1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NFTL mount code with extensive checks
5 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
6 * Copyright © 2000 Netgem S.A.
7 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/kernel.h>
11 #include <asm/errno.h>
12 #include <linux/delay.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/rawnand.h>
16 #include <linux/mtd/nftl.h>
18 #define SECTORSIZE 512
20 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
21 * various device information of the NFTL partition and Bad Unit Table. Update
22 * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
23 * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
25 static int find_boot_record(struct NFTLrecord
*nftl
)
28 unsigned int block
, boot_record_count
= 0;
31 struct NFTLMediaHeader
*mh
= &nftl
->MediaHdr
;
32 struct mtd_info
*mtd
= nftl
->mbd
.mtd
;
35 /* Assume logical EraseSize == physical erasesize for starting the scan.
36 We'll sort it out later if we find a MediaHeader which says otherwise */
37 /* Actually, we won't. The new DiskOnChip driver has already scanned
38 the MediaHeader and adjusted the virtual erasesize it presents in
39 the mtd device accordingly. We could even get rid of
40 nftl->EraseSize if there were any point in doing so. */
41 nftl
->EraseSize
= nftl
->mbd
.mtd
->erasesize
;
42 nftl
->nb_blocks
= (u32
)nftl
->mbd
.mtd
->size
/ nftl
->EraseSize
;
44 nftl
->MediaUnit
= BLOCK_NIL
;
45 nftl
->SpareMediaUnit
= BLOCK_NIL
;
47 /* search for a valid boot record */
48 for (block
= 0; block
< nftl
->nb_blocks
; block
++) {
51 /* Check for ANAND header first. Then can whinge if it's found but later
53 ret
= mtd_read(mtd
, block
* nftl
->EraseSize
, SECTORSIZE
,
55 /* We ignore ret in case the ECC of the MediaHeader is invalid
56 (which is apparently acceptable) */
57 if (retlen
!= SECTORSIZE
) {
58 static int warncount
= 5;
61 printk(KERN_WARNING
"Block read at 0x%x of mtd%d failed: %d\n",
62 block
* nftl
->EraseSize
, nftl
->mbd
.mtd
->index
, ret
);
64 printk(KERN_WARNING
"Further failures for this block will not be printed\n");
69 if (retlen
< 6 || memcmp(buf
, "ANAND", 6)) {
70 /* ANAND\0 not found. Continue */
72 printk(KERN_DEBUG
"ANAND header not found at 0x%x in mtd%d\n",
73 block
* nftl
->EraseSize
, nftl
->mbd
.mtd
->index
);
78 /* To be safer with BIOS, also use erase mark as discriminant */
79 ret
= nftl_read_oob(mtd
, block
* nftl
->EraseSize
+
80 SECTORSIZE
+ 8, 8, &retlen
,
83 printk(KERN_WARNING
"ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
84 block
* nftl
->EraseSize
, nftl
->mbd
.mtd
->index
, ret
);
88 #if 0 /* Some people seem to have devices without ECC or erase marks
89 on the Media Header blocks. There are enough other sanity
90 checks in here that we can probably do without it.
92 if (le16_to_cpu(h1
.EraseMark
| h1
.EraseMark1
) != ERASE_MARK
) {
93 printk(KERN_NOTICE
"ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
94 block
* nftl
->EraseSize
, nftl
->mbd
.mtd
->index
,
95 le16_to_cpu(h1
.EraseMark
), le16_to_cpu(h1
.EraseMark1
));
99 /* Finally reread to check ECC */
100 ret
= mtd
->read(mtd
, block
* nftl
->EraseSize
, SECTORSIZE
,
103 printk(KERN_NOTICE
"ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
104 block
* nftl
->EraseSize
, nftl
->mbd
.mtd
->index
, ret
);
108 /* Paranoia. Check the ANAND header is still there after the ECC read */
109 if (memcmp(buf
, "ANAND", 6)) {
110 printk(KERN_NOTICE
"ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
111 block
* nftl
->EraseSize
, nftl
->mbd
.mtd
->index
);
112 printk(KERN_NOTICE
"New data are: %6ph\n", buf
);
116 /* OK, we like it. */
118 if (boot_record_count
) {
119 /* We've already processed one. So we just check if
120 this one is the same as the first one we found */
121 if (memcmp(mh
, buf
, sizeof(struct NFTLMediaHeader
))) {
122 printk(KERN_NOTICE
"NFTL Media Headers at 0x%x and 0x%x disagree.\n",
123 nftl
->MediaUnit
* nftl
->EraseSize
, block
* nftl
->EraseSize
);
124 /* if (debug) Print both side by side */
125 if (boot_record_count
< 2) {
126 /* We haven't yet seen two real ones */
131 if (boot_record_count
== 1)
132 nftl
->SpareMediaUnit
= block
;
134 /* Mark this boot record (NFTL MediaHeader) block as reserved */
135 nftl
->ReplUnitTable
[block
] = BLOCK_RESERVED
;
142 /* This is the first we've seen. Copy the media header structure into place */
143 memcpy(mh
, buf
, sizeof(struct NFTLMediaHeader
));
145 /* Do some sanity checks on it */
147 The
new DiskOnChip driver scans the MediaHeader itself
, and presents a
virtual
148 erasesize based on UnitSizeFactor
. So the erasesize we read from the mtd
149 device is already correct
.
150 if (mh
->UnitSizeFactor
== 0) {
151 printk(KERN_NOTICE
"NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
152 } else if (mh
->UnitSizeFactor
< 0xfc) {
153 printk(KERN_NOTICE
"Sorry, we don't support UnitSizeFactor 0x%02x\n",
156 } else if (mh
->UnitSizeFactor
!= 0xff) {
157 printk(KERN_NOTICE
"WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
159 nftl
->EraseSize
= nftl
->mbd
.mtd
->erasesize
<< (0xff - mh
->UnitSizeFactor
);
160 nftl
->nb_blocks
= (u32
)nftl
->mbd
.mtd
->size
/ nftl
->EraseSize
;
163 nftl
->nb_boot_blocks
= le16_to_cpu(mh
->FirstPhysicalEUN
);
164 if ((nftl
->nb_boot_blocks
+ 2) >= nftl
->nb_blocks
) {
165 printk(KERN_NOTICE
"NFTL Media Header sanity check failed:\n");
166 printk(KERN_NOTICE
"nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
167 nftl
->nb_boot_blocks
, nftl
->nb_blocks
);
171 nftl
->numvunits
= le32_to_cpu(mh
->FormattedSize
) / nftl
->EraseSize
;
172 if (nftl
->numvunits
> (nftl
->nb_blocks
- nftl
->nb_boot_blocks
- 2)) {
173 printk(KERN_NOTICE
"NFTL Media Header sanity check failed:\n");
174 printk(KERN_NOTICE
"numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
175 nftl
->numvunits
, nftl
->nb_blocks
, nftl
->nb_boot_blocks
);
179 nftl
->mbd
.size
= nftl
->numvunits
* (nftl
->EraseSize
/ SECTORSIZE
);
181 /* If we're not using the last sectors in the device for some reason,
182 reduce nb_blocks accordingly so we forget they're there */
183 nftl
->nb_blocks
= le16_to_cpu(mh
->NumEraseUnits
) + le16_to_cpu(mh
->FirstPhysicalEUN
);
185 /* XXX: will be suppressed */
186 nftl
->lastEUN
= nftl
->nb_blocks
- 1;
189 nftl
->EUNtable
= kmalloc_array(nftl
->nb_blocks
, sizeof(u16
),
191 if (!nftl
->EUNtable
) {
192 printk(KERN_NOTICE
"NFTL: allocation of EUNtable failed\n");
196 nftl
->ReplUnitTable
= kmalloc_array(nftl
->nb_blocks
,
199 if (!nftl
->ReplUnitTable
) {
200 kfree(nftl
->EUNtable
);
201 printk(KERN_NOTICE
"NFTL: allocation of ReplUnitTable failed\n");
205 /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
206 for (i
= 0; i
< nftl
->nb_boot_blocks
; i
++)
207 nftl
->ReplUnitTable
[i
] = BLOCK_RESERVED
;
208 /* mark all remaining blocks as potentially containing data */
209 for (; i
< nftl
->nb_blocks
; i
++) {
210 nftl
->ReplUnitTable
[i
] = BLOCK_NOTEXPLORED
;
213 /* Mark this boot record (NFTL MediaHeader) block as reserved */
214 nftl
->ReplUnitTable
[block
] = BLOCK_RESERVED
;
216 /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
217 for (i
= 0; i
< nftl
->nb_blocks
; i
++) {
219 The
new DiskOnChip driver already scanned the bad block table
. Just query it
.
220 if ((i
& (SECTORSIZE
- 1)) == 0) {
221 /* read one sector for every SECTORSIZE of blocks */
222 ret
= mtd
->read(nftl
->mbd
.mtd
,
223 block
* nftl
->EraseSize
+ i
+
224 SECTORSIZE
, SECTORSIZE
,
227 printk(KERN_NOTICE
"Read of bad sector table failed (err %d)\n",
229 kfree(nftl
->ReplUnitTable
);
230 kfree(nftl
->EUNtable
);
234 /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
235 if (buf
[i
& (SECTORSIZE
- 1)] != 0xff)
236 nftl
->ReplUnitTable
[i
] = BLOCK_RESERVED
;
238 if (mtd_block_isbad(nftl
->mbd
.mtd
,
239 i
* nftl
->EraseSize
))
240 nftl
->ReplUnitTable
[i
] = BLOCK_RESERVED
;
243 nftl
->MediaUnit
= block
;
246 } /* foreach (block) */
248 return boot_record_count
?0:-1;
251 static int memcmpb(void *a
, int c
, int n
)
254 for (i
= 0; i
< n
; i
++) {
255 if (c
!= ((unsigned char *)a
)[i
])
261 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
262 static int check_free_sectors(struct NFTLrecord
*nftl
, unsigned int address
, int len
,
265 struct mtd_info
*mtd
= nftl
->mbd
.mtd
;
270 buf
= kmalloc(SECTORSIZE
+ mtd
->oobsize
, GFP_KERNEL
);
275 for (i
= 0; i
< len
; i
+= SECTORSIZE
) {
276 if (mtd_read(mtd
, address
, SECTORSIZE
, &retlen
, buf
))
278 if (memcmpb(buf
, 0xff, SECTORSIZE
) != 0)
282 if(nftl_read_oob(mtd
, address
, mtd
->oobsize
,
283 &retlen
, &buf
[SECTORSIZE
]) < 0)
285 if (memcmpb(buf
+ SECTORSIZE
, 0xff, mtd
->oobsize
) != 0)
288 address
+= SECTORSIZE
;
298 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
299 * Update NFTL metadata. Each erase operation is checked with check_free_sectors
301 * Return: 0 when succeed, -1 on error.
303 * ToDo: 1. Is it necessary to check_free_sector after erasing ??
305 int NFTL_formatblock(struct NFTLrecord
*nftl
, int block
)
308 unsigned int nb_erases
, erase_mark
;
309 struct nftl_uci1 uci
;
310 struct erase_info
*instr
= &nftl
->instr
;
311 struct mtd_info
*mtd
= nftl
->mbd
.mtd
;
313 /* Read the Unit Control Information #1 for Wear-Leveling */
314 if (nftl_read_oob(mtd
, block
* nftl
->EraseSize
+ SECTORSIZE
+ 8,
315 8, &retlen
, (char *)&uci
) < 0)
318 erase_mark
= le16_to_cpu ((uci
.EraseMark
| uci
.EraseMark1
));
319 if (erase_mark
!= ERASE_MARK
) {
321 uci
.EraseMark
= cpu_to_le16(ERASE_MARK
);
322 uci
.EraseMark1
= cpu_to_le16(ERASE_MARK
);
323 uci
.WearInfo
= cpu_to_le32(0);
326 memset(instr
, 0, sizeof(struct erase_info
));
328 /* XXX: use async erase interface, XXX: test return code */
329 instr
->addr
= block
* nftl
->EraseSize
;
330 instr
->len
= nftl
->EraseSize
;
331 if (mtd_erase(mtd
, instr
)) {
332 printk("Error while formatting block %d\n", block
);
336 /* increase and write Wear-Leveling info */
337 nb_erases
= le32_to_cpu(uci
.WearInfo
);
340 /* wrap (almost impossible with current flash) or free block */
344 /* check the "freeness" of Erase Unit before updating metadata
345 * FixMe: is this check really necessary ? since we have check the
346 * return code after the erase operation.
348 if (check_free_sectors(nftl
, instr
->addr
, nftl
->EraseSize
, 1) != 0)
351 uci
.WearInfo
= le32_to_cpu(nb_erases
);
352 if (nftl_write_oob(mtd
, block
* nftl
->EraseSize
+ SECTORSIZE
+
353 8, 8, &retlen
, (char *)&uci
) < 0)
357 /* could not format, update the bad block table (caller is responsible
358 for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
359 mtd_block_markbad(nftl
->mbd
.mtd
, instr
->addr
);
363 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
364 * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
365 * was being folded when NFTL was interrupted.
367 * The check_free_sectors in this function is necessary. There is a possible
368 * situation that after writing the Data area, the Block Control Information is
369 * not updated according (due to power failure or something) which leaves the block
370 * in an inconsistent state. So we have to check if a block is really FREE in this
372 static void check_sectors_in_chain(struct NFTLrecord
*nftl
, unsigned int first_block
)
374 struct mtd_info
*mtd
= nftl
->mbd
.mtd
;
375 unsigned int block
, i
, status
;
377 int sectors_per_block
;
380 sectors_per_block
= nftl
->EraseSize
/ SECTORSIZE
;
383 for (i
= 0; i
< sectors_per_block
; i
++) {
384 if (nftl_read_oob(mtd
,
385 block
* nftl
->EraseSize
+ i
* SECTORSIZE
,
386 8, &retlen
, (char *)&bci
) < 0)
387 status
= SECTOR_IGNORE
;
389 status
= bci
.Status
| bci
.Status1
;
393 /* verify that the sector is really free. If not, mark
395 if (memcmpb(&bci
, 0xff, 8) != 0 ||
396 check_free_sectors(nftl
, block
* nftl
->EraseSize
+ i
* SECTORSIZE
,
397 SECTORSIZE
, 0) != 0) {
398 printk("Incorrect free sector %d in block %d: "
399 "marking it as ignored\n",
402 /* sector not free actually : mark it as SECTOR_IGNORE */
403 bci
.Status
= SECTOR_IGNORE
;
404 bci
.Status1
= SECTOR_IGNORE
;
405 nftl_write_oob(mtd
, block
*
408 &retlen
, (char *)&bci
);
416 /* proceed to next Erase Unit on the chain */
417 block
= nftl
->ReplUnitTable
[block
];
418 if (!(block
== BLOCK_NIL
|| block
< nftl
->nb_blocks
))
419 printk("incorrect ReplUnitTable[] : %d\n", block
);
420 if (block
== BLOCK_NIL
|| block
>= nftl
->nb_blocks
)
425 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
426 static int calc_chain_length(struct NFTLrecord
*nftl
, unsigned int first_block
)
428 unsigned int length
= 0, block
= first_block
;
432 /* avoid infinite loops, although this is guaranteed not to
433 happen because of the previous checks */
434 if (length
>= nftl
->nb_blocks
) {
435 printk("nftl: length too long %d !\n", length
);
439 block
= nftl
->ReplUnitTable
[block
];
440 if (!(block
== BLOCK_NIL
|| block
< nftl
->nb_blocks
))
441 printk("incorrect ReplUnitTable[] : %d\n", block
);
442 if (block
== BLOCK_NIL
|| block
>= nftl
->nb_blocks
)
448 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
449 * Virtual Unit Chain, i.e. all the units are disconnected.
451 * It is not strictly correct to begin from the first block of the chain because
452 * if we stop the code, we may see again a valid chain if there was a first_block
453 * flag in a block inside it. But is it really a problem ?
455 * FixMe: Figure out what the last statement means. What if power failure when we are
456 * in the for (;;) loop formatting blocks ??
458 static void format_chain(struct NFTLrecord
*nftl
, unsigned int first_block
)
460 unsigned int block
= first_block
, block1
;
462 printk("Formatting chain at block %d\n", first_block
);
465 block1
= nftl
->ReplUnitTable
[block
];
467 printk("Formatting block %d\n", block
);
468 if (NFTL_formatblock(nftl
, block
) < 0) {
469 /* cannot format !!!! Mark it as Bad Unit */
470 nftl
->ReplUnitTable
[block
] = BLOCK_RESERVED
;
472 nftl
->ReplUnitTable
[block
] = BLOCK_FREE
;
475 /* goto next block on the chain */
478 if (!(block
== BLOCK_NIL
|| block
< nftl
->nb_blocks
))
479 printk("incorrect ReplUnitTable[] : %d\n", block
);
480 if (block
== BLOCK_NIL
|| block
>= nftl
->nb_blocks
)
485 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
486 * totally free (only 0xff).
488 * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
489 * following criteria:
491 static int check_and_mark_free_block(struct NFTLrecord
*nftl
, int block
)
493 struct mtd_info
*mtd
= nftl
->mbd
.mtd
;
495 unsigned int erase_mark
;
498 /* check erase mark. */
499 if (nftl_read_oob(mtd
, block
* nftl
->EraseSize
+ SECTORSIZE
+ 8, 8,
500 &retlen
, (char *)&h1
) < 0)
503 erase_mark
= le16_to_cpu ((h1
.EraseMark
| h1
.EraseMark1
));
504 if (erase_mark
!= ERASE_MARK
) {
505 /* if no erase mark, the block must be totally free. This is
506 possible in two cases : empty filesystem or interrupted erase (very unlikely) */
507 if (check_free_sectors (nftl
, block
* nftl
->EraseSize
, nftl
->EraseSize
, 1) != 0)
510 /* free block : write erase mark */
511 h1
.EraseMark
= cpu_to_le16(ERASE_MARK
);
512 h1
.EraseMark1
= cpu_to_le16(ERASE_MARK
);
513 h1
.WearInfo
= cpu_to_le32(0);
514 if (nftl_write_oob(mtd
,
515 block
* nftl
->EraseSize
+ SECTORSIZE
+ 8, 8,
516 &retlen
, (char *)&h1
) < 0)
520 /* if erase mark present, need to skip it when doing check */
521 for (i
= 0; i
< nftl
->EraseSize
; i
+= SECTORSIZE
) {
522 /* check free sector */
523 if (check_free_sectors (nftl
, block
* nftl
->EraseSize
+ i
,
527 if (nftl_read_oob(mtd
, block
* nftl
->EraseSize
+ i
,
528 16, &retlen
, buf
) < 0)
530 if (i
== SECTORSIZE
) {
531 /* skip erase mark */
532 if (memcmpb(buf
, 0xff, 8))
535 if (memcmpb(buf
, 0xff, 16))
545 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
546 * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
547 * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
548 * for some reason. A clean up/check of the VUC is necessary in this case.
550 * WARNING: return 0 if read error
552 static int get_fold_mark(struct NFTLrecord
*nftl
, unsigned int block
)
554 struct mtd_info
*mtd
= nftl
->mbd
.mtd
;
555 struct nftl_uci2 uci
;
558 if (nftl_read_oob(mtd
, block
* nftl
->EraseSize
+ 2 * SECTORSIZE
+ 8,
559 8, &retlen
, (char *)&uci
) < 0)
562 return le16_to_cpu((uci
.FoldMark
| uci
.FoldMark1
));
565 int NFTL_mount(struct NFTLrecord
*s
)
568 unsigned int first_logical_block
, logical_block
, rep_block
, erase_mark
;
569 unsigned int block
, first_block
, is_first_block
;
570 int chain_length
, do_format_chain
;
573 struct mtd_info
*mtd
= s
->mbd
.mtd
;
576 /* search for NFTL MediaHeader and Spare NFTL Media Header */
577 if (find_boot_record(s
) < 0) {
578 printk("Could not find valid boot record\n");
582 /* init the logical to physical table */
583 for (i
= 0; i
< s
->nb_blocks
; i
++) {
584 s
->EUNtable
[i
] = BLOCK_NIL
;
587 /* first pass : explore each block chain */
588 first_logical_block
= 0;
589 for (first_block
= 0; first_block
< s
->nb_blocks
; first_block
++) {
590 /* if the block was not already explored, we can look at it */
591 if (s
->ReplUnitTable
[first_block
] == BLOCK_NOTEXPLORED
) {
597 /* read the block header. If error, we format the chain */
598 if (nftl_read_oob(mtd
,
599 block
* s
->EraseSize
+ 8, 8,
600 &retlen
, (char *)&h0
) < 0 ||
602 block
* s
->EraseSize
+
604 &retlen
, (char *)&h1
) < 0) {
605 s
->ReplUnitTable
[block
] = BLOCK_NIL
;
610 logical_block
= le16_to_cpu ((h0
.VirtUnitNum
| h0
.SpareVirtUnitNum
));
611 rep_block
= le16_to_cpu ((h0
.ReplUnitNum
| h0
.SpareReplUnitNum
));
612 erase_mark
= le16_to_cpu ((h1
.EraseMark
| h1
.EraseMark1
));
614 is_first_block
= !(logical_block
>> 15);
615 logical_block
= logical_block
& 0x7fff;
617 /* invalid/free block test */
618 if (erase_mark
!= ERASE_MARK
|| logical_block
>= s
->nb_blocks
) {
619 if (chain_length
== 0) {
620 /* if not currently in a chain, we can handle it safely */
621 if (check_and_mark_free_block(s
, block
) < 0) {
622 /* not really free: format it */
623 printk("Formatting block %d\n", block
);
624 if (NFTL_formatblock(s
, block
) < 0) {
625 /* could not format: reserve the block */
626 s
->ReplUnitTable
[block
] = BLOCK_RESERVED
;
628 s
->ReplUnitTable
[block
] = BLOCK_FREE
;
631 /* free block: mark it */
632 s
->ReplUnitTable
[block
] = BLOCK_FREE
;
634 /* directly examine the next block. */
635 goto examine_ReplUnitTable
;
637 /* the block was in a chain : this is bad. We
638 must format all the chain */
639 printk("Block %d: free but referenced in chain %d\n",
641 s
->ReplUnitTable
[block
] = BLOCK_NIL
;
647 /* we accept only first blocks here */
648 if (chain_length
== 0) {
649 /* this block is not the first block in chain :
650 ignore it, it will be included in a chain
651 later, or marked as not explored */
653 goto examine_ReplUnitTable
;
654 first_logical_block
= logical_block
;
656 if (logical_block
!= first_logical_block
) {
657 printk("Block %d: incorrect logical block: %d expected: %d\n",
658 block
, logical_block
, first_logical_block
);
659 /* the chain is incorrect : we must format it,
660 but we need to read it completely */
663 if (is_first_block
) {
664 /* we accept that a block is marked as first
665 block while being last block in a chain
666 only if the chain is being folded */
667 if (get_fold_mark(s
, block
) != FOLD_MARK_IN_PROGRESS
||
668 rep_block
!= 0xffff) {
669 printk("Block %d: incorrectly marked as first block in chain\n",
671 /* the chain is incorrect : we must format it,
672 but we need to read it completely */
675 printk("Block %d: folding in progress - ignoring first block flag\n",
681 if (rep_block
== 0xffff) {
682 /* no more blocks after */
683 s
->ReplUnitTable
[block
] = BLOCK_NIL
;
685 } else if (rep_block
>= s
->nb_blocks
) {
686 printk("Block %d: referencing invalid block %d\n",
689 s
->ReplUnitTable
[block
] = BLOCK_NIL
;
691 } else if (s
->ReplUnitTable
[rep_block
] != BLOCK_NOTEXPLORED
) {
692 /* same problem as previous 'is_first_block' test:
693 we accept that the last block of a chain has
694 the first_block flag set if folding is in
695 progress. We handle here the case where the
696 last block appeared first */
697 if (s
->ReplUnitTable
[rep_block
] == BLOCK_NIL
&&
698 s
->EUNtable
[first_logical_block
] == rep_block
&&
699 get_fold_mark(s
, first_block
) == FOLD_MARK_IN_PROGRESS
) {
700 /* EUNtable[] will be set after */
701 printk("Block %d: folding in progress - ignoring first block flag\n",
703 s
->ReplUnitTable
[block
] = rep_block
;
704 s
->EUNtable
[first_logical_block
] = BLOCK_NIL
;
706 printk("Block %d: referencing block %d already in another chain\n",
708 /* XXX: should handle correctly fold in progress chains */
710 s
->ReplUnitTable
[block
] = BLOCK_NIL
;
715 s
->ReplUnitTable
[block
] = rep_block
;
720 /* the chain was completely explored. Now we can decide
721 what to do with it */
722 if (do_format_chain
) {
723 /* invalid chain : format it */
724 format_chain(s
, first_block
);
726 unsigned int first_block1
, chain_to_format
, chain_length1
;
729 /* valid chain : get foldmark */
730 fold_mark
= get_fold_mark(s
, first_block
);
731 if (fold_mark
== 0) {
732 /* cannot get foldmark : format the chain */
733 printk("Could read foldmark at block %d\n", first_block
);
734 format_chain(s
, first_block
);
736 if (fold_mark
== FOLD_MARK_IN_PROGRESS
)
737 check_sectors_in_chain(s
, first_block
);
739 /* now handle the case where we find two chains at the
740 same virtual address : we select the longer one,
741 because the shorter one is the one which was being
742 folded if the folding was not done in place */
743 first_block1
= s
->EUNtable
[first_logical_block
];
744 if (first_block1
!= BLOCK_NIL
) {
745 /* XXX: what to do if same length ? */
746 chain_length1
= calc_chain_length(s
, first_block1
);
747 printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
748 first_block1
, chain_length1
, first_block
, chain_length
);
750 if (chain_length
>= chain_length1
) {
751 chain_to_format
= first_block1
;
752 s
->EUNtable
[first_logical_block
] = first_block
;
754 chain_to_format
= first_block
;
756 format_chain(s
, chain_to_format
);
758 s
->EUNtable
[first_logical_block
] = first_block
;
763 examine_ReplUnitTable
:;
766 /* second pass to format unreferenced blocks and init free block count */
768 s
->LastFreeEUN
= le16_to_cpu(s
->MediaHdr
.FirstPhysicalEUN
);
770 for (block
= 0; block
< s
->nb_blocks
; block
++) {
771 if (s
->ReplUnitTable
[block
] == BLOCK_NOTEXPLORED
) {
772 printk("Unreferenced block %d, formatting it\n", block
);
773 if (NFTL_formatblock(s
, block
) < 0)
774 s
->ReplUnitTable
[block
] = BLOCK_RESERVED
;
776 s
->ReplUnitTable
[block
] = BLOCK_FREE
;
778 if (s
->ReplUnitTable
[block
] == BLOCK_FREE
) {
780 s
->LastFreeEUN
= block
;