1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
18 #include <scsi/scsi_transport_fc.h>
20 /* *************************** Data Structures/Defines ****************** */
23 enum nvme_fc_queue_flags
{
24 NVME_FC_Q_CONNECTED
= 0,
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
30 * when connected and a
34 struct nvme_fc_queue
{
35 struct nvme_fc_ctrl
*ctrl
;
37 struct blk_mq_hw_ctx
*hctx
;
39 size_t cmnd_capsule_len
;
48 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
50 enum nvme_fcop_flags
{
51 FCOP_FLAGS_TERMIO
= (1 << 0),
52 FCOP_FLAGS_AEN
= (1 << 1),
55 struct nvmefc_ls_req_op
{
56 struct nvmefc_ls_req ls_req
;
58 struct nvme_fc_rport
*rport
;
59 struct nvme_fc_queue
*queue
;
64 struct completion ls_done
;
65 struct list_head lsreq_list
; /* rport->ls_req_list */
69 struct nvmefc_ls_rcv_op
{
70 struct nvme_fc_rport
*rport
;
71 struct nvmefc_ls_rsp
*lsrsp
;
72 union nvmefc_ls_requests
*rqstbuf
;
73 union nvmefc_ls_responses
*rspbuf
;
77 struct list_head lsrcv_list
; /* rport->ls_rcv_list */
78 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
80 enum nvme_fcpop_state
{
81 FCPOP_STATE_UNINIT
= 0,
83 FCPOP_STATE_ACTIVE
= 2,
84 FCPOP_STATE_ABORTED
= 3,
85 FCPOP_STATE_COMPLETE
= 4,
88 struct nvme_fc_fcp_op
{
89 struct nvme_request nreq
; /*
92 * the 1st element in the
97 struct nvmefc_fcp_req fcp_req
;
99 struct nvme_fc_ctrl
*ctrl
;
100 struct nvme_fc_queue
*queue
;
108 struct nvme_fc_cmd_iu cmd_iu
;
109 struct nvme_fc_ersp_iu rsp_iu
;
112 struct nvme_fcp_op_w_sgl
{
113 struct nvme_fc_fcp_op op
;
114 struct scatterlist sgl
[NVME_INLINE_SG_CNT
];
118 struct nvme_fc_lport
{
119 struct nvme_fc_local_port localport
;
122 struct list_head port_list
; /* nvme_fc_port_list */
123 struct list_head endp_list
;
124 struct device
*dev
; /* physical device for dma */
125 struct nvme_fc_port_template
*ops
;
127 atomic_t act_rport_cnt
;
128 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
130 struct nvme_fc_rport
{
131 struct nvme_fc_remote_port remoteport
;
133 struct list_head endp_list
; /* for lport->endp_list */
134 struct list_head ctrl_list
;
135 struct list_head ls_req_list
;
136 struct list_head ls_rcv_list
;
137 struct list_head disc_list
;
138 struct device
*dev
; /* physical device for dma */
139 struct nvme_fc_lport
*lport
;
142 atomic_t act_ctrl_cnt
;
143 unsigned long dev_loss_end
;
144 struct work_struct lsrcv_work
;
145 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
147 /* fc_ctrl flags values - specified as bit positions */
148 #define ASSOC_ACTIVE 0
149 #define ASSOC_FAILED 1
150 #define FCCTRL_TERMIO 2
152 struct nvme_fc_ctrl
{
154 struct nvme_fc_queue
*queues
;
156 struct nvme_fc_lport
*lport
;
157 struct nvme_fc_rport
*rport
;
162 struct nvmefc_ls_rcv_op
*rcv_disconn
;
164 struct list_head ctrl_list
; /* rport->ctrl_list */
166 struct blk_mq_tag_set admin_tag_set
;
167 struct blk_mq_tag_set tag_set
;
169 struct work_struct ioerr_work
;
170 struct delayed_work connect_work
;
175 wait_queue_head_t ioabort_wait
;
177 struct nvme_fc_fcp_op aen_ops
[NVME_NR_AEN_COMMANDS
];
179 struct nvme_ctrl ctrl
;
182 static inline struct nvme_fc_ctrl
*
183 to_fc_ctrl(struct nvme_ctrl
*ctrl
)
185 return container_of(ctrl
, struct nvme_fc_ctrl
, ctrl
);
188 static inline struct nvme_fc_lport
*
189 localport_to_lport(struct nvme_fc_local_port
*portptr
)
191 return container_of(portptr
, struct nvme_fc_lport
, localport
);
194 static inline struct nvme_fc_rport
*
195 remoteport_to_rport(struct nvme_fc_remote_port
*portptr
)
197 return container_of(portptr
, struct nvme_fc_rport
, remoteport
);
200 static inline struct nvmefc_ls_req_op
*
201 ls_req_to_lsop(struct nvmefc_ls_req
*lsreq
)
203 return container_of(lsreq
, struct nvmefc_ls_req_op
, ls_req
);
206 static inline struct nvme_fc_fcp_op
*
207 fcp_req_to_fcp_op(struct nvmefc_fcp_req
*fcpreq
)
209 return container_of(fcpreq
, struct nvme_fc_fcp_op
, fcp_req
);
214 /* *************************** Globals **************************** */
217 static DEFINE_SPINLOCK(nvme_fc_lock
);
219 static LIST_HEAD(nvme_fc_lport_list
);
220 static DEFINE_IDA(nvme_fc_local_port_cnt
);
221 static DEFINE_IDA(nvme_fc_ctrl_cnt
);
223 static struct workqueue_struct
*nvme_fc_wq
;
225 static bool nvme_fc_waiting_to_unload
;
226 static DECLARE_COMPLETION(nvme_fc_unload_proceed
);
229 * These items are short-term. They will eventually be moved into
230 * a generic FC class. See comments in module init.
232 static struct device
*fc_udev_device
;
234 static void nvme_fc_complete_rq(struct request
*rq
);
236 /* *********************** FC-NVME Port Management ************************ */
238 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*,
239 struct nvme_fc_queue
*, unsigned int);
241 static void nvme_fc_handle_ls_rqst_work(struct work_struct
*work
);
245 nvme_fc_free_lport(struct kref
*ref
)
247 struct nvme_fc_lport
*lport
=
248 container_of(ref
, struct nvme_fc_lport
, ref
);
251 WARN_ON(lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
);
252 WARN_ON(!list_empty(&lport
->endp_list
));
254 /* remove from transport list */
255 spin_lock_irqsave(&nvme_fc_lock
, flags
);
256 list_del(&lport
->port_list
);
257 if (nvme_fc_waiting_to_unload
&& list_empty(&nvme_fc_lport_list
))
258 complete(&nvme_fc_unload_proceed
);
259 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
261 ida_simple_remove(&nvme_fc_local_port_cnt
, lport
->localport
.port_num
);
262 ida_destroy(&lport
->endp_cnt
);
264 put_device(lport
->dev
);
270 nvme_fc_lport_put(struct nvme_fc_lport
*lport
)
272 kref_put(&lport
->ref
, nvme_fc_free_lport
);
276 nvme_fc_lport_get(struct nvme_fc_lport
*lport
)
278 return kref_get_unless_zero(&lport
->ref
);
282 static struct nvme_fc_lport
*
283 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info
*pinfo
,
284 struct nvme_fc_port_template
*ops
,
287 struct nvme_fc_lport
*lport
;
290 spin_lock_irqsave(&nvme_fc_lock
, flags
);
292 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
293 if (lport
->localport
.node_name
!= pinfo
->node_name
||
294 lport
->localport
.port_name
!= pinfo
->port_name
)
297 if (lport
->dev
!= dev
) {
298 lport
= ERR_PTR(-EXDEV
);
302 if (lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
) {
303 lport
= ERR_PTR(-EEXIST
);
307 if (!nvme_fc_lport_get(lport
)) {
309 * fails if ref cnt already 0. If so,
310 * act as if lport already deleted
316 /* resume the lport */
319 lport
->localport
.port_role
= pinfo
->port_role
;
320 lport
->localport
.port_id
= pinfo
->port_id
;
321 lport
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
323 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
331 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
337 * nvme_fc_register_localport - transport entry point called by an
338 * LLDD to register the existence of a NVME
340 * @pinfo: pointer to information about the port to be registered
341 * @template: LLDD entrypoints and operational parameters for the port
342 * @dev: physical hardware device node port corresponds to. Will be
343 * used for DMA mappings
344 * @portptr: pointer to a local port pointer. Upon success, the routine
345 * will allocate a nvme_fc_local_port structure and place its
346 * address in the local port pointer. Upon failure, local port
347 * pointer will be set to 0.
350 * a completion status. Must be 0 upon success; a negative errno
351 * (ex: -ENXIO) upon failure.
354 nvme_fc_register_localport(struct nvme_fc_port_info
*pinfo
,
355 struct nvme_fc_port_template
*template,
357 struct nvme_fc_local_port
**portptr
)
359 struct nvme_fc_lport
*newrec
;
363 if (!template->localport_delete
|| !template->remoteport_delete
||
364 !template->ls_req
|| !template->fcp_io
||
365 !template->ls_abort
|| !template->fcp_abort
||
366 !template->max_hw_queues
|| !template->max_sgl_segments
||
367 !template->max_dif_sgl_segments
|| !template->dma_boundary
) {
369 goto out_reghost_failed
;
373 * look to see if there is already a localport that had been
374 * deregistered and in the process of waiting for all the
375 * references to fully be removed. If the references haven't
376 * expired, we can simply re-enable the localport. Remoteports
377 * and controller reconnections should resume naturally.
379 newrec
= nvme_fc_attach_to_unreg_lport(pinfo
, template, dev
);
381 /* found an lport, but something about its state is bad */
382 if (IS_ERR(newrec
)) {
383 ret
= PTR_ERR(newrec
);
384 goto out_reghost_failed
;
386 /* found existing lport, which was resumed */
388 *portptr
= &newrec
->localport
;
392 /* nothing found - allocate a new localport struct */
394 newrec
= kmalloc((sizeof(*newrec
) + template->local_priv_sz
),
398 goto out_reghost_failed
;
401 idx
= ida_simple_get(&nvme_fc_local_port_cnt
, 0, 0, GFP_KERNEL
);
407 if (!get_device(dev
) && dev
) {
412 INIT_LIST_HEAD(&newrec
->port_list
);
413 INIT_LIST_HEAD(&newrec
->endp_list
);
414 kref_init(&newrec
->ref
);
415 atomic_set(&newrec
->act_rport_cnt
, 0);
416 newrec
->ops
= template;
418 ida_init(&newrec
->endp_cnt
);
419 if (template->local_priv_sz
)
420 newrec
->localport
.private = &newrec
[1];
422 newrec
->localport
.private = NULL
;
423 newrec
->localport
.node_name
= pinfo
->node_name
;
424 newrec
->localport
.port_name
= pinfo
->port_name
;
425 newrec
->localport
.port_role
= pinfo
->port_role
;
426 newrec
->localport
.port_id
= pinfo
->port_id
;
427 newrec
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
428 newrec
->localport
.port_num
= idx
;
430 spin_lock_irqsave(&nvme_fc_lock
, flags
);
431 list_add_tail(&newrec
->port_list
, &nvme_fc_lport_list
);
432 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
435 dma_set_seg_boundary(dev
, template->dma_boundary
);
437 *portptr
= &newrec
->localport
;
441 ida_simple_remove(&nvme_fc_local_port_cnt
, idx
);
449 EXPORT_SYMBOL_GPL(nvme_fc_register_localport
);
452 * nvme_fc_unregister_localport - transport entry point called by an
453 * LLDD to deregister/remove a previously
454 * registered a NVME host FC port.
455 * @portptr: pointer to the (registered) local port that is to be deregistered.
458 * a completion status. Must be 0 upon success; a negative errno
459 * (ex: -ENXIO) upon failure.
462 nvme_fc_unregister_localport(struct nvme_fc_local_port
*portptr
)
464 struct nvme_fc_lport
*lport
= localport_to_lport(portptr
);
470 spin_lock_irqsave(&nvme_fc_lock
, flags
);
472 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
473 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
476 portptr
->port_state
= FC_OBJSTATE_DELETED
;
478 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
480 if (atomic_read(&lport
->act_rport_cnt
) == 0)
481 lport
->ops
->localport_delete(&lport
->localport
);
483 nvme_fc_lport_put(lport
);
487 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport
);
490 * TRADDR strings, per FC-NVME are fixed format:
491 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
492 * udev event will only differ by prefix of what field is
494 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
495 * 19 + 43 + null_fudge = 64 characters
497 #define FCNVME_TRADDR_LENGTH 64
500 nvme_fc_signal_discovery_scan(struct nvme_fc_lport
*lport
,
501 struct nvme_fc_rport
*rport
)
503 char hostaddr
[FCNVME_TRADDR_LENGTH
]; /* NVMEFC_HOST_TRADDR=...*/
504 char tgtaddr
[FCNVME_TRADDR_LENGTH
]; /* NVMEFC_TRADDR=...*/
505 char *envp
[4] = { "FC_EVENT=nvmediscovery", hostaddr
, tgtaddr
, NULL
};
507 if (!(rport
->remoteport
.port_role
& FC_PORT_ROLE_NVME_DISCOVERY
))
510 snprintf(hostaddr
, sizeof(hostaddr
),
511 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
512 lport
->localport
.node_name
, lport
->localport
.port_name
);
513 snprintf(tgtaddr
, sizeof(tgtaddr
),
514 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
515 rport
->remoteport
.node_name
, rport
->remoteport
.port_name
);
516 kobject_uevent_env(&fc_udev_device
->kobj
, KOBJ_CHANGE
, envp
);
520 nvme_fc_free_rport(struct kref
*ref
)
522 struct nvme_fc_rport
*rport
=
523 container_of(ref
, struct nvme_fc_rport
, ref
);
524 struct nvme_fc_lport
*lport
=
525 localport_to_lport(rport
->remoteport
.localport
);
528 WARN_ON(rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
);
529 WARN_ON(!list_empty(&rport
->ctrl_list
));
531 /* remove from lport list */
532 spin_lock_irqsave(&nvme_fc_lock
, flags
);
533 list_del(&rport
->endp_list
);
534 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
536 WARN_ON(!list_empty(&rport
->disc_list
));
537 ida_simple_remove(&lport
->endp_cnt
, rport
->remoteport
.port_num
);
541 nvme_fc_lport_put(lport
);
545 nvme_fc_rport_put(struct nvme_fc_rport
*rport
)
547 kref_put(&rport
->ref
, nvme_fc_free_rport
);
551 nvme_fc_rport_get(struct nvme_fc_rport
*rport
)
553 return kref_get_unless_zero(&rport
->ref
);
557 nvme_fc_resume_controller(struct nvme_fc_ctrl
*ctrl
)
559 switch (ctrl
->ctrl
.state
) {
561 case NVME_CTRL_CONNECTING
:
563 * As all reconnects were suppressed, schedule a
566 dev_info(ctrl
->ctrl
.device
,
567 "NVME-FC{%d}: connectivity re-established. "
568 "Attempting reconnect\n", ctrl
->cnum
);
570 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, 0);
573 case NVME_CTRL_RESETTING
:
575 * Controller is already in the process of terminating the
576 * association. No need to do anything further. The reconnect
577 * step will naturally occur after the reset completes.
582 /* no action to take - let it delete */
587 static struct nvme_fc_rport
*
588 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport
*lport
,
589 struct nvme_fc_port_info
*pinfo
)
591 struct nvme_fc_rport
*rport
;
592 struct nvme_fc_ctrl
*ctrl
;
595 spin_lock_irqsave(&nvme_fc_lock
, flags
);
597 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
598 if (rport
->remoteport
.node_name
!= pinfo
->node_name
||
599 rport
->remoteport
.port_name
!= pinfo
->port_name
)
602 if (!nvme_fc_rport_get(rport
)) {
603 rport
= ERR_PTR(-ENOLCK
);
607 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
609 spin_lock_irqsave(&rport
->lock
, flags
);
611 /* has it been unregistered */
612 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
) {
613 /* means lldd called us twice */
614 spin_unlock_irqrestore(&rport
->lock
, flags
);
615 nvme_fc_rport_put(rport
);
616 return ERR_PTR(-ESTALE
);
619 rport
->remoteport
.port_role
= pinfo
->port_role
;
620 rport
->remoteport
.port_id
= pinfo
->port_id
;
621 rport
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
622 rport
->dev_loss_end
= 0;
625 * kick off a reconnect attempt on all associations to the
626 * remote port. A successful reconnects will resume i/o.
628 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
)
629 nvme_fc_resume_controller(ctrl
);
631 spin_unlock_irqrestore(&rport
->lock
, flags
);
639 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
645 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport
*rport
,
646 struct nvme_fc_port_info
*pinfo
)
648 if (pinfo
->dev_loss_tmo
)
649 rport
->remoteport
.dev_loss_tmo
= pinfo
->dev_loss_tmo
;
651 rport
->remoteport
.dev_loss_tmo
= NVME_FC_DEFAULT_DEV_LOSS_TMO
;
655 * nvme_fc_register_remoteport - transport entry point called by an
656 * LLDD to register the existence of a NVME
657 * subsystem FC port on its fabric.
658 * @localport: pointer to the (registered) local port that the remote
659 * subsystem port is connected to.
660 * @pinfo: pointer to information about the port to be registered
661 * @portptr: pointer to a remote port pointer. Upon success, the routine
662 * will allocate a nvme_fc_remote_port structure and place its
663 * address in the remote port pointer. Upon failure, remote port
664 * pointer will be set to 0.
667 * a completion status. Must be 0 upon success; a negative errno
668 * (ex: -ENXIO) upon failure.
671 nvme_fc_register_remoteport(struct nvme_fc_local_port
*localport
,
672 struct nvme_fc_port_info
*pinfo
,
673 struct nvme_fc_remote_port
**portptr
)
675 struct nvme_fc_lport
*lport
= localport_to_lport(localport
);
676 struct nvme_fc_rport
*newrec
;
680 if (!nvme_fc_lport_get(lport
)) {
682 goto out_reghost_failed
;
686 * look to see if there is already a remoteport that is waiting
687 * for a reconnect (within dev_loss_tmo) with the same WWN's.
688 * If so, transition to it and reconnect.
690 newrec
= nvme_fc_attach_to_suspended_rport(lport
, pinfo
);
692 /* found an rport, but something about its state is bad */
693 if (IS_ERR(newrec
)) {
694 ret
= PTR_ERR(newrec
);
697 /* found existing rport, which was resumed */
699 nvme_fc_lport_put(lport
);
700 __nvme_fc_set_dev_loss_tmo(newrec
, pinfo
);
701 nvme_fc_signal_discovery_scan(lport
, newrec
);
702 *portptr
= &newrec
->remoteport
;
706 /* nothing found - allocate a new remoteport struct */
708 newrec
= kmalloc((sizeof(*newrec
) + lport
->ops
->remote_priv_sz
),
715 idx
= ida_simple_get(&lport
->endp_cnt
, 0, 0, GFP_KERNEL
);
718 goto out_kfree_rport
;
721 INIT_LIST_HEAD(&newrec
->endp_list
);
722 INIT_LIST_HEAD(&newrec
->ctrl_list
);
723 INIT_LIST_HEAD(&newrec
->ls_req_list
);
724 INIT_LIST_HEAD(&newrec
->disc_list
);
725 kref_init(&newrec
->ref
);
726 atomic_set(&newrec
->act_ctrl_cnt
, 0);
727 spin_lock_init(&newrec
->lock
);
728 newrec
->remoteport
.localport
= &lport
->localport
;
729 INIT_LIST_HEAD(&newrec
->ls_rcv_list
);
730 newrec
->dev
= lport
->dev
;
731 newrec
->lport
= lport
;
732 if (lport
->ops
->remote_priv_sz
)
733 newrec
->remoteport
.private = &newrec
[1];
735 newrec
->remoteport
.private = NULL
;
736 newrec
->remoteport
.port_role
= pinfo
->port_role
;
737 newrec
->remoteport
.node_name
= pinfo
->node_name
;
738 newrec
->remoteport
.port_name
= pinfo
->port_name
;
739 newrec
->remoteport
.port_id
= pinfo
->port_id
;
740 newrec
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
741 newrec
->remoteport
.port_num
= idx
;
742 __nvme_fc_set_dev_loss_tmo(newrec
, pinfo
);
743 INIT_WORK(&newrec
->lsrcv_work
, nvme_fc_handle_ls_rqst_work
);
745 spin_lock_irqsave(&nvme_fc_lock
, flags
);
746 list_add_tail(&newrec
->endp_list
, &lport
->endp_list
);
747 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
749 nvme_fc_signal_discovery_scan(lport
, newrec
);
751 *portptr
= &newrec
->remoteport
;
757 nvme_fc_lport_put(lport
);
762 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport
);
765 nvme_fc_abort_lsops(struct nvme_fc_rport
*rport
)
767 struct nvmefc_ls_req_op
*lsop
;
771 spin_lock_irqsave(&rport
->lock
, flags
);
773 list_for_each_entry(lsop
, &rport
->ls_req_list
, lsreq_list
) {
774 if (!(lsop
->flags
& FCOP_FLAGS_TERMIO
)) {
775 lsop
->flags
|= FCOP_FLAGS_TERMIO
;
776 spin_unlock_irqrestore(&rport
->lock
, flags
);
777 rport
->lport
->ops
->ls_abort(&rport
->lport
->localport
,
783 spin_unlock_irqrestore(&rport
->lock
, flags
);
789 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl
*ctrl
)
791 dev_info(ctrl
->ctrl
.device
,
792 "NVME-FC{%d}: controller connectivity lost. Awaiting "
793 "Reconnect", ctrl
->cnum
);
795 switch (ctrl
->ctrl
.state
) {
799 * Schedule a controller reset. The reset will terminate the
800 * association and schedule the reconnect timer. Reconnects
801 * will be attempted until either the ctlr_loss_tmo
802 * (max_retries * connect_delay) expires or the remoteport's
803 * dev_loss_tmo expires.
805 if (nvme_reset_ctrl(&ctrl
->ctrl
)) {
806 dev_warn(ctrl
->ctrl
.device
,
807 "NVME-FC{%d}: Couldn't schedule reset.\n",
809 nvme_delete_ctrl(&ctrl
->ctrl
);
813 case NVME_CTRL_CONNECTING
:
815 * The association has already been terminated and the
816 * controller is attempting reconnects. No need to do anything
817 * futher. Reconnects will be attempted until either the
818 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
819 * remoteport's dev_loss_tmo expires.
823 case NVME_CTRL_RESETTING
:
825 * Controller is already in the process of terminating the
826 * association. No need to do anything further. The reconnect
827 * step will kick in naturally after the association is
832 case NVME_CTRL_DELETING
:
833 case NVME_CTRL_DELETING_NOIO
:
835 /* no action to take - let it delete */
841 * nvme_fc_unregister_remoteport - transport entry point called by an
842 * LLDD to deregister/remove a previously
843 * registered a NVME subsystem FC port.
844 * @portptr: pointer to the (registered) remote port that is to be
848 * a completion status. Must be 0 upon success; a negative errno
849 * (ex: -ENXIO) upon failure.
852 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port
*portptr
)
854 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
855 struct nvme_fc_ctrl
*ctrl
;
861 spin_lock_irqsave(&rport
->lock
, flags
);
863 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
864 spin_unlock_irqrestore(&rport
->lock
, flags
);
867 portptr
->port_state
= FC_OBJSTATE_DELETED
;
869 rport
->dev_loss_end
= jiffies
+ (portptr
->dev_loss_tmo
* HZ
);
871 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
872 /* if dev_loss_tmo==0, dev loss is immediate */
873 if (!portptr
->dev_loss_tmo
) {
874 dev_warn(ctrl
->ctrl
.device
,
875 "NVME-FC{%d}: controller connectivity lost.\n",
877 nvme_delete_ctrl(&ctrl
->ctrl
);
879 nvme_fc_ctrl_connectivity_loss(ctrl
);
882 spin_unlock_irqrestore(&rport
->lock
, flags
);
884 nvme_fc_abort_lsops(rport
);
886 if (atomic_read(&rport
->act_ctrl_cnt
) == 0)
887 rport
->lport
->ops
->remoteport_delete(portptr
);
890 * release the reference, which will allow, if all controllers
891 * go away, which should only occur after dev_loss_tmo occurs,
892 * for the rport to be torn down.
894 nvme_fc_rport_put(rport
);
898 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport
);
901 * nvme_fc_rescan_remoteport - transport entry point called by an
902 * LLDD to request a nvme device rescan.
903 * @remoteport: pointer to the (registered) remote port that is to be
909 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port
*remoteport
)
911 struct nvme_fc_rport
*rport
= remoteport_to_rport(remoteport
);
913 nvme_fc_signal_discovery_scan(rport
->lport
, rport
);
915 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport
);
918 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port
*portptr
,
921 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
924 spin_lock_irqsave(&rport
->lock
, flags
);
926 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
927 spin_unlock_irqrestore(&rport
->lock
, flags
);
931 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
932 rport
->remoteport
.dev_loss_tmo
= dev_loss_tmo
;
934 spin_unlock_irqrestore(&rport
->lock
, flags
);
938 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss
);
941 /* *********************** FC-NVME DMA Handling **************************** */
944 * The fcloop device passes in a NULL device pointer. Real LLD's will
945 * pass in a valid device pointer. If NULL is passed to the dma mapping
946 * routines, depending on the platform, it may or may not succeed, and
950 * Wrapper all the dma routines and check the dev pointer.
952 * If simple mappings (return just a dma address, we'll noop them,
953 * returning a dma address of 0.
955 * On more complex mappings (dma_map_sg), a pseudo routine fills
956 * in the scatter list, setting all dma addresses to 0.
959 static inline dma_addr_t
960 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
961 enum dma_data_direction dir
)
963 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
967 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
969 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
973 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
974 enum dma_data_direction dir
)
977 dma_unmap_single(dev
, addr
, size
, dir
);
981 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
982 enum dma_data_direction dir
)
985 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
989 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
990 enum dma_data_direction dir
)
993 dma_sync_single_for_device(dev
, addr
, size
, dir
);
996 /* pseudo dma_map_sg call */
998 fc_map_sg(struct scatterlist
*sg
, int nents
)
1000 struct scatterlist
*s
;
1003 WARN_ON(nents
== 0 || sg
[0].length
== 0);
1005 for_each_sg(sg
, s
, nents
, i
) {
1006 s
->dma_address
= 0L;
1007 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1008 s
->dma_length
= s
->length
;
1015 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1016 enum dma_data_direction dir
)
1018 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
1022 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1023 enum dma_data_direction dir
)
1026 dma_unmap_sg(dev
, sg
, nents
, dir
);
1029 /* *********************** FC-NVME LS Handling **************************** */
1031 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl
*);
1032 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl
*);
1034 static void nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
);
1037 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op
*lsop
)
1039 struct nvme_fc_rport
*rport
= lsop
->rport
;
1040 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1041 unsigned long flags
;
1043 spin_lock_irqsave(&rport
->lock
, flags
);
1045 if (!lsop
->req_queued
) {
1046 spin_unlock_irqrestore(&rport
->lock
, flags
);
1050 list_del(&lsop
->lsreq_list
);
1052 lsop
->req_queued
= false;
1054 spin_unlock_irqrestore(&rport
->lock
, flags
);
1056 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
1057 (lsreq
->rqstlen
+ lsreq
->rsplen
),
1060 nvme_fc_rport_put(rport
);
1064 __nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
,
1065 struct nvmefc_ls_req_op
*lsop
,
1066 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
1068 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1069 unsigned long flags
;
1072 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
1073 return -ECONNREFUSED
;
1075 if (!nvme_fc_rport_get(rport
))
1079 lsop
->rport
= rport
;
1080 lsop
->req_queued
= false;
1081 INIT_LIST_HEAD(&lsop
->lsreq_list
);
1082 init_completion(&lsop
->ls_done
);
1084 lsreq
->rqstdma
= fc_dma_map_single(rport
->dev
, lsreq
->rqstaddr
,
1085 lsreq
->rqstlen
+ lsreq
->rsplen
,
1087 if (fc_dma_mapping_error(rport
->dev
, lsreq
->rqstdma
)) {
1091 lsreq
->rspdma
= lsreq
->rqstdma
+ lsreq
->rqstlen
;
1093 spin_lock_irqsave(&rport
->lock
, flags
);
1095 list_add_tail(&lsop
->lsreq_list
, &rport
->ls_req_list
);
1097 lsop
->req_queued
= true;
1099 spin_unlock_irqrestore(&rport
->lock
, flags
);
1101 ret
= rport
->lport
->ops
->ls_req(&rport
->lport
->localport
,
1102 &rport
->remoteport
, lsreq
);
1109 lsop
->ls_error
= ret
;
1110 spin_lock_irqsave(&rport
->lock
, flags
);
1111 lsop
->req_queued
= false;
1112 list_del(&lsop
->lsreq_list
);
1113 spin_unlock_irqrestore(&rport
->lock
, flags
);
1114 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
1115 (lsreq
->rqstlen
+ lsreq
->rsplen
),
1118 nvme_fc_rport_put(rport
);
1124 nvme_fc_send_ls_req_done(struct nvmefc_ls_req
*lsreq
, int status
)
1126 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1128 lsop
->ls_error
= status
;
1129 complete(&lsop
->ls_done
);
1133 nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
, struct nvmefc_ls_req_op
*lsop
)
1135 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
1136 struct fcnvme_ls_rjt
*rjt
= lsreq
->rspaddr
;
1139 ret
= __nvme_fc_send_ls_req(rport
, lsop
, nvme_fc_send_ls_req_done
);
1143 * No timeout/not interruptible as we need the struct
1144 * to exist until the lldd calls us back. Thus mandate
1145 * wait until driver calls back. lldd responsible for
1146 * the timeout action
1148 wait_for_completion(&lsop
->ls_done
);
1150 __nvme_fc_finish_ls_req(lsop
);
1152 ret
= lsop
->ls_error
;
1158 /* ACC or RJT payload ? */
1159 if (rjt
->w0
.ls_cmd
== FCNVME_LS_RJT
)
1166 nvme_fc_send_ls_req_async(struct nvme_fc_rport
*rport
,
1167 struct nvmefc_ls_req_op
*lsop
,
1168 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
1170 /* don't wait for completion */
1172 return __nvme_fc_send_ls_req(rport
, lsop
, done
);
1176 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl
*ctrl
,
1177 struct nvme_fc_queue
*queue
, u16 qsize
, u16 ersp_ratio
)
1179 struct nvmefc_ls_req_op
*lsop
;
1180 struct nvmefc_ls_req
*lsreq
;
1181 struct fcnvme_ls_cr_assoc_rqst
*assoc_rqst
;
1182 struct fcnvme_ls_cr_assoc_acc
*assoc_acc
;
1183 unsigned long flags
;
1186 lsop
= kzalloc((sizeof(*lsop
) +
1187 sizeof(*assoc_rqst
) + sizeof(*assoc_acc
) +
1188 ctrl
->lport
->ops
->lsrqst_priv_sz
), GFP_KERNEL
);
1190 dev_info(ctrl
->ctrl
.device
,
1191 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1197 assoc_rqst
= (struct fcnvme_ls_cr_assoc_rqst
*)&lsop
[1];
1198 assoc_acc
= (struct fcnvme_ls_cr_assoc_acc
*)&assoc_rqst
[1];
1199 lsreq
= &lsop
->ls_req
;
1200 if (ctrl
->lport
->ops
->lsrqst_priv_sz
)
1201 lsreq
->private = &assoc_acc
[1];
1203 lsreq
->private = NULL
;
1205 assoc_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_ASSOCIATION
;
1206 assoc_rqst
->desc_list_len
=
1207 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
1209 assoc_rqst
->assoc_cmd
.desc_tag
=
1210 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
);
1211 assoc_rqst
->assoc_cmd
.desc_len
=
1213 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
1215 assoc_rqst
->assoc_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
1216 assoc_rqst
->assoc_cmd
.sqsize
= cpu_to_be16(qsize
- 1);
1217 /* Linux supports only Dynamic controllers */
1218 assoc_rqst
->assoc_cmd
.cntlid
= cpu_to_be16(0xffff);
1219 uuid_copy(&assoc_rqst
->assoc_cmd
.hostid
, &ctrl
->ctrl
.opts
->host
->id
);
1220 strncpy(assoc_rqst
->assoc_cmd
.hostnqn
, ctrl
->ctrl
.opts
->host
->nqn
,
1221 min(FCNVME_ASSOC_HOSTNQN_LEN
, NVMF_NQN_SIZE
));
1222 strncpy(assoc_rqst
->assoc_cmd
.subnqn
, ctrl
->ctrl
.opts
->subsysnqn
,
1223 min(FCNVME_ASSOC_SUBNQN_LEN
, NVMF_NQN_SIZE
));
1225 lsop
->queue
= queue
;
1226 lsreq
->rqstaddr
= assoc_rqst
;
1227 lsreq
->rqstlen
= sizeof(*assoc_rqst
);
1228 lsreq
->rspaddr
= assoc_acc
;
1229 lsreq
->rsplen
= sizeof(*assoc_acc
);
1230 lsreq
->timeout
= NVME_FC_LS_TIMEOUT_SEC
;
1232 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1234 goto out_free_buffer
;
1236 /* process connect LS completion */
1238 /* validate the ACC response */
1239 if (assoc_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1241 else if (assoc_acc
->hdr
.desc_list_len
!=
1243 sizeof(struct fcnvme_ls_cr_assoc_acc
)))
1244 fcret
= VERR_CR_ASSOC_ACC_LEN
;
1245 else if (assoc_acc
->hdr
.rqst
.desc_tag
!=
1246 cpu_to_be32(FCNVME_LSDESC_RQST
))
1247 fcret
= VERR_LSDESC_RQST
;
1248 else if (assoc_acc
->hdr
.rqst
.desc_len
!=
1249 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1250 fcret
= VERR_LSDESC_RQST_LEN
;
1251 else if (assoc_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_ASSOCIATION
)
1252 fcret
= VERR_CR_ASSOC
;
1253 else if (assoc_acc
->associd
.desc_tag
!=
1254 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1255 fcret
= VERR_ASSOC_ID
;
1256 else if (assoc_acc
->associd
.desc_len
!=
1258 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1259 fcret
= VERR_ASSOC_ID_LEN
;
1260 else if (assoc_acc
->connectid
.desc_tag
!=
1261 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1262 fcret
= VERR_CONN_ID
;
1263 else if (assoc_acc
->connectid
.desc_len
!=
1264 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1265 fcret
= VERR_CONN_ID_LEN
;
1270 "q %d Create Association LS failed: %s\n",
1271 queue
->qnum
, validation_errors
[fcret
]);
1273 spin_lock_irqsave(&ctrl
->lock
, flags
);
1274 ctrl
->association_id
=
1275 be64_to_cpu(assoc_acc
->associd
.association_id
);
1276 queue
->connection_id
=
1277 be64_to_cpu(assoc_acc
->connectid
.connection_id
);
1278 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1279 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1287 "queue %d connect admin queue failed (%d).\n",
1293 nvme_fc_connect_queue(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
1294 u16 qsize
, u16 ersp_ratio
)
1296 struct nvmefc_ls_req_op
*lsop
;
1297 struct nvmefc_ls_req
*lsreq
;
1298 struct fcnvme_ls_cr_conn_rqst
*conn_rqst
;
1299 struct fcnvme_ls_cr_conn_acc
*conn_acc
;
1302 lsop
= kzalloc((sizeof(*lsop
) +
1303 sizeof(*conn_rqst
) + sizeof(*conn_acc
) +
1304 ctrl
->lport
->ops
->lsrqst_priv_sz
), GFP_KERNEL
);
1306 dev_info(ctrl
->ctrl
.device
,
1307 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1313 conn_rqst
= (struct fcnvme_ls_cr_conn_rqst
*)&lsop
[1];
1314 conn_acc
= (struct fcnvme_ls_cr_conn_acc
*)&conn_rqst
[1];
1315 lsreq
= &lsop
->ls_req
;
1316 if (ctrl
->lport
->ops
->lsrqst_priv_sz
)
1317 lsreq
->private = (void *)&conn_acc
[1];
1319 lsreq
->private = NULL
;
1321 conn_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_CONNECTION
;
1322 conn_rqst
->desc_list_len
= cpu_to_be32(
1323 sizeof(struct fcnvme_lsdesc_assoc_id
) +
1324 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
1326 conn_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1327 conn_rqst
->associd
.desc_len
=
1329 sizeof(struct fcnvme_lsdesc_assoc_id
));
1330 conn_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
1331 conn_rqst
->connect_cmd
.desc_tag
=
1332 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
);
1333 conn_rqst
->connect_cmd
.desc_len
=
1335 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
1336 conn_rqst
->connect_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
1337 conn_rqst
->connect_cmd
.qid
= cpu_to_be16(queue
->qnum
);
1338 conn_rqst
->connect_cmd
.sqsize
= cpu_to_be16(qsize
- 1);
1340 lsop
->queue
= queue
;
1341 lsreq
->rqstaddr
= conn_rqst
;
1342 lsreq
->rqstlen
= sizeof(*conn_rqst
);
1343 lsreq
->rspaddr
= conn_acc
;
1344 lsreq
->rsplen
= sizeof(*conn_acc
);
1345 lsreq
->timeout
= NVME_FC_LS_TIMEOUT_SEC
;
1347 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1349 goto out_free_buffer
;
1351 /* process connect LS completion */
1353 /* validate the ACC response */
1354 if (conn_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1356 else if (conn_acc
->hdr
.desc_list_len
!=
1357 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)))
1358 fcret
= VERR_CR_CONN_ACC_LEN
;
1359 else if (conn_acc
->hdr
.rqst
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_RQST
))
1360 fcret
= VERR_LSDESC_RQST
;
1361 else if (conn_acc
->hdr
.rqst
.desc_len
!=
1362 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1363 fcret
= VERR_LSDESC_RQST_LEN
;
1364 else if (conn_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_CONNECTION
)
1365 fcret
= VERR_CR_CONN
;
1366 else if (conn_acc
->connectid
.desc_tag
!=
1367 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1368 fcret
= VERR_CONN_ID
;
1369 else if (conn_acc
->connectid
.desc_len
!=
1370 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1371 fcret
= VERR_CONN_ID_LEN
;
1376 "q %d Create I/O Connection LS failed: %s\n",
1377 queue
->qnum
, validation_errors
[fcret
]);
1379 queue
->connection_id
=
1380 be64_to_cpu(conn_acc
->connectid
.connection_id
);
1381 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1389 "queue %d connect I/O queue failed (%d).\n",
1395 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req
*lsreq
, int status
)
1397 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1399 __nvme_fc_finish_ls_req(lsop
);
1401 /* fc-nvme initiator doesn't care about success or failure of cmd */
1407 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1408 * the FC-NVME Association. Terminating the association also
1409 * terminates the FC-NVME connections (per queue, both admin and io
1410 * queues) that are part of the association. E.g. things are torn
1411 * down, and the related FC-NVME Association ID and Connection IDs
1414 * The behavior of the fc-nvme initiator is such that it's
1415 * understanding of the association and connections will implicitly
1416 * be torn down. The action is implicit as it may be due to a loss of
1417 * connectivity with the fc-nvme target, so you may never get a
1418 * response even if you tried. As such, the action of this routine
1419 * is to asynchronously send the LS, ignore any results of the LS, and
1420 * continue on with terminating the association. If the fc-nvme target
1421 * is present and receives the LS, it too can tear down.
1424 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl
*ctrl
)
1426 struct fcnvme_ls_disconnect_assoc_rqst
*discon_rqst
;
1427 struct fcnvme_ls_disconnect_assoc_acc
*discon_acc
;
1428 struct nvmefc_ls_req_op
*lsop
;
1429 struct nvmefc_ls_req
*lsreq
;
1432 lsop
= kzalloc((sizeof(*lsop
) +
1433 sizeof(*discon_rqst
) + sizeof(*discon_acc
) +
1434 ctrl
->lport
->ops
->lsrqst_priv_sz
), GFP_KERNEL
);
1436 dev_info(ctrl
->ctrl
.device
,
1437 "NVME-FC{%d}: send Disconnect Association "
1443 discon_rqst
= (struct fcnvme_ls_disconnect_assoc_rqst
*)&lsop
[1];
1444 discon_acc
= (struct fcnvme_ls_disconnect_assoc_acc
*)&discon_rqst
[1];
1445 lsreq
= &lsop
->ls_req
;
1446 if (ctrl
->lport
->ops
->lsrqst_priv_sz
)
1447 lsreq
->private = (void *)&discon_acc
[1];
1449 lsreq
->private = NULL
;
1451 nvmefc_fmt_lsreq_discon_assoc(lsreq
, discon_rqst
, discon_acc
,
1452 ctrl
->association_id
);
1454 ret
= nvme_fc_send_ls_req_async(ctrl
->rport
, lsop
,
1455 nvme_fc_disconnect_assoc_done
);
1461 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp
*lsrsp
)
1463 struct nvmefc_ls_rcv_op
*lsop
= lsrsp
->nvme_fc_private
;
1464 struct nvme_fc_rport
*rport
= lsop
->rport
;
1465 struct nvme_fc_lport
*lport
= rport
->lport
;
1466 unsigned long flags
;
1468 spin_lock_irqsave(&rport
->lock
, flags
);
1469 list_del(&lsop
->lsrcv_list
);
1470 spin_unlock_irqrestore(&rport
->lock
, flags
);
1472 fc_dma_sync_single_for_cpu(lport
->dev
, lsop
->rspdma
,
1473 sizeof(*lsop
->rspbuf
), DMA_TO_DEVICE
);
1474 fc_dma_unmap_single(lport
->dev
, lsop
->rspdma
,
1475 sizeof(*lsop
->rspbuf
), DMA_TO_DEVICE
);
1479 nvme_fc_rport_put(rport
);
1483 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op
*lsop
)
1485 struct nvme_fc_rport
*rport
= lsop
->rport
;
1486 struct nvme_fc_lport
*lport
= rport
->lport
;
1487 struct fcnvme_ls_rqst_w0
*w0
= &lsop
->rqstbuf
->w0
;
1490 fc_dma_sync_single_for_device(lport
->dev
, lsop
->rspdma
,
1491 sizeof(*lsop
->rspbuf
), DMA_TO_DEVICE
);
1493 ret
= lport
->ops
->xmt_ls_rsp(&lport
->localport
, &rport
->remoteport
,
1496 dev_warn(lport
->dev
,
1497 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1499 nvme_fc_xmt_ls_rsp_done(lsop
->lsrsp
);
1504 static struct nvme_fc_ctrl
*
1505 nvme_fc_match_disconn_ls(struct nvme_fc_rport
*rport
,
1506 struct nvmefc_ls_rcv_op
*lsop
)
1508 struct fcnvme_ls_disconnect_assoc_rqst
*rqst
=
1509 &lsop
->rqstbuf
->rq_dis_assoc
;
1510 struct nvme_fc_ctrl
*ctrl
, *ret
= NULL
;
1511 struct nvmefc_ls_rcv_op
*oldls
= NULL
;
1512 u64 association_id
= be64_to_cpu(rqst
->associd
.association_id
);
1513 unsigned long flags
;
1515 spin_lock_irqsave(&rport
->lock
, flags
);
1517 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
1518 if (!nvme_fc_ctrl_get(ctrl
))
1520 spin_lock(&ctrl
->lock
);
1521 if (association_id
== ctrl
->association_id
) {
1522 oldls
= ctrl
->rcv_disconn
;
1523 ctrl
->rcv_disconn
= lsop
;
1526 spin_unlock(&ctrl
->lock
);
1528 /* leave the ctrl get reference */
1530 nvme_fc_ctrl_put(ctrl
);
1533 spin_unlock_irqrestore(&rport
->lock
, flags
);
1535 /* transmit a response for anything that was pending */
1537 dev_info(rport
->lport
->dev
,
1538 "NVME-FC{%d}: Multiple Disconnect Association "
1539 "LS's received\n", ctrl
->cnum
);
1540 /* overwrite good response with bogus failure */
1541 oldls
->lsrsp
->rsplen
= nvme_fc_format_rjt(oldls
->rspbuf
,
1542 sizeof(*oldls
->rspbuf
),
1545 FCNVME_RJT_EXP_NONE
, 0);
1546 nvme_fc_xmt_ls_rsp(oldls
);
1553 * returns true to mean LS handled and ls_rsp can be sent
1554 * returns false to defer ls_rsp xmt (will be done as part of
1555 * association termination)
1558 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op
*lsop
)
1560 struct nvme_fc_rport
*rport
= lsop
->rport
;
1561 struct fcnvme_ls_disconnect_assoc_rqst
*rqst
=
1562 &lsop
->rqstbuf
->rq_dis_assoc
;
1563 struct fcnvme_ls_disconnect_assoc_acc
*acc
=
1564 &lsop
->rspbuf
->rsp_dis_assoc
;
1565 struct nvme_fc_ctrl
*ctrl
= NULL
;
1568 memset(acc
, 0, sizeof(*acc
));
1570 ret
= nvmefc_vldt_lsreq_discon_assoc(lsop
->rqstdatalen
, rqst
);
1572 /* match an active association */
1573 ctrl
= nvme_fc_match_disconn_ls(rport
, lsop
);
1575 ret
= VERR_NO_ASSOC
;
1579 dev_info(rport
->lport
->dev
,
1580 "Disconnect LS failed: %s\n",
1581 validation_errors
[ret
]);
1582 lsop
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1583 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1584 (ret
== VERR_NO_ASSOC
) ?
1585 FCNVME_RJT_RC_INV_ASSOC
:
1586 FCNVME_RJT_RC_LOGIC
,
1587 FCNVME_RJT_EXP_NONE
, 0);
1591 /* format an ACCept response */
1593 lsop
->lsrsp
->rsplen
= sizeof(*acc
);
1595 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1597 sizeof(struct fcnvme_ls_disconnect_assoc_acc
)),
1598 FCNVME_LS_DISCONNECT_ASSOC
);
1601 * the transmit of the response will occur after the exchanges
1602 * for the association have been ABTS'd by
1603 * nvme_fc_delete_association().
1606 /* fail the association */
1607 nvme_fc_error_recovery(ctrl
, "Disconnect Association LS received");
1609 /* release the reference taken by nvme_fc_match_disconn_ls() */
1610 nvme_fc_ctrl_put(ctrl
);
1616 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1617 * returns true if a response should be sent afterward, false if rsp will
1618 * be sent asynchronously.
1621 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op
*lsop
)
1623 struct fcnvme_ls_rqst_w0
*w0
= &lsop
->rqstbuf
->w0
;
1626 lsop
->lsrsp
->nvme_fc_private
= lsop
;
1627 lsop
->lsrsp
->rspbuf
= lsop
->rspbuf
;
1628 lsop
->lsrsp
->rspdma
= lsop
->rspdma
;
1629 lsop
->lsrsp
->done
= nvme_fc_xmt_ls_rsp_done
;
1630 /* Be preventative. handlers will later set to valid length */
1631 lsop
->lsrsp
->rsplen
= 0;
1635 * parse request input, execute the request, and format the
1638 switch (w0
->ls_cmd
) {
1639 case FCNVME_LS_DISCONNECT_ASSOC
:
1640 ret
= nvme_fc_ls_disconnect_assoc(lsop
);
1642 case FCNVME_LS_DISCONNECT_CONN
:
1643 lsop
->lsrsp
->rsplen
= nvme_fc_format_rjt(lsop
->rspbuf
,
1644 sizeof(*lsop
->rspbuf
), w0
->ls_cmd
,
1645 FCNVME_RJT_RC_UNSUP
, FCNVME_RJT_EXP_NONE
, 0);
1647 case FCNVME_LS_CREATE_ASSOCIATION
:
1648 case FCNVME_LS_CREATE_CONNECTION
:
1649 lsop
->lsrsp
->rsplen
= nvme_fc_format_rjt(lsop
->rspbuf
,
1650 sizeof(*lsop
->rspbuf
), w0
->ls_cmd
,
1651 FCNVME_RJT_RC_LOGIC
, FCNVME_RJT_EXP_NONE
, 0);
1654 lsop
->lsrsp
->rsplen
= nvme_fc_format_rjt(lsop
->rspbuf
,
1655 sizeof(*lsop
->rspbuf
), w0
->ls_cmd
,
1656 FCNVME_RJT_RC_INVAL
, FCNVME_RJT_EXP_NONE
, 0);
1664 nvme_fc_handle_ls_rqst_work(struct work_struct
*work
)
1666 struct nvme_fc_rport
*rport
=
1667 container_of(work
, struct nvme_fc_rport
, lsrcv_work
);
1668 struct fcnvme_ls_rqst_w0
*w0
;
1669 struct nvmefc_ls_rcv_op
*lsop
;
1670 unsigned long flags
;
1675 spin_lock_irqsave(&rport
->lock
, flags
);
1676 list_for_each_entry(lsop
, &rport
->ls_rcv_list
, lsrcv_list
) {
1680 lsop
->handled
= true;
1681 if (rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
) {
1682 spin_unlock_irqrestore(&rport
->lock
, flags
);
1683 sendrsp
= nvme_fc_handle_ls_rqst(lsop
);
1685 spin_unlock_irqrestore(&rport
->lock
, flags
);
1686 w0
= &lsop
->rqstbuf
->w0
;
1687 lsop
->lsrsp
->rsplen
= nvme_fc_format_rjt(
1689 sizeof(*lsop
->rspbuf
),
1692 FCNVME_RJT_EXP_NONE
, 0);
1695 nvme_fc_xmt_ls_rsp(lsop
);
1698 spin_unlock_irqrestore(&rport
->lock
, flags
);
1702 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1703 * upon the reception of a NVME LS request.
1705 * The nvme-fc layer will copy payload to an internal structure for
1706 * processing. As such, upon completion of the routine, the LLDD may
1707 * immediately free/reuse the LS request buffer passed in the call.
1709 * If this routine returns error, the LLDD should abort the exchange.
1711 * @remoteport: pointer to the (registered) remote port that the LS
1712 * was received from. The remoteport is associated with
1713 * a specific localport.
1714 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1715 * used to reference the exchange corresponding to the LS
1716 * when issuing an ls response.
1717 * @lsreqbuf: pointer to the buffer containing the LS Request
1718 * @lsreqbuf_len: length, in bytes, of the received LS request
1721 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port
*portptr
,
1722 struct nvmefc_ls_rsp
*lsrsp
,
1723 void *lsreqbuf
, u32 lsreqbuf_len
)
1725 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
1726 struct nvme_fc_lport
*lport
= rport
->lport
;
1727 struct fcnvme_ls_rqst_w0
*w0
= (struct fcnvme_ls_rqst_w0
*)lsreqbuf
;
1728 struct nvmefc_ls_rcv_op
*lsop
;
1729 unsigned long flags
;
1732 nvme_fc_rport_get(rport
);
1734 /* validate there's a routine to transmit a response */
1735 if (!lport
->ops
->xmt_ls_rsp
) {
1736 dev_info(lport
->dev
,
1737 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1738 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
1739 nvmefc_ls_names
[w0
->ls_cmd
] : "");
1744 if (lsreqbuf_len
> sizeof(union nvmefc_ls_requests
)) {
1745 dev_info(lport
->dev
,
1746 "RCV %s LS failed: payload too large\n",
1747 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
1748 nvmefc_ls_names
[w0
->ls_cmd
] : "");
1753 lsop
= kzalloc(sizeof(*lsop
) +
1754 sizeof(union nvmefc_ls_requests
) +
1755 sizeof(union nvmefc_ls_responses
),
1758 dev_info(lport
->dev
,
1759 "RCV %s LS failed: No memory\n",
1760 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
1761 nvmefc_ls_names
[w0
->ls_cmd
] : "");
1765 lsop
->rqstbuf
= (union nvmefc_ls_requests
*)&lsop
[1];
1766 lsop
->rspbuf
= (union nvmefc_ls_responses
*)&lsop
->rqstbuf
[1];
1768 lsop
->rspdma
= fc_dma_map_single(lport
->dev
, lsop
->rspbuf
,
1769 sizeof(*lsop
->rspbuf
),
1771 if (fc_dma_mapping_error(lport
->dev
, lsop
->rspdma
)) {
1772 dev_info(lport
->dev
,
1773 "RCV %s LS failed: DMA mapping failure\n",
1774 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
1775 nvmefc_ls_names
[w0
->ls_cmd
] : "");
1780 lsop
->rport
= rport
;
1781 lsop
->lsrsp
= lsrsp
;
1783 memcpy(lsop
->rqstbuf
, lsreqbuf
, lsreqbuf_len
);
1784 lsop
->rqstdatalen
= lsreqbuf_len
;
1786 spin_lock_irqsave(&rport
->lock
, flags
);
1787 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
) {
1788 spin_unlock_irqrestore(&rport
->lock
, flags
);
1792 list_add_tail(&lsop
->lsrcv_list
, &rport
->ls_rcv_list
);
1793 spin_unlock_irqrestore(&rport
->lock
, flags
);
1795 schedule_work(&rport
->lsrcv_work
);
1800 fc_dma_unmap_single(lport
->dev
, lsop
->rspdma
,
1801 sizeof(*lsop
->rspbuf
), DMA_TO_DEVICE
);
1805 nvme_fc_rport_put(rport
);
1808 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req
);
1811 /* *********************** NVME Ctrl Routines **************************** */
1814 __nvme_fc_exit_request(struct nvme_fc_ctrl
*ctrl
,
1815 struct nvme_fc_fcp_op
*op
)
1817 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1818 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1819 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
1820 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1822 atomic_set(&op
->state
, FCPOP_STATE_UNINIT
);
1826 nvme_fc_exit_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1827 unsigned int hctx_idx
)
1829 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1831 return __nvme_fc_exit_request(set
->driver_data
, op
);
1835 __nvme_fc_abort_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_fcp_op
*op
)
1837 unsigned long flags
;
1840 spin_lock_irqsave(&ctrl
->lock
, flags
);
1841 opstate
= atomic_xchg(&op
->state
, FCPOP_STATE_ABORTED
);
1842 if (opstate
!= FCPOP_STATE_ACTIVE
)
1843 atomic_set(&op
->state
, opstate
);
1844 else if (test_bit(FCCTRL_TERMIO
, &ctrl
->flags
)) {
1845 op
->flags
|= FCOP_FLAGS_TERMIO
;
1848 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1850 if (opstate
!= FCPOP_STATE_ACTIVE
)
1853 ctrl
->lport
->ops
->fcp_abort(&ctrl
->lport
->localport
,
1854 &ctrl
->rport
->remoteport
,
1855 op
->queue
->lldd_handle
,
1862 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1864 struct nvme_fc_fcp_op
*aen_op
= ctrl
->aen_ops
;
1867 /* ensure we've initialized the ops once */
1868 if (!(aen_op
->flags
& FCOP_FLAGS_AEN
))
1871 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++)
1872 __nvme_fc_abort_op(ctrl
, aen_op
);
1876 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl
*ctrl
,
1877 struct nvme_fc_fcp_op
*op
, int opstate
)
1879 unsigned long flags
;
1881 if (opstate
== FCPOP_STATE_ABORTED
) {
1882 spin_lock_irqsave(&ctrl
->lock
, flags
);
1883 if (test_bit(FCCTRL_TERMIO
, &ctrl
->flags
) &&
1884 op
->flags
& FCOP_FLAGS_TERMIO
) {
1886 wake_up(&ctrl
->ioabort_wait
);
1888 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1893 nvme_fc_ctrl_ioerr_work(struct work_struct
*work
)
1895 struct nvme_fc_ctrl
*ctrl
=
1896 container_of(work
, struct nvme_fc_ctrl
, ioerr_work
);
1898 nvme_fc_error_recovery(ctrl
, "transport detected io error");
1902 nvme_fc_fcpio_done(struct nvmefc_fcp_req
*req
)
1904 struct nvme_fc_fcp_op
*op
= fcp_req_to_fcp_op(req
);
1905 struct request
*rq
= op
->rq
;
1906 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
1907 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
1908 struct nvme_fc_queue
*queue
= op
->queue
;
1909 struct nvme_completion
*cqe
= &op
->rsp_iu
.cqe
;
1910 struct nvme_command
*sqe
= &op
->cmd_iu
.sqe
;
1911 __le16 status
= cpu_to_le16(NVME_SC_SUCCESS
<< 1);
1912 union nvme_result result
;
1913 bool terminate_assoc
= true;
1918 * The current linux implementation of a nvme controller
1919 * allocates a single tag set for all io queues and sizes
1920 * the io queues to fully hold all possible tags. Thus, the
1921 * implementation does not reference or care about the sqhd
1922 * value as it never needs to use the sqhd/sqtail pointers
1923 * for submission pacing.
1925 * This affects the FC-NVME implementation in two ways:
1926 * 1) As the value doesn't matter, we don't need to waste
1927 * cycles extracting it from ERSPs and stamping it in the
1928 * cases where the transport fabricates CQEs on successful
1930 * 2) The FC-NVME implementation requires that delivery of
1931 * ERSP completions are to go back to the nvme layer in order
1932 * relative to the rsn, such that the sqhd value will always
1933 * be "in order" for the nvme layer. As the nvme layer in
1934 * linux doesn't care about sqhd, there's no need to return
1938 * As the core nvme layer in linux currently does not look at
1939 * every field in the cqe - in cases where the FC transport must
1940 * fabricate a CQE, the following fields will not be set as they
1941 * are not referenced:
1942 * cqe.sqid, cqe.sqhd, cqe.command_id
1944 * Failure or error of an individual i/o, in a transport
1945 * detected fashion unrelated to the nvme completion status,
1946 * potentially cause the initiator and target sides to get out
1947 * of sync on SQ head/tail (aka outstanding io count allowed).
1948 * Per FC-NVME spec, failure of an individual command requires
1949 * the connection to be terminated, which in turn requires the
1950 * association to be terminated.
1953 opstate
= atomic_xchg(&op
->state
, FCPOP_STATE_COMPLETE
);
1955 fc_dma_sync_single_for_cpu(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1956 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1958 if (opstate
== FCPOP_STATE_ABORTED
)
1959 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1960 else if (freq
->status
) {
1961 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1962 dev_info(ctrl
->ctrl
.device
,
1963 "NVME-FC{%d}: io failed due to lldd error %d\n",
1964 ctrl
->cnum
, freq
->status
);
1968 * For the linux implementation, if we have an unsuccesful
1969 * status, they blk-mq layer can typically be called with the
1970 * non-zero status and the content of the cqe isn't important.
1976 * command completed successfully relative to the wire
1977 * protocol. However, validate anything received and
1978 * extract the status and result from the cqe (create it
1982 switch (freq
->rcv_rsplen
) {
1985 case NVME_FC_SIZEOF_ZEROS_RSP
:
1987 * No response payload or 12 bytes of payload (which
1988 * should all be zeros) are considered successful and
1989 * no payload in the CQE by the transport.
1991 if (freq
->transferred_length
!=
1992 be32_to_cpu(op
->cmd_iu
.data_len
)) {
1993 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
1994 dev_info(ctrl
->ctrl
.device
,
1995 "NVME-FC{%d}: io failed due to bad transfer "
1996 "length: %d vs expected %d\n",
1997 ctrl
->cnum
, freq
->transferred_length
,
1998 be32_to_cpu(op
->cmd_iu
.data_len
));
2004 case sizeof(struct nvme_fc_ersp_iu
):
2006 * The ERSP IU contains a full completion with CQE.
2007 * Validate ERSP IU and look at cqe.
2009 if (unlikely(be16_to_cpu(op
->rsp_iu
.iu_len
) !=
2010 (freq
->rcv_rsplen
/ 4) ||
2011 be32_to_cpu(op
->rsp_iu
.xfrd_len
) !=
2012 freq
->transferred_length
||
2013 op
->rsp_iu
.ersp_result
||
2014 sqe
->common
.command_id
!= cqe
->command_id
)) {
2015 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
2016 dev_info(ctrl
->ctrl
.device
,
2017 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2018 "iu len %d, xfr len %d vs %d, status code "
2019 "%d, cmdid %d vs %d\n",
2020 ctrl
->cnum
, be16_to_cpu(op
->rsp_iu
.iu_len
),
2021 be32_to_cpu(op
->rsp_iu
.xfrd_len
),
2022 freq
->transferred_length
,
2023 op
->rsp_iu
.ersp_result
,
2024 sqe
->common
.command_id
,
2028 result
= cqe
->result
;
2029 status
= cqe
->status
;
2033 status
= cpu_to_le16(NVME_SC_HOST_PATH_ERROR
<< 1);
2034 dev_info(ctrl
->ctrl
.device
,
2035 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2037 ctrl
->cnum
, freq
->rcv_rsplen
);
2041 terminate_assoc
= false;
2044 if (op
->flags
& FCOP_FLAGS_AEN
) {
2045 nvme_complete_async_event(&queue
->ctrl
->ctrl
, status
, &result
);
2046 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
, opstate
);
2047 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
2048 op
->flags
= FCOP_FLAGS_AEN
; /* clear other flags */
2049 nvme_fc_ctrl_put(ctrl
);
2053 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
, opstate
);
2054 if (!nvme_try_complete_req(rq
, status
, result
))
2055 nvme_fc_complete_rq(rq
);
2058 if (terminate_assoc
)
2059 queue_work(nvme_reset_wq
, &ctrl
->ioerr_work
);
2063 __nvme_fc_init_request(struct nvme_fc_ctrl
*ctrl
,
2064 struct nvme_fc_queue
*queue
, struct nvme_fc_fcp_op
*op
,
2065 struct request
*rq
, u32 rqno
)
2067 struct nvme_fcp_op_w_sgl
*op_w_sgl
=
2068 container_of(op
, typeof(*op_w_sgl
), op
);
2069 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2072 memset(op
, 0, sizeof(*op
));
2073 op
->fcp_req
.cmdaddr
= &op
->cmd_iu
;
2074 op
->fcp_req
.cmdlen
= sizeof(op
->cmd_iu
);
2075 op
->fcp_req
.rspaddr
= &op
->rsp_iu
;
2076 op
->fcp_req
.rsplen
= sizeof(op
->rsp_iu
);
2077 op
->fcp_req
.done
= nvme_fc_fcpio_done
;
2083 cmdiu
->format_id
= NVME_CMD_FORMAT_ID
;
2084 cmdiu
->fc_id
= NVME_CMD_FC_ID
;
2085 cmdiu
->iu_len
= cpu_to_be16(sizeof(*cmdiu
) / sizeof(u32
));
2087 cmdiu
->rsv_cat
= fccmnd_set_cat_css(0,
2088 (NVME_CC_CSS_NVM
>> NVME_CC_CSS_SHIFT
));
2090 cmdiu
->rsv_cat
= fccmnd_set_cat_admin(0);
2092 op
->fcp_req
.cmddma
= fc_dma_map_single(ctrl
->lport
->dev
,
2093 &op
->cmd_iu
, sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
2094 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
)) {
2096 "FCP Op failed - cmdiu dma mapping failed.\n");
2101 op
->fcp_req
.rspdma
= fc_dma_map_single(ctrl
->lport
->dev
,
2102 &op
->rsp_iu
, sizeof(op
->rsp_iu
),
2104 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
)) {
2106 "FCP Op failed - rspiu dma mapping failed.\n");
2110 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
2116 nvme_fc_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2117 unsigned int hctx_idx
, unsigned int numa_node
)
2119 struct nvme_fc_ctrl
*ctrl
= set
->driver_data
;
2120 struct nvme_fcp_op_w_sgl
*op
= blk_mq_rq_to_pdu(rq
);
2121 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
2122 struct nvme_fc_queue
*queue
= &ctrl
->queues
[queue_idx
];
2125 res
= __nvme_fc_init_request(ctrl
, queue
, &op
->op
, rq
, queue
->rqcnt
++);
2128 op
->op
.fcp_req
.first_sgl
= op
->sgl
;
2129 op
->op
.fcp_req
.private = &op
->priv
[0];
2130 nvme_req(rq
)->ctrl
= &ctrl
->ctrl
;
2135 nvme_fc_init_aen_ops(struct nvme_fc_ctrl
*ctrl
)
2137 struct nvme_fc_fcp_op
*aen_op
;
2138 struct nvme_fc_cmd_iu
*cmdiu
;
2139 struct nvme_command
*sqe
;
2140 void *private = NULL
;
2143 aen_op
= ctrl
->aen_ops
;
2144 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
2145 if (ctrl
->lport
->ops
->fcprqst_priv_sz
) {
2146 private = kzalloc(ctrl
->lport
->ops
->fcprqst_priv_sz
,
2152 cmdiu
= &aen_op
->cmd_iu
;
2154 ret
= __nvme_fc_init_request(ctrl
, &ctrl
->queues
[0],
2155 aen_op
, (struct request
*)NULL
,
2156 (NVME_AQ_BLK_MQ_DEPTH
+ i
));
2162 aen_op
->flags
= FCOP_FLAGS_AEN
;
2163 aen_op
->fcp_req
.private = private;
2165 memset(sqe
, 0, sizeof(*sqe
));
2166 sqe
->common
.opcode
= nvme_admin_async_event
;
2167 /* Note: core layer may overwrite the sqe.command_id value */
2168 sqe
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
+ i
;
2174 nvme_fc_term_aen_ops(struct nvme_fc_ctrl
*ctrl
)
2176 struct nvme_fc_fcp_op
*aen_op
;
2179 cancel_work_sync(&ctrl
->ctrl
.async_event_work
);
2180 aen_op
= ctrl
->aen_ops
;
2181 for (i
= 0; i
< NVME_NR_AEN_COMMANDS
; i
++, aen_op
++) {
2182 __nvme_fc_exit_request(ctrl
, aen_op
);
2184 kfree(aen_op
->fcp_req
.private);
2185 aen_op
->fcp_req
.private = NULL
;
2190 __nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, struct nvme_fc_ctrl
*ctrl
,
2193 struct nvme_fc_queue
*queue
= &ctrl
->queues
[qidx
];
2195 hctx
->driver_data
= queue
;
2200 nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
2201 unsigned int hctx_idx
)
2203 struct nvme_fc_ctrl
*ctrl
= data
;
2205 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
+ 1);
2211 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
2212 unsigned int hctx_idx
)
2214 struct nvme_fc_ctrl
*ctrl
= data
;
2216 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
);
2222 nvme_fc_init_queue(struct nvme_fc_ctrl
*ctrl
, int idx
)
2224 struct nvme_fc_queue
*queue
;
2226 queue
= &ctrl
->queues
[idx
];
2227 memset(queue
, 0, sizeof(*queue
));
2230 atomic_set(&queue
->csn
, 0);
2231 queue
->dev
= ctrl
->dev
;
2234 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
2236 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
2239 * Considered whether we should allocate buffers for all SQEs
2240 * and CQEs and dma map them - mapping their respective entries
2241 * into the request structures (kernel vm addr and dma address)
2242 * thus the driver could use the buffers/mappings directly.
2243 * It only makes sense if the LLDD would use them for its
2244 * messaging api. It's very unlikely most adapter api's would use
2245 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2246 * structures were used instead.
2251 * This routine terminates a queue at the transport level.
2252 * The transport has already ensured that all outstanding ios on
2253 * the queue have been terminated.
2254 * The transport will send a Disconnect LS request to terminate
2255 * the queue's connection. Termination of the admin queue will also
2256 * terminate the association at the target.
2259 nvme_fc_free_queue(struct nvme_fc_queue
*queue
)
2261 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
))
2264 clear_bit(NVME_FC_Q_LIVE
, &queue
->flags
);
2266 * Current implementation never disconnects a single queue.
2267 * It always terminates a whole association. So there is never
2268 * a disconnect(queue) LS sent to the target.
2271 queue
->connection_id
= 0;
2272 atomic_set(&queue
->csn
, 0);
2276 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*ctrl
,
2277 struct nvme_fc_queue
*queue
, unsigned int qidx
)
2279 if (ctrl
->lport
->ops
->delete_queue
)
2280 ctrl
->lport
->ops
->delete_queue(&ctrl
->lport
->localport
, qidx
,
2281 queue
->lldd_handle
);
2282 queue
->lldd_handle
= NULL
;
2286 nvme_fc_free_io_queues(struct nvme_fc_ctrl
*ctrl
)
2290 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
2291 nvme_fc_free_queue(&ctrl
->queues
[i
]);
2295 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl
*ctrl
,
2296 struct nvme_fc_queue
*queue
, unsigned int qidx
, u16 qsize
)
2300 queue
->lldd_handle
= NULL
;
2301 if (ctrl
->lport
->ops
->create_queue
)
2302 ret
= ctrl
->lport
->ops
->create_queue(&ctrl
->lport
->localport
,
2303 qidx
, qsize
, &queue
->lldd_handle
);
2309 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl
*ctrl
)
2311 struct nvme_fc_queue
*queue
= &ctrl
->queues
[ctrl
->ctrl
.queue_count
- 1];
2314 for (i
= ctrl
->ctrl
.queue_count
- 1; i
>= 1; i
--, queue
--)
2315 __nvme_fc_delete_hw_queue(ctrl
, queue
, i
);
2319 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
2321 struct nvme_fc_queue
*queue
= &ctrl
->queues
[1];
2324 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++, queue
++) {
2325 ret
= __nvme_fc_create_hw_queue(ctrl
, queue
, i
, qsize
);
2334 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[i
], i
);
2339 nvme_fc_connect_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
2343 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
2344 ret
= nvme_fc_connect_queue(ctrl
, &ctrl
->queues
[i
], qsize
,
2348 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, i
, false);
2352 set_bit(NVME_FC_Q_LIVE
, &ctrl
->queues
[i
].flags
);
2359 nvme_fc_init_io_queues(struct nvme_fc_ctrl
*ctrl
)
2363 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
2364 nvme_fc_init_queue(ctrl
, i
);
2368 nvme_fc_ctrl_free(struct kref
*ref
)
2370 struct nvme_fc_ctrl
*ctrl
=
2371 container_of(ref
, struct nvme_fc_ctrl
, ref
);
2372 unsigned long flags
;
2374 if (ctrl
->ctrl
.tagset
) {
2375 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2376 blk_mq_free_tag_set(&ctrl
->tag_set
);
2379 /* remove from rport list */
2380 spin_lock_irqsave(&ctrl
->rport
->lock
, flags
);
2381 list_del(&ctrl
->ctrl_list
);
2382 spin_unlock_irqrestore(&ctrl
->rport
->lock
, flags
);
2384 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2385 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
2386 blk_cleanup_queue(ctrl
->ctrl
.fabrics_q
);
2387 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
2389 kfree(ctrl
->queues
);
2391 put_device(ctrl
->dev
);
2392 nvme_fc_rport_put(ctrl
->rport
);
2394 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
2395 if (ctrl
->ctrl
.opts
)
2396 nvmf_free_options(ctrl
->ctrl
.opts
);
2401 nvme_fc_ctrl_put(struct nvme_fc_ctrl
*ctrl
)
2403 kref_put(&ctrl
->ref
, nvme_fc_ctrl_free
);
2407 nvme_fc_ctrl_get(struct nvme_fc_ctrl
*ctrl
)
2409 return kref_get_unless_zero(&ctrl
->ref
);
2413 * All accesses from nvme core layer done - can now free the
2414 * controller. Called after last nvme_put_ctrl() call
2417 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl
*nctrl
)
2419 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2421 WARN_ON(nctrl
!= &ctrl
->ctrl
);
2423 nvme_fc_ctrl_put(ctrl
);
2427 * This routine is used by the transport when it needs to find active
2428 * io on a queue that is to be terminated. The transport uses
2429 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2430 * this routine to kill them on a 1 by 1 basis.
2432 * As FC allocates FC exchange for each io, the transport must contact
2433 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2434 * After terminating the exchange the LLDD will call the transport's
2435 * normal io done path for the request, but it will have an aborted
2436 * status. The done path will return the io request back to the block
2437 * layer with an error status.
2440 nvme_fc_terminate_exchange(struct request
*req
, void *data
, bool reserved
)
2442 struct nvme_ctrl
*nctrl
= data
;
2443 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2444 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(req
);
2446 __nvme_fc_abort_op(ctrl
, op
);
2451 * This routine runs through all outstanding commands on the association
2452 * and aborts them. This routine is typically be called by the
2453 * delete_association routine. It is also called due to an error during
2454 * reconnect. In that scenario, it is most likely a command that initializes
2455 * the controller, including fabric Connect commands on io queues, that
2456 * may have timed out or failed thus the io must be killed for the connect
2457 * thread to see the error.
2460 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl
*ctrl
, bool start_queues
)
2463 * If io queues are present, stop them and terminate all outstanding
2464 * ios on them. As FC allocates FC exchange for each io, the
2465 * transport must contact the LLDD to terminate the exchange,
2466 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2467 * to tell us what io's are busy and invoke a transport routine
2468 * to kill them with the LLDD. After terminating the exchange
2469 * the LLDD will call the transport's normal io done path, but it
2470 * will have an aborted status. The done path will return the
2471 * io requests back to the block layer as part of normal completions
2472 * (but with error status).
2474 if (ctrl
->ctrl
.queue_count
> 1) {
2475 nvme_stop_queues(&ctrl
->ctrl
);
2476 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
2477 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2478 blk_mq_tagset_wait_completed_request(&ctrl
->tag_set
);
2480 nvme_start_queues(&ctrl
->ctrl
);
2484 * Other transports, which don't have link-level contexts bound
2485 * to sqe's, would try to gracefully shutdown the controller by
2486 * writing the registers for shutdown and polling (call
2487 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2488 * just aborted and we will wait on those contexts, and given
2489 * there was no indication of how live the controlelr is on the
2490 * link, don't send more io to create more contexts for the
2491 * shutdown. Let the controller fail via keepalive failure if
2492 * its still present.
2496 * clean up the admin queue. Same thing as above.
2498 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
2499 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
2500 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2501 blk_mq_tagset_wait_completed_request(&ctrl
->admin_tag_set
);
2505 nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
)
2508 * if an error (io timeout, etc) while (re)connecting, the remote
2509 * port requested terminating of the association (disconnect_ls)
2510 * or an error (timeout or abort) occurred on an io while creating
2511 * the controller. Abort any ios on the association and let the
2512 * create_association error path resolve things.
2514 if (ctrl
->ctrl
.state
== NVME_CTRL_CONNECTING
) {
2515 __nvme_fc_abort_outstanding_ios(ctrl
, true);
2516 set_bit(ASSOC_FAILED
, &ctrl
->flags
);
2520 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2521 if (ctrl
->ctrl
.state
!= NVME_CTRL_LIVE
)
2524 dev_warn(ctrl
->ctrl
.device
,
2525 "NVME-FC{%d}: transport association event: %s\n",
2526 ctrl
->cnum
, errmsg
);
2527 dev_warn(ctrl
->ctrl
.device
,
2528 "NVME-FC{%d}: resetting controller\n", ctrl
->cnum
);
2530 nvme_reset_ctrl(&ctrl
->ctrl
);
2533 static enum blk_eh_timer_return
2534 nvme_fc_timeout(struct request
*rq
, bool reserved
)
2536 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2537 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2538 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2539 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2542 * Attempt to abort the offending command. Command completion
2543 * will detect the aborted io and will fail the connection.
2545 dev_info(ctrl
->ctrl
.device
,
2546 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2548 ctrl
->cnum
, op
->queue
->qnum
, sqe
->common
.opcode
,
2549 sqe
->connect
.fctype
, sqe
->common
.cdw10
, sqe
->common
.cdw11
);
2550 if (__nvme_fc_abort_op(ctrl
, op
))
2551 nvme_fc_error_recovery(ctrl
, "io timeout abort failed");
2554 * the io abort has been initiated. Have the reset timer
2555 * restarted and the abort completion will complete the io
2556 * shortly. Avoids a synchronous wait while the abort finishes.
2558 return BLK_EH_RESET_TIMER
;
2562 nvme_fc_map_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
2563 struct nvme_fc_fcp_op
*op
)
2565 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
2570 if (!blk_rq_nr_phys_segments(rq
))
2573 freq
->sg_table
.sgl
= freq
->first_sgl
;
2574 ret
= sg_alloc_table_chained(&freq
->sg_table
,
2575 blk_rq_nr_phys_segments(rq
), freq
->sg_table
.sgl
,
2576 NVME_INLINE_SG_CNT
);
2580 op
->nents
= blk_rq_map_sg(rq
->q
, rq
, freq
->sg_table
.sgl
);
2581 WARN_ON(op
->nents
> blk_rq_nr_phys_segments(rq
));
2582 freq
->sg_cnt
= fc_dma_map_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
,
2583 op
->nents
, rq_dma_dir(rq
));
2584 if (unlikely(freq
->sg_cnt
<= 0)) {
2585 sg_free_table_chained(&freq
->sg_table
, NVME_INLINE_SG_CNT
);
2591 * TODO: blk_integrity_rq(rq) for DIF
2597 nvme_fc_unmap_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
2598 struct nvme_fc_fcp_op
*op
)
2600 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
2605 fc_dma_unmap_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
, op
->nents
,
2608 sg_free_table_chained(&freq
->sg_table
, NVME_INLINE_SG_CNT
);
2614 * In FC, the queue is a logical thing. At transport connect, the target
2615 * creates its "queue" and returns a handle that is to be given to the
2616 * target whenever it posts something to the corresponding SQ. When an
2617 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2618 * command contained within the SQE, an io, and assigns a FC exchange
2619 * to it. The SQE and the associated SQ handle are sent in the initial
2620 * CMD IU sents on the exchange. All transfers relative to the io occur
2621 * as part of the exchange. The CQE is the last thing for the io,
2622 * which is transferred (explicitly or implicitly) with the RSP IU
2623 * sent on the exchange. After the CQE is received, the FC exchange is
2624 * terminaed and the Exchange may be used on a different io.
2626 * The transport to LLDD api has the transport making a request for a
2627 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2628 * resource and transfers the command. The LLDD will then process all
2629 * steps to complete the io. Upon completion, the transport done routine
2632 * So - while the operation is outstanding to the LLDD, there is a link
2633 * level FC exchange resource that is also outstanding. This must be
2634 * considered in all cleanup operations.
2637 nvme_fc_start_fcp_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
2638 struct nvme_fc_fcp_op
*op
, u32 data_len
,
2639 enum nvmefc_fcp_datadir io_dir
)
2641 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2642 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2646 * before attempting to send the io, check to see if we believe
2647 * the target device is present
2649 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
2650 return BLK_STS_RESOURCE
;
2652 if (!nvme_fc_ctrl_get(ctrl
))
2653 return BLK_STS_IOERR
;
2655 /* format the FC-NVME CMD IU and fcp_req */
2656 cmdiu
->connection_id
= cpu_to_be64(queue
->connection_id
);
2657 cmdiu
->data_len
= cpu_to_be32(data_len
);
2659 case NVMEFC_FCP_WRITE
:
2660 cmdiu
->flags
= FCNVME_CMD_FLAGS_WRITE
;
2662 case NVMEFC_FCP_READ
:
2663 cmdiu
->flags
= FCNVME_CMD_FLAGS_READ
;
2665 case NVMEFC_FCP_NODATA
:
2669 op
->fcp_req
.payload_length
= data_len
;
2670 op
->fcp_req
.io_dir
= io_dir
;
2671 op
->fcp_req
.transferred_length
= 0;
2672 op
->fcp_req
.rcv_rsplen
= 0;
2673 op
->fcp_req
.status
= NVME_SC_SUCCESS
;
2674 op
->fcp_req
.sqid
= cpu_to_le16(queue
->qnum
);
2677 * validate per fabric rules, set fields mandated by fabric spec
2678 * as well as those by FC-NVME spec.
2680 WARN_ON_ONCE(sqe
->common
.metadata
);
2681 sqe
->common
.flags
|= NVME_CMD_SGL_METABUF
;
2684 * format SQE DPTR field per FC-NVME rules:
2685 * type=0x5 Transport SGL Data Block Descriptor
2686 * subtype=0xA Transport-specific value
2688 * length=length of the data series
2690 sqe
->rw
.dptr
.sgl
.type
= (NVME_TRANSPORT_SGL_DATA_DESC
<< 4) |
2691 NVME_SGL_FMT_TRANSPORT_A
;
2692 sqe
->rw
.dptr
.sgl
.length
= cpu_to_le32(data_len
);
2693 sqe
->rw
.dptr
.sgl
.addr
= 0;
2695 if (!(op
->flags
& FCOP_FLAGS_AEN
)) {
2696 ret
= nvme_fc_map_data(ctrl
, op
->rq
, op
);
2698 nvme_cleanup_cmd(op
->rq
);
2699 nvme_fc_ctrl_put(ctrl
);
2700 if (ret
== -ENOMEM
|| ret
== -EAGAIN
)
2701 return BLK_STS_RESOURCE
;
2702 return BLK_STS_IOERR
;
2706 fc_dma_sync_single_for_device(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
2707 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
2709 atomic_set(&op
->state
, FCPOP_STATE_ACTIVE
);
2711 if (!(op
->flags
& FCOP_FLAGS_AEN
))
2712 blk_mq_start_request(op
->rq
);
2714 cmdiu
->csn
= cpu_to_be32(atomic_inc_return(&queue
->csn
));
2715 ret
= ctrl
->lport
->ops
->fcp_io(&ctrl
->lport
->localport
,
2716 &ctrl
->rport
->remoteport
,
2717 queue
->lldd_handle
, &op
->fcp_req
);
2721 * If the lld fails to send the command is there an issue with
2722 * the csn value? If the command that fails is the Connect,
2723 * no - as the connection won't be live. If it is a command
2724 * post-connect, it's possible a gap in csn may be created.
2725 * Does this matter? As Linux initiators don't send fused
2726 * commands, no. The gap would exist, but as there's nothing
2727 * that depends on csn order to be delivered on the target
2728 * side, it shouldn't hurt. It would be difficult for a
2729 * target to even detect the csn gap as it has no idea when the
2730 * cmd with the csn was supposed to arrive.
2732 opstate
= atomic_xchg(&op
->state
, FCPOP_STATE_COMPLETE
);
2733 __nvme_fc_fcpop_chk_teardowns(ctrl
, op
, opstate
);
2735 if (!(op
->flags
& FCOP_FLAGS_AEN
)) {
2736 nvme_fc_unmap_data(ctrl
, op
->rq
, op
);
2737 nvme_cleanup_cmd(op
->rq
);
2740 nvme_fc_ctrl_put(ctrl
);
2742 if (ctrl
->rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
&&
2744 return BLK_STS_IOERR
;
2746 return BLK_STS_RESOURCE
;
2753 nvme_fc_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2754 const struct blk_mq_queue_data
*bd
)
2756 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
2757 struct nvme_fc_queue
*queue
= hctx
->driver_data
;
2758 struct nvme_fc_ctrl
*ctrl
= queue
->ctrl
;
2759 struct request
*rq
= bd
->rq
;
2760 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2761 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
2762 struct nvme_command
*sqe
= &cmdiu
->sqe
;
2763 enum nvmefc_fcp_datadir io_dir
;
2764 bool queue_ready
= test_bit(NVME_FC_Q_LIVE
, &queue
->flags
);
2768 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
||
2769 !nvmf_check_ready(&queue
->ctrl
->ctrl
, rq
, queue_ready
))
2770 return nvmf_fail_nonready_command(&queue
->ctrl
->ctrl
, rq
);
2772 ret
= nvme_setup_cmd(ns
, rq
, sqe
);
2777 * nvme core doesn't quite treat the rq opaquely. Commands such
2778 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2779 * there is no actual payload to be transferred.
2780 * To get it right, key data transmission on there being 1 or
2781 * more physical segments in the sg list. If there is no
2782 * physical segments, there is no payload.
2784 if (blk_rq_nr_phys_segments(rq
)) {
2785 data_len
= blk_rq_payload_bytes(rq
);
2786 io_dir
= ((rq_data_dir(rq
) == WRITE
) ?
2787 NVMEFC_FCP_WRITE
: NVMEFC_FCP_READ
);
2790 io_dir
= NVMEFC_FCP_NODATA
;
2794 return nvme_fc_start_fcp_op(ctrl
, queue
, op
, data_len
, io_dir
);
2798 nvme_fc_submit_async_event(struct nvme_ctrl
*arg
)
2800 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(arg
);
2801 struct nvme_fc_fcp_op
*aen_op
;
2804 if (test_bit(FCCTRL_TERMIO
, &ctrl
->flags
))
2807 aen_op
= &ctrl
->aen_ops
[0];
2809 ret
= nvme_fc_start_fcp_op(ctrl
, aen_op
->queue
, aen_op
, 0,
2812 dev_err(ctrl
->ctrl
.device
,
2813 "failed async event work\n");
2817 nvme_fc_complete_rq(struct request
*rq
)
2819 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2820 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2822 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
2823 op
->flags
&= ~FCOP_FLAGS_TERMIO
;
2825 nvme_fc_unmap_data(ctrl
, rq
, op
);
2826 nvme_complete_rq(rq
);
2827 nvme_fc_ctrl_put(ctrl
);
2831 static const struct blk_mq_ops nvme_fc_mq_ops
= {
2832 .queue_rq
= nvme_fc_queue_rq
,
2833 .complete
= nvme_fc_complete_rq
,
2834 .init_request
= nvme_fc_init_request
,
2835 .exit_request
= nvme_fc_exit_request
,
2836 .init_hctx
= nvme_fc_init_hctx
,
2837 .timeout
= nvme_fc_timeout
,
2841 nvme_fc_create_io_queues(struct nvme_fc_ctrl
*ctrl
)
2843 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2844 unsigned int nr_io_queues
;
2847 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2848 ctrl
->lport
->ops
->max_hw_queues
);
2849 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2851 dev_info(ctrl
->ctrl
.device
,
2852 "set_queue_count failed: %d\n", ret
);
2856 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2860 nvme_fc_init_io_queues(ctrl
);
2862 memset(&ctrl
->tag_set
, 0, sizeof(ctrl
->tag_set
));
2863 ctrl
->tag_set
.ops
= &nvme_fc_mq_ops
;
2864 ctrl
->tag_set
.queue_depth
= ctrl
->ctrl
.opts
->queue_size
;
2865 ctrl
->tag_set
.reserved_tags
= 1; /* fabric connect */
2866 ctrl
->tag_set
.numa_node
= ctrl
->ctrl
.numa_node
;
2867 ctrl
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2868 ctrl
->tag_set
.cmd_size
=
2869 struct_size((struct nvme_fcp_op_w_sgl
*)NULL
, priv
,
2870 ctrl
->lport
->ops
->fcprqst_priv_sz
);
2871 ctrl
->tag_set
.driver_data
= ctrl
;
2872 ctrl
->tag_set
.nr_hw_queues
= ctrl
->ctrl
.queue_count
- 1;
2873 ctrl
->tag_set
.timeout
= NVME_IO_TIMEOUT
;
2875 ret
= blk_mq_alloc_tag_set(&ctrl
->tag_set
);
2879 ctrl
->ctrl
.tagset
= &ctrl
->tag_set
;
2881 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
2882 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
2883 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
2884 goto out_free_tag_set
;
2887 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2889 goto out_cleanup_blk_queue
;
2891 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2893 goto out_delete_hw_queues
;
2895 ctrl
->ioq_live
= true;
2899 out_delete_hw_queues
:
2900 nvme_fc_delete_hw_io_queues(ctrl
);
2901 out_cleanup_blk_queue
:
2902 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2904 blk_mq_free_tag_set(&ctrl
->tag_set
);
2905 nvme_fc_free_io_queues(ctrl
);
2907 /* force put free routine to ignore io queues */
2908 ctrl
->ctrl
.tagset
= NULL
;
2914 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl
*ctrl
)
2916 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2917 u32 prior_ioq_cnt
= ctrl
->ctrl
.queue_count
- 1;
2918 unsigned int nr_io_queues
;
2921 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2922 ctrl
->lport
->ops
->max_hw_queues
);
2923 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2925 dev_info(ctrl
->ctrl
.device
,
2926 "set_queue_count failed: %d\n", ret
);
2930 if (!nr_io_queues
&& prior_ioq_cnt
) {
2931 dev_info(ctrl
->ctrl
.device
,
2932 "Fail Reconnect: At least 1 io queue "
2933 "required (was %d)\n", prior_ioq_cnt
);
2937 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2938 /* check for io queues existing */
2939 if (ctrl
->ctrl
.queue_count
== 1)
2942 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2944 goto out_free_io_queues
;
2946 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.sqsize
+ 1);
2948 goto out_delete_hw_queues
;
2950 if (prior_ioq_cnt
!= nr_io_queues
) {
2951 dev_info(ctrl
->ctrl
.device
,
2952 "reconnect: revising io queue count from %d to %d\n",
2953 prior_ioq_cnt
, nr_io_queues
);
2954 nvme_wait_freeze(&ctrl
->ctrl
);
2955 blk_mq_update_nr_hw_queues(&ctrl
->tag_set
, nr_io_queues
);
2956 nvme_unfreeze(&ctrl
->ctrl
);
2961 out_delete_hw_queues
:
2962 nvme_fc_delete_hw_io_queues(ctrl
);
2964 nvme_fc_free_io_queues(ctrl
);
2969 nvme_fc_rport_active_on_lport(struct nvme_fc_rport
*rport
)
2971 struct nvme_fc_lport
*lport
= rport
->lport
;
2973 atomic_inc(&lport
->act_rport_cnt
);
2977 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport
*rport
)
2979 struct nvme_fc_lport
*lport
= rport
->lport
;
2982 cnt
= atomic_dec_return(&lport
->act_rport_cnt
);
2983 if (cnt
== 0 && lport
->localport
.port_state
== FC_OBJSTATE_DELETED
)
2984 lport
->ops
->localport_delete(&lport
->localport
);
2988 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl
*ctrl
)
2990 struct nvme_fc_rport
*rport
= ctrl
->rport
;
2993 if (test_and_set_bit(ASSOC_ACTIVE
, &ctrl
->flags
))
2996 cnt
= atomic_inc_return(&rport
->act_ctrl_cnt
);
2998 nvme_fc_rport_active_on_lport(rport
);
3004 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl
*ctrl
)
3006 struct nvme_fc_rport
*rport
= ctrl
->rport
;
3007 struct nvme_fc_lport
*lport
= rport
->lport
;
3010 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3012 cnt
= atomic_dec_return(&rport
->act_ctrl_cnt
);
3014 if (rport
->remoteport
.port_state
== FC_OBJSTATE_DELETED
)
3015 lport
->ops
->remoteport_delete(&rport
->remoteport
);
3016 nvme_fc_rport_inactive_on_lport(rport
);
3023 * This routine restarts the controller on the host side, and
3024 * on the link side, recreates the controller association.
3027 nvme_fc_create_association(struct nvme_fc_ctrl
*ctrl
)
3029 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
3030 struct nvmefc_ls_rcv_op
*disls
= NULL
;
3031 unsigned long flags
;
3035 ++ctrl
->ctrl
.nr_reconnects
;
3037 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
3040 if (nvme_fc_ctlr_active_on_rport(ctrl
))
3043 dev_info(ctrl
->ctrl
.device
,
3044 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3045 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3046 ctrl
->cnum
, ctrl
->lport
->localport
.port_name
,
3047 ctrl
->rport
->remoteport
.port_name
, ctrl
->ctrl
.opts
->subsysnqn
);
3049 clear_bit(ASSOC_FAILED
, &ctrl
->flags
);
3052 * Create the admin queue
3055 ret
= __nvme_fc_create_hw_queue(ctrl
, &ctrl
->queues
[0], 0,
3058 goto out_free_queue
;
3060 ret
= nvme_fc_connect_admin_queue(ctrl
, &ctrl
->queues
[0],
3061 NVME_AQ_DEPTH
, (NVME_AQ_DEPTH
/ 4));
3063 goto out_delete_hw_queue
;
3065 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
3067 goto out_disconnect_admin_queue
;
3069 set_bit(NVME_FC_Q_LIVE
, &ctrl
->queues
[0].flags
);
3072 * Check controller capabilities
3074 * todo:- add code to check if ctrl attributes changed from
3075 * prior connection values
3078 ret
= nvme_enable_ctrl(&ctrl
->ctrl
);
3079 if (ret
|| test_bit(ASSOC_FAILED
, &ctrl
->flags
))
3080 goto out_disconnect_admin_queue
;
3082 ctrl
->ctrl
.max_segments
= ctrl
->lport
->ops
->max_sgl_segments
;
3083 ctrl
->ctrl
.max_hw_sectors
= ctrl
->ctrl
.max_segments
<<
3086 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
3088 ret
= nvme_init_identify(&ctrl
->ctrl
);
3089 if (ret
|| test_bit(ASSOC_FAILED
, &ctrl
->flags
))
3090 goto out_disconnect_admin_queue
;
3094 /* FC-NVME does not have other data in the capsule */
3095 if (ctrl
->ctrl
.icdoff
) {
3096 dev_err(ctrl
->ctrl
.device
, "icdoff %d is not supported!\n",
3098 goto out_disconnect_admin_queue
;
3101 /* FC-NVME supports normal SGL Data Block Descriptors */
3103 if (opts
->queue_size
> ctrl
->ctrl
.maxcmd
) {
3104 /* warn if maxcmd is lower than queue_size */
3105 dev_warn(ctrl
->ctrl
.device
,
3106 "queue_size %zu > ctrl maxcmd %u, reducing "
3108 opts
->queue_size
, ctrl
->ctrl
.maxcmd
);
3109 opts
->queue_size
= ctrl
->ctrl
.maxcmd
;
3112 if (opts
->queue_size
> ctrl
->ctrl
.sqsize
+ 1) {
3113 /* warn if sqsize is lower than queue_size */
3114 dev_warn(ctrl
->ctrl
.device
,
3115 "queue_size %zu > ctrl sqsize %u, reducing "
3117 opts
->queue_size
, ctrl
->ctrl
.sqsize
+ 1);
3118 opts
->queue_size
= ctrl
->ctrl
.sqsize
+ 1;
3121 ret
= nvme_fc_init_aen_ops(ctrl
);
3123 goto out_term_aen_ops
;
3126 * Create the io queues
3129 if (ctrl
->ctrl
.queue_count
> 1) {
3130 if (!ctrl
->ioq_live
)
3131 ret
= nvme_fc_create_io_queues(ctrl
);
3133 ret
= nvme_fc_recreate_io_queues(ctrl
);
3135 if (ret
|| test_bit(ASSOC_FAILED
, &ctrl
->flags
))
3136 goto out_term_aen_ops
;
3138 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
3140 ctrl
->ctrl
.nr_reconnects
= 0;
3143 nvme_start_ctrl(&ctrl
->ctrl
);
3145 return 0; /* Success */
3148 nvme_fc_term_aen_ops(ctrl
);
3149 out_disconnect_admin_queue
:
3150 /* send a Disconnect(association) LS to fc-nvme target */
3151 nvme_fc_xmt_disconnect_assoc(ctrl
);
3152 spin_lock_irqsave(&ctrl
->lock
, flags
);
3153 ctrl
->association_id
= 0;
3154 disls
= ctrl
->rcv_disconn
;
3155 ctrl
->rcv_disconn
= NULL
;
3156 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
3158 nvme_fc_xmt_ls_rsp(disls
);
3159 out_delete_hw_queue
:
3160 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
3162 nvme_fc_free_queue(&ctrl
->queues
[0]);
3163 clear_bit(ASSOC_ACTIVE
, &ctrl
->flags
);
3164 nvme_fc_ctlr_inactive_on_rport(ctrl
);
3171 * This routine stops operation of the controller on the host side.
3172 * On the host os stack side: Admin and IO queues are stopped,
3173 * outstanding ios on them terminated via FC ABTS.
3174 * On the link side: the association is terminated.
3177 nvme_fc_delete_association(struct nvme_fc_ctrl
*ctrl
)
3179 struct nvmefc_ls_rcv_op
*disls
= NULL
;
3180 unsigned long flags
;
3182 if (!test_and_clear_bit(ASSOC_ACTIVE
, &ctrl
->flags
))
3185 spin_lock_irqsave(&ctrl
->lock
, flags
);
3186 set_bit(FCCTRL_TERMIO
, &ctrl
->flags
);
3188 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
3190 __nvme_fc_abort_outstanding_ios(ctrl
, false);
3192 /* kill the aens as they are a separate path */
3193 nvme_fc_abort_aen_ops(ctrl
);
3195 /* wait for all io that had to be aborted */
3196 spin_lock_irq(&ctrl
->lock
);
3197 wait_event_lock_irq(ctrl
->ioabort_wait
, ctrl
->iocnt
== 0, ctrl
->lock
);
3198 clear_bit(FCCTRL_TERMIO
, &ctrl
->flags
);
3199 spin_unlock_irq(&ctrl
->lock
);
3201 nvme_fc_term_aen_ops(ctrl
);
3204 * send a Disconnect(association) LS to fc-nvme target
3205 * Note: could have been sent at top of process, but
3206 * cleaner on link traffic if after the aborts complete.
3207 * Note: if association doesn't exist, association_id will be 0
3209 if (ctrl
->association_id
)
3210 nvme_fc_xmt_disconnect_assoc(ctrl
);
3212 spin_lock_irqsave(&ctrl
->lock
, flags
);
3213 ctrl
->association_id
= 0;
3214 disls
= ctrl
->rcv_disconn
;
3215 ctrl
->rcv_disconn
= NULL
;
3216 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
3219 * if a Disconnect Request was waiting for a response, send
3220 * now that all ABTS's have been issued (and are complete).
3222 nvme_fc_xmt_ls_rsp(disls
);
3224 if (ctrl
->ctrl
.tagset
) {
3225 nvme_fc_delete_hw_io_queues(ctrl
);
3226 nvme_fc_free_io_queues(ctrl
);
3229 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
3230 nvme_fc_free_queue(&ctrl
->queues
[0]);
3232 /* re-enable the admin_q so anything new can fast fail */
3233 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
3235 /* resume the io queues so that things will fast fail */
3236 nvme_start_queues(&ctrl
->ctrl
);
3238 nvme_fc_ctlr_inactive_on_rport(ctrl
);
3242 nvme_fc_delete_ctrl(struct nvme_ctrl
*nctrl
)
3244 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
3246 cancel_work_sync(&ctrl
->ioerr_work
);
3247 cancel_delayed_work_sync(&ctrl
->connect_work
);
3249 * kill the association on the link side. this will block
3250 * waiting for io to terminate
3252 nvme_fc_delete_association(ctrl
);
3256 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl
*ctrl
, int status
)
3258 struct nvme_fc_rport
*rport
= ctrl
->rport
;
3259 struct nvme_fc_remote_port
*portptr
= &rport
->remoteport
;
3260 unsigned long recon_delay
= ctrl
->ctrl
.opts
->reconnect_delay
* HZ
;
3263 if (ctrl
->ctrl
.state
!= NVME_CTRL_CONNECTING
)
3266 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
3267 dev_info(ctrl
->ctrl
.device
,
3268 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3269 ctrl
->cnum
, status
);
3270 else if (time_after_eq(jiffies
, rport
->dev_loss_end
))
3273 if (recon
&& nvmf_should_reconnect(&ctrl
->ctrl
)) {
3274 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
3275 dev_info(ctrl
->ctrl
.device
,
3276 "NVME-FC{%d}: Reconnect attempt in %ld "
3278 ctrl
->cnum
, recon_delay
/ HZ
);
3279 else if (time_after(jiffies
+ recon_delay
, rport
->dev_loss_end
))
3280 recon_delay
= rport
->dev_loss_end
- jiffies
;
3282 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, recon_delay
);
3284 if (portptr
->port_state
== FC_OBJSTATE_ONLINE
)
3285 dev_warn(ctrl
->ctrl
.device
,
3286 "NVME-FC{%d}: Max reconnect attempts (%d) "
3288 ctrl
->cnum
, ctrl
->ctrl
.nr_reconnects
);
3290 dev_warn(ctrl
->ctrl
.device
,
3291 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3292 "while waiting for remoteport connectivity.\n",
3293 ctrl
->cnum
, min_t(int, portptr
->dev_loss_tmo
,
3294 (ctrl
->ctrl
.opts
->max_reconnects
*
3295 ctrl
->ctrl
.opts
->reconnect_delay
)));
3296 WARN_ON(nvme_delete_ctrl(&ctrl
->ctrl
));
3301 nvme_fc_reset_ctrl_work(struct work_struct
*work
)
3303 struct nvme_fc_ctrl
*ctrl
=
3304 container_of(work
, struct nvme_fc_ctrl
, ctrl
.reset_work
);
3306 nvme_stop_ctrl(&ctrl
->ctrl
);
3308 /* will block will waiting for io to terminate */
3309 nvme_fc_delete_association(ctrl
);
3311 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
))
3312 dev_err(ctrl
->ctrl
.device
,
3313 "NVME-FC{%d}: error_recovery: Couldn't change state "
3314 "to CONNECTING\n", ctrl
->cnum
);
3316 if (ctrl
->rport
->remoteport
.port_state
== FC_OBJSTATE_ONLINE
) {
3317 if (!queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, 0)) {
3318 dev_err(ctrl
->ctrl
.device
,
3319 "NVME-FC{%d}: failed to schedule connect "
3320 "after reset\n", ctrl
->cnum
);
3322 flush_delayed_work(&ctrl
->connect_work
);
3325 nvme_fc_reconnect_or_delete(ctrl
, -ENOTCONN
);
3330 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops
= {
3332 .module
= THIS_MODULE
,
3333 .flags
= NVME_F_FABRICS
,
3334 .reg_read32
= nvmf_reg_read32
,
3335 .reg_read64
= nvmf_reg_read64
,
3336 .reg_write32
= nvmf_reg_write32
,
3337 .free_ctrl
= nvme_fc_nvme_ctrl_freed
,
3338 .submit_async_event
= nvme_fc_submit_async_event
,
3339 .delete_ctrl
= nvme_fc_delete_ctrl
,
3340 .get_address
= nvmf_get_address
,
3344 nvme_fc_connect_ctrl_work(struct work_struct
*work
)
3348 struct nvme_fc_ctrl
*ctrl
=
3349 container_of(to_delayed_work(work
),
3350 struct nvme_fc_ctrl
, connect_work
);
3352 ret
= nvme_fc_create_association(ctrl
);
3354 nvme_fc_reconnect_or_delete(ctrl
, ret
);
3356 dev_info(ctrl
->ctrl
.device
,
3357 "NVME-FC{%d}: controller connect complete\n",
3362 static const struct blk_mq_ops nvme_fc_admin_mq_ops
= {
3363 .queue_rq
= nvme_fc_queue_rq
,
3364 .complete
= nvme_fc_complete_rq
,
3365 .init_request
= nvme_fc_init_request
,
3366 .exit_request
= nvme_fc_exit_request
,
3367 .init_hctx
= nvme_fc_init_admin_hctx
,
3368 .timeout
= nvme_fc_timeout
,
3373 * Fails a controller request if it matches an existing controller
3374 * (association) with the same tuple:
3375 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3377 * The ports don't need to be compared as they are intrinsically
3378 * already matched by the port pointers supplied.
3381 nvme_fc_existing_controller(struct nvme_fc_rport
*rport
,
3382 struct nvmf_ctrl_options
*opts
)
3384 struct nvme_fc_ctrl
*ctrl
;
3385 unsigned long flags
;
3388 spin_lock_irqsave(&rport
->lock
, flags
);
3389 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
3390 found
= nvmf_ctlr_matches_baseopts(&ctrl
->ctrl
, opts
);
3394 spin_unlock_irqrestore(&rport
->lock
, flags
);
3399 static struct nvme_ctrl
*
3400 nvme_fc_init_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
,
3401 struct nvme_fc_lport
*lport
, struct nvme_fc_rport
*rport
)
3403 struct nvme_fc_ctrl
*ctrl
;
3404 unsigned long flags
;
3405 int ret
, idx
, ctrl_loss_tmo
;
3407 if (!(rport
->remoteport
.port_role
&
3408 (FC_PORT_ROLE_NVME_DISCOVERY
| FC_PORT_ROLE_NVME_TARGET
))) {
3413 if (!opts
->duplicate_connect
&&
3414 nvme_fc_existing_controller(rport
, opts
)) {
3419 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
3425 idx
= ida_simple_get(&nvme_fc_ctrl_cnt
, 0, 0, GFP_KERNEL
);
3432 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3433 * is being used, change to a shorter reconnect delay for FC.
3435 if (opts
->max_reconnects
!= -1 &&
3436 opts
->reconnect_delay
== NVMF_DEF_RECONNECT_DELAY
&&
3437 opts
->reconnect_delay
> NVME_FC_DEFAULT_RECONNECT_TMO
) {
3438 ctrl_loss_tmo
= opts
->max_reconnects
* opts
->reconnect_delay
;
3439 opts
->reconnect_delay
= NVME_FC_DEFAULT_RECONNECT_TMO
;
3440 opts
->max_reconnects
= DIV_ROUND_UP(ctrl_loss_tmo
,
3441 opts
->reconnect_delay
);
3444 ctrl
->ctrl
.opts
= opts
;
3445 ctrl
->ctrl
.nr_reconnects
= 0;
3447 ctrl
->ctrl
.numa_node
= dev_to_node(lport
->dev
);
3449 ctrl
->ctrl
.numa_node
= NUMA_NO_NODE
;
3450 INIT_LIST_HEAD(&ctrl
->ctrl_list
);
3451 ctrl
->lport
= lport
;
3452 ctrl
->rport
= rport
;
3453 ctrl
->dev
= lport
->dev
;
3455 ctrl
->ioq_live
= false;
3456 init_waitqueue_head(&ctrl
->ioabort_wait
);
3458 get_device(ctrl
->dev
);
3459 kref_init(&ctrl
->ref
);
3461 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_fc_reset_ctrl_work
);
3462 INIT_DELAYED_WORK(&ctrl
->connect_work
, nvme_fc_connect_ctrl_work
);
3463 INIT_WORK(&ctrl
->ioerr_work
, nvme_fc_ctrl_ioerr_work
);
3464 spin_lock_init(&ctrl
->lock
);
3466 /* io queue count */
3467 ctrl
->ctrl
.queue_count
= min_t(unsigned int,
3469 lport
->ops
->max_hw_queues
);
3470 ctrl
->ctrl
.queue_count
++; /* +1 for admin queue */
3472 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
3473 ctrl
->ctrl
.kato
= opts
->kato
;
3474 ctrl
->ctrl
.cntlid
= 0xffff;
3477 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
,
3478 sizeof(struct nvme_fc_queue
), GFP_KERNEL
);
3482 nvme_fc_init_queue(ctrl
, 0);
3484 memset(&ctrl
->admin_tag_set
, 0, sizeof(ctrl
->admin_tag_set
));
3485 ctrl
->admin_tag_set
.ops
= &nvme_fc_admin_mq_ops
;
3486 ctrl
->admin_tag_set
.queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
3487 ctrl
->admin_tag_set
.reserved_tags
= 2; /* fabric connect + Keep-Alive */
3488 ctrl
->admin_tag_set
.numa_node
= ctrl
->ctrl
.numa_node
;
3489 ctrl
->admin_tag_set
.cmd_size
=
3490 struct_size((struct nvme_fcp_op_w_sgl
*)NULL
, priv
,
3491 ctrl
->lport
->ops
->fcprqst_priv_sz
);
3492 ctrl
->admin_tag_set
.driver_data
= ctrl
;
3493 ctrl
->admin_tag_set
.nr_hw_queues
= 1;
3494 ctrl
->admin_tag_set
.timeout
= NVME_ADMIN_TIMEOUT
;
3495 ctrl
->admin_tag_set
.flags
= BLK_MQ_F_NO_SCHED
;
3497 ret
= blk_mq_alloc_tag_set(&ctrl
->admin_tag_set
);
3499 goto out_free_queues
;
3500 ctrl
->ctrl
.admin_tagset
= &ctrl
->admin_tag_set
;
3502 ctrl
->ctrl
.fabrics_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
3503 if (IS_ERR(ctrl
->ctrl
.fabrics_q
)) {
3504 ret
= PTR_ERR(ctrl
->ctrl
.fabrics_q
);
3505 goto out_free_admin_tag_set
;
3508 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
3509 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
3510 ret
= PTR_ERR(ctrl
->ctrl
.admin_q
);
3511 goto out_cleanup_fabrics_q
;
3515 * Would have been nice to init io queues tag set as well.
3516 * However, we require interaction from the controller
3517 * for max io queue count before we can do so.
3518 * Defer this to the connect path.
3521 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_fc_ctrl_ops
, 0);
3523 goto out_cleanup_admin_q
;
3525 /* at this point, teardown path changes to ref counting on nvme ctrl */
3527 spin_lock_irqsave(&rport
->lock
, flags
);
3528 list_add_tail(&ctrl
->ctrl_list
, &rport
->ctrl_list
);
3529 spin_unlock_irqrestore(&rport
->lock
, flags
);
3531 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RESETTING
) ||
3532 !nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
3533 dev_err(ctrl
->ctrl
.device
,
3534 "NVME-FC{%d}: failed to init ctrl state\n", ctrl
->cnum
);
3538 if (!queue_delayed_work(nvme_wq
, &ctrl
->connect_work
, 0)) {
3539 dev_err(ctrl
->ctrl
.device
,
3540 "NVME-FC{%d}: failed to schedule initial connect\n",
3545 flush_delayed_work(&ctrl
->connect_work
);
3547 dev_info(ctrl
->ctrl
.device
,
3548 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3549 ctrl
->cnum
, ctrl
->ctrl
.opts
->subsysnqn
);
3554 nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_DELETING
);
3555 cancel_work_sync(&ctrl
->ioerr_work
);
3556 cancel_work_sync(&ctrl
->ctrl
.reset_work
);
3557 cancel_delayed_work_sync(&ctrl
->connect_work
);
3559 ctrl
->ctrl
.opts
= NULL
;
3561 /* initiate nvme ctrl ref counting teardown */
3562 nvme_uninit_ctrl(&ctrl
->ctrl
);
3564 /* Remove core ctrl ref. */
3565 nvme_put_ctrl(&ctrl
->ctrl
);
3567 /* as we're past the point where we transition to the ref
3568 * counting teardown path, if we return a bad pointer here,
3569 * the calling routine, thinking it's prior to the
3570 * transition, will do an rport put. Since the teardown
3571 * path also does a rport put, we do an extra get here to
3572 * so proper order/teardown happens.
3574 nvme_fc_rport_get(rport
);
3576 return ERR_PTR(-EIO
);
3578 out_cleanup_admin_q
:
3579 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
3580 out_cleanup_fabrics_q
:
3581 blk_cleanup_queue(ctrl
->ctrl
.fabrics_q
);
3582 out_free_admin_tag_set
:
3583 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
3585 kfree(ctrl
->queues
);
3587 put_device(ctrl
->dev
);
3588 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
3592 /* exit via here doesn't follow ctlr ref points */
3593 return ERR_PTR(ret
);
3597 struct nvmet_fc_traddr
{
3603 __nvme_fc_parse_u64(substring_t
*sstr
, u64
*val
)
3607 if (match_u64(sstr
, &token64
))
3615 * This routine validates and extracts the WWN's from the TRADDR string.
3616 * As kernel parsers need the 0x to determine number base, universally
3617 * build string to parse with 0x prefix before parsing name strings.
3620 nvme_fc_parse_traddr(struct nvmet_fc_traddr
*traddr
, char *buf
, size_t blen
)
3622 char name
[2 + NVME_FC_TRADDR_HEXNAMELEN
+ 1];
3623 substring_t wwn
= { name
, &name
[sizeof(name
)-1] };
3624 int nnoffset
, pnoffset
;
3626 /* validate if string is one of the 2 allowed formats */
3627 if (strnlen(buf
, blen
) == NVME_FC_TRADDR_MAXLENGTH
&&
3628 !strncmp(buf
, "nn-0x", NVME_FC_TRADDR_OXNNLEN
) &&
3629 !strncmp(&buf
[NVME_FC_TRADDR_MAX_PN_OFFSET
],
3630 "pn-0x", NVME_FC_TRADDR_OXNNLEN
)) {
3631 nnoffset
= NVME_FC_TRADDR_OXNNLEN
;
3632 pnoffset
= NVME_FC_TRADDR_MAX_PN_OFFSET
+
3633 NVME_FC_TRADDR_OXNNLEN
;
3634 } else if ((strnlen(buf
, blen
) == NVME_FC_TRADDR_MINLENGTH
&&
3635 !strncmp(buf
, "nn-", NVME_FC_TRADDR_NNLEN
) &&
3636 !strncmp(&buf
[NVME_FC_TRADDR_MIN_PN_OFFSET
],
3637 "pn-", NVME_FC_TRADDR_NNLEN
))) {
3638 nnoffset
= NVME_FC_TRADDR_NNLEN
;
3639 pnoffset
= NVME_FC_TRADDR_MIN_PN_OFFSET
+ NVME_FC_TRADDR_NNLEN
;
3645 name
[2 + NVME_FC_TRADDR_HEXNAMELEN
] = 0;
3647 memcpy(&name
[2], &buf
[nnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
3648 if (__nvme_fc_parse_u64(&wwn
, &traddr
->nn
))
3651 memcpy(&name
[2], &buf
[pnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
3652 if (__nvme_fc_parse_u64(&wwn
, &traddr
->pn
))
3658 pr_warn("%s: bad traddr string\n", __func__
);
3662 static struct nvme_ctrl
*
3663 nvme_fc_create_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
)
3665 struct nvme_fc_lport
*lport
;
3666 struct nvme_fc_rport
*rport
;
3667 struct nvme_ctrl
*ctrl
;
3668 struct nvmet_fc_traddr laddr
= { 0L, 0L };
3669 struct nvmet_fc_traddr raddr
= { 0L, 0L };
3670 unsigned long flags
;
3673 ret
= nvme_fc_parse_traddr(&raddr
, opts
->traddr
, NVMF_TRADDR_SIZE
);
3674 if (ret
|| !raddr
.nn
|| !raddr
.pn
)
3675 return ERR_PTR(-EINVAL
);
3677 ret
= nvme_fc_parse_traddr(&laddr
, opts
->host_traddr
, NVMF_TRADDR_SIZE
);
3678 if (ret
|| !laddr
.nn
|| !laddr
.pn
)
3679 return ERR_PTR(-EINVAL
);
3681 /* find the host and remote ports to connect together */
3682 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3683 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3684 if (lport
->localport
.node_name
!= laddr
.nn
||
3685 lport
->localport
.port_name
!= laddr
.pn
||
3686 lport
->localport
.port_state
!= FC_OBJSTATE_ONLINE
)
3689 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3690 if (rport
->remoteport
.node_name
!= raddr
.nn
||
3691 rport
->remoteport
.port_name
!= raddr
.pn
||
3692 rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
3695 /* if fail to get reference fall through. Will error */
3696 if (!nvme_fc_rport_get(rport
))
3699 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3701 ctrl
= nvme_fc_init_ctrl(dev
, opts
, lport
, rport
);
3703 nvme_fc_rport_put(rport
);
3707 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3709 pr_warn("%s: %s - %s combination not found\n",
3710 __func__
, opts
->traddr
, opts
->host_traddr
);
3711 return ERR_PTR(-ENOENT
);
3715 static struct nvmf_transport_ops nvme_fc_transport
= {
3717 .module
= THIS_MODULE
,
3718 .required_opts
= NVMF_OPT_TRADDR
| NVMF_OPT_HOST_TRADDR
,
3719 .allowed_opts
= NVMF_OPT_RECONNECT_DELAY
| NVMF_OPT_CTRL_LOSS_TMO
,
3720 .create_ctrl
= nvme_fc_create_ctrl
,
3723 /* Arbitrary successive failures max. With lots of subsystems could be high */
3724 #define DISCOVERY_MAX_FAIL 20
3726 static ssize_t
nvme_fc_nvme_discovery_store(struct device
*dev
,
3727 struct device_attribute
*attr
, const char *buf
, size_t count
)
3729 unsigned long flags
;
3730 LIST_HEAD(local_disc_list
);
3731 struct nvme_fc_lport
*lport
;
3732 struct nvme_fc_rport
*rport
;
3735 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3737 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3738 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3739 if (!nvme_fc_lport_get(lport
))
3741 if (!nvme_fc_rport_get(rport
)) {
3743 * This is a temporary condition. Upon restart
3744 * this rport will be gone from the list.
3746 * Revert the lport put and retry. Anything
3747 * added to the list already will be skipped (as
3748 * they are no longer list_empty). Loops should
3749 * resume at rports that were not yet seen.
3751 nvme_fc_lport_put(lport
);
3753 if (failcnt
++ < DISCOVERY_MAX_FAIL
)
3756 pr_err("nvme_discovery: too many reference "
3758 goto process_local_list
;
3760 if (list_empty(&rport
->disc_list
))
3761 list_add_tail(&rport
->disc_list
,
3767 while (!list_empty(&local_disc_list
)) {
3768 rport
= list_first_entry(&local_disc_list
,
3769 struct nvme_fc_rport
, disc_list
);
3770 list_del_init(&rport
->disc_list
);
3771 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3773 lport
= rport
->lport
;
3774 /* signal discovery. Won't hurt if it repeats */
3775 nvme_fc_signal_discovery_scan(lport
, rport
);
3776 nvme_fc_rport_put(rport
);
3777 nvme_fc_lport_put(lport
);
3779 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3781 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3785 static DEVICE_ATTR(nvme_discovery
, 0200, NULL
, nvme_fc_nvme_discovery_store
);
3787 static struct attribute
*nvme_fc_attrs
[] = {
3788 &dev_attr_nvme_discovery
.attr
,
3792 static struct attribute_group nvme_fc_attr_group
= {
3793 .attrs
= nvme_fc_attrs
,
3796 static const struct attribute_group
*nvme_fc_attr_groups
[] = {
3797 &nvme_fc_attr_group
,
3801 static struct class fc_class
= {
3803 .dev_groups
= nvme_fc_attr_groups
,
3804 .owner
= THIS_MODULE
,
3807 static int __init
nvme_fc_init_module(void)
3811 nvme_fc_wq
= alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM
, 0);
3817 * It is expected that in the future the kernel will combine
3818 * the FC-isms that are currently under scsi and now being
3819 * added to by NVME into a new standalone FC class. The SCSI
3820 * and NVME protocols and their devices would be under this
3823 * As we need something to post FC-specific udev events to,
3824 * specifically for nvme probe events, start by creating the
3825 * new device class. When the new standalone FC class is
3826 * put in place, this code will move to a more generic
3827 * location for the class.
3829 ret
= class_register(&fc_class
);
3831 pr_err("couldn't register class fc\n");
3832 goto out_destroy_wq
;
3836 * Create a device for the FC-centric udev events
3838 fc_udev_device
= device_create(&fc_class
, NULL
, MKDEV(0, 0), NULL
,
3840 if (IS_ERR(fc_udev_device
)) {
3841 pr_err("couldn't create fc_udev device!\n");
3842 ret
= PTR_ERR(fc_udev_device
);
3843 goto out_destroy_class
;
3846 ret
= nvmf_register_transport(&nvme_fc_transport
);
3848 goto out_destroy_device
;
3853 device_destroy(&fc_class
, MKDEV(0, 0));
3855 class_unregister(&fc_class
);
3857 destroy_workqueue(nvme_fc_wq
);
3863 nvme_fc_delete_controllers(struct nvme_fc_rport
*rport
)
3865 struct nvme_fc_ctrl
*ctrl
;
3867 spin_lock(&rport
->lock
);
3868 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
) {
3869 dev_warn(ctrl
->ctrl
.device
,
3870 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3872 nvme_delete_ctrl(&ctrl
->ctrl
);
3874 spin_unlock(&rport
->lock
);
3878 nvme_fc_cleanup_for_unload(void)
3880 struct nvme_fc_lport
*lport
;
3881 struct nvme_fc_rport
*rport
;
3883 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
3884 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
3885 nvme_fc_delete_controllers(rport
);
3890 static void __exit
nvme_fc_exit_module(void)
3892 unsigned long flags
;
3893 bool need_cleanup
= false;
3895 spin_lock_irqsave(&nvme_fc_lock
, flags
);
3896 nvme_fc_waiting_to_unload
= true;
3897 if (!list_empty(&nvme_fc_lport_list
)) {
3898 need_cleanup
= true;
3899 nvme_fc_cleanup_for_unload();
3901 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
3903 pr_info("%s: waiting for ctlr deletes\n", __func__
);
3904 wait_for_completion(&nvme_fc_unload_proceed
);
3905 pr_info("%s: ctrl deletes complete\n", __func__
);
3908 nvmf_unregister_transport(&nvme_fc_transport
);
3910 ida_destroy(&nvme_fc_local_port_cnt
);
3911 ida_destroy(&nvme_fc_ctrl_cnt
);
3913 device_destroy(&fc_class
, MKDEV(0, 0));
3914 class_unregister(&fc_class
);
3915 destroy_workqueue(nvme_fc_wq
);
3918 module_init(nvme_fc_init_module
);
3919 module_exit(nvme_fc_exit_module
);
3921 MODULE_LICENSE("GPL v2");