1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
4 * Copyright © 2004 Micron Technology Inc.
5 * Copyright © 2004 David Brownell
8 #include <linux/platform_device.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/omap-dma.h>
22 #include <linux/slab.h>
24 #include <linux/of_device.h>
26 #include <linux/platform_data/elm.h>
28 #include <linux/omap-gpmc.h>
29 #include <linux/platform_data/mtd-nand-omap2.h>
31 #define DRIVER_NAME "omap2-nand"
32 #define OMAP_NAND_TIMEOUT_MS 5000
34 #define NAND_Ecc_P1e (1 << 0)
35 #define NAND_Ecc_P2e (1 << 1)
36 #define NAND_Ecc_P4e (1 << 2)
37 #define NAND_Ecc_P8e (1 << 3)
38 #define NAND_Ecc_P16e (1 << 4)
39 #define NAND_Ecc_P32e (1 << 5)
40 #define NAND_Ecc_P64e (1 << 6)
41 #define NAND_Ecc_P128e (1 << 7)
42 #define NAND_Ecc_P256e (1 << 8)
43 #define NAND_Ecc_P512e (1 << 9)
44 #define NAND_Ecc_P1024e (1 << 10)
45 #define NAND_Ecc_P2048e (1 << 11)
47 #define NAND_Ecc_P1o (1 << 16)
48 #define NAND_Ecc_P2o (1 << 17)
49 #define NAND_Ecc_P4o (1 << 18)
50 #define NAND_Ecc_P8o (1 << 19)
51 #define NAND_Ecc_P16o (1 << 20)
52 #define NAND_Ecc_P32o (1 << 21)
53 #define NAND_Ecc_P64o (1 << 22)
54 #define NAND_Ecc_P128o (1 << 23)
55 #define NAND_Ecc_P256o (1 << 24)
56 #define NAND_Ecc_P512o (1 << 25)
57 #define NAND_Ecc_P1024o (1 << 26)
58 #define NAND_Ecc_P2048o (1 << 27)
60 #define TF(value) (value ? 1 : 0)
62 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
63 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
64 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
65 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
66 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
67 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
68 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
69 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
71 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
72 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
73 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
74 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
75 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
76 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
77 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
78 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
80 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
81 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
82 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
83 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
84 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
85 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
86 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
87 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
89 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
90 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
91 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
92 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
93 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
94 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
95 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
96 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
98 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
99 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
101 #define PREFETCH_CONFIG1_CS_SHIFT 24
102 #define ECC_CONFIG_CS_SHIFT 1
104 #define ENABLE_PREFETCH (0x1 << 7)
105 #define DMA_MPU_MODE_SHIFT 2
106 #define ECCSIZE0_SHIFT 12
107 #define ECCSIZE1_SHIFT 22
108 #define ECC1RESULTSIZE 0x1
109 #define ECCCLEAR 0x100
111 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
112 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
113 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
114 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
115 #define STATUS_BUFF_EMPTY 0x00000001
117 #define SECTOR_BYTES 512
118 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
119 #define BCH4_BIT_PAD 4
121 /* GPMC ecc engine settings for read */
122 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
123 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
124 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
125 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
126 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
128 /* GPMC ecc engine settings for write */
129 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
130 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
131 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
133 #define BADBLOCK_MARKER_LENGTH 2
135 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
136 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
137 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
139 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
140 0xac, 0x6b, 0xff, 0x99, 0x7b};
141 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143 struct omap_nand_info
{
144 struct nand_chip nand
;
145 struct platform_device
*pdev
;
149 enum nand_io xfer_type
;
151 enum omap_ecc ecc_opt
;
152 struct device_node
*elm_of_node
;
154 unsigned long phys_base
;
155 struct completion comp
;
156 struct dma_chan
*dma
;
160 OMAP_NAND_IO_READ
= 0, /* read */
161 OMAP_NAND_IO_WRITE
, /* write */
165 /* Interface to GPMC */
166 struct gpmc_nand_regs reg
;
167 struct gpmc_nand_ops
*ops
;
169 /* fields specific for BCHx_HW ECC scheme */
170 struct device
*elm_dev
;
171 /* NAND ready gpio */
172 struct gpio_desc
*ready_gpiod
;
175 static inline struct omap_nand_info
*mtd_to_omap(struct mtd_info
*mtd
)
177 return container_of(mtd_to_nand(mtd
), struct omap_nand_info
, nand
);
181 * omap_prefetch_enable - configures and starts prefetch transfer
182 * @cs: cs (chip select) number
183 * @fifo_th: fifo threshold to be used for read/ write
184 * @dma_mode: dma mode enable (1) or disable (0)
185 * @u32_count: number of bytes to be transferred
186 * @is_write: prefetch read(0) or write post(1) mode
187 * @info: NAND device structure containing platform data
189 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
190 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
194 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
197 if (readl(info
->reg
.gpmc_prefetch_control
))
200 /* Set the amount of bytes to be prefetched */
201 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
203 /* Set dma/mpu mode, the prefetch read / post write and
204 * enable the engine. Set which cs is has requested for.
206 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
207 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
208 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (is_write
& 0x1));
209 writel(val
, info
->reg
.gpmc_prefetch_config1
);
211 /* Start the prefetch engine */
212 writel(0x1, info
->reg
.gpmc_prefetch_control
);
218 * omap_prefetch_reset - disables and stops the prefetch engine
220 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
224 /* check if the same module/cs is trying to reset */
225 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
226 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
229 /* Stop the PFPW engine */
230 writel(0x0, info
->reg
.gpmc_prefetch_control
);
232 /* Reset/disable the PFPW engine */
233 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
239 * omap_hwcontrol - hardware specific access to control-lines
240 * @chip: NAND chip object
241 * @cmd: command to device
243 * NAND_NCE: bit 0 -> don't care
244 * NAND_CLE: bit 1 -> Command Latch
245 * NAND_ALE: bit 2 -> Address Latch
247 * NOTE: boards may use different bits for these!!
249 static void omap_hwcontrol(struct nand_chip
*chip
, int cmd
, unsigned int ctrl
)
251 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
253 if (cmd
!= NAND_CMD_NONE
) {
255 writeb(cmd
, info
->reg
.gpmc_nand_command
);
257 else if (ctrl
& NAND_ALE
)
258 writeb(cmd
, info
->reg
.gpmc_nand_address
);
261 writeb(cmd
, info
->reg
.gpmc_nand_data
);
266 * omap_read_buf8 - read data from NAND controller into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
271 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
273 struct nand_chip
*nand
= mtd_to_nand(mtd
);
275 ioread8_rep(nand
->legacy
.IO_ADDR_R
, buf
, len
);
279 * omap_write_buf8 - write buffer to NAND controller
280 * @mtd: MTD device structure
282 * @len: number of bytes to write
284 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
286 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
287 u_char
*p
= (u_char
*)buf
;
291 iowrite8(*p
++, info
->nand
.legacy
.IO_ADDR_W
);
292 /* wait until buffer is available for write */
294 status
= info
->ops
->nand_writebuffer_empty();
300 * omap_read_buf16 - read data from NAND controller into buffer
301 * @mtd: MTD device structure
302 * @buf: buffer to store date
303 * @len: number of bytes to read
305 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
307 struct nand_chip
*nand
= mtd_to_nand(mtd
);
309 ioread16_rep(nand
->legacy
.IO_ADDR_R
, buf
, len
/ 2);
313 * omap_write_buf16 - write buffer to NAND controller
314 * @mtd: MTD device structure
316 * @len: number of bytes to write
318 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
320 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
321 u16
*p
= (u16
*) buf
;
323 /* FIXME try bursts of writesw() or DMA ... */
327 iowrite16(*p
++, info
->nand
.legacy
.IO_ADDR_W
);
328 /* wait until buffer is available for write */
330 status
= info
->ops
->nand_writebuffer_empty();
336 * omap_read_buf_pref - read data from NAND controller into buffer
337 * @chip: NAND chip object
338 * @buf: buffer to store date
339 * @len: number of bytes to read
341 static void omap_read_buf_pref(struct nand_chip
*chip
, u_char
*buf
, int len
)
343 struct mtd_info
*mtd
= nand_to_mtd(chip
);
344 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
345 uint32_t r_count
= 0;
349 /* take care of subpage reads */
351 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
352 omap_read_buf16(mtd
, buf
, len
% 4);
354 omap_read_buf8(mtd
, buf
, len
% 4);
355 p
= (u32
*) (buf
+ len
% 4);
359 /* configure and start prefetch transfer */
360 ret
= omap_prefetch_enable(info
->gpmc_cs
,
361 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
363 /* PFPW engine is busy, use cpu copy method */
364 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
365 omap_read_buf16(mtd
, (u_char
*)p
, len
);
367 omap_read_buf8(mtd
, (u_char
*)p
, len
);
370 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
371 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
372 r_count
= r_count
>> 2;
373 ioread32_rep(info
->nand
.legacy
.IO_ADDR_R
, p
, r_count
);
377 /* disable and stop the PFPW engine */
378 omap_prefetch_reset(info
->gpmc_cs
, info
);
383 * omap_write_buf_pref - write buffer to NAND controller
384 * @chip: NAND chip object
386 * @len: number of bytes to write
388 static void omap_write_buf_pref(struct nand_chip
*chip
, const u_char
*buf
,
391 struct mtd_info
*mtd
= nand_to_mtd(chip
);
392 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
393 uint32_t w_count
= 0;
396 unsigned long tim
, limit
;
399 /* take care of subpage writes */
401 writeb(*buf
, info
->nand
.legacy
.IO_ADDR_W
);
402 p
= (u16
*)(buf
+ 1);
406 /* configure and start prefetch transfer */
407 ret
= omap_prefetch_enable(info
->gpmc_cs
,
408 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
410 /* PFPW engine is busy, use cpu copy method */
411 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
412 omap_write_buf16(mtd
, (u_char
*)p
, len
);
414 omap_write_buf8(mtd
, (u_char
*)p
, len
);
417 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
418 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
419 w_count
= w_count
>> 1;
420 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
421 iowrite16(*p
++, info
->nand
.legacy
.IO_ADDR_W
);
423 /* wait for data to flushed-out before reset the prefetch */
425 limit
= (loops_per_jiffy
*
426 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
429 val
= readl(info
->reg
.gpmc_prefetch_status
);
430 val
= PREFETCH_STATUS_COUNT(val
);
431 } while (val
&& (tim
++ < limit
));
433 /* disable and stop the PFPW engine */
434 omap_prefetch_reset(info
->gpmc_cs
, info
);
439 * omap_nand_dma_callback: callback on the completion of dma transfer
440 * @data: pointer to completion data structure
442 static void omap_nand_dma_callback(void *data
)
444 complete((struct completion
*) data
);
448 * omap_nand_dma_transfer: configure and start dma transfer
449 * @mtd: MTD device structure
450 * @addr: virtual address in RAM of source/destination
451 * @len: number of data bytes to be transferred
452 * @is_write: flag for read/write operation
454 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
455 unsigned int len
, int is_write
)
457 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
458 struct dma_async_tx_descriptor
*tx
;
459 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
461 struct scatterlist sg
;
462 unsigned long tim
, limit
;
467 if (!virt_addr_valid(addr
))
470 sg_init_one(&sg
, addr
, len
);
471 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
473 dev_err(&info
->pdev
->dev
,
474 "Couldn't DMA map a %d byte buffer\n", len
);
478 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
479 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
480 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
484 tx
->callback
= omap_nand_dma_callback
;
485 tx
->callback_param
= &info
->comp
;
486 dmaengine_submit(tx
);
488 init_completion(&info
->comp
);
490 /* setup and start DMA using dma_addr */
491 dma_async_issue_pending(info
->dma
);
493 /* configure and start prefetch transfer */
494 ret
= omap_prefetch_enable(info
->gpmc_cs
,
495 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
497 /* PFPW engine is busy, use cpu copy method */
500 wait_for_completion(&info
->comp
);
502 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
506 val
= readl(info
->reg
.gpmc_prefetch_status
);
507 val
= PREFETCH_STATUS_COUNT(val
);
508 } while (val
&& (tim
++ < limit
));
510 /* disable and stop the PFPW engine */
511 omap_prefetch_reset(info
->gpmc_cs
, info
);
513 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
517 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
519 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
520 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
521 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
523 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
524 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
529 * omap_read_buf_dma_pref - read data from NAND controller into buffer
530 * @chip: NAND chip object
531 * @buf: buffer to store date
532 * @len: number of bytes to read
534 static void omap_read_buf_dma_pref(struct nand_chip
*chip
, u_char
*buf
,
537 struct mtd_info
*mtd
= nand_to_mtd(chip
);
539 if (len
<= mtd
->oobsize
)
540 omap_read_buf_pref(chip
, buf
, len
);
542 /* start transfer in DMA mode */
543 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
547 * omap_write_buf_dma_pref - write buffer to NAND controller
548 * @chip: NAND chip object
550 * @len: number of bytes to write
552 static void omap_write_buf_dma_pref(struct nand_chip
*chip
, const u_char
*buf
,
555 struct mtd_info
*mtd
= nand_to_mtd(chip
);
557 if (len
<= mtd
->oobsize
)
558 omap_write_buf_pref(chip
, buf
, len
);
560 /* start transfer in DMA mode */
561 omap_nand_dma_transfer(mtd
, (u_char
*)buf
, len
, 0x1);
565 * omap_nand_irq - GPMC irq handler
566 * @this_irq: gpmc irq number
567 * @dev: omap_nand_info structure pointer is passed here
569 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
571 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
574 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
575 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
576 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
577 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
578 if (this_irq
== info
->gpmc_irq_count
)
581 if (info
->buf_len
&& (info
->buf_len
< bytes
))
582 bytes
= info
->buf_len
;
583 else if (!info
->buf_len
)
585 iowrite32_rep(info
->nand
.legacy
.IO_ADDR_W
, (u32
*)info
->buf
,
587 info
->buf
= info
->buf
+ bytes
;
588 info
->buf_len
-= bytes
;
591 ioread32_rep(info
->nand
.legacy
.IO_ADDR_R
, (u32
*)info
->buf
,
593 info
->buf
= info
->buf
+ bytes
;
595 if (this_irq
== info
->gpmc_irq_count
)
602 complete(&info
->comp
);
604 disable_irq_nosync(info
->gpmc_irq_fifo
);
605 disable_irq_nosync(info
->gpmc_irq_count
);
611 * omap_read_buf_irq_pref - read data from NAND controller into buffer
612 * @chip: NAND chip object
613 * @buf: buffer to store date
614 * @len: number of bytes to read
616 static void omap_read_buf_irq_pref(struct nand_chip
*chip
, u_char
*buf
,
619 struct mtd_info
*mtd
= nand_to_mtd(chip
);
620 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
623 if (len
<= mtd
->oobsize
) {
624 omap_read_buf_pref(chip
, buf
, len
);
628 info
->iomode
= OMAP_NAND_IO_READ
;
630 init_completion(&info
->comp
);
632 /* configure and start prefetch transfer */
633 ret
= omap_prefetch_enable(info
->gpmc_cs
,
634 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
636 /* PFPW engine is busy, use cpu copy method */
641 enable_irq(info
->gpmc_irq_count
);
642 enable_irq(info
->gpmc_irq_fifo
);
644 /* waiting for read to complete */
645 wait_for_completion(&info
->comp
);
647 /* disable and stop the PFPW engine */
648 omap_prefetch_reset(info
->gpmc_cs
, info
);
652 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
653 omap_read_buf16(mtd
, buf
, len
);
655 omap_read_buf8(mtd
, buf
, len
);
659 * omap_write_buf_irq_pref - write buffer to NAND controller
660 * @chip: NAND chip object
662 * @len: number of bytes to write
664 static void omap_write_buf_irq_pref(struct nand_chip
*chip
, const u_char
*buf
,
667 struct mtd_info
*mtd
= nand_to_mtd(chip
);
668 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
670 unsigned long tim
, limit
;
673 if (len
<= mtd
->oobsize
) {
674 omap_write_buf_pref(chip
, buf
, len
);
678 info
->iomode
= OMAP_NAND_IO_WRITE
;
679 info
->buf
= (u_char
*) buf
;
680 init_completion(&info
->comp
);
682 /* configure and start prefetch transfer : size=24 */
683 ret
= omap_prefetch_enable(info
->gpmc_cs
,
684 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
686 /* PFPW engine is busy, use cpu copy method */
691 enable_irq(info
->gpmc_irq_count
);
692 enable_irq(info
->gpmc_irq_fifo
);
694 /* waiting for write to complete */
695 wait_for_completion(&info
->comp
);
697 /* wait for data to flushed-out before reset the prefetch */
699 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
701 val
= readl(info
->reg
.gpmc_prefetch_status
);
702 val
= PREFETCH_STATUS_COUNT(val
);
704 } while (val
&& (tim
++ < limit
));
706 /* disable and stop the PFPW engine */
707 omap_prefetch_reset(info
->gpmc_cs
, info
);
711 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
712 omap_write_buf16(mtd
, buf
, len
);
714 omap_write_buf8(mtd
, buf
, len
);
718 * gen_true_ecc - This function will generate true ECC value
719 * @ecc_buf: buffer to store ecc code
721 * This generated true ECC value can be used when correcting
722 * data read from NAND flash memory core
724 static void gen_true_ecc(u8
*ecc_buf
)
726 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
727 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
729 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
730 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
731 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
732 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
733 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
734 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
738 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
739 * @ecc_data1: ecc code from nand spare area
740 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
741 * @page_data: page data
743 * This function compares two ECC's and indicates if there is an error.
744 * If the error can be corrected it will be corrected to the buffer.
745 * If there is no error, %0 is returned. If there is an error but it
746 * was corrected, %1 is returned. Otherwise, %-1 is returned.
748 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
749 u8
*ecc_data2
, /* read from register */
753 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
754 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
761 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
763 gen_true_ecc(ecc_data1
);
764 gen_true_ecc(ecc_data2
);
766 for (i
= 0; i
<= 2; i
++) {
767 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
768 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
771 for (i
= 0; i
< 8; i
++) {
772 tmp0_bit
[i
] = *ecc_data1
% 2;
773 *ecc_data1
= *ecc_data1
/ 2;
776 for (i
= 0; i
< 8; i
++) {
777 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
778 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
781 for (i
= 0; i
< 8; i
++) {
782 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
783 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
786 for (i
= 0; i
< 8; i
++) {
787 comp0_bit
[i
] = *ecc_data2
% 2;
788 *ecc_data2
= *ecc_data2
/ 2;
791 for (i
= 0; i
< 8; i
++) {
792 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
793 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
796 for (i
= 0; i
< 8; i
++) {
797 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
798 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
801 for (i
= 0; i
< 6; i
++)
802 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
804 for (i
= 0; i
< 8; i
++)
805 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
807 for (i
= 0; i
< 8; i
++)
808 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
810 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
811 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
813 for (i
= 0; i
< 24; i
++)
814 ecc_sum
+= ecc_bit
[i
];
818 /* Not reached because this function is not called if
819 * ECC values are equal
824 /* Uncorrectable error */
825 pr_debug("ECC UNCORRECTED_ERROR 1\n");
829 /* UN-Correctable error */
830 pr_debug("ECC UNCORRECTED_ERROR B\n");
834 /* Correctable error */
835 find_byte
= (ecc_bit
[23] << 8) +
845 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
847 pr_debug("Correcting single bit ECC error at offset: "
848 "%d, bit: %d\n", find_byte
, find_bit
);
850 page_data
[find_byte
] ^= (1 << find_bit
);
855 if (ecc_data2
[0] == 0 &&
860 pr_debug("UNCORRECTED_ERROR default\n");
866 * omap_correct_data - Compares the ECC read with HW generated ECC
867 * @chip: NAND chip object
869 * @read_ecc: ecc read from nand flash
870 * @calc_ecc: ecc read from HW ECC registers
872 * Compares the ecc read from nand spare area with ECC registers values
873 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
874 * detection and correction. If there are no errors, %0 is returned. If
875 * there were errors and all of the errors were corrected, the number of
876 * corrected errors is returned. If uncorrectable errors exist, %-1 is
879 static int omap_correct_data(struct nand_chip
*chip
, u_char
*dat
,
880 u_char
*read_ecc
, u_char
*calc_ecc
)
882 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
883 int blockCnt
= 0, i
= 0, ret
= 0;
886 /* Ex NAND_ECC_HW12_2048 */
887 if (info
->nand
.ecc
.engine_type
== NAND_ECC_ENGINE_TYPE_ON_HOST
&&
888 info
->nand
.ecc
.size
== 2048)
893 for (i
= 0; i
< blockCnt
; i
++) {
894 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
895 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
898 /* keep track of the number of corrected errors */
909 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
910 * @chip: NAND chip object
911 * @dat: The pointer to data on which ecc is computed
912 * @ecc_code: The ecc_code buffer
914 * Using noninverted ECC can be considered ugly since writing a blank
915 * page ie. padding will clear the ECC bytes. This is no problem as long
916 * nobody is trying to write data on the seemingly unused page. Reading
917 * an erased page will produce an ECC mismatch between generated and read
918 * ECC bytes that has to be dealt with separately.
920 static int omap_calculate_ecc(struct nand_chip
*chip
, const u_char
*dat
,
923 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
926 val
= readl(info
->reg
.gpmc_ecc_config
);
927 if (((val
>> ECC_CONFIG_CS_SHIFT
) & CS_MASK
) != info
->gpmc_cs
)
930 /* read ecc result */
931 val
= readl(info
->reg
.gpmc_ecc1_result
);
932 *ecc_code
++ = val
; /* P128e, ..., P1e */
933 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
934 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
935 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
941 * omap_enable_hwecc - This function enables the hardware ecc functionality
942 * @chip: NAND chip object
943 * @mode: Read/Write mode
945 static void omap_enable_hwecc(struct nand_chip
*chip
, int mode
)
947 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
948 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
951 /* clear ecc and enable bits */
952 val
= ECCCLEAR
| ECC1
;
953 writel(val
, info
->reg
.gpmc_ecc_control
);
955 /* program ecc and result sizes */
956 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
958 writel(val
, info
->reg
.gpmc_ecc_size_config
);
963 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
965 case NAND_ECC_READSYN
:
966 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
969 dev_info(&info
->pdev
->dev
,
970 "error: unrecognized Mode[%d]!\n", mode
);
974 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
975 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
976 writel(val
, info
->reg
.gpmc_ecc_config
);
980 * omap_wait - wait until the command is done
981 * @this: NAND Chip structure
983 * Wait function is called during Program and erase operations and
984 * the way it is called from MTD layer, we should wait till the NAND
985 * chip is ready after the programming/erase operation has completed.
987 * Erase can take up to 400ms and program up to 20ms according to
988 * general NAND and SmartMedia specs
990 static int omap_wait(struct nand_chip
*this)
992 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(this));
993 unsigned long timeo
= jiffies
;
996 timeo
+= msecs_to_jiffies(400);
998 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
999 while (time_before(jiffies
, timeo
)) {
1000 status
= readb(info
->reg
.gpmc_nand_data
);
1001 if (status
& NAND_STATUS_READY
)
1006 status
= readb(info
->reg
.gpmc_nand_data
);
1011 * omap_dev_ready - checks the NAND Ready GPIO line
1012 * @chip: NAND chip object
1014 * Returns true if ready and false if busy.
1016 static int omap_dev_ready(struct nand_chip
*chip
)
1018 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
1020 return gpiod_get_value(info
->ready_gpiod
);
1024 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1025 * @chip: NAND chip object
1026 * @mode: Read/Write mode
1028 * When using BCH with SW correction (i.e. no ELM), sector size is set
1029 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1030 * for both reading and writing with:
1031 * eccsize0 = 0 (no additional protected byte in spare area)
1032 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1034 static void __maybe_unused
omap_enable_hwecc_bch(struct nand_chip
*chip
,
1037 unsigned int bch_type
;
1038 unsigned int dev_width
, nsectors
;
1039 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
1040 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1042 unsigned int ecc_size1
, ecc_size0
;
1044 /* GPMC configurations for calculating ECC */
1046 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1049 wr_mode
= BCH_WRAPMODE_6
;
1050 ecc_size0
= BCH_ECC_SIZE0
;
1051 ecc_size1
= BCH_ECC_SIZE1
;
1053 case OMAP_ECC_BCH4_CODE_HW
:
1055 nsectors
= chip
->ecc
.steps
;
1056 if (mode
== NAND_ECC_READ
) {
1057 wr_mode
= BCH_WRAPMODE_1
;
1058 ecc_size0
= BCH4R_ECC_SIZE0
;
1059 ecc_size1
= BCH4R_ECC_SIZE1
;
1061 wr_mode
= BCH_WRAPMODE_6
;
1062 ecc_size0
= BCH_ECC_SIZE0
;
1063 ecc_size1
= BCH_ECC_SIZE1
;
1066 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1069 wr_mode
= BCH_WRAPMODE_6
;
1070 ecc_size0
= BCH_ECC_SIZE0
;
1071 ecc_size1
= BCH_ECC_SIZE1
;
1073 case OMAP_ECC_BCH8_CODE_HW
:
1075 nsectors
= chip
->ecc
.steps
;
1076 if (mode
== NAND_ECC_READ
) {
1077 wr_mode
= BCH_WRAPMODE_1
;
1078 ecc_size0
= BCH8R_ECC_SIZE0
;
1079 ecc_size1
= BCH8R_ECC_SIZE1
;
1081 wr_mode
= BCH_WRAPMODE_6
;
1082 ecc_size0
= BCH_ECC_SIZE0
;
1083 ecc_size1
= BCH_ECC_SIZE1
;
1086 case OMAP_ECC_BCH16_CODE_HW
:
1088 nsectors
= chip
->ecc
.steps
;
1089 if (mode
== NAND_ECC_READ
) {
1091 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1092 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1095 ecc_size0
= 0; /* extra bits in nibbles per sector */
1096 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1103 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1105 /* Configure ecc size for BCH */
1106 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1107 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1109 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1111 /* BCH configuration */
1112 val
= ((1 << 16) | /* enable BCH */
1113 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1114 (wr_mode
<< 8) | /* wrap mode */
1115 (dev_width
<< 7) | /* bus width */
1116 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1117 (info
->gpmc_cs
<< 1) | /* ECC CS */
1118 (0x1)); /* enable ECC */
1120 writel(val
, info
->reg
.gpmc_ecc_config
);
1122 /* Clear ecc and enable bits */
1123 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1126 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1127 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1128 0x97, 0x79, 0xe5, 0x24, 0xb5};
1131 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1132 * @mtd: MTD device structure
1133 * @dat: The pointer to data on which ecc is computed
1134 * @ecc_calc: The ecc_code buffer
1135 * @i: The sector number (for a multi sector page)
1137 * Support calculating of BCH4/8/16 ECC vectors for one sector
1138 * within a page. Sector number is in @i.
1140 static int _omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1141 const u_char
*dat
, u_char
*ecc_calc
, int i
)
1143 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1144 int eccbytes
= info
->nand
.ecc
.bytes
;
1145 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1147 unsigned long bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1151 ecc_code
= ecc_calc
;
1152 switch (info
->ecc_opt
) {
1153 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1154 case OMAP_ECC_BCH8_CODE_HW
:
1155 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1156 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1157 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1158 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1159 *ecc_code
++ = (bch_val4
& 0xFF);
1160 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1161 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1162 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1163 *ecc_code
++ = (bch_val3
& 0xFF);
1164 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1165 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1166 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1167 *ecc_code
++ = (bch_val2
& 0xFF);
1168 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1169 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1170 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1171 *ecc_code
++ = (bch_val1
& 0xFF);
1173 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1174 case OMAP_ECC_BCH4_CODE_HW
:
1175 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1176 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1177 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1178 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1179 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1180 ((bch_val1
>> 28) & 0xF);
1181 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1182 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1183 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1184 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1186 case OMAP_ECC_BCH16_CODE_HW
:
1187 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1188 ecc_code
[0] = ((val
>> 8) & 0xFF);
1189 ecc_code
[1] = ((val
>> 0) & 0xFF);
1190 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1191 ecc_code
[2] = ((val
>> 24) & 0xFF);
1192 ecc_code
[3] = ((val
>> 16) & 0xFF);
1193 ecc_code
[4] = ((val
>> 8) & 0xFF);
1194 ecc_code
[5] = ((val
>> 0) & 0xFF);
1195 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1196 ecc_code
[6] = ((val
>> 24) & 0xFF);
1197 ecc_code
[7] = ((val
>> 16) & 0xFF);
1198 ecc_code
[8] = ((val
>> 8) & 0xFF);
1199 ecc_code
[9] = ((val
>> 0) & 0xFF);
1200 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1201 ecc_code
[10] = ((val
>> 24) & 0xFF);
1202 ecc_code
[11] = ((val
>> 16) & 0xFF);
1203 ecc_code
[12] = ((val
>> 8) & 0xFF);
1204 ecc_code
[13] = ((val
>> 0) & 0xFF);
1205 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1206 ecc_code
[14] = ((val
>> 24) & 0xFF);
1207 ecc_code
[15] = ((val
>> 16) & 0xFF);
1208 ecc_code
[16] = ((val
>> 8) & 0xFF);
1209 ecc_code
[17] = ((val
>> 0) & 0xFF);
1210 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1211 ecc_code
[18] = ((val
>> 24) & 0xFF);
1212 ecc_code
[19] = ((val
>> 16) & 0xFF);
1213 ecc_code
[20] = ((val
>> 8) & 0xFF);
1214 ecc_code
[21] = ((val
>> 0) & 0xFF);
1215 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1216 ecc_code
[22] = ((val
>> 24) & 0xFF);
1217 ecc_code
[23] = ((val
>> 16) & 0xFF);
1218 ecc_code
[24] = ((val
>> 8) & 0xFF);
1219 ecc_code
[25] = ((val
>> 0) & 0xFF);
1225 /* ECC scheme specific syndrome customizations */
1226 switch (info
->ecc_opt
) {
1227 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1228 /* Add constant polynomial to remainder, so that
1229 * ECC of blank pages results in 0x0 on reading back
1231 for (j
= 0; j
< eccbytes
; j
++)
1232 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1234 case OMAP_ECC_BCH4_CODE_HW
:
1235 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1236 ecc_calc
[eccbytes
- 1] = 0x0;
1238 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1239 /* Add constant polynomial to remainder, so that
1240 * ECC of blank pages results in 0x0 on reading back
1242 for (j
= 0; j
< eccbytes
; j
++)
1243 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1245 case OMAP_ECC_BCH8_CODE_HW
:
1246 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1247 ecc_calc
[eccbytes
- 1] = 0x0;
1249 case OMAP_ECC_BCH16_CODE_HW
:
1259 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1260 * @chip: NAND chip object
1261 * @dat: The pointer to data on which ecc is computed
1262 * @ecc_calc: Buffer storing the calculated ECC bytes
1264 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1265 * when SW based correction is required as ECC is required for one sector
1268 static int omap_calculate_ecc_bch_sw(struct nand_chip
*chip
,
1269 const u_char
*dat
, u_char
*ecc_calc
)
1271 return _omap_calculate_ecc_bch(nand_to_mtd(chip
), dat
, ecc_calc
, 0);
1275 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1276 * @mtd: MTD device structure
1277 * @dat: The pointer to data on which ecc is computed
1278 * @ecc_calc: Buffer storing the calculated ECC bytes
1280 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1282 static int omap_calculate_ecc_bch_multi(struct mtd_info
*mtd
,
1283 const u_char
*dat
, u_char
*ecc_calc
)
1285 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1286 int eccbytes
= info
->nand
.ecc
.bytes
;
1287 unsigned long nsectors
;
1290 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1291 for (i
= 0; i
< nsectors
; i
++) {
1292 ret
= _omap_calculate_ecc_bch(mtd
, dat
, ecc_calc
, i
);
1296 ecc_calc
+= eccbytes
;
1303 * erased_sector_bitflips - count bit flips
1304 * @data: data sector buffer
1306 * @info: omap_nand_info
1308 * Check the bit flips in erased page falls below correctable level.
1309 * If falls below, report the page as erased with correctable bit
1310 * flip, else report as uncorrectable page.
1312 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1313 struct omap_nand_info
*info
)
1315 int flip_bits
= 0, i
;
1317 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1318 flip_bits
+= hweight8(~data
[i
]);
1319 if (flip_bits
> info
->nand
.ecc
.strength
)
1323 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1324 flip_bits
+= hweight8(~oob
[i
]);
1325 if (flip_bits
> info
->nand
.ecc
.strength
)
1330 * Bit flips falls in correctable level.
1331 * Fill data area with 0xFF
1334 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1335 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1342 * omap_elm_correct_data - corrects page data area in case error reported
1343 * @chip: NAND chip object
1345 * @read_ecc: ecc read from nand flash
1346 * @calc_ecc: ecc read from HW ECC registers
1348 * Calculated ecc vector reported as zero in case of non-error pages.
1349 * In case of non-zero ecc vector, first filter out erased-pages, and
1350 * then process data via ELM to detect bit-flips.
1352 static int omap_elm_correct_data(struct nand_chip
*chip
, u_char
*data
,
1353 u_char
*read_ecc
, u_char
*calc_ecc
)
1355 struct omap_nand_info
*info
= mtd_to_omap(nand_to_mtd(chip
));
1356 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1357 int eccsteps
= info
->nand
.ecc
.steps
;
1358 int i
, j
, stat
= 0;
1359 int eccflag
, actual_eccbytes
;
1360 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1361 u_char
*ecc_vec
= calc_ecc
;
1362 u_char
*spare_ecc
= read_ecc
;
1363 u_char
*erased_ecc_vec
;
1366 bool is_error_reported
= false;
1367 u32 bit_pos
, byte_pos
, error_max
, pos
;
1370 switch (info
->ecc_opt
) {
1371 case OMAP_ECC_BCH4_CODE_HW
:
1372 /* omit 7th ECC byte reserved for ROM code compatibility */
1373 actual_eccbytes
= ecc
->bytes
- 1;
1374 erased_ecc_vec
= bch4_vector
;
1376 case OMAP_ECC_BCH8_CODE_HW
:
1377 /* omit 14th ECC byte reserved for ROM code compatibility */
1378 actual_eccbytes
= ecc
->bytes
- 1;
1379 erased_ecc_vec
= bch8_vector
;
1381 case OMAP_ECC_BCH16_CODE_HW
:
1382 actual_eccbytes
= ecc
->bytes
;
1383 erased_ecc_vec
= bch16_vector
;
1386 dev_err(&info
->pdev
->dev
, "invalid driver configuration\n");
1390 /* Initialize elm error vector to zero */
1391 memset(err_vec
, 0, sizeof(err_vec
));
1393 for (i
= 0; i
< eccsteps
; i
++) {
1394 eccflag
= 0; /* initialize eccflag */
1397 * Check any error reported,
1398 * In case of error, non zero ecc reported.
1400 for (j
= 0; j
< actual_eccbytes
; j
++) {
1401 if (calc_ecc
[j
] != 0) {
1402 eccflag
= 1; /* non zero ecc, error present */
1408 if (memcmp(calc_ecc
, erased_ecc_vec
,
1409 actual_eccbytes
) == 0) {
1411 * calc_ecc[] matches pattern for ECC(all 0xff)
1412 * so this is definitely an erased-page
1415 buf
= &data
[info
->nand
.ecc
.size
* i
];
1417 * count number of 0-bits in read_buf.
1418 * This check can be removed once a similar
1419 * check is introduced in generic NAND driver
1421 bitflip_count
= erased_sector_bitflips(
1422 buf
, read_ecc
, info
);
1423 if (bitflip_count
) {
1425 * number of 0-bits within ECC limits
1426 * So this may be an erased-page
1428 stat
+= bitflip_count
;
1431 * Too many 0-bits. It may be a
1432 * - programmed-page, OR
1433 * - erased-page with many bit-flips
1434 * So this page requires check by ELM
1436 err_vec
[i
].error_reported
= true;
1437 is_error_reported
= true;
1442 /* Update the ecc vector */
1443 calc_ecc
+= ecc
->bytes
;
1444 read_ecc
+= ecc
->bytes
;
1447 /* Check if any error reported */
1448 if (!is_error_reported
)
1451 /* Decode BCH error using ELM module */
1452 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1455 for (i
= 0; i
< eccsteps
; i
++) {
1456 if (err_vec
[i
].error_uncorrectable
) {
1457 dev_err(&info
->pdev
->dev
,
1458 "uncorrectable bit-flips found\n");
1460 } else if (err_vec
[i
].error_reported
) {
1461 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1462 switch (info
->ecc_opt
) {
1463 case OMAP_ECC_BCH4_CODE_HW
:
1464 /* Add 4 bits to take care of padding */
1465 pos
= err_vec
[i
].error_loc
[j
] +
1468 case OMAP_ECC_BCH8_CODE_HW
:
1469 case OMAP_ECC_BCH16_CODE_HW
:
1470 pos
= err_vec
[i
].error_loc
[j
];
1475 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1476 /* Calculate bit position of error */
1479 /* Calculate byte position of error */
1480 byte_pos
= (error_max
- pos
- 1) / 8;
1482 if (pos
< error_max
) {
1483 if (byte_pos
< 512) {
1484 pr_debug("bitflip@dat[%d]=%x\n",
1485 byte_pos
, data
[byte_pos
]);
1486 data
[byte_pos
] ^= 1 << bit_pos
;
1488 pr_debug("bitflip@oob[%d]=%x\n",
1490 spare_ecc
[byte_pos
- 512]);
1491 spare_ecc
[byte_pos
- 512] ^=
1495 dev_err(&info
->pdev
->dev
,
1496 "invalid bit-flip @ %d:%d\n",
1503 /* Update number of correctable errors */
1504 stat
= max_t(unsigned int, stat
, err_vec
[i
].error_count
);
1506 /* Update page data with sector size */
1508 spare_ecc
+= ecc
->bytes
;
1511 return (err
) ? err
: stat
;
1515 * omap_write_page_bch - BCH ecc based write page function for entire page
1516 * @chip: nand chip info structure
1518 * @oob_required: must write chip->oob_poi to OOB
1521 * Custom write page method evolved to support multi sector writing in one shot
1523 static int omap_write_page_bch(struct nand_chip
*chip
, const uint8_t *buf
,
1524 int oob_required
, int page
)
1526 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1528 uint8_t *ecc_calc
= chip
->ecc
.calc_buf
;
1530 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
1532 /* Enable GPMC ecc engine */
1533 chip
->ecc
.hwctl(chip
, NAND_ECC_WRITE
);
1536 chip
->legacy
.write_buf(chip
, buf
, mtd
->writesize
);
1538 /* Update ecc vector from GPMC result registers */
1539 omap_calculate_ecc_bch_multi(mtd
, buf
, &ecc_calc
[0]);
1541 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1546 /* Write ecc vector to OOB area */
1547 chip
->legacy
.write_buf(chip
, chip
->oob_poi
, mtd
->oobsize
);
1549 return nand_prog_page_end_op(chip
);
1553 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1554 * @chip: nand chip info structure
1555 * @offset: column address of subpage within the page
1556 * @data_len: data length
1558 * @oob_required: must write chip->oob_poi to OOB
1559 * @page: page number to write
1561 * OMAP optimized subpage write method.
1563 static int omap_write_subpage_bch(struct nand_chip
*chip
, u32 offset
,
1564 u32 data_len
, const u8
*buf
,
1565 int oob_required
, int page
)
1567 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1568 u8
*ecc_calc
= chip
->ecc
.calc_buf
;
1569 int ecc_size
= chip
->ecc
.size
;
1570 int ecc_bytes
= chip
->ecc
.bytes
;
1571 int ecc_steps
= chip
->ecc
.steps
;
1572 u32 start_step
= offset
/ ecc_size
;
1573 u32 end_step
= (offset
+ data_len
- 1) / ecc_size
;
1577 * Write entire page at one go as it would be optimal
1578 * as ECC is calculated by hardware.
1579 * ECC is calculated for all subpages but we choose
1580 * only what we want.
1582 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
1584 /* Enable GPMC ECC engine */
1585 chip
->ecc
.hwctl(chip
, NAND_ECC_WRITE
);
1588 chip
->legacy
.write_buf(chip
, buf
, mtd
->writesize
);
1590 for (step
= 0; step
< ecc_steps
; step
++) {
1591 /* mask ECC of un-touched subpages by padding 0xFF */
1592 if (step
< start_step
|| step
> end_step
)
1593 memset(ecc_calc
, 0xff, ecc_bytes
);
1595 ret
= _omap_calculate_ecc_bch(mtd
, buf
, ecc_calc
, step
);
1601 ecc_calc
+= ecc_bytes
;
1604 /* copy calculated ECC for whole page to chip->buffer->oob */
1605 /* this include masked-value(0xFF) for unwritten subpages */
1606 ecc_calc
= chip
->ecc
.calc_buf
;
1607 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1612 /* write OOB buffer to NAND device */
1613 chip
->legacy
.write_buf(chip
, chip
->oob_poi
, mtd
->oobsize
);
1615 return nand_prog_page_end_op(chip
);
1619 * omap_read_page_bch - BCH ecc based page read function for entire page
1620 * @chip: nand chip info structure
1621 * @buf: buffer to store read data
1622 * @oob_required: caller requires OOB data read to chip->oob_poi
1623 * @page: page number to read
1625 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1626 * used for error correction.
1627 * Custom method evolved to support ELM error correction & multi sector
1628 * reading. On reading page data area is read along with OOB data with
1629 * ecc engine enabled. ecc vector updated after read of OOB data.
1630 * For non error pages ecc vector reported as zero.
1632 static int omap_read_page_bch(struct nand_chip
*chip
, uint8_t *buf
,
1633 int oob_required
, int page
)
1635 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1636 uint8_t *ecc_calc
= chip
->ecc
.calc_buf
;
1637 uint8_t *ecc_code
= chip
->ecc
.code_buf
;
1639 unsigned int max_bitflips
= 0;
1641 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1643 /* Enable GPMC ecc engine */
1644 chip
->ecc
.hwctl(chip
, NAND_ECC_READ
);
1647 chip
->legacy
.read_buf(chip
, buf
, mtd
->writesize
);
1649 /* Read oob bytes */
1650 nand_change_read_column_op(chip
,
1651 mtd
->writesize
+ BADBLOCK_MARKER_LENGTH
,
1652 chip
->oob_poi
+ BADBLOCK_MARKER_LENGTH
,
1653 chip
->ecc
.total
, false);
1655 /* Calculate ecc bytes */
1656 omap_calculate_ecc_bch_multi(mtd
, buf
, ecc_calc
);
1658 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1663 stat
= chip
->ecc
.correct(chip
, buf
, ecc_code
, ecc_calc
);
1666 mtd
->ecc_stats
.failed
++;
1668 mtd
->ecc_stats
.corrected
+= stat
;
1669 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1672 return max_bitflips
;
1676 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1677 * @info: NAND device structure containing platform data
1678 * @elm_node: ELM's DT node
1680 static bool is_elm_present(struct omap_nand_info
*info
,
1681 struct device_node
*elm_node
)
1683 struct platform_device
*pdev
;
1685 /* check whether elm-id is passed via DT */
1687 dev_err(&info
->pdev
->dev
, "ELM devicetree node not found\n");
1690 pdev
= of_find_device_by_node(elm_node
);
1691 /* check whether ELM device is registered */
1693 dev_err(&info
->pdev
->dev
, "ELM device not found\n");
1696 /* ELM module available, now configure it */
1697 info
->elm_dev
= &pdev
->dev
;
1701 static bool omap2_nand_ecc_check(struct omap_nand_info
*info
)
1703 bool ecc_needs_bch
, ecc_needs_omap_bch
, ecc_needs_elm
;
1705 switch (info
->ecc_opt
) {
1706 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1707 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1708 ecc_needs_omap_bch
= false;
1709 ecc_needs_bch
= true;
1710 ecc_needs_elm
= false;
1712 case OMAP_ECC_BCH4_CODE_HW
:
1713 case OMAP_ECC_BCH8_CODE_HW
:
1714 case OMAP_ECC_BCH16_CODE_HW
:
1715 ecc_needs_omap_bch
= true;
1716 ecc_needs_bch
= false;
1717 ecc_needs_elm
= true;
1720 ecc_needs_omap_bch
= false;
1721 ecc_needs_bch
= false;
1722 ecc_needs_elm
= false;
1726 if (ecc_needs_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH
)) {
1727 dev_err(&info
->pdev
->dev
,
1728 "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1731 if (ecc_needs_omap_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH
)) {
1732 dev_err(&info
->pdev
->dev
,
1733 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1736 if (ecc_needs_elm
&& !is_elm_present(info
, info
->elm_of_node
)) {
1737 dev_err(&info
->pdev
->dev
, "ELM not available\n");
1744 static const char * const nand_xfer_types
[] = {
1745 [NAND_OMAP_PREFETCH_POLLED
] = "prefetch-polled",
1746 [NAND_OMAP_POLLED
] = "polled",
1747 [NAND_OMAP_PREFETCH_DMA
] = "prefetch-dma",
1748 [NAND_OMAP_PREFETCH_IRQ
] = "prefetch-irq",
1751 static int omap_get_dt_info(struct device
*dev
, struct omap_nand_info
*info
)
1753 struct device_node
*child
= dev
->of_node
;
1758 if (of_property_read_u32(child
, "reg", &cs
) < 0) {
1759 dev_err(dev
, "reg not found in DT\n");
1765 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1766 info
->elm_of_node
= of_parse_phandle(child
, "ti,elm-id", 0);
1767 if (!info
->elm_of_node
) {
1768 info
->elm_of_node
= of_parse_phandle(child
, "elm_id", 0);
1769 if (!info
->elm_of_node
)
1770 dev_dbg(dev
, "ti,elm-id not in DT\n");
1773 /* select ecc-scheme for NAND */
1774 if (of_property_read_string(child
, "ti,nand-ecc-opt", &s
)) {
1775 dev_err(dev
, "ti,nand-ecc-opt not found\n");
1779 if (!strcmp(s
, "sw")) {
1780 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_SW
;
1781 } else if (!strcmp(s
, "ham1") ||
1782 !strcmp(s
, "hw") || !strcmp(s
, "hw-romcode")) {
1783 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_HW
;
1784 } else if (!strcmp(s
, "bch4")) {
1785 if (info
->elm_of_node
)
1786 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW
;
1788 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
;
1789 } else if (!strcmp(s
, "bch8")) {
1790 if (info
->elm_of_node
)
1791 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW
;
1793 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
;
1794 } else if (!strcmp(s
, "bch16")) {
1795 info
->ecc_opt
= OMAP_ECC_BCH16_CODE_HW
;
1797 dev_err(dev
, "unrecognized value for ti,nand-ecc-opt\n");
1801 /* select data transfer mode */
1802 if (!of_property_read_string(child
, "ti,nand-xfer-type", &s
)) {
1803 for (i
= 0; i
< ARRAY_SIZE(nand_xfer_types
); i
++) {
1804 if (!strcasecmp(s
, nand_xfer_types
[i
])) {
1805 info
->xfer_type
= i
;
1810 dev_err(dev
, "unrecognized value for ti,nand-xfer-type\n");
1817 static int omap_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1818 struct mtd_oob_region
*oobregion
)
1820 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1821 struct nand_chip
*chip
= &info
->nand
;
1822 int off
= BADBLOCK_MARKER_LENGTH
;
1824 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1825 !(chip
->options
& NAND_BUSWIDTH_16
))
1831 oobregion
->offset
= off
;
1832 oobregion
->length
= chip
->ecc
.total
;
1837 static int omap_ooblayout_free(struct mtd_info
*mtd
, int section
,
1838 struct mtd_oob_region
*oobregion
)
1840 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1841 struct nand_chip
*chip
= &info
->nand
;
1842 int off
= BADBLOCK_MARKER_LENGTH
;
1844 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1845 !(chip
->options
& NAND_BUSWIDTH_16
))
1851 off
+= chip
->ecc
.total
;
1852 if (off
>= mtd
->oobsize
)
1855 oobregion
->offset
= off
;
1856 oobregion
->length
= mtd
->oobsize
- off
;
1861 static const struct mtd_ooblayout_ops omap_ooblayout_ops
= {
1862 .ecc
= omap_ooblayout_ecc
,
1863 .free
= omap_ooblayout_free
,
1866 static int omap_sw_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1867 struct mtd_oob_region
*oobregion
)
1869 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1870 int off
= BADBLOCK_MARKER_LENGTH
;
1872 if (section
>= chip
->ecc
.steps
)
1876 * When SW correction is employed, one OMAP specific marker byte is
1877 * reserved after each ECC step.
1879 oobregion
->offset
= off
+ (section
* (chip
->ecc
.bytes
+ 1));
1880 oobregion
->length
= chip
->ecc
.bytes
;
1885 static int omap_sw_ooblayout_free(struct mtd_info
*mtd
, int section
,
1886 struct mtd_oob_region
*oobregion
)
1888 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1889 int off
= BADBLOCK_MARKER_LENGTH
;
1895 * When SW correction is employed, one OMAP specific marker byte is
1896 * reserved after each ECC step.
1898 off
+= ((chip
->ecc
.bytes
+ 1) * chip
->ecc
.steps
);
1899 if (off
>= mtd
->oobsize
)
1902 oobregion
->offset
= off
;
1903 oobregion
->length
= mtd
->oobsize
- off
;
1908 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops
= {
1909 .ecc
= omap_sw_ooblayout_ecc
,
1910 .free
= omap_sw_ooblayout_free
,
1913 static int omap_nand_attach_chip(struct nand_chip
*chip
)
1915 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1916 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1917 struct device
*dev
= &info
->pdev
->dev
;
1918 int min_oobbytes
= BADBLOCK_MARKER_LENGTH
;
1919 int oobbytes_per_step
;
1920 dma_cap_mask_t mask
;
1923 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
1924 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
1926 chip
->options
|= NAND_SKIP_BBTSCAN
;
1928 /* Re-populate low-level callbacks based on xfer modes */
1929 switch (info
->xfer_type
) {
1930 case NAND_OMAP_PREFETCH_POLLED
:
1931 chip
->legacy
.read_buf
= omap_read_buf_pref
;
1932 chip
->legacy
.write_buf
= omap_write_buf_pref
;
1935 case NAND_OMAP_POLLED
:
1936 /* Use nand_base defaults for {read,write}_buf */
1939 case NAND_OMAP_PREFETCH_DMA
:
1941 dma_cap_set(DMA_SLAVE
, mask
);
1942 info
->dma
= dma_request_chan(dev
->parent
, "rxtx");
1944 if (IS_ERR(info
->dma
)) {
1945 dev_err(dev
, "DMA engine request failed\n");
1946 return PTR_ERR(info
->dma
);
1948 struct dma_slave_config cfg
;
1950 memset(&cfg
, 0, sizeof(cfg
));
1951 cfg
.src_addr
= info
->phys_base
;
1952 cfg
.dst_addr
= info
->phys_base
;
1953 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1954 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1955 cfg
.src_maxburst
= 16;
1956 cfg
.dst_maxburst
= 16;
1957 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1960 "DMA engine slave config failed: %d\n",
1964 chip
->legacy
.read_buf
= omap_read_buf_dma_pref
;
1965 chip
->legacy
.write_buf
= omap_write_buf_dma_pref
;
1969 case NAND_OMAP_PREFETCH_IRQ
:
1970 info
->gpmc_irq_fifo
= platform_get_irq(info
->pdev
, 0);
1971 if (info
->gpmc_irq_fifo
<= 0)
1973 err
= devm_request_irq(dev
, info
->gpmc_irq_fifo
,
1974 omap_nand_irq
, IRQF_SHARED
,
1975 "gpmc-nand-fifo", info
);
1977 dev_err(dev
, "Requesting IRQ %d, error %d\n",
1978 info
->gpmc_irq_fifo
, err
);
1979 info
->gpmc_irq_fifo
= 0;
1983 info
->gpmc_irq_count
= platform_get_irq(info
->pdev
, 1);
1984 if (info
->gpmc_irq_count
<= 0)
1986 err
= devm_request_irq(dev
, info
->gpmc_irq_count
,
1987 omap_nand_irq
, IRQF_SHARED
,
1988 "gpmc-nand-count", info
);
1990 dev_err(dev
, "Requesting IRQ %d, error %d\n",
1991 info
->gpmc_irq_count
, err
);
1992 info
->gpmc_irq_count
= 0;
1996 chip
->legacy
.read_buf
= omap_read_buf_irq_pref
;
1997 chip
->legacy
.write_buf
= omap_write_buf_irq_pref
;
2002 dev_err(dev
, "xfer_type %d not supported!\n", info
->xfer_type
);
2006 if (!omap2_nand_ecc_check(info
))
2010 * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
2011 * ooblayout instead of using ours.
2013 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_SW
) {
2014 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_SOFT
;
2015 chip
->ecc
.algo
= NAND_ECC_ALGO_HAMMING
;
2019 /* Populate MTD interface based on ECC scheme */
2020 switch (info
->ecc_opt
) {
2021 case OMAP_ECC_HAM1_CODE_HW
:
2022 dev_info(dev
, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2023 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2024 chip
->ecc
.bytes
= 3;
2025 chip
->ecc
.size
= 512;
2026 chip
->ecc
.strength
= 1;
2027 chip
->ecc
.calculate
= omap_calculate_ecc
;
2028 chip
->ecc
.hwctl
= omap_enable_hwecc
;
2029 chip
->ecc
.correct
= omap_correct_data
;
2030 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2031 oobbytes_per_step
= chip
->ecc
.bytes
;
2033 if (!(chip
->options
& NAND_BUSWIDTH_16
))
2038 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
2039 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2040 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2041 chip
->ecc
.size
= 512;
2042 chip
->ecc
.bytes
= 7;
2043 chip
->ecc
.strength
= 4;
2044 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2045 chip
->ecc
.correct
= rawnand_sw_bch_correct
;
2046 chip
->ecc
.calculate
= omap_calculate_ecc_bch_sw
;
2047 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2048 /* Reserve one byte for the OMAP marker */
2049 oobbytes_per_step
= chip
->ecc
.bytes
+ 1;
2050 /* Software BCH library is used for locating errors */
2051 err
= rawnand_sw_bch_init(chip
);
2053 dev_err(dev
, "Unable to use BCH library\n");
2058 case OMAP_ECC_BCH4_CODE_HW
:
2059 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2060 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2061 chip
->ecc
.size
= 512;
2062 /* 14th bit is kept reserved for ROM-code compatibility */
2063 chip
->ecc
.bytes
= 7 + 1;
2064 chip
->ecc
.strength
= 4;
2065 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2066 chip
->ecc
.correct
= omap_elm_correct_data
;
2067 chip
->ecc
.read_page
= omap_read_page_bch
;
2068 chip
->ecc
.write_page
= omap_write_page_bch
;
2069 chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2070 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2071 oobbytes_per_step
= chip
->ecc
.bytes
;
2073 err
= elm_config(info
->elm_dev
, BCH4_ECC
,
2074 mtd
->writesize
/ chip
->ecc
.size
,
2075 chip
->ecc
.size
, chip
->ecc
.bytes
);
2080 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
2081 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2082 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2083 chip
->ecc
.size
= 512;
2084 chip
->ecc
.bytes
= 13;
2085 chip
->ecc
.strength
= 8;
2086 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2087 chip
->ecc
.correct
= rawnand_sw_bch_correct
;
2088 chip
->ecc
.calculate
= omap_calculate_ecc_bch_sw
;
2089 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2090 /* Reserve one byte for the OMAP marker */
2091 oobbytes_per_step
= chip
->ecc
.bytes
+ 1;
2092 /* Software BCH library is used for locating errors */
2093 err
= rawnand_sw_bch_init(chip
);
2095 dev_err(dev
, "unable to use BCH library\n");
2100 case OMAP_ECC_BCH8_CODE_HW
:
2101 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2102 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2103 chip
->ecc
.size
= 512;
2104 /* 14th bit is kept reserved for ROM-code compatibility */
2105 chip
->ecc
.bytes
= 13 + 1;
2106 chip
->ecc
.strength
= 8;
2107 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2108 chip
->ecc
.correct
= omap_elm_correct_data
;
2109 chip
->ecc
.read_page
= omap_read_page_bch
;
2110 chip
->ecc
.write_page
= omap_write_page_bch
;
2111 chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2112 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2113 oobbytes_per_step
= chip
->ecc
.bytes
;
2115 err
= elm_config(info
->elm_dev
, BCH8_ECC
,
2116 mtd
->writesize
/ chip
->ecc
.size
,
2117 chip
->ecc
.size
, chip
->ecc
.bytes
);
2123 case OMAP_ECC_BCH16_CODE_HW
:
2124 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2125 chip
->ecc
.engine_type
= NAND_ECC_ENGINE_TYPE_ON_HOST
;
2126 chip
->ecc
.size
= 512;
2127 chip
->ecc
.bytes
= 26;
2128 chip
->ecc
.strength
= 16;
2129 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2130 chip
->ecc
.correct
= omap_elm_correct_data
;
2131 chip
->ecc
.read_page
= omap_read_page_bch
;
2132 chip
->ecc
.write_page
= omap_write_page_bch
;
2133 chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2134 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2135 oobbytes_per_step
= chip
->ecc
.bytes
;
2137 err
= elm_config(info
->elm_dev
, BCH16_ECC
,
2138 mtd
->writesize
/ chip
->ecc
.size
,
2139 chip
->ecc
.size
, chip
->ecc
.bytes
);
2145 dev_err(dev
, "Invalid or unsupported ECC scheme\n");
2149 /* Check if NAND device's OOB is enough to store ECC signatures */
2150 min_oobbytes
+= (oobbytes_per_step
*
2151 (mtd
->writesize
/ chip
->ecc
.size
));
2152 if (mtd
->oobsize
< min_oobbytes
) {
2154 "Not enough OOB bytes: required = %d, available=%d\n",
2155 min_oobbytes
, mtd
->oobsize
);
2162 static const struct nand_controller_ops omap_nand_controller_ops
= {
2163 .attach_chip
= omap_nand_attach_chip
,
2166 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2167 static struct nand_controller omap_gpmc_controller
;
2168 static bool omap_gpmc_controller_initialized
;
2170 static int omap_nand_probe(struct platform_device
*pdev
)
2172 struct omap_nand_info
*info
;
2173 struct mtd_info
*mtd
;
2174 struct nand_chip
*nand_chip
;
2176 struct resource
*res
;
2177 struct device
*dev
= &pdev
->dev
;
2179 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
2186 err
= omap_get_dt_info(dev
, info
);
2190 info
->ops
= gpmc_omap_get_nand_ops(&info
->reg
, info
->gpmc_cs
);
2192 dev_err(&pdev
->dev
, "Failed to get GPMC->NAND interface\n");
2196 nand_chip
= &info
->nand
;
2197 mtd
= nand_to_mtd(nand_chip
);
2198 mtd
->dev
.parent
= &pdev
->dev
;
2199 nand_set_flash_node(nand_chip
, dev
->of_node
);
2202 mtd
->name
= devm_kasprintf(&pdev
->dev
, GFP_KERNEL
,
2203 "omap2-nand.%d", info
->gpmc_cs
);
2205 dev_err(&pdev
->dev
, "Failed to set MTD name\n");
2210 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2211 nand_chip
->legacy
.IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
2212 if (IS_ERR(nand_chip
->legacy
.IO_ADDR_R
))
2213 return PTR_ERR(nand_chip
->legacy
.IO_ADDR_R
);
2215 info
->phys_base
= res
->start
;
2217 if (!omap_gpmc_controller_initialized
) {
2218 omap_gpmc_controller
.ops
= &omap_nand_controller_ops
;
2219 nand_controller_init(&omap_gpmc_controller
);
2220 omap_gpmc_controller_initialized
= true;
2223 nand_chip
->controller
= &omap_gpmc_controller
;
2225 nand_chip
->legacy
.IO_ADDR_W
= nand_chip
->legacy
.IO_ADDR_R
;
2226 nand_chip
->legacy
.cmd_ctrl
= omap_hwcontrol
;
2228 info
->ready_gpiod
= devm_gpiod_get_optional(&pdev
->dev
, "rb",
2230 if (IS_ERR(info
->ready_gpiod
)) {
2231 dev_err(dev
, "failed to get ready gpio\n");
2232 return PTR_ERR(info
->ready_gpiod
);
2236 * If RDY/BSY line is connected to OMAP then use the omap ready
2237 * function and the generic nand_wait function which reads the status
2238 * register after monitoring the RDY/BSY line. Otherwise use a standard
2239 * chip delay which is slightly more than tR (AC Timing) of the NAND
2240 * device and read status register until you get a failure or success
2242 if (info
->ready_gpiod
) {
2243 nand_chip
->legacy
.dev_ready
= omap_dev_ready
;
2244 nand_chip
->legacy
.chip_delay
= 0;
2246 nand_chip
->legacy
.waitfunc
= omap_wait
;
2247 nand_chip
->legacy
.chip_delay
= 50;
2250 if (info
->flash_bbt
)
2251 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2253 /* scan NAND device connected to chip controller */
2254 nand_chip
->options
|= info
->devsize
& NAND_BUSWIDTH_16
;
2256 err
= nand_scan(nand_chip
, 1);
2260 err
= mtd_device_register(mtd
, NULL
, 0);
2264 platform_set_drvdata(pdev
, mtd
);
2269 nand_cleanup(nand_chip
);
2272 if (!IS_ERR_OR_NULL(info
->dma
))
2273 dma_release_channel(info
->dma
);
2275 rawnand_sw_bch_cleanup(nand_chip
);
2280 static int omap_nand_remove(struct platform_device
*pdev
)
2282 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2283 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
2284 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
2287 rawnand_sw_bch_cleanup(nand_chip
);
2290 dma_release_channel(info
->dma
);
2291 ret
= mtd_device_unregister(mtd
);
2293 nand_cleanup(nand_chip
);
2297 static const struct of_device_id omap_nand_ids
[] = {
2298 { .compatible
= "ti,omap2-nand", },
2301 MODULE_DEVICE_TABLE(of
, omap_nand_ids
);
2303 static struct platform_driver omap_nand_driver
= {
2304 .probe
= omap_nand_probe
,
2305 .remove
= omap_nand_remove
,
2307 .name
= DRIVER_NAME
,
2308 .of_match_table
= of_match_ptr(omap_nand_ids
),
2312 module_platform_driver(omap_nand_driver
);
2314 MODULE_ALIAS("platform:" DRIVER_NAME
);
2315 MODULE_LICENSE("GPL");
2316 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");