)))
366 r5l_wake_reclaim(conf
->log
, 0);
370 * Total log space (in sectors) needed to flush all data in cache
372 * To avoid deadlock due to log space, it is necessary to reserve log
373 * space to flush critical stripes (stripes that occupying log space near
374 * last_checkpoint). This function helps check how much log space is
375 * required to flush all cached stripes.
377 * To reduce log space requirements, two mechanisms are used to give cache
378 * flush higher priorities:
379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
380 * stripes ALREADY in journal can be flushed w/o pending writes;
381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382 * can be delayed (r5l_add_no_space_stripe).
384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386 * pages of journal space. For stripes that has not passed 1, flushing it
387 * requires (conf->raid_disks + 1) pages of journal space. There are at
388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389 * required to flush all cached stripes (in pages) is:
391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392 * (group_cnt + 1) * (raid_disks + 1)
394 * (stripe_in_journal_count) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks - max_degraded)
397 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
399 struct r5l_log
*log
= conf
->log
;
401 if (!r5c_is_writeback(log
))
404 return BLOCK_SECTORS
*
405 ((conf
->max_degraded
+ 1) * atomic_read(&log
->stripe_in_journal_count
) +
406 (conf
->raid_disks
- conf
->max_degraded
) * (conf
->group_cnt
+ 1));
410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414 * device is less than 2x of reclaim_required_space.
416 static inline void r5c_update_log_state(struct r5l_log
*log
)
418 struct r5conf
*conf
= log
->rdev
->mddev
->private;
420 sector_t reclaim_space
;
421 bool wake_reclaim
= false;
423 if (!r5c_is_writeback(log
))
426 free_space
= r5l_ring_distance(log
, log
->log_start
,
427 log
->last_checkpoint
);
428 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
429 if (free_space
< 2 * reclaim_space
)
430 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
432 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
434 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
436 if (free_space
< 3 * reclaim_space
)
437 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
439 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
442 r5l_wake_reclaim(log
, 0);
446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447 * This function should only be called in write-back mode.
449 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
451 struct r5conf
*conf
= sh
->raid_conf
;
452 struct r5l_log
*log
= conf
->log
;
454 BUG_ON(!r5c_is_writeback(log
));
456 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
457 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
460 atomic_inc(&conf
->preread_active_stripes
);
463 static void r5c_handle_data_cached(struct stripe_head
*sh
)
467 for (i
= sh
->disks
; i
--; )
468 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
469 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
470 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
472 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
476 * this journal write must contain full parity,
477 * it may also contain some data pages
479 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
483 for (i
= sh
->disks
; i
--; )
484 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
485 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
489 * Setting proper flags after writing (or flushing) data and/or parity to the
490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
492 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
494 struct r5l_log
*log
= sh
->raid_conf
->log
;
496 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
497 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
499 * Set R5_InJournal for parity dev[pd_idx]. This means
500 * all data AND parity in the journal. For RAID 6, it is
501 * NOT necessary to set the flag for dev[qd_idx], as the
502 * two parities are written out together.
504 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
505 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
506 r5c_handle_data_cached(sh
);
508 r5c_handle_parity_cached(sh
);
509 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
513 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
515 struct stripe_head
*sh
, *next
;
517 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
518 list_del_init(&sh
->log_list
);
520 r5c_finish_cache_stripe(sh
);
522 set_bit(STRIPE_HANDLE
, &sh
->state
);
523 raid5_release_stripe(sh
);
527 static void r5l_log_run_stripes(struct r5l_log
*log
)
529 struct r5l_io_unit
*io
, *next
;
531 lockdep_assert_held(&log
->io_list_lock
);
533 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
534 /* don't change list order */
535 if (io
->state
< IO_UNIT_IO_END
)
538 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
539 r5l_io_run_stripes(io
);
543 static void r5l_move_to_end_ios(struct r5l_log
*log
)
545 struct r5l_io_unit
*io
, *next
;
547 lockdep_assert_held(&log
->io_list_lock
);
549 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
550 /* don't change list order */
551 if (io
->state
< IO_UNIT_IO_END
)
553 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
557 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
558 static void r5l_log_endio(struct bio
*bio
)
560 struct r5l_io_unit
*io
= bio
->bi_private
;
561 struct r5l_io_unit
*io_deferred
;
562 struct r5l_log
*log
= io
->log
;
565 bool has_flush_payload
;
568 md_error(log
->rdev
->mddev
, log
->rdev
);
571 mempool_free(io
->meta_page
, &log
->meta_pool
);
573 spin_lock_irqsave(&log
->io_list_lock
, flags
);
574 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
577 * if the io doesn't not have null_flush or flush payload,
578 * it is not safe to access it after releasing io_list_lock.
579 * Therefore, it is necessary to check the condition with
582 has_null_flush
= io
->has_null_flush
;
583 has_flush_payload
= io
->has_flush_payload
;
585 if (log
->need_cache_flush
&& !list_empty(&io
->stripe_list
))
586 r5l_move_to_end_ios(log
);
588 r5l_log_run_stripes(log
);
589 if (!list_empty(&log
->running_ios
)) {
591 * FLUSH/FUA io_unit is deferred because of ordering, now we
594 io_deferred
= list_first_entry(&log
->running_ios
,
595 struct r5l_io_unit
, log_sibling
);
596 if (io_deferred
->io_deferred
)
597 schedule_work(&log
->deferred_io_work
);
600 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
602 if (log
->need_cache_flush
)
603 md_wakeup_thread(log
->rdev
->mddev
->thread
);
605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606 if (has_null_flush
) {
609 WARN_ON(bio_list_empty(&io
->flush_barriers
));
610 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
612 if (atomic_dec_and_test(&io
->pending_stripe
)) {
613 __r5l_stripe_write_finished(io
);
618 /* decrease pending_stripe for flush payload */
619 if (has_flush_payload
)
620 if (atomic_dec_and_test(&io
->pending_stripe
))
621 __r5l_stripe_write_finished(io
);
624 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
628 spin_lock_irqsave(&log
->io_list_lock
, flags
);
629 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
630 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
633 * In case of journal device failures, submit_bio will get error
634 * and calls endio, then active stripes will continue write
635 * process. Therefore, it is not necessary to check Faulty bit
636 * of journal device here.
638 * We can't check split_bio after current_bio is submitted. If
639 * io->split_bio is null, after current_bio is submitted, current_bio
640 * might already be completed and the io_unit is freed. We submit
641 * split_bio first to avoid the issue.
645 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
647 io
->split_bio
->bi_opf
|= REQ_FUA
;
648 submit_bio(io
->split_bio
);
652 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
654 io
->current_bio
->bi_opf
|= REQ_FUA
;
655 submit_bio(io
->current_bio
);
658 /* deferred io_unit will be dispatched here */
659 static void r5l_submit_io_async(struct work_struct
*work
)
661 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
663 struct r5l_io_unit
*io
= NULL
;
666 spin_lock_irqsave(&log
->io_list_lock
, flags
);
667 if (!list_empty(&log
->running_ios
)) {
668 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
670 if (!io
->io_deferred
)
675 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
677 r5l_do_submit_io(log
, io
);
680 static void r5c_disable_writeback_async(struct work_struct
*work
)
682 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
683 disable_writeback_work
);
684 struct mddev
*mddev
= log
->rdev
->mddev
;
685 struct r5conf
*conf
= mddev
->private;
688 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
693 /* wait superblock change before suspend */
694 wait_event(mddev
->sb_wait
,
696 (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
) &&
697 (locked
= mddev_trylock(mddev
))));
699 mddev_suspend(mddev
);
700 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
706 static void r5l_submit_current_io(struct r5l_log
*log
)
708 struct r5l_io_unit
*io
= log
->current_io
;
709 struct r5l_meta_block
*block
;
712 bool do_submit
= true;
717 block
= page_address(io
->meta_page
);
718 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
719 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
720 block
->checksum
= cpu_to_le32(crc
);
722 log
->current_io
= NULL
;
723 spin_lock_irqsave(&log
->io_list_lock
, flags
);
724 if (io
->has_flush
|| io
->has_fua
) {
725 if (io
!= list_first_entry(&log
->running_ios
,
726 struct r5l_io_unit
, log_sibling
)) {
731 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
733 r5l_do_submit_io(log
, io
);
736 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
738 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, &log
->bs
);
740 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
741 bio_set_dev(bio
, log
->rdev
->bdev
);
742 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
747 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
749 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
751 r5c_update_log_state(log
);
753 * If we filled up the log device start from the beginning again,
754 * which will require a new bio.
756 * Note: for this to work properly the log size needs to me a multiple
759 if (log
->log_start
== 0)
760 io
->need_split_bio
= true;
762 io
->log_end
= log
->log_start
;
765 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
767 struct r5l_io_unit
*io
;
768 struct r5l_meta_block
*block
;
770 io
= mempool_alloc(&log
->io_pool
, GFP_ATOMIC
);
773 memset(io
, 0, sizeof(*io
));
776 INIT_LIST_HEAD(&io
->log_sibling
);
777 INIT_LIST_HEAD(&io
->stripe_list
);
778 bio_list_init(&io
->flush_barriers
);
779 io
->state
= IO_UNIT_RUNNING
;
781 io
->meta_page
= mempool_alloc(&log
->meta_pool
, GFP_NOIO
);
782 block
= page_address(io
->meta_page
);
784 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
785 block
->version
= R5LOG_VERSION
;
786 block
->seq
= cpu_to_le64(log
->seq
);
787 block
->position
= cpu_to_le64(log
->log_start
);
789 io
->log_start
= log
->log_start
;
790 io
->meta_offset
= sizeof(struct r5l_meta_block
);
791 io
->seq
= log
->seq
++;
793 io
->current_bio
= r5l_bio_alloc(log
);
794 io
->current_bio
->bi_end_io
= r5l_log_endio
;
795 io
->current_bio
->bi_private
= io
;
796 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
798 r5_reserve_log_entry(log
, io
);
800 spin_lock_irq(&log
->io_list_lock
);
801 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
802 spin_unlock_irq(&log
->io_list_lock
);
807 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
809 if (log
->current_io
&&
810 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
811 r5l_submit_current_io(log
);
813 if (!log
->current_io
) {
814 log
->current_io
= r5l_new_meta(log
);
815 if (!log
->current_io
)
822 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
824 u32 checksum1
, u32 checksum2
,
825 bool checksum2_valid
)
827 struct r5l_io_unit
*io
= log
->current_io
;
828 struct r5l_payload_data_parity
*payload
;
830 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
831 payload
->header
.type
= cpu_to_le16(type
);
832 payload
->header
.flags
= cpu_to_le16(0);
833 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
835 payload
->location
= cpu_to_le64(location
);
836 payload
->checksum
[0] = cpu_to_le32(checksum1
);
838 payload
->checksum
[1] = cpu_to_le32(checksum2
);
840 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
841 sizeof(__le32
) * (1 + !!checksum2_valid
);
844 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
846 struct r5l_io_unit
*io
= log
->current_io
;
848 if (io
->need_split_bio
) {
849 BUG_ON(io
->split_bio
);
850 io
->split_bio
= io
->current_bio
;
851 io
->current_bio
= r5l_bio_alloc(log
);
852 bio_chain(io
->current_bio
, io
->split_bio
);
853 io
->need_split_bio
= false;
856 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
859 r5_reserve_log_entry(log
, io
);
862 static void r5l_append_flush_payload(struct r5l_log
*log
, sector_t sect
)
864 struct mddev
*mddev
= log
->rdev
->mddev
;
865 struct r5conf
*conf
= mddev
->private;
866 struct r5l_io_unit
*io
;
867 struct r5l_payload_flush
*payload
;
871 * payload_flush requires extra writes to the journal.
872 * To avoid handling the extra IO in quiesce, just skip
878 mutex_lock(&log
->io_mutex
);
879 meta_size
= sizeof(struct r5l_payload_flush
) + sizeof(__le64
);
881 if (r5l_get_meta(log
, meta_size
)) {
882 mutex_unlock(&log
->io_mutex
);
886 /* current implementation is one stripe per flush payload */
887 io
= log
->current_io
;
888 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
889 payload
->header
.type
= cpu_to_le16(R5LOG_PAYLOAD_FLUSH
);
890 payload
->header
.flags
= cpu_to_le16(0);
891 payload
->size
= cpu_to_le32(sizeof(__le64
));
892 payload
->flush_stripes
[0] = cpu_to_le64(sect
);
893 io
->meta_offset
+= meta_size
;
894 /* multiple flush payloads count as one pending_stripe */
895 if (!io
->has_flush_payload
) {
896 io
->has_flush_payload
= 1;
897 atomic_inc(&io
->pending_stripe
);
899 mutex_unlock(&log
->io_mutex
);
902 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
903 int data_pages
, int parity_pages
)
908 struct r5l_io_unit
*io
;
911 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
913 sizeof(struct r5l_payload_data_parity
) +
914 sizeof(__le32
) * parity_pages
;
916 ret
= r5l_get_meta(log
, meta_size
);
920 io
= log
->current_io
;
922 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
925 for (i
= 0; i
< sh
->disks
; i
++) {
926 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
927 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
929 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
931 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
932 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
935 * we need to flush journal to make sure recovery can
936 * reach the data with fua flag
940 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
941 raid5_compute_blocknr(sh
, i
, 0),
942 sh
->dev
[i
].log_checksum
, 0, false);
943 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
946 if (parity_pages
== 2) {
947 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
948 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
949 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
950 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
951 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
952 } else if (parity_pages
== 1) {
953 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
954 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
956 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
957 } else /* Just writing data, not parity, in caching phase */
958 BUG_ON(parity_pages
!= 0);
960 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
961 atomic_inc(&io
->pending_stripe
);
964 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
967 if (sh
->log_start
== MaxSector
) {
968 BUG_ON(!list_empty(&sh
->r5c
));
969 sh
->log_start
= io
->log_start
;
970 spin_lock_irq(&log
->stripe_in_journal_lock
);
971 list_add_tail(&sh
->r5c
,
972 &log
->stripe_in_journal_list
);
973 spin_unlock_irq(&log
->stripe_in_journal_lock
);
974 atomic_inc(&log
->stripe_in_journal_count
);
979 /* add stripe to no_space_stripes, and then wake up reclaim */
980 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
981 struct stripe_head
*sh
)
983 spin_lock(&log
->no_space_stripes_lock
);
984 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
985 spin_unlock(&log
->no_space_stripes_lock
);
989 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
990 * data from log to raid disks), so we shouldn't wait for reclaim here
992 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
994 struct r5conf
*conf
= sh
->raid_conf
;
996 int data_pages
, parity_pages
;
1000 bool wake_reclaim
= false;
1004 /* Don't support stripe batch */
1005 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
1006 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
1007 /* the stripe is written to log, we start writing it to raid */
1008 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1012 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1014 for (i
= 0; i
< sh
->disks
; i
++) {
1017 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
1018 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1022 /* checksum is already calculated in last run */
1023 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
1025 addr
= kmap_atomic(sh
->dev
[i
].page
);
1026 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
1028 kunmap_atomic(addr
);
1030 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
1031 data_pages
= write_disks
- parity_pages
;
1033 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1035 * The stripe must enter state machine again to finish the write, so
1038 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1039 atomic_inc(&sh
->count
);
1041 mutex_lock(&log
->io_mutex
);
1043 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
1045 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1046 if (!r5l_has_free_space(log
, reserve
)) {
1047 r5l_add_no_space_stripe(log
, sh
);
1048 wake_reclaim
= true;
1050 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1052 spin_lock_irq(&log
->io_list_lock
);
1053 list_add_tail(&sh
->log_list
,
1054 &log
->no_mem_stripes
);
1055 spin_unlock_irq(&log
->io_list_lock
);
1058 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1060 * log space critical, do not process stripes that are
1061 * not in cache yet (sh->log_start == MaxSector).
1063 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
1064 sh
->log_start
== MaxSector
) {
1065 r5l_add_no_space_stripe(log
, sh
);
1066 wake_reclaim
= true;
1068 } else if (!r5l_has_free_space(log
, reserve
)) {
1069 if (sh
->log_start
== log
->last_checkpoint
)
1072 r5l_add_no_space_stripe(log
, sh
);
1074 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1076 spin_lock_irq(&log
->io_list_lock
);
1077 list_add_tail(&sh
->log_list
,
1078 &log
->no_mem_stripes
);
1079 spin_unlock_irq(&log
->io_list_lock
);
1084 mutex_unlock(&log
->io_mutex
);
1086 r5l_wake_reclaim(log
, reserve
);
1090 void r5l_write_stripe_run(struct r5l_log
*log
)
1094 mutex_lock(&log
->io_mutex
);
1095 r5l_submit_current_io(log
);
1096 mutex_unlock(&log
->io_mutex
);
1099 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
1101 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1103 * in write through (journal only)
1104 * we flush log disk cache first, then write stripe data to
1105 * raid disks. So if bio is finished, the log disk cache is
1106 * flushed already. The recovery guarantees we can recovery
1107 * the bio from log disk, so we don't need to flush again
1109 if (bio
->bi_iter
.bi_size
== 0) {
1113 bio
->bi_opf
&= ~REQ_PREFLUSH
;
1115 /* write back (with cache) */
1116 if (bio
->bi_iter
.bi_size
== 0) {
1117 mutex_lock(&log
->io_mutex
);
1118 r5l_get_meta(log
, 0);
1119 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
1120 log
->current_io
->has_flush
= 1;
1121 log
->current_io
->has_null_flush
= 1;
1122 atomic_inc(&log
->current_io
->pending_stripe
);
1123 r5l_submit_current_io(log
);
1124 mutex_unlock(&log
->io_mutex
);
1131 /* This will run after log space is reclaimed */
1132 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1134 struct stripe_head
*sh
;
1136 spin_lock(&log
->no_space_stripes_lock
);
1137 while (!list_empty(&log
->no_space_stripes
)) {
1138 sh
= list_first_entry(&log
->no_space_stripes
,
1139 struct stripe_head
, log_list
);
1140 list_del_init(&sh
->log_list
);
1141 set_bit(STRIPE_HANDLE
, &sh
->state
);
1142 raid5_release_stripe(sh
);
1144 spin_unlock(&log
->no_space_stripes_lock
);
1148 * calculate new last_checkpoint
1149 * for write through mode, returns log->next_checkpoint
1150 * for write back, returns log_start of first sh in stripe_in_journal_list
1152 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1154 struct stripe_head
*sh
;
1155 struct r5l_log
*log
= conf
->log
;
1157 unsigned long flags
;
1159 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1160 return log
->next_checkpoint
;
1162 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1163 if (list_empty(&conf
->log
->stripe_in_journal_list
)) {
1164 /* all stripes flushed */
1165 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1166 return log
->next_checkpoint
;
1168 sh
= list_first_entry(&conf
->log
->stripe_in_journal_list
,
1169 struct stripe_head
, r5c
);
1170 new_cp
= sh
->log_start
;
1171 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1175 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1177 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1179 return r5l_ring_distance(log
, log
->last_checkpoint
,
1180 r5c_calculate_new_cp(conf
));
1183 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1185 struct stripe_head
*sh
;
1187 lockdep_assert_held(&log
->io_list_lock
);
1189 if (!list_empty(&log
->no_mem_stripes
)) {
1190 sh
= list_first_entry(&log
->no_mem_stripes
,
1191 struct stripe_head
, log_list
);
1192 list_del_init(&sh
->log_list
);
1193 set_bit(STRIPE_HANDLE
, &sh
->state
);
1194 raid5_release_stripe(sh
);
1198 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1200 struct r5l_io_unit
*io
, *next
;
1203 lockdep_assert_held(&log
->io_list_lock
);
1205 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1206 /* don't change list order */
1207 if (io
->state
< IO_UNIT_STRIPE_END
)
1210 log
->next_checkpoint
= io
->log_start
;
1212 list_del(&io
->log_sibling
);
1213 mempool_free(io
, &log
->io_pool
);
1214 r5l_run_no_mem_stripe(log
);
1222 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1224 struct r5l_log
*log
= io
->log
;
1225 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1226 unsigned long flags
;
1228 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1229 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1231 if (!r5l_complete_finished_ios(log
)) {
1232 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1236 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1237 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1238 r5l_wake_reclaim(log
, 0);
1240 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1241 wake_up(&log
->iounit_wait
);
1244 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1246 struct r5l_io_unit
*io
;
1251 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1252 __r5l_stripe_write_finished(io
);
1255 static void r5l_log_flush_endio(struct bio
*bio
)
1257 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1259 unsigned long flags
;
1260 struct r5l_io_unit
*io
;
1263 md_error(log
->rdev
->mddev
, log
->rdev
);
1265 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1266 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1267 r5l_io_run_stripes(io
);
1268 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1269 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1273 * Starting dispatch IO to raid.
1274 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1275 * broken meta in the middle of a log causes recovery can't find meta at the
1276 * head of log. If operations require meta at the head persistent in log, we
1277 * must make sure meta before it persistent in log too. A case is:
1279 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1280 * data/parity must be persistent in log before we do the write to raid disks.
1282 * The solution is we restrictly maintain io_unit list order. In this case, we
1283 * only write stripes of an io_unit to raid disks till the io_unit is the first
1284 * one whose data/parity is in log.
1286 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1290 if (!log
|| !log
->need_cache_flush
)
1293 spin_lock_irq(&log
->io_list_lock
);
1294 /* flush bio is running */
1295 if (!list_empty(&log
->flushing_ios
)) {
1296 spin_unlock_irq(&log
->io_list_lock
);
1299 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1300 do_flush
= !list_empty(&log
->flushing_ios
);
1301 spin_unlock_irq(&log
->io_list_lock
);
1305 bio_reset(&log
->flush_bio
);
1306 bio_set_dev(&log
->flush_bio
, log
->rdev
->bdev
);
1307 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1308 log
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1309 submit_bio(&log
->flush_bio
);
1312 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1313 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1316 struct block_device
*bdev
= log
->rdev
->bdev
;
1317 struct mddev
*mddev
;
1319 r5l_write_super(log
, end
);
1321 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1324 mddev
= log
->rdev
->mddev
;
1326 * Discard could zero data, so before discard we must make sure
1327 * superblock is updated to new log tail. Updating superblock (either
1328 * directly call md_update_sb() or depend on md thread) must hold
1329 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331 * for all IO finish, hence waitting for reclaim thread, while reclaim
1332 * thread is calling this function and waitting for reconfig mutex. So
1333 * there is a deadlock. We workaround this issue with a trylock.
1334 * FIXME: we could miss discard if we can't take reconfig mutex
1336 set_mask_bits(&mddev
->sb_flags
, 0,
1337 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1338 if (!mddev_trylock(mddev
))
1340 md_update_sb(mddev
, 1);
1341 mddev_unlock(mddev
);
1343 /* discard IO error really doesn't matter, ignore it */
1344 if (log
->last_checkpoint
< end
) {
1345 blkdev_issue_discard(bdev
,
1346 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1347 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
1349 blkdev_issue_discard(bdev
,
1350 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1351 log
->device_size
- log
->last_checkpoint
,
1353 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1362 * must hold conf->device_lock
1364 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1366 BUG_ON(list_empty(&sh
->lru
));
1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1368 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372 * raid5_release_stripe() while holding conf->device_lock
1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1375 lockdep_assert_held(&conf
->device_lock
);
1377 list_del_init(&sh
->lru
);
1378 atomic_inc(&sh
->count
);
1380 set_bit(STRIPE_HANDLE
, &sh
->state
);
1381 atomic_inc(&conf
->active_stripes
);
1382 r5c_make_stripe_write_out(sh
);
1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
1385 atomic_inc(&conf
->r5c_flushing_partial_stripes
);
1387 atomic_inc(&conf
->r5c_flushing_full_stripes
);
1388 raid5_release_stripe(sh
);
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 * flushed, flush some partial stripes until totally num stripes are
1395 * flushed or there is no more cached stripes.
1397 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1400 struct stripe_head
*sh
, *next
;
1402 lockdep_assert_held(&conf
->device_lock
);
1407 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1408 r5c_flush_stripe(conf
, sh
);
1414 list_for_each_entry_safe(sh
, next
,
1415 &conf
->r5c_partial_stripe_list
, lru
) {
1416 r5c_flush_stripe(conf
, sh
);
1422 static void r5c_do_reclaim(struct r5conf
*conf
)
1424 struct r5l_log
*log
= conf
->log
;
1425 struct stripe_head
*sh
;
1427 unsigned long flags
;
1429 int stripes_to_flush
;
1430 int flushing_partial
, flushing_full
;
1432 if (!r5c_is_writeback(log
))
1435 flushing_partial
= atomic_read(&conf
->r5c_flushing_partial_stripes
);
1436 flushing_full
= atomic_read(&conf
->r5c_flushing_full_stripes
);
1437 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1438 atomic_read(&conf
->r5c_cached_full_stripes
) -
1439 flushing_full
- flushing_partial
;
1441 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1442 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1444 * if stripe cache pressure high, flush all full stripes and
1445 * some partial stripes
1447 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1448 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1449 atomic_read(&conf
->r5c_cached_full_stripes
) - flushing_full
>
1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf
))
1452 * if stripe cache pressure moderate, or if there is many full
1453 * stripes,flush all full stripes
1455 stripes_to_flush
= 0;
1457 /* no need to flush */
1458 stripes_to_flush
= -1;
1460 if (stripes_to_flush
>= 0) {
1461 spin_lock_irqsave(&conf
->device_lock
, flags
);
1462 r5c_flush_cache(conf
, stripes_to_flush
);
1463 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1466 /* if log space is tight, flush stripes on stripe_in_journal_list */
1467 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1468 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1469 spin_lock(&conf
->device_lock
);
1470 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1472 * stripes on stripe_in_journal_list could be in any
1473 * state of the stripe_cache state machine. In this
1474 * case, we only want to flush stripe on
1475 * r5c_cached_full/partial_stripes. The following
1476 * condition makes sure the stripe is on one of the
1479 if (!list_empty(&sh
->lru
) &&
1480 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1481 atomic_read(&sh
->count
) == 0) {
1482 r5c_flush_stripe(conf
, sh
);
1483 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1487 spin_unlock(&conf
->device_lock
);
1488 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1491 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1492 r5l_run_no_space_stripes(log
);
1494 md_wakeup_thread(conf
->mddev
->thread
);
1497 static void r5l_do_reclaim(struct r5l_log
*log
)
1499 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1500 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1501 sector_t reclaimable
;
1502 sector_t next_checkpoint
;
1505 spin_lock_irq(&log
->io_list_lock
);
1506 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1507 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1509 * move proper io_unit to reclaim list. We should not change the order.
1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511 * shouldn't reuse space of an unreclaimable io_unit
1514 reclaimable
= r5l_reclaimable_space(log
);
1515 if (reclaimable
>= reclaim_target
||
1516 (list_empty(&log
->running_ios
) &&
1517 list_empty(&log
->io_end_ios
) &&
1518 list_empty(&log
->flushing_ios
) &&
1519 list_empty(&log
->finished_ios
)))
1522 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1523 wait_event_lock_irq(log
->iounit_wait
,
1524 r5l_reclaimable_space(log
) > reclaimable
,
1528 next_checkpoint
= r5c_calculate_new_cp(conf
);
1529 spin_unlock_irq(&log
->io_list_lock
);
1531 if (reclaimable
== 0 || !write_super
)
1535 * write_super will flush cache of each raid disk. We must write super
1536 * here, because the log area might be reused soon and we don't want to
1539 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1541 mutex_lock(&log
->io_mutex
);
1542 log
->last_checkpoint
= next_checkpoint
;
1543 r5c_update_log_state(log
);
1544 mutex_unlock(&log
->io_mutex
);
1546 r5l_run_no_space_stripes(log
);
1549 static void r5l_reclaim_thread(struct md_thread
*thread
)
1551 struct mddev
*mddev
= thread
->mddev
;
1552 struct r5conf
*conf
= mddev
->private;
1553 struct r5l_log
*log
= conf
->log
;
1557 r5c_do_reclaim(conf
);
1558 r5l_do_reclaim(log
);
1561 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1563 unsigned long target
;
1564 unsigned long new = (unsigned long)space
; /* overflow in theory */
1569 target
= log
->reclaim_target
;
1572 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
1573 md_wakeup_thread(log
->reclaim_thread
);
1576 void r5l_quiesce(struct r5l_log
*log
, int quiesce
)
1578 struct mddev
*mddev
;
1581 /* make sure r5l_write_super_and_discard_space exits */
1582 mddev
= log
->rdev
->mddev
;
1583 wake_up(&mddev
->sb_wait
);
1584 kthread_park(log
->reclaim_thread
->tsk
);
1585 r5l_wake_reclaim(log
, MaxSector
);
1586 r5l_do_reclaim(log
);
1588 kthread_unpark(log
->reclaim_thread
->tsk
);
1591 bool r5l_log_disk_error(struct r5conf
*conf
)
1593 struct r5l_log
*log
;
1595 /* don't allow write if journal disk is missing */
1597 log
= rcu_dereference(conf
->log
);
1600 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1602 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
1607 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1609 struct r5l_recovery_ctx
{
1610 struct page
*meta_page
; /* current meta */
1611 sector_t meta_total_blocks
; /* total size of current meta and data */
1612 sector_t pos
; /* recovery position */
1613 u64 seq
; /* recovery position seq */
1614 int data_parity_stripes
; /* number of data_parity stripes */
1615 int data_only_stripes
; /* number of data_only stripes */
1616 struct list_head cached_list
;
1619 * read ahead page pool (ra_pool)
1620 * in recovery, log is read sequentially. It is not efficient to
1621 * read every page with sync_page_io(). The read ahead page pool
1622 * reads multiple pages with one IO, so further log read can
1623 * just copy data from the pool.
1625 struct page
*ra_pool
[R5L_RECOVERY_PAGE_POOL_SIZE
];
1626 sector_t pool_offset
; /* offset of first page in the pool */
1627 int total_pages
; /* total allocated pages */
1628 int valid_pages
; /* pages with valid data */
1629 struct bio
*ra_bio
; /* bio to do the read ahead */
1632 static int r5l_recovery_allocate_ra_pool(struct r5l_log
*log
,
1633 struct r5l_recovery_ctx
*ctx
)
1637 ctx
->ra_bio
= bio_alloc_bioset(GFP_KERNEL
, BIO_MAX_PAGES
, &log
->bs
);
1641 ctx
->valid_pages
= 0;
1642 ctx
->total_pages
= 0;
1643 while (ctx
->total_pages
< R5L_RECOVERY_PAGE_POOL_SIZE
) {
1644 page
= alloc_page(GFP_KERNEL
);
1648 ctx
->ra_pool
[ctx
->total_pages
] = page
;
1649 ctx
->total_pages
+= 1;
1652 if (ctx
->total_pages
== 0) {
1653 bio_put(ctx
->ra_bio
);
1657 ctx
->pool_offset
= 0;
1661 static void r5l_recovery_free_ra_pool(struct r5l_log
*log
,
1662 struct r5l_recovery_ctx
*ctx
)
1666 for (i
= 0; i
< ctx
->total_pages
; ++i
)
1667 put_page(ctx
->ra_pool
[i
]);
1668 bio_put(ctx
->ra_bio
);
1672 * fetch ctx->valid_pages pages from offset
1673 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1674 * However, if the offset is close to the end of the journal device,
1675 * ctx->valid_pages could be smaller than ctx->total_pages
1677 static int r5l_recovery_fetch_ra_pool(struct r5l_log
*log
,
1678 struct r5l_recovery_ctx
*ctx
,
1681 bio_reset(ctx
->ra_bio
);
1682 bio_set_dev(ctx
->ra_bio
, log
->rdev
->bdev
);
1683 bio_set_op_attrs(ctx
->ra_bio
, REQ_OP_READ
, 0);
1684 ctx
->ra_bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ offset
;
1686 ctx
->valid_pages
= 0;
1687 ctx
->pool_offset
= offset
;
1689 while (ctx
->valid_pages
< ctx
->total_pages
) {
1690 bio_add_page(ctx
->ra_bio
,
1691 ctx
->ra_pool
[ctx
->valid_pages
], PAGE_SIZE
, 0);
1692 ctx
->valid_pages
+= 1;
1694 offset
= r5l_ring_add(log
, offset
, BLOCK_SECTORS
);
1696 if (offset
== 0) /* reached end of the device */
1700 return submit_bio_wait(ctx
->ra_bio
);
1704 * try read a page from the read ahead page pool, if the page is not in the
1705 * pool, call r5l_recovery_fetch_ra_pool
1707 static int r5l_recovery_read_page(struct r5l_log
*log
,
1708 struct r5l_recovery_ctx
*ctx
,
1714 if (offset
< ctx
->pool_offset
||
1715 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
) {
1716 ret
= r5l_recovery_fetch_ra_pool(log
, ctx
, offset
);
1721 BUG_ON(offset
< ctx
->pool_offset
||
1722 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
);
1724 memcpy(page_address(page
),
1725 page_address(ctx
->ra_pool
[(offset
- ctx
->pool_offset
) >>
1726 BLOCK_SECTOR_SHIFT
]),
1731 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1732 struct r5l_recovery_ctx
*ctx
)
1734 struct page
*page
= ctx
->meta_page
;
1735 struct r5l_meta_block
*mb
;
1736 u32 crc
, stored_crc
;
1739 ret
= r5l_recovery_read_page(log
, ctx
, page
, ctx
->pos
);
1743 mb
= page_address(page
);
1744 stored_crc
= le32_to_cpu(mb
->checksum
);
1747 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1748 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1749 mb
->version
!= R5LOG_VERSION
||
1750 le64_to_cpu(mb
->position
) != ctx
->pos
)
1753 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1754 if (stored_crc
!= crc
)
1757 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1760 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1766 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1768 sector_t pos
, u64 seq
)
1770 struct r5l_meta_block
*mb
;
1772 mb
= page_address(page
);
1774 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1775 mb
->version
= R5LOG_VERSION
;
1776 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1777 mb
->seq
= cpu_to_le64(seq
);
1778 mb
->position
= cpu_to_le64(pos
);
1781 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1785 struct r5l_meta_block
*mb
;
1787 page
= alloc_page(GFP_KERNEL
);
1790 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1791 mb
= page_address(page
);
1792 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1794 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1795 REQ_SYNC
| REQ_FUA
, false)) {
1804 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1805 * to mark valid (potentially not flushed) data in the journal.
1807 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1808 * so there should not be any mismatch here.
1810 static void r5l_recovery_load_data(struct r5l_log
*log
,
1811 struct stripe_head
*sh
,
1812 struct r5l_recovery_ctx
*ctx
,
1813 struct r5l_payload_data_parity
*payload
,
1814 sector_t log_offset
)
1816 struct mddev
*mddev
= log
->rdev
->mddev
;
1817 struct r5conf
*conf
= mddev
->private;
1820 raid5_compute_sector(conf
,
1821 le64_to_cpu(payload
->location
), 0,
1823 r5l_recovery_read_page(log
, ctx
, sh
->dev
[dd_idx
].page
, log_offset
);
1824 sh
->dev
[dd_idx
].log_checksum
=
1825 le32_to_cpu(payload
->checksum
[0]);
1826 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1828 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1829 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1832 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1833 struct stripe_head
*sh
,
1834 struct r5l_recovery_ctx
*ctx
,
1835 struct r5l_payload_data_parity
*payload
,
1836 sector_t log_offset
)
1838 struct mddev
*mddev
= log
->rdev
->mddev
;
1839 struct r5conf
*conf
= mddev
->private;
1841 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1842 r5l_recovery_read_page(log
, ctx
, sh
->dev
[sh
->pd_idx
].page
, log_offset
);
1843 sh
->dev
[sh
->pd_idx
].log_checksum
=
1844 le32_to_cpu(payload
->checksum
[0]);
1845 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1847 if (sh
->qd_idx
>= 0) {
1848 r5l_recovery_read_page(
1849 log
, ctx
, sh
->dev
[sh
->qd_idx
].page
,
1850 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
));
1851 sh
->dev
[sh
->qd_idx
].log_checksum
=
1852 le32_to_cpu(payload
->checksum
[1]);
1853 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1855 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1858 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1863 sh
->log_start
= MaxSector
;
1864 for (i
= sh
->disks
; i
--; )
1865 sh
->dev
[i
].flags
= 0;
1869 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1870 struct stripe_head
*sh
,
1871 struct r5l_recovery_ctx
*ctx
)
1873 struct md_rdev
*rdev
, *rrdev
;
1877 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1878 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1880 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1886 * stripes that only have parity must have been flushed
1887 * before the crash that we are now recovering from, so
1888 * there is nothing more to recovery.
1890 if (data_count
== 0)
1893 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1894 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1897 /* in case device is broken */
1899 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
1901 atomic_inc(&rdev
->nr_pending
);
1903 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1904 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1906 rdev_dec_pending(rdev
, rdev
->mddev
);
1909 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
1911 atomic_inc(&rrdev
->nr_pending
);
1913 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1914 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1916 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1921 ctx
->data_parity_stripes
++;
1923 r5l_recovery_reset_stripe(sh
);
1926 static struct stripe_head
*
1927 r5c_recovery_alloc_stripe(
1928 struct r5conf
*conf
,
1929 sector_t stripe_sect
,
1932 struct stripe_head
*sh
;
1934 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, noblock
, 0);
1936 return NULL
; /* no more stripe available */
1938 r5l_recovery_reset_stripe(sh
);
1943 static struct stripe_head
*
1944 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1946 struct stripe_head
*sh
;
1948 list_for_each_entry(sh
, list
, lru
)
1949 if (sh
->sector
== sect
)
1955 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1956 struct r5l_recovery_ctx
*ctx
)
1958 struct stripe_head
*sh
, *next
;
1960 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1961 r5l_recovery_reset_stripe(sh
);
1962 list_del_init(&sh
->lru
);
1963 raid5_release_stripe(sh
);
1968 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1969 struct r5l_recovery_ctx
*ctx
)
1971 struct stripe_head
*sh
, *next
;
1973 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1974 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1975 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1976 list_del_init(&sh
->lru
);
1977 raid5_release_stripe(sh
);
1981 /* if matches return 0; otherwise return -EINVAL */
1983 r5l_recovery_verify_data_checksum(struct r5l_log
*log
,
1984 struct r5l_recovery_ctx
*ctx
,
1986 sector_t log_offset
, __le32 log_checksum
)
1991 r5l_recovery_read_page(log
, ctx
, page
, log_offset
);
1992 addr
= kmap_atomic(page
);
1993 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
1994 kunmap_atomic(addr
);
1995 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
1999 * before loading data to stripe cache, we need verify checksum for all data,
2000 * if there is mismatch for any data page, we drop all data in the mata block
2003 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
2004 struct r5l_recovery_ctx
*ctx
)
2006 struct mddev
*mddev
= log
->rdev
->mddev
;
2007 struct r5conf
*conf
= mddev
->private;
2008 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
2009 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
2010 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2012 struct r5l_payload_data_parity
*payload
;
2013 struct r5l_payload_flush
*payload_flush
;
2015 page
= alloc_page(GFP_KERNEL
);
2019 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2020 payload
= (void *)mb
+ mb_offset
;
2021 payload_flush
= (void *)mb
+ mb_offset
;
2023 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2024 if (r5l_recovery_verify_data_checksum(
2025 log
, ctx
, page
, log_offset
,
2026 payload
->checksum
[0]) < 0)
2028 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
) {
2029 if (r5l_recovery_verify_data_checksum(
2030 log
, ctx
, page
, log_offset
,
2031 payload
->checksum
[0]) < 0)
2033 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
2034 r5l_recovery_verify_data_checksum(
2036 r5l_ring_add(log
, log_offset
,
2038 payload
->checksum
[1]) < 0)
2040 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2041 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2042 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2045 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2046 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2047 le32_to_cpu(payload_flush
->size
);
2049 /* DATA or PARITY payload */
2050 log_offset
= r5l_ring_add(log
, log_offset
,
2051 le32_to_cpu(payload
->size
));
2052 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2054 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2068 * Analyze all data/parity pages in one meta block
2071 * -EINVAL for unknown playload type
2072 * -EAGAIN for checksum mismatch of data page
2073 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2076 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
2077 struct r5l_recovery_ctx
*ctx
,
2078 struct list_head
*cached_stripe_list
)
2080 struct mddev
*mddev
= log
->rdev
->mddev
;
2081 struct r5conf
*conf
= mddev
->private;
2082 struct r5l_meta_block
*mb
;
2083 struct r5l_payload_data_parity
*payload
;
2084 struct r5l_payload_flush
*payload_flush
;
2086 sector_t log_offset
;
2087 sector_t stripe_sect
;
2088 struct stripe_head
*sh
;
2092 * for mismatch in data blocks, we will drop all data in this mb, but
2093 * we will still read next mb for other data with FLUSH flag, as
2094 * io_unit could finish out of order.
2096 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
2100 return ret
; /* -ENOMEM duo to alloc_page() failed */
2102 mb
= page_address(ctx
->meta_page
);
2103 mb_offset
= sizeof(struct r5l_meta_block
);
2104 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2106 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2109 payload
= (void *)mb
+ mb_offset
;
2110 payload_flush
= (void *)mb
+ mb_offset
;
2112 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2115 count
= le32_to_cpu(payload_flush
->size
) / sizeof(__le64
);
2116 for (i
= 0; i
< count
; ++i
) {
2117 stripe_sect
= le64_to_cpu(payload_flush
->flush_stripes
[i
]);
2118 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2121 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2122 r5l_recovery_reset_stripe(sh
);
2123 list_del_init(&sh
->lru
);
2124 raid5_release_stripe(sh
);
2128 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2129 le32_to_cpu(payload_flush
->size
);
2133 /* DATA or PARITY payload */
2134 stripe_sect
= (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) ?
2135 raid5_compute_sector(
2136 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
2138 : le64_to_cpu(payload
->location
);
2140 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2144 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
, 1);
2146 * cannot get stripe from raid5_get_active_stripe
2147 * try replay some stripes
2150 r5c_recovery_replay_stripes(
2151 cached_stripe_list
, ctx
);
2152 sh
= r5c_recovery_alloc_stripe(
2153 conf
, stripe_sect
, 1);
2156 int new_size
= conf
->min_nr_stripes
* 2;
2157 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2160 ret
= raid5_set_cache_size(mddev
, new_size
);
2161 if (conf
->min_nr_stripes
<= new_size
/ 2) {
2162 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2166 conf
->min_nr_stripes
,
2167 conf
->max_nr_stripes
);
2170 sh
= r5c_recovery_alloc_stripe(
2171 conf
, stripe_sect
, 0);
2174 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2178 list_add_tail(&sh
->lru
, cached_stripe_list
);
2181 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2182 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
2183 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
2184 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
2185 list_move_tail(&sh
->lru
, cached_stripe_list
);
2187 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
2189 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
)
2190 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
2195 log_offset
= r5l_ring_add(log
, log_offset
,
2196 le32_to_cpu(payload
->size
));
2198 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2200 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2207 * Load the stripe into cache. The stripe will be written out later by
2208 * the stripe cache state machine.
2210 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
2211 struct stripe_head
*sh
)
2216 for (i
= sh
->disks
; i
--; ) {
2218 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
2219 set_bit(R5_InJournal
, &dev
->flags
);
2220 set_bit(R5_UPTODATE
, &dev
->flags
);
2226 * Scan through the log for all to-be-flushed data
2228 * For stripes with data and parity, namely Data-Parity stripe
2229 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2231 * For stripes with only data, namely Data-Only stripe
2232 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2234 * For a stripe, if we see data after parity, we should discard all previous
2235 * data and parity for this stripe, as these data are already flushed to
2238 * At the end of the scan, we return the new journal_tail, which points to
2239 * first data-only stripe on the journal device, or next invalid meta block.
2241 static int r5c_recovery_flush_log(struct r5l_log
*log
,
2242 struct r5l_recovery_ctx
*ctx
)
2244 struct stripe_head
*sh
;
2247 /* scan through the log */
2249 if (r5l_recovery_read_meta_block(log
, ctx
))
2252 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
2255 * -EAGAIN means mismatch in data block, in this case, we still
2256 * try scan the next metablock
2258 if (ret
&& ret
!= -EAGAIN
)
2259 break; /* ret == -EINVAL or -ENOMEM */
2261 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
2264 if (ret
== -ENOMEM
) {
2265 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
2269 /* replay data-parity stripes */
2270 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
2272 /* load data-only stripes to stripe cache */
2273 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2274 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2275 r5c_recovery_load_one_stripe(log
, sh
);
2276 ctx
->data_only_stripes
++;
2283 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2284 * log will start here. but we can't let superblock point to last valid
2285 * meta block. The log might looks like:
2286 * | meta 1| meta 2| meta 3|
2287 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2288 * superblock points to meta 1, we write a new valid meta 2n. if crash
2289 * happens again, new recovery will start from meta 1. Since meta 2n is
2290 * valid now, recovery will think meta 3 is valid, which is wrong.
2291 * The solution is we create a new meta in meta2 with its seq == meta
2292 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2293 * will not think meta 3 is a valid meta, because its seq doesn't match
2297 * Before recovery, the log looks like the following
2299 * ---------------------------------------------
2300 * | valid log | invalid log |
2301 * ---------------------------------------------
2303 * |- log->last_checkpoint
2304 * |- log->last_cp_seq
2306 * Now we scan through the log until we see invalid entry
2308 * ---------------------------------------------
2309 * | valid log | invalid log |
2310 * ---------------------------------------------
2312 * |- log->last_checkpoint |- ctx->pos
2313 * |- log->last_cp_seq |- ctx->seq
2315 * From this point, we need to increase seq number by 10 to avoid
2316 * confusing next recovery.
2318 * ---------------------------------------------
2319 * | valid log | invalid log |
2320 * ---------------------------------------------
2322 * |- log->last_checkpoint |- ctx->pos+1
2323 * |- log->last_cp_seq |- ctx->seq+10001
2325 * However, it is not safe to start the state machine yet, because data only
2326 * parities are not yet secured in RAID. To save these data only parities, we
2327 * rewrite them from seq+11.
2329 * -----------------------------------------------------------------
2330 * | valid log | data only stripes | invalid log |
2331 * -----------------------------------------------------------------
2333 * |- log->last_checkpoint |- ctx->pos+n
2334 * |- log->last_cp_seq |- ctx->seq+10000+n
2336 * If failure happens again during this process, the recovery can safe start
2337 * again from log->last_checkpoint.
2339 * Once data only stripes are rewritten to journal, we move log_tail
2341 * -----------------------------------------------------------------
2342 * | old log | data only stripes | invalid log |
2343 * -----------------------------------------------------------------
2345 * |- log->last_checkpoint |- ctx->pos+n
2346 * |- log->last_cp_seq |- ctx->seq+10000+n
2348 * Then we can safely start the state machine. If failure happens from this
2349 * point on, the recovery will start from new log->last_checkpoint.
2352 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2353 struct r5l_recovery_ctx
*ctx
)
2355 struct stripe_head
*sh
;
2356 struct mddev
*mddev
= log
->rdev
->mddev
;
2358 sector_t next_checkpoint
= MaxSector
;
2360 page
= alloc_page(GFP_KERNEL
);
2362 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2367 WARN_ON(list_empty(&ctx
->cached_list
));
2369 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2370 struct r5l_meta_block
*mb
;
2375 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2376 r5l_recovery_create_empty_meta_block(log
, page
,
2377 ctx
->pos
, ctx
->seq
);
2378 mb
= page_address(page
);
2379 offset
= le32_to_cpu(mb
->meta_size
);
2380 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2382 for (i
= sh
->disks
; i
--; ) {
2383 struct r5dev
*dev
= &sh
->dev
[i
];
2384 struct r5l_payload_data_parity
*payload
;
2387 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2388 payload
= (void *)mb
+ offset
;
2389 payload
->header
.type
= cpu_to_le16(
2390 R5LOG_PAYLOAD_DATA
);
2391 payload
->size
= cpu_to_le32(BLOCK_SECTORS
);
2392 payload
->location
= cpu_to_le64(
2393 raid5_compute_blocknr(sh
, i
, 0));
2394 addr
= kmap_atomic(dev
->page
);
2395 payload
->checksum
[0] = cpu_to_le32(
2396 crc32c_le(log
->uuid_checksum
, addr
,
2398 kunmap_atomic(addr
);
2399 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2400 dev
->page
, REQ_OP_WRITE
, 0, false);
2401 write_pos
= r5l_ring_add(log
, write_pos
,
2403 offset
+= sizeof(__le32
) +
2404 sizeof(struct r5l_payload_data_parity
);
2408 mb
->meta_size
= cpu_to_le32(offset
);
2409 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2411 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2412 REQ_OP_WRITE
, REQ_SYNC
| REQ_FUA
, false);
2413 sh
->log_start
= ctx
->pos
;
2414 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
2415 atomic_inc(&log
->stripe_in_journal_count
);
2416 ctx
->pos
= write_pos
;
2418 next_checkpoint
= sh
->log_start
;
2420 log
->next_checkpoint
= next_checkpoint
;
2425 static void r5c_recovery_flush_data_only_stripes(struct r5l_log
*log
,
2426 struct r5l_recovery_ctx
*ctx
)
2428 struct mddev
*mddev
= log
->rdev
->mddev
;
2429 struct r5conf
*conf
= mddev
->private;
2430 struct stripe_head
*sh
, *next
;
2431 bool cleared_pending
= false;
2433 if (ctx
->data_only_stripes
== 0)
2436 if (test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2437 cleared_pending
= true;
2438 clear_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
);
2440 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_BACK
;
2442 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2443 r5c_make_stripe_write_out(sh
);
2444 set_bit(STRIPE_HANDLE
, &sh
->state
);
2445 list_del_init(&sh
->lru
);
2446 raid5_release_stripe(sh
);
2449 /* reuse conf->wait_for_quiescent in recovery */
2450 wait_event(conf
->wait_for_quiescent
,
2451 atomic_read(&conf
->active_stripes
) == 0);
2453 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2454 if (cleared_pending
)
2455 set_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
);
2458 static int r5l_recovery_log(struct r5l_log
*log
)
2460 struct mddev
*mddev
= log
->rdev
->mddev
;
2461 struct r5l_recovery_ctx
*ctx
;
2465 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2469 ctx
->pos
= log
->last_checkpoint
;
2470 ctx
->seq
= log
->last_cp_seq
;
2471 INIT_LIST_HEAD(&ctx
->cached_list
);
2472 ctx
->meta_page
= alloc_page(GFP_KERNEL
);
2474 if (!ctx
->meta_page
) {
2479 if (r5l_recovery_allocate_ra_pool(log
, ctx
) != 0) {
2484 ret
= r5c_recovery_flush_log(log
, ctx
);
2492 if ((ctx
->data_only_stripes
== 0) && (ctx
->data_parity_stripes
== 0))
2493 pr_info("md/raid:%s: starting from clean shutdown\n",
2496 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2497 mdname(mddev
), ctx
->data_only_stripes
,
2498 ctx
->data_parity_stripes
);
2500 if (ctx
->data_only_stripes
== 0) {
2501 log
->next_checkpoint
= ctx
->pos
;
2502 r5l_log_write_empty_meta_block(log
, ctx
->pos
, ctx
->seq
++);
2503 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2504 } else if (r5c_recovery_rewrite_data_only_stripes(log
, ctx
)) {
2505 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2511 log
->log_start
= ctx
->pos
;
2512 log
->seq
= ctx
->seq
;
2513 log
->last_checkpoint
= pos
;
2514 r5l_write_super(log
, pos
);
2516 r5c_recovery_flush_data_only_stripes(log
, ctx
);
2519 r5l_recovery_free_ra_pool(log
, ctx
);
2521 __free_page(ctx
->meta_page
);
2527 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2529 struct mddev
*mddev
= log
->rdev
->mddev
;
2531 log
->rdev
->journal_tail
= cp
;
2532 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2535 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2537 struct r5conf
*conf
;
2540 spin_lock(&mddev
->lock
);
2541 conf
= mddev
->private;
2542 if (!conf
|| !conf
->log
) {
2543 spin_unlock(&mddev
->lock
);
2547 switch (conf
->log
->r5c_journal_mode
) {
2548 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2550 page
, PAGE_SIZE
, "[%s] %s\n",
2551 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2552 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2554 case R5C_JOURNAL_MODE_WRITE_BACK
:
2556 page
, PAGE_SIZE
, "%s [%s]\n",
2557 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2558 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2563 spin_unlock(&mddev
->lock
);
2568 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2570 * @mode as defined in 'enum r5c_journal_mode'.
2573 int r5c_journal_mode_set(struct mddev
*mddev
, int mode
)
2575 struct r5conf
*conf
;
2577 if (mode
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2578 mode
> R5C_JOURNAL_MODE_WRITE_BACK
)
2581 conf
= mddev
->private;
2582 if (!conf
|| !conf
->log
)
2585 if (raid5_calc_degraded(conf
) > 0 &&
2586 mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
2589 mddev_suspend(mddev
);
2590 conf
->log
->r5c_journal_mode
= mode
;
2591 mddev_resume(mddev
);
2593 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2594 mdname(mddev
), mode
, r5c_journal_mode_str
[mode
]);
2597 EXPORT_SYMBOL(r5c_journal_mode_set
);
2599 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2600 const char *page
, size_t length
)
2602 int mode
= ARRAY_SIZE(r5c_journal_mode_str
);
2603 size_t len
= length
;
2609 if (page
[len
- 1] == '\n')
2613 if (strlen(r5c_journal_mode_str
[mode
]) == len
&&
2614 !strncmp(page
, r5c_journal_mode_str
[mode
], len
))
2616 ret
= mddev_lock(mddev
);
2619 ret
= r5c_journal_mode_set(mddev
, mode
);
2620 mddev_unlock(mddev
);
2621 return ret
?: length
;
2624 struct md_sysfs_entry
2625 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2626 r5c_journal_mode_show
, r5c_journal_mode_store
);
2629 * Try handle write operation in caching phase. This function should only
2630 * be called in write-back mode.
2632 * If all outstanding writes can be handled in caching phase, returns 0
2633 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2634 * and returns -EAGAIN
2636 int r5c_try_caching_write(struct r5conf
*conf
,
2637 struct stripe_head
*sh
,
2638 struct stripe_head_state
*s
,
2641 struct r5l_log
*log
= conf
->log
;
2646 sector_t tree_index
;
2650 BUG_ON(!r5c_is_writeback(log
));
2652 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2654 * There are two different scenarios here:
2655 * 1. The stripe has some data cached, and it is sent to
2656 * write-out phase for reclaim
2657 * 2. The stripe is clean, and this is the first write
2659 * For 1, return -EAGAIN, so we continue with
2660 * handle_stripe_dirtying().
2662 * For 2, set STRIPE_R5C_CACHING and continue with caching
2666 /* case 1: anything injournal or anything in written */
2667 if (s
->injournal
> 0 || s
->written
> 0)
2670 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2674 * When run in degraded mode, array is set to write-through mode.
2675 * This check helps drain pending write safely in the transition to
2676 * write-through mode.
2678 * When a stripe is syncing, the write is also handled in write
2681 if (s
->failed
|| test_bit(STRIPE_SYNCING
, &sh
->state
)) {
2682 r5c_make_stripe_write_out(sh
);
2686 for (i
= disks
; i
--; ) {
2688 /* if non-overwrite, use writing-out phase */
2689 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2690 !test_bit(R5_InJournal
, &dev
->flags
)) {
2691 r5c_make_stripe_write_out(sh
);
2696 /* if the stripe is not counted in big_stripe_tree, add it now */
2697 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
2698 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2699 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2700 spin_lock(&log
->tree_lock
);
2701 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2704 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2705 pslot
, &log
->tree_lock
) >>
2706 R5C_RADIX_COUNT_SHIFT
;
2707 radix_tree_replace_slot(
2708 &log
->big_stripe_tree
, pslot
,
2709 (void *)((refcount
+ 1) << R5C_RADIX_COUNT_SHIFT
));
2712 * this radix_tree_insert can fail safely, so no
2713 * need to call radix_tree_preload()
2715 ret
= radix_tree_insert(
2716 &log
->big_stripe_tree
, tree_index
,
2717 (void *)(1 << R5C_RADIX_COUNT_SHIFT
));
2719 spin_unlock(&log
->tree_lock
);
2720 r5c_make_stripe_write_out(sh
);
2724 spin_unlock(&log
->tree_lock
);
2727 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2728 * counted in the radix tree
2730 set_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
);
2731 atomic_inc(&conf
->r5c_cached_partial_stripes
);
2734 for (i
= disks
; i
--; ) {
2737 set_bit(R5_Wantwrite
, &dev
->flags
);
2738 set_bit(R5_Wantdrain
, &dev
->flags
);
2739 set_bit(R5_LOCKED
, &dev
->flags
);
2745 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2747 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2748 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2749 * r5c_handle_data_cached()
2751 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2758 * free extra pages (orig_page) we allocated for prexor
2760 void r5c_release_extra_page(struct stripe_head
*sh
)
2762 struct r5conf
*conf
= sh
->raid_conf
;
2764 bool using_disk_info_extra_page
;
2766 using_disk_info_extra_page
=
2767 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2769 for (i
= sh
->disks
; i
--; )
2770 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2771 struct page
*p
= sh
->dev
[i
].orig_page
;
2773 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2774 clear_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2776 if (!using_disk_info_extra_page
)
2780 if (using_disk_info_extra_page
) {
2781 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2782 md_wakeup_thread(conf
->mddev
->thread
);
2786 void r5c_use_extra_page(struct stripe_head
*sh
)
2788 struct r5conf
*conf
= sh
->raid_conf
;
2792 for (i
= sh
->disks
; i
--; ) {
2794 if (dev
->orig_page
!= dev
->page
)
2795 put_page(dev
->orig_page
);
2796 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2801 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2802 * stripe is committed to RAID disks.
2804 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2805 struct stripe_head
*sh
,
2806 struct stripe_head_state
*s
)
2808 struct r5l_log
*log
= conf
->log
;
2811 sector_t tree_index
;
2815 if (!log
|| !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2818 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2819 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2821 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2824 for (i
= sh
->disks
; i
--; ) {
2825 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2826 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2831 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2832 * We updated R5_InJournal, so we also update s->injournal.
2836 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2837 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2838 md_wakeup_thread(conf
->mddev
->thread
);
2841 wake_up(&conf
->wait_for_overlap
);
2843 spin_lock_irq(&log
->stripe_in_journal_lock
);
2844 list_del_init(&sh
->r5c
);
2845 spin_unlock_irq(&log
->stripe_in_journal_lock
);
2846 sh
->log_start
= MaxSector
;
2848 atomic_dec(&log
->stripe_in_journal_count
);
2849 r5c_update_log_state(log
);
2851 /* stop counting this stripe in big_stripe_tree */
2852 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) ||
2853 test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2854 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2855 spin_lock(&log
->tree_lock
);
2856 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2858 BUG_ON(pslot
== NULL
);
2859 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2860 pslot
, &log
->tree_lock
) >>
2861 R5C_RADIX_COUNT_SHIFT
;
2863 radix_tree_delete(&log
->big_stripe_tree
, tree_index
);
2865 radix_tree_replace_slot(
2866 &log
->big_stripe_tree
, pslot
,
2867 (void *)((refcount
- 1) << R5C_RADIX_COUNT_SHIFT
));
2868 spin_unlock(&log
->tree_lock
);
2871 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
2872 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
2873 atomic_dec(&conf
->r5c_flushing_partial_stripes
);
2874 atomic_dec(&conf
->r5c_cached_partial_stripes
);
2877 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2878 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
2879 atomic_dec(&conf
->r5c_flushing_full_stripes
);
2880 atomic_dec(&conf
->r5c_cached_full_stripes
);
2883 r5l_append_flush_payload(log
, sh
->sector
);
2884 /* stripe is flused to raid disks, we can do resync now */
2885 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
2886 set_bit(STRIPE_HANDLE
, &sh
->state
);
2889 int r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
)
2891 struct r5conf
*conf
= sh
->raid_conf
;
2899 for (i
= 0; i
< sh
->disks
; i
++) {
2902 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2904 addr
= kmap_atomic(sh
->dev
[i
].page
);
2905 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2907 kunmap_atomic(addr
);
2910 WARN_ON(pages
== 0);
2913 * The stripe must enter state machine again to call endio, so
2916 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2917 atomic_inc(&sh
->count
);
2919 mutex_lock(&log
->io_mutex
);
2921 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2923 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2924 sh
->log_start
== MaxSector
)
2925 r5l_add_no_space_stripe(log
, sh
);
2926 else if (!r5l_has_free_space(log
, reserve
)) {
2927 if (sh
->log_start
== log
->last_checkpoint
)
2930 r5l_add_no_space_stripe(log
, sh
);
2932 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2934 spin_lock_irq(&log
->io_list_lock
);
2935 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2936 spin_unlock_irq(&log
->io_list_lock
);
2940 mutex_unlock(&log
->io_mutex
);
2944 /* check whether this big stripe is in write back cache. */
2945 bool r5c_big_stripe_cached(struct r5conf
*conf
, sector_t sect
)
2947 struct r5l_log
*log
= conf
->log
;
2948 sector_t tree_index
;
2954 WARN_ON_ONCE(!rcu_read_lock_held());
2955 tree_index
= r5c_tree_index(conf
, sect
);
2956 slot
= radix_tree_lookup(&log
->big_stripe_tree
, tree_index
);
2957 return slot
!= NULL
;
2960 static int r5l_load_log(struct r5l_log
*log
)
2962 struct md_rdev
*rdev
= log
->rdev
;
2964 struct r5l_meta_block
*mb
;
2965 sector_t cp
= log
->rdev
->journal_tail
;
2966 u32 stored_crc
, expected_crc
;
2967 bool create_super
= false;
2970 /* Make sure it's valid */
2971 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2973 page
= alloc_page(GFP_KERNEL
);
2977 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
2981 mb
= page_address(page
);
2983 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2984 mb
->version
!= R5LOG_VERSION
) {
2985 create_super
= true;
2988 stored_crc
= le32_to_cpu(mb
->checksum
);
2990 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2991 if (stored_crc
!= expected_crc
) {
2992 create_super
= true;
2995 if (le64_to_cpu(mb
->position
) != cp
) {
2996 create_super
= true;
3001 log
->last_cp_seq
= prandom_u32();
3003 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
3005 * Make sure super points to correct address. Log might have
3006 * data very soon. If super hasn't correct log tail address,
3007 * recovery can't find the log
3009 r5l_write_super(log
, cp
);
3011 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
3013 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
3014 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
3015 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
3016 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
3017 log
->last_checkpoint
= cp
;
3022 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
3023 log
->seq
= log
->last_cp_seq
+ 1;
3024 log
->next_checkpoint
= cp
;
3026 ret
= r5l_recovery_log(log
);
3028 r5c_update_log_state(log
);
3035 int r5l_start(struct r5l_log
*log
)
3042 ret
= r5l_load_log(log
);
3044 struct mddev
*mddev
= log
->rdev
->mddev
;
3045 struct r5conf
*conf
= mddev
->private;
3052 void r5c_update_on_rdev_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
3054 struct r5conf
*conf
= mddev
->private;
3055 struct r5l_log
*log
= conf
->log
;
3060 if ((raid5_calc_degraded(conf
) > 0 ||
3061 test_bit(Journal
, &rdev
->flags
)) &&
3062 conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
3063 schedule_work(&log
->disable_writeback_work
);
3066 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
3068 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
3069 struct r5l_log
*log
;
3070 char b
[BDEVNAME_SIZE
];
3073 pr_debug("md/raid:%s: using device %s as journal\n",
3074 mdname(conf
->mddev
), bdevname(rdev
->bdev
, b
));
3076 if (PAGE_SIZE
!= 4096)
3080 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3081 * raid_disks r5l_payload_data_parity.
3083 * Write journal and cache does not work for very big array
3084 * (raid_disks > 203)
3086 if (sizeof(struct r5l_meta_block
) +
3087 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
3088 conf
->raid_disks
) > PAGE_SIZE
) {
3089 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3090 mdname(conf
->mddev
), conf
->raid_disks
);
3094 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
3099 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
3101 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
3102 sizeof(rdev
->mddev
->uuid
));
3104 mutex_init(&log
->io_mutex
);
3106 spin_lock_init(&log
->io_list_lock
);
3107 INIT_LIST_HEAD(&log
->running_ios
);
3108 INIT_LIST_HEAD(&log
->io_end_ios
);
3109 INIT_LIST_HEAD(&log
->flushing_ios
);
3110 INIT_LIST_HEAD(&log
->finished_ios
);
3111 bio_init(&log
->flush_bio
, NULL
, 0);
3113 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
3117 ret
= mempool_init_slab_pool(&log
->io_pool
, R5L_POOL_SIZE
, log
->io_kc
);
3121 ret
= bioset_init(&log
->bs
, R5L_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
3125 ret
= mempool_init_page_pool(&log
->meta_pool
, R5L_POOL_SIZE
, 0);
3129 spin_lock_init(&log
->tree_lock
);
3130 INIT_RADIX_TREE(&log
->big_stripe_tree
, GFP_NOWAIT
| __GFP_NOWARN
);
3132 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
3133 log
->rdev
->mddev
, "reclaim");
3134 if (!log
->reclaim_thread
)
3135 goto reclaim_thread
;
3136 log
->reclaim_thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
3138 init_waitqueue_head(&log
->iounit_wait
);
3140 INIT_LIST_HEAD(&log
->no_mem_stripes
);
3142 INIT_LIST_HEAD(&log
->no_space_stripes
);
3143 spin_lock_init(&log
->no_space_stripes_lock
);
3145 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
3146 INIT_WORK(&log
->disable_writeback_work
, r5c_disable_writeback_async
);
3148 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
3149 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
3150 spin_lock_init(&log
->stripe_in_journal_lock
);
3151 atomic_set(&log
->stripe_in_journal_count
, 0);
3153 rcu_assign_pointer(conf
->log
, log
);
3155 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
3159 mempool_exit(&log
->meta_pool
);
3161 bioset_exit(&log
->bs
);
3163 mempool_exit(&log
->io_pool
);
3165 kmem_cache_destroy(log
->io_kc
);
3171 void r5l_exit_log(struct r5conf
*conf
)
3173 struct r5l_log
*log
= conf
->log
;
3178 /* Ensure disable_writeback_work wakes up and exits */
3179 wake_up(&conf
->mddev
->sb_wait
);
3180 flush_work(&log
->disable_writeback_work
);
3181 md_unregister_thread(&log
->reclaim_thread
);
3182 mempool_exit(&log
->meta_pool
);
3183 bioset_exit(&log
->bs
);
3184 mempool_exit(&log
->io_pool
);
3185 kmem_cache_destroy(log
->io_kc
);