Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / opp / core.c
blob8c905aabacc01aeee5d35501525ae4485913ea0e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
22 #include "opp.h"
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 /* Flag indicating that opp_tables list is being updated at the moment */
33 static bool opp_tables_busy;
35 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
37 struct opp_device *opp_dev;
38 bool found = false;
40 mutex_lock(&opp_table->lock);
41 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 if (opp_dev->dev == dev) {
43 found = true;
44 break;
47 mutex_unlock(&opp_table->lock);
48 return found;
51 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
53 struct opp_table *opp_table;
55 list_for_each_entry(opp_table, &opp_tables, node) {
56 if (_find_opp_dev(dev, opp_table)) {
57 _get_opp_table_kref(opp_table);
58 return opp_table;
62 return ERR_PTR(-ENODEV);
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
69 * Search OPP table for one containing matching device.
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
76 struct opp_table *_find_opp_table(struct device *dev)
78 struct opp_table *opp_table;
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
89 return opp_table;
92 /**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
99 * This is useful only for devices with single power supply.
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
108 return opp->supplies[0].u_volt;
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
126 return opp->rate;
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
144 return opp->level;
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
156 * Return: true if opp is turbo opp, else false.
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
165 return opp->turbo;
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
173 * Return: This function returns the max clock latency in nanoseconds.
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
184 clock_latency_ns = opp_table->clock_latency_ns_max;
186 dev_pm_opp_put_opp_table(opp_table);
188 return clock_latency_ns;
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
196 * Return: This function returns the max voltage latency in nanoseconds.
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
218 count = opp_table->regulator_count;
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
224 mutex_lock(&opp_table->lock);
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
241 mutex_unlock(&opp_table->lock);
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
254 kfree(uV);
255 put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
258 return latency_ns;
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
296 dev_pm_opp_put_opp_table(opp_table);
298 return freq;
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
302 int _get_opp_count(struct opp_table *opp_table)
304 struct dev_pm_opp *opp;
305 int count = 0;
307 mutex_lock(&opp_table->lock);
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
314 mutex_unlock(&opp_table->lock);
316 return count;
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
326 int dev_pm_opp_get_opp_count(struct device *dev)
328 struct opp_table *opp_table;
329 int count;
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
342 return count;
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
384 mutex_lock(&opp_table->lock);
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
400 return opp;
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
433 mutex_lock(&opp_table->lock);
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
448 return opp;
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
457 mutex_lock(&opp_table->lock);
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
470 mutex_unlock(&opp_table->lock);
472 return opp;
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
508 opp = _find_freq_ceil(opp_table, freq);
510 dev_pm_opp_put_opp_table(opp_table);
512 return opp;
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
549 mutex_lock(&opp_table->lock);
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
570 return opp;
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
585 * Error return values can be:
586 * EINVAL: bad parameters
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
607 mutex_lock(&opp_table->lock);
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
624 return opp;
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
631 int ret;
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
650 return ret;
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
656 int ret;
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
664 return ret;
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
706 if (unlikely(!opp_table->enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
712 return 0;
714 restore_freq:
715 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 __func__, old_freq);
718 restore_voltage:
719 /* This shouldn't harm even if the voltages weren't updated earlier */
720 if (old_supply)
721 _set_opp_voltage(dev, reg, old_supply);
723 return ret;
726 static int _set_opp_bw(const struct opp_table *opp_table,
727 struct dev_pm_opp *opp, struct device *dev, bool remove)
729 u32 avg, peak;
730 int i, ret;
732 if (!opp_table->paths)
733 return 0;
735 for (i = 0; i < opp_table->path_count; i++) {
736 if (remove) {
737 avg = 0;
738 peak = 0;
739 } else {
740 avg = opp->bandwidth[i].avg;
741 peak = opp->bandwidth[i].peak;
743 ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 if (ret) {
745 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 remove ? "remove" : "set", i, ret);
747 return ret;
751 return 0;
754 static int _set_opp_custom(const struct opp_table *opp_table,
755 struct device *dev, unsigned long old_freq,
756 unsigned long freq,
757 struct dev_pm_opp_supply *old_supply,
758 struct dev_pm_opp_supply *new_supply)
760 struct dev_pm_set_opp_data *data;
761 int size;
763 data = opp_table->set_opp_data;
764 data->regulators = opp_table->regulators;
765 data->regulator_count = opp_table->regulator_count;
766 data->clk = opp_table->clk;
767 data->dev = dev;
769 data->old_opp.rate = old_freq;
770 size = sizeof(*old_supply) * opp_table->regulator_count;
771 if (!old_supply)
772 memset(data->old_opp.supplies, 0, size);
773 else
774 memcpy(data->old_opp.supplies, old_supply, size);
776 data->new_opp.rate = freq;
777 memcpy(data->new_opp.supplies, new_supply, size);
779 return opp_table->set_opp(data);
782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 struct dev_pm_opp *opp, int i)
785 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 int ret;
788 if (!pd_dev)
789 return 0;
791 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 if (ret) {
793 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 dev_name(pd_dev), pstate, ret);
797 return ret;
800 /* This is only called for PM domain for now */
801 static int _set_required_opps(struct device *dev,
802 struct opp_table *opp_table,
803 struct dev_pm_opp *opp, bool up)
805 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 int i, ret = 0;
809 if (!required_opp_tables)
810 return 0;
812 /* Single genpd case */
813 if (!genpd_virt_devs)
814 return _set_required_opp(dev, dev, opp, 0);
816 /* Multiple genpd case */
819 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 * after it is freed from another thread.
822 mutex_lock(&opp_table->genpd_virt_dev_lock);
824 /* Scaling up? Set required OPPs in normal order, else reverse */
825 if (up) {
826 for (i = 0; i < opp_table->required_opp_count; i++) {
827 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 if (ret)
829 break;
831 } else {
832 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 if (ret)
835 break;
839 mutex_unlock(&opp_table->genpd_virt_dev_lock);
841 return ret;
845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846 * @dev: device for which we do this operation
847 * @opp: opp based on which the bandwidth levels are to be configured
849 * This configures the bandwidth to the levels specified by the OPP. However
850 * if the OPP specified is NULL the bandwidth levels are cleared out.
852 * Return: 0 on success or a negative error value.
854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
856 struct opp_table *opp_table;
857 int ret;
859 opp_table = _find_opp_table(dev);
860 if (IS_ERR(opp_table)) {
861 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 return PTR_ERR(opp_table);
865 if (opp)
866 ret = _set_opp_bw(opp_table, opp, dev, false);
867 else
868 ret = _set_opp_bw(opp_table, NULL, dev, true);
870 dev_pm_opp_put_opp_table(opp_table);
871 return ret;
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
877 int ret;
879 if (!opp_table->enabled)
880 return 0;
883 * Some drivers need to support cases where some platforms may
884 * have OPP table for the device, while others don't and
885 * opp_set_rate() just needs to behave like clk_set_rate().
887 if (!_get_opp_count(opp_table))
888 return 0;
890 ret = _set_opp_bw(opp_table, NULL, dev, true);
891 if (ret)
892 return ret;
894 if (opp_table->regulators)
895 regulator_disable(opp_table->regulators[0]);
897 ret = _set_required_opps(dev, opp_table, NULL, false);
899 opp_table->enabled = false;
900 return ret;
904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905 * @dev: device for which we do this operation
906 * @target_freq: frequency to achieve
908 * This configures the power-supplies to the levels specified by the OPP
909 * corresponding to the target_freq, and programs the clock to a value <=
910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911 * provided by the opp, should have already rounded to the target OPP's
912 * frequency.
914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
916 struct opp_table *opp_table;
917 unsigned long freq, old_freq, temp_freq;
918 struct dev_pm_opp *old_opp, *opp;
919 struct clk *clk;
920 int ret;
922 opp_table = _find_opp_table(dev);
923 if (IS_ERR(opp_table)) {
924 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 return PTR_ERR(opp_table);
928 if (unlikely(!target_freq)) {
929 ret = _opp_set_rate_zero(dev, opp_table);
930 goto put_opp_table;
933 clk = opp_table->clk;
934 if (IS_ERR(clk)) {
935 dev_err(dev, "%s: No clock available for the device\n",
936 __func__);
937 ret = PTR_ERR(clk);
938 goto put_opp_table;
941 freq = clk_round_rate(clk, target_freq);
942 if ((long)freq <= 0)
943 freq = target_freq;
945 old_freq = clk_get_rate(clk);
947 /* Return early if nothing to do */
948 if (opp_table->enabled && old_freq == freq) {
949 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 __func__, freq);
951 ret = 0;
952 goto put_opp_table;
956 * For IO devices which require an OPP on some platforms/SoCs
957 * while just needing to scale the clock on some others
958 * we look for empty OPP tables with just a clock handle and
959 * scale only the clk. This makes dev_pm_opp_set_rate()
960 * equivalent to a clk_set_rate()
962 if (!_get_opp_count(opp_table)) {
963 ret = _generic_set_opp_clk_only(dev, clk, freq);
964 goto put_opp_table;
967 temp_freq = old_freq;
968 old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 if (IS_ERR(old_opp)) {
970 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 __func__, old_freq, PTR_ERR(old_opp));
974 temp_freq = freq;
975 opp = _find_freq_ceil(opp_table, &temp_freq);
976 if (IS_ERR(opp)) {
977 ret = PTR_ERR(opp);
978 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 __func__, freq, ret);
980 goto put_old_opp;
983 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 old_freq, freq);
986 /* Scaling up? Configure required OPPs before frequency */
987 if (freq >= old_freq) {
988 ret = _set_required_opps(dev, opp_table, opp, true);
989 if (ret)
990 goto put_opp;
993 if (opp_table->set_opp) {
994 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 opp->supplies);
997 } else if (opp_table->regulators) {
998 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 opp->supplies);
1001 } else {
1002 /* Only frequency scaling */
1003 ret = _generic_set_opp_clk_only(dev, clk, freq);
1006 /* Scaling down? Configure required OPPs after frequency */
1007 if (!ret && freq < old_freq) {
1008 ret = _set_required_opps(dev, opp_table, opp, false);
1009 if (ret)
1010 dev_err(dev, "Failed to set required opps: %d\n", ret);
1013 if (!ret) {
1014 ret = _set_opp_bw(opp_table, opp, dev, false);
1015 if (!ret)
1016 opp_table->enabled = true;
1019 put_opp:
1020 dev_pm_opp_put(opp);
1021 put_old_opp:
1022 if (!IS_ERR(old_opp))
1023 dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 dev_pm_opp_put_opp_table(opp_table);
1026 return ret;
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1030 /* OPP-dev Helpers */
1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 struct opp_table *opp_table)
1034 opp_debug_unregister(opp_dev, opp_table);
1035 list_del(&opp_dev->node);
1036 kfree(opp_dev);
1039 struct opp_device *_add_opp_dev(const struct device *dev,
1040 struct opp_table *opp_table)
1042 struct opp_device *opp_dev;
1044 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 if (!opp_dev)
1046 return NULL;
1048 /* Initialize opp-dev */
1049 opp_dev->dev = dev;
1051 mutex_lock(&opp_table->lock);
1052 list_add(&opp_dev->node, &opp_table->dev_list);
1053 mutex_unlock(&opp_table->lock);
1055 /* Create debugfs entries for the opp_table */
1056 opp_debug_register(opp_dev, opp_table);
1058 return opp_dev;
1061 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1063 struct opp_table *opp_table;
1064 struct opp_device *opp_dev;
1065 int ret;
1068 * Allocate a new OPP table. In the infrequent case where a new
1069 * device is needed to be added, we pay this penalty.
1071 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1072 if (!opp_table)
1073 return ERR_PTR(-ENOMEM);
1075 mutex_init(&opp_table->lock);
1076 mutex_init(&opp_table->genpd_virt_dev_lock);
1077 INIT_LIST_HEAD(&opp_table->dev_list);
1079 /* Mark regulator count uninitialized */
1080 opp_table->regulator_count = -1;
1082 opp_dev = _add_opp_dev(dev, opp_table);
1083 if (!opp_dev) {
1084 ret = -ENOMEM;
1085 goto err;
1088 _of_init_opp_table(opp_table, dev, index);
1090 /* Find clk for the device */
1091 opp_table->clk = clk_get(dev, NULL);
1092 if (IS_ERR(opp_table->clk)) {
1093 ret = PTR_ERR(opp_table->clk);
1094 if (ret == -EPROBE_DEFER)
1095 goto remove_opp_dev;
1097 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1100 /* Find interconnect path(s) for the device */
1101 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1102 if (ret) {
1103 if (ret == -EPROBE_DEFER)
1104 goto put_clk;
1106 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1107 __func__, ret);
1110 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1111 INIT_LIST_HEAD(&opp_table->opp_list);
1112 kref_init(&opp_table->kref);
1114 return opp_table;
1116 put_clk:
1117 if (!IS_ERR(opp_table->clk))
1118 clk_put(opp_table->clk);
1119 remove_opp_dev:
1120 _remove_opp_dev(opp_dev, opp_table);
1121 err:
1122 kfree(opp_table);
1123 return ERR_PTR(ret);
1126 void _get_opp_table_kref(struct opp_table *opp_table)
1128 kref_get(&opp_table->kref);
1132 * We need to make sure that the OPP table for a device doesn't get added twice,
1133 * if this routine gets called in parallel with the same device pointer.
1135 * The simplest way to enforce that is to perform everything (find existing
1136 * table and if not found, create a new one) under the opp_table_lock, so only
1137 * one creator gets access to the same. But that expands the critical section
1138 * under the lock and may end up causing circular dependencies with frameworks
1139 * like debugfs, interconnect or clock framework as they may be direct or
1140 * indirect users of OPP core.
1142 * And for that reason we have to go for a bit tricky implementation here, which
1143 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1144 * of adding an OPP table and others should wait for it to finish.
1146 struct opp_table *_add_opp_table_indexed(struct device *dev, int index)
1148 struct opp_table *opp_table;
1150 again:
1151 mutex_lock(&opp_table_lock);
1153 opp_table = _find_opp_table_unlocked(dev);
1154 if (!IS_ERR(opp_table))
1155 goto unlock;
1158 * The opp_tables list or an OPP table's dev_list is getting updated by
1159 * another user, wait for it to finish.
1161 if (unlikely(opp_tables_busy)) {
1162 mutex_unlock(&opp_table_lock);
1163 cpu_relax();
1164 goto again;
1167 opp_tables_busy = true;
1168 opp_table = _managed_opp(dev, index);
1170 /* Drop the lock to reduce the size of critical section */
1171 mutex_unlock(&opp_table_lock);
1173 if (opp_table) {
1174 if (!_add_opp_dev(dev, opp_table)) {
1175 dev_pm_opp_put_opp_table(opp_table);
1176 opp_table = ERR_PTR(-ENOMEM);
1179 mutex_lock(&opp_table_lock);
1180 } else {
1181 opp_table = _allocate_opp_table(dev, index);
1183 mutex_lock(&opp_table_lock);
1184 if (!IS_ERR(opp_table))
1185 list_add(&opp_table->node, &opp_tables);
1188 opp_tables_busy = false;
1190 unlock:
1191 mutex_unlock(&opp_table_lock);
1193 return opp_table;
1196 struct opp_table *_add_opp_table(struct device *dev)
1198 return _add_opp_table_indexed(dev, 0);
1201 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1203 return _find_opp_table(dev);
1205 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1207 static void _opp_table_kref_release(struct kref *kref)
1209 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1210 struct opp_device *opp_dev, *temp;
1211 int i;
1213 /* Drop the lock as soon as we can */
1214 list_del(&opp_table->node);
1215 mutex_unlock(&opp_table_lock);
1217 _of_clear_opp_table(opp_table);
1219 /* Release clk */
1220 if (!IS_ERR(opp_table->clk))
1221 clk_put(opp_table->clk);
1223 if (opp_table->paths) {
1224 for (i = 0; i < opp_table->path_count; i++)
1225 icc_put(opp_table->paths[i]);
1226 kfree(opp_table->paths);
1229 WARN_ON(!list_empty(&opp_table->opp_list));
1231 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1233 * The OPP table is getting removed, drop the performance state
1234 * constraints.
1236 if (opp_table->genpd_performance_state)
1237 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1239 _remove_opp_dev(opp_dev, opp_table);
1242 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1243 mutex_destroy(&opp_table->lock);
1244 kfree(opp_table);
1247 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1249 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1250 &opp_table_lock);
1252 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1254 void _opp_free(struct dev_pm_opp *opp)
1256 kfree(opp);
1259 static void _opp_kref_release(struct kref *kref)
1261 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1262 struct opp_table *opp_table = opp->opp_table;
1264 list_del(&opp->node);
1265 mutex_unlock(&opp_table->lock);
1268 * Notify the changes in the availability of the operable
1269 * frequency/voltage list.
1271 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1272 _of_opp_free_required_opps(opp_table, opp);
1273 opp_debug_remove_one(opp);
1274 kfree(opp);
1277 void dev_pm_opp_get(struct dev_pm_opp *opp)
1279 kref_get(&opp->kref);
1282 void dev_pm_opp_put(struct dev_pm_opp *opp)
1284 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1286 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1289 * dev_pm_opp_remove() - Remove an OPP from OPP table
1290 * @dev: device for which we do this operation
1291 * @freq: OPP to remove with matching 'freq'
1293 * This function removes an opp from the opp table.
1295 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1297 struct dev_pm_opp *opp;
1298 struct opp_table *opp_table;
1299 bool found = false;
1301 opp_table = _find_opp_table(dev);
1302 if (IS_ERR(opp_table))
1303 return;
1305 mutex_lock(&opp_table->lock);
1307 list_for_each_entry(opp, &opp_table->opp_list, node) {
1308 if (opp->rate == freq) {
1309 found = true;
1310 break;
1314 mutex_unlock(&opp_table->lock);
1316 if (found) {
1317 dev_pm_opp_put(opp);
1319 /* Drop the reference taken by dev_pm_opp_add() */
1320 dev_pm_opp_put_opp_table(opp_table);
1321 } else {
1322 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1323 __func__, freq);
1326 /* Drop the reference taken by _find_opp_table() */
1327 dev_pm_opp_put_opp_table(opp_table);
1329 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1331 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1332 bool dynamic)
1334 struct dev_pm_opp *opp = NULL, *temp;
1336 mutex_lock(&opp_table->lock);
1337 list_for_each_entry(temp, &opp_table->opp_list, node) {
1338 if (dynamic == temp->dynamic) {
1339 opp = temp;
1340 break;
1344 mutex_unlock(&opp_table->lock);
1345 return opp;
1348 bool _opp_remove_all_static(struct opp_table *opp_table)
1350 struct dev_pm_opp *opp;
1352 mutex_lock(&opp_table->lock);
1354 if (!opp_table->parsed_static_opps) {
1355 mutex_unlock(&opp_table->lock);
1356 return false;
1359 if (--opp_table->parsed_static_opps) {
1360 mutex_unlock(&opp_table->lock);
1361 return true;
1364 mutex_unlock(&opp_table->lock);
1367 * Can't remove the OPP from under the lock, debugfs removal needs to
1368 * happen lock less to avoid circular dependency issues.
1370 while ((opp = _opp_get_next(opp_table, false)))
1371 dev_pm_opp_put(opp);
1373 return true;
1377 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1378 * @dev: device for which we do this operation
1380 * This function removes all dynamically created OPPs from the opp table.
1382 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1384 struct opp_table *opp_table;
1385 struct dev_pm_opp *opp;
1386 int count = 0;
1388 opp_table = _find_opp_table(dev);
1389 if (IS_ERR(opp_table))
1390 return;
1393 * Can't remove the OPP from under the lock, debugfs removal needs to
1394 * happen lock less to avoid circular dependency issues.
1396 while ((opp = _opp_get_next(opp_table, true))) {
1397 dev_pm_opp_put(opp);
1398 count++;
1401 /* Drop the references taken by dev_pm_opp_add() */
1402 while (count--)
1403 dev_pm_opp_put_opp_table(opp_table);
1405 /* Drop the reference taken by _find_opp_table() */
1406 dev_pm_opp_put_opp_table(opp_table);
1408 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1410 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1412 struct dev_pm_opp *opp;
1413 int supply_count, supply_size, icc_size;
1415 /* Allocate space for at least one supply */
1416 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1417 supply_size = sizeof(*opp->supplies) * supply_count;
1418 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1420 /* allocate new OPP node and supplies structures */
1421 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1423 if (!opp)
1424 return NULL;
1426 /* Put the supplies at the end of the OPP structure as an empty array */
1427 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1428 if (icc_size)
1429 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1430 INIT_LIST_HEAD(&opp->node);
1432 return opp;
1435 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1436 struct opp_table *opp_table)
1438 struct regulator *reg;
1439 int i;
1441 if (!opp_table->regulators)
1442 return true;
1444 for (i = 0; i < opp_table->regulator_count; i++) {
1445 reg = opp_table->regulators[i];
1447 if (!regulator_is_supported_voltage(reg,
1448 opp->supplies[i].u_volt_min,
1449 opp->supplies[i].u_volt_max)) {
1450 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1451 __func__, opp->supplies[i].u_volt_min,
1452 opp->supplies[i].u_volt_max);
1453 return false;
1457 return true;
1460 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1462 if (opp1->rate != opp2->rate)
1463 return opp1->rate < opp2->rate ? -1 : 1;
1464 if (opp1->bandwidth && opp2->bandwidth &&
1465 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1466 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1467 if (opp1->level != opp2->level)
1468 return opp1->level < opp2->level ? -1 : 1;
1469 return 0;
1472 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1473 struct opp_table *opp_table,
1474 struct list_head **head)
1476 struct dev_pm_opp *opp;
1477 int opp_cmp;
1480 * Insert new OPP in order of increasing frequency and discard if
1481 * already present.
1483 * Need to use &opp_table->opp_list in the condition part of the 'for'
1484 * loop, don't replace it with head otherwise it will become an infinite
1485 * loop.
1487 list_for_each_entry(opp, &opp_table->opp_list, node) {
1488 opp_cmp = _opp_compare_key(new_opp, opp);
1489 if (opp_cmp > 0) {
1490 *head = &opp->node;
1491 continue;
1494 if (opp_cmp < 0)
1495 return 0;
1497 /* Duplicate OPPs */
1498 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1499 __func__, opp->rate, opp->supplies[0].u_volt,
1500 opp->available, new_opp->rate,
1501 new_opp->supplies[0].u_volt, new_opp->available);
1503 /* Should we compare voltages for all regulators here ? */
1504 return opp->available &&
1505 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1508 return 0;
1512 * Returns:
1513 * 0: On success. And appropriate error message for duplicate OPPs.
1514 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1515 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1516 * sure we don't print error messages unnecessarily if different parts of
1517 * kernel try to initialize the OPP table.
1518 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1519 * should be considered an error by the callers of _opp_add().
1521 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1522 struct opp_table *opp_table, bool rate_not_available)
1524 struct list_head *head;
1525 int ret;
1527 mutex_lock(&opp_table->lock);
1528 head = &opp_table->opp_list;
1530 if (likely(!rate_not_available)) {
1531 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1532 if (ret) {
1533 mutex_unlock(&opp_table->lock);
1534 return ret;
1538 list_add(&new_opp->node, head);
1539 mutex_unlock(&opp_table->lock);
1541 new_opp->opp_table = opp_table;
1542 kref_init(&new_opp->kref);
1544 opp_debug_create_one(new_opp, opp_table);
1546 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1547 new_opp->available = false;
1548 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1549 __func__, new_opp->rate);
1552 return 0;
1556 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1557 * @opp_table: OPP table
1558 * @dev: device for which we do this operation
1559 * @freq: Frequency in Hz for this OPP
1560 * @u_volt: Voltage in uVolts for this OPP
1561 * @dynamic: Dynamically added OPPs.
1563 * This function adds an opp definition to the opp table and returns status.
1564 * The opp is made available by default and it can be controlled using
1565 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1567 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1568 * and freed by dev_pm_opp_of_remove_table.
1570 * Return:
1571 * 0 On success OR
1572 * Duplicate OPPs (both freq and volt are same) and opp->available
1573 * -EEXIST Freq are same and volt are different OR
1574 * Duplicate OPPs (both freq and volt are same) and !opp->available
1575 * -ENOMEM Memory allocation failure
1577 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1578 unsigned long freq, long u_volt, bool dynamic)
1580 struct dev_pm_opp *new_opp;
1581 unsigned long tol;
1582 int ret;
1584 new_opp = _opp_allocate(opp_table);
1585 if (!new_opp)
1586 return -ENOMEM;
1588 /* populate the opp table */
1589 new_opp->rate = freq;
1590 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1591 new_opp->supplies[0].u_volt = u_volt;
1592 new_opp->supplies[0].u_volt_min = u_volt - tol;
1593 new_opp->supplies[0].u_volt_max = u_volt + tol;
1594 new_opp->available = true;
1595 new_opp->dynamic = dynamic;
1597 ret = _opp_add(dev, new_opp, opp_table, false);
1598 if (ret) {
1599 /* Don't return error for duplicate OPPs */
1600 if (ret == -EBUSY)
1601 ret = 0;
1602 goto free_opp;
1606 * Notify the changes in the availability of the operable
1607 * frequency/voltage list.
1609 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1610 return 0;
1612 free_opp:
1613 _opp_free(new_opp);
1615 return ret;
1619 * dev_pm_opp_set_supported_hw() - Set supported platforms
1620 * @dev: Device for which supported-hw has to be set.
1621 * @versions: Array of hierarchy of versions to match.
1622 * @count: Number of elements in the array.
1624 * This is required only for the V2 bindings, and it enables a platform to
1625 * specify the hierarchy of versions it supports. OPP layer will then enable
1626 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1627 * property.
1629 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1630 const u32 *versions, unsigned int count)
1632 struct opp_table *opp_table;
1634 opp_table = _add_opp_table(dev);
1635 if (IS_ERR(opp_table))
1636 return opp_table;
1638 /* Make sure there are no concurrent readers while updating opp_table */
1639 WARN_ON(!list_empty(&opp_table->opp_list));
1641 /* Another CPU that shares the OPP table has set the property ? */
1642 if (opp_table->supported_hw)
1643 return opp_table;
1645 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1646 GFP_KERNEL);
1647 if (!opp_table->supported_hw) {
1648 dev_pm_opp_put_opp_table(opp_table);
1649 return ERR_PTR(-ENOMEM);
1652 opp_table->supported_hw_count = count;
1654 return opp_table;
1656 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1659 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1660 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1662 * This is required only for the V2 bindings, and is called for a matching
1663 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1664 * will not be freed.
1666 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1668 if (unlikely(!opp_table))
1669 return;
1671 /* Make sure there are no concurrent readers while updating opp_table */
1672 WARN_ON(!list_empty(&opp_table->opp_list));
1674 kfree(opp_table->supported_hw);
1675 opp_table->supported_hw = NULL;
1676 opp_table->supported_hw_count = 0;
1678 dev_pm_opp_put_opp_table(opp_table);
1680 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1683 * dev_pm_opp_set_prop_name() - Set prop-extn name
1684 * @dev: Device for which the prop-name has to be set.
1685 * @name: name to postfix to properties.
1687 * This is required only for the V2 bindings, and it enables a platform to
1688 * specify the extn to be used for certain property names. The properties to
1689 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1690 * should postfix the property name with -<name> while looking for them.
1692 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1694 struct opp_table *opp_table;
1696 opp_table = _add_opp_table(dev);
1697 if (IS_ERR(opp_table))
1698 return opp_table;
1700 /* Make sure there are no concurrent readers while updating opp_table */
1701 WARN_ON(!list_empty(&opp_table->opp_list));
1703 /* Another CPU that shares the OPP table has set the property ? */
1704 if (opp_table->prop_name)
1705 return opp_table;
1707 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1708 if (!opp_table->prop_name) {
1709 dev_pm_opp_put_opp_table(opp_table);
1710 return ERR_PTR(-ENOMEM);
1713 return opp_table;
1715 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1718 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1719 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1721 * This is required only for the V2 bindings, and is called for a matching
1722 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1723 * will not be freed.
1725 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1727 if (unlikely(!opp_table))
1728 return;
1730 /* Make sure there are no concurrent readers while updating opp_table */
1731 WARN_ON(!list_empty(&opp_table->opp_list));
1733 kfree(opp_table->prop_name);
1734 opp_table->prop_name = NULL;
1736 dev_pm_opp_put_opp_table(opp_table);
1738 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1740 static int _allocate_set_opp_data(struct opp_table *opp_table)
1742 struct dev_pm_set_opp_data *data;
1743 int len, count = opp_table->regulator_count;
1745 if (WARN_ON(!opp_table->regulators))
1746 return -EINVAL;
1748 /* space for set_opp_data */
1749 len = sizeof(*data);
1751 /* space for old_opp.supplies and new_opp.supplies */
1752 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1754 data = kzalloc(len, GFP_KERNEL);
1755 if (!data)
1756 return -ENOMEM;
1758 data->old_opp.supplies = (void *)(data + 1);
1759 data->new_opp.supplies = data->old_opp.supplies + count;
1761 opp_table->set_opp_data = data;
1763 return 0;
1766 static void _free_set_opp_data(struct opp_table *opp_table)
1768 kfree(opp_table->set_opp_data);
1769 opp_table->set_opp_data = NULL;
1773 * dev_pm_opp_set_regulators() - Set regulator names for the device
1774 * @dev: Device for which regulator name is being set.
1775 * @names: Array of pointers to the names of the regulator.
1776 * @count: Number of regulators.
1778 * In order to support OPP switching, OPP layer needs to know the name of the
1779 * device's regulators, as the core would be required to switch voltages as
1780 * well.
1782 * This must be called before any OPPs are initialized for the device.
1784 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1785 const char * const names[],
1786 unsigned int count)
1788 struct opp_table *opp_table;
1789 struct regulator *reg;
1790 int ret, i;
1792 opp_table = _add_opp_table(dev);
1793 if (IS_ERR(opp_table))
1794 return opp_table;
1796 /* This should be called before OPPs are initialized */
1797 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1798 ret = -EBUSY;
1799 goto err;
1802 /* Another CPU that shares the OPP table has set the regulators ? */
1803 if (opp_table->regulators)
1804 return opp_table;
1806 opp_table->regulators = kmalloc_array(count,
1807 sizeof(*opp_table->regulators),
1808 GFP_KERNEL);
1809 if (!opp_table->regulators) {
1810 ret = -ENOMEM;
1811 goto err;
1814 for (i = 0; i < count; i++) {
1815 reg = regulator_get_optional(dev, names[i]);
1816 if (IS_ERR(reg)) {
1817 ret = PTR_ERR(reg);
1818 if (ret != -EPROBE_DEFER)
1819 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1820 __func__, names[i], ret);
1821 goto free_regulators;
1824 opp_table->regulators[i] = reg;
1827 opp_table->regulator_count = count;
1829 /* Allocate block only once to pass to set_opp() routines */
1830 ret = _allocate_set_opp_data(opp_table);
1831 if (ret)
1832 goto free_regulators;
1834 return opp_table;
1836 free_regulators:
1837 while (i != 0)
1838 regulator_put(opp_table->regulators[--i]);
1840 kfree(opp_table->regulators);
1841 opp_table->regulators = NULL;
1842 opp_table->regulator_count = -1;
1843 err:
1844 dev_pm_opp_put_opp_table(opp_table);
1846 return ERR_PTR(ret);
1848 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1851 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1852 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1854 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1856 int i;
1858 if (unlikely(!opp_table))
1859 return;
1861 if (!opp_table->regulators)
1862 goto put_opp_table;
1864 /* Make sure there are no concurrent readers while updating opp_table */
1865 WARN_ON(!list_empty(&opp_table->opp_list));
1867 if (opp_table->enabled) {
1868 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1869 regulator_disable(opp_table->regulators[i]);
1872 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1873 regulator_put(opp_table->regulators[i]);
1875 _free_set_opp_data(opp_table);
1877 kfree(opp_table->regulators);
1878 opp_table->regulators = NULL;
1879 opp_table->regulator_count = -1;
1881 put_opp_table:
1882 dev_pm_opp_put_opp_table(opp_table);
1884 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1887 * dev_pm_opp_set_clkname() - Set clk name for the device
1888 * @dev: Device for which clk name is being set.
1889 * @name: Clk name.
1891 * In order to support OPP switching, OPP layer needs to get pointer to the
1892 * clock for the device. Simple cases work fine without using this routine (i.e.
1893 * by passing connection-id as NULL), but for a device with multiple clocks
1894 * available, the OPP core needs to know the exact name of the clk to use.
1896 * This must be called before any OPPs are initialized for the device.
1898 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1900 struct opp_table *opp_table;
1901 int ret;
1903 opp_table = _add_opp_table(dev);
1904 if (IS_ERR(opp_table))
1905 return opp_table;
1907 /* This should be called before OPPs are initialized */
1908 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1909 ret = -EBUSY;
1910 goto err;
1913 /* Already have default clk set, free it */
1914 if (!IS_ERR(opp_table->clk))
1915 clk_put(opp_table->clk);
1917 /* Find clk for the device */
1918 opp_table->clk = clk_get(dev, name);
1919 if (IS_ERR(opp_table->clk)) {
1920 ret = PTR_ERR(opp_table->clk);
1921 if (ret != -EPROBE_DEFER) {
1922 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1923 ret);
1925 goto err;
1928 return opp_table;
1930 err:
1931 dev_pm_opp_put_opp_table(opp_table);
1933 return ERR_PTR(ret);
1935 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1938 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1939 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1941 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1943 if (unlikely(!opp_table))
1944 return;
1946 /* Make sure there are no concurrent readers while updating opp_table */
1947 WARN_ON(!list_empty(&opp_table->opp_list));
1949 clk_put(opp_table->clk);
1950 opp_table->clk = ERR_PTR(-EINVAL);
1952 dev_pm_opp_put_opp_table(opp_table);
1954 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1957 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1958 * @dev: Device for which the helper is getting registered.
1959 * @set_opp: Custom set OPP helper.
1961 * This is useful to support complex platforms (like platforms with multiple
1962 * regulators per device), instead of the generic OPP set rate helper.
1964 * This must be called before any OPPs are initialized for the device.
1966 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1967 int (*set_opp)(struct dev_pm_set_opp_data *data))
1969 struct opp_table *opp_table;
1971 if (!set_opp)
1972 return ERR_PTR(-EINVAL);
1974 opp_table = _add_opp_table(dev);
1975 if (IS_ERR(opp_table))
1976 return opp_table;
1978 /* This should be called before OPPs are initialized */
1979 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1980 dev_pm_opp_put_opp_table(opp_table);
1981 return ERR_PTR(-EBUSY);
1984 /* Another CPU that shares the OPP table has set the helper ? */
1985 if (!opp_table->set_opp)
1986 opp_table->set_opp = set_opp;
1988 return opp_table;
1990 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1993 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1994 * set_opp helper
1995 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1997 * Release resources blocked for platform specific set_opp helper.
1999 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2001 if (unlikely(!opp_table))
2002 return;
2004 /* Make sure there are no concurrent readers while updating opp_table */
2005 WARN_ON(!list_empty(&opp_table->opp_list));
2007 opp_table->set_opp = NULL;
2008 dev_pm_opp_put_opp_table(opp_table);
2010 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2012 static void _opp_detach_genpd(struct opp_table *opp_table)
2014 int index;
2016 if (!opp_table->genpd_virt_devs)
2017 return;
2019 for (index = 0; index < opp_table->required_opp_count; index++) {
2020 if (!opp_table->genpd_virt_devs[index])
2021 continue;
2023 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2024 opp_table->genpd_virt_devs[index] = NULL;
2027 kfree(opp_table->genpd_virt_devs);
2028 opp_table->genpd_virt_devs = NULL;
2032 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2033 * @dev: Consumer device for which the genpd is getting attached.
2034 * @names: Null terminated array of pointers containing names of genpd to attach.
2035 * @virt_devs: Pointer to return the array of virtual devices.
2037 * Multiple generic power domains for a device are supported with the help of
2038 * virtual genpd devices, which are created for each consumer device - genpd
2039 * pair. These are the device structures which are attached to the power domain
2040 * and are required by the OPP core to set the performance state of the genpd.
2041 * The same API also works for the case where single genpd is available and so
2042 * we don't need to support that separately.
2044 * This helper will normally be called by the consumer driver of the device
2045 * "dev", as only that has details of the genpd names.
2047 * This helper needs to be called once with a list of all genpd to attach.
2048 * Otherwise the original device structure will be used instead by the OPP core.
2050 * The order of entries in the names array must match the order in which
2051 * "required-opps" are added in DT.
2053 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2054 const char **names, struct device ***virt_devs)
2056 struct opp_table *opp_table;
2057 struct device *virt_dev;
2058 int index = 0, ret = -EINVAL;
2059 const char **name = names;
2061 opp_table = _add_opp_table(dev);
2062 if (IS_ERR(opp_table))
2063 return opp_table;
2065 if (opp_table->genpd_virt_devs)
2066 return opp_table;
2069 * If the genpd's OPP table isn't already initialized, parsing of the
2070 * required-opps fail for dev. We should retry this after genpd's OPP
2071 * table is added.
2073 if (!opp_table->required_opp_count) {
2074 ret = -EPROBE_DEFER;
2075 goto put_table;
2078 mutex_lock(&opp_table->genpd_virt_dev_lock);
2080 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2081 sizeof(*opp_table->genpd_virt_devs),
2082 GFP_KERNEL);
2083 if (!opp_table->genpd_virt_devs)
2084 goto unlock;
2086 while (*name) {
2087 if (index >= opp_table->required_opp_count) {
2088 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2089 *name, opp_table->required_opp_count, index);
2090 goto err;
2093 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2094 if (IS_ERR(virt_dev)) {
2095 ret = PTR_ERR(virt_dev);
2096 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2097 goto err;
2100 opp_table->genpd_virt_devs[index] = virt_dev;
2101 index++;
2102 name++;
2105 if (virt_devs)
2106 *virt_devs = opp_table->genpd_virt_devs;
2107 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2109 return opp_table;
2111 err:
2112 _opp_detach_genpd(opp_table);
2113 unlock:
2114 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2116 put_table:
2117 dev_pm_opp_put_opp_table(opp_table);
2119 return ERR_PTR(ret);
2121 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2124 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2125 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2127 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2128 * OPP table.
2130 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2132 if (unlikely(!opp_table))
2133 return;
2136 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2137 * used in parallel.
2139 mutex_lock(&opp_table->genpd_virt_dev_lock);
2140 _opp_detach_genpd(opp_table);
2141 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2143 dev_pm_opp_put_opp_table(opp_table);
2145 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2148 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2149 * @src_table: OPP table which has dst_table as one of its required OPP table.
2150 * @dst_table: Required OPP table of the src_table.
2151 * @pstate: Current performance state of the src_table.
2153 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2154 * "required-opps" property of the OPP (present in @src_table) which has
2155 * performance state set to @pstate.
2157 * Return: Zero or positive performance state on success, otherwise negative
2158 * value on errors.
2160 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2161 struct opp_table *dst_table,
2162 unsigned int pstate)
2164 struct dev_pm_opp *opp;
2165 int dest_pstate = -EINVAL;
2166 int i;
2169 * Normally the src_table will have the "required_opps" property set to
2170 * point to one of the OPPs in the dst_table, but in some cases the
2171 * genpd and its master have one to one mapping of performance states
2172 * and so none of them have the "required-opps" property set. Return the
2173 * pstate of the src_table as it is in such cases.
2175 if (!src_table->required_opp_count)
2176 return pstate;
2178 for (i = 0; i < src_table->required_opp_count; i++) {
2179 if (src_table->required_opp_tables[i]->np == dst_table->np)
2180 break;
2183 if (unlikely(i == src_table->required_opp_count)) {
2184 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2185 __func__, src_table, dst_table);
2186 return -EINVAL;
2189 mutex_lock(&src_table->lock);
2191 list_for_each_entry(opp, &src_table->opp_list, node) {
2192 if (opp->pstate == pstate) {
2193 dest_pstate = opp->required_opps[i]->pstate;
2194 goto unlock;
2198 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2199 dst_table);
2201 unlock:
2202 mutex_unlock(&src_table->lock);
2204 return dest_pstate;
2208 * dev_pm_opp_add() - Add an OPP table from a table definitions
2209 * @dev: device for which we do this operation
2210 * @freq: Frequency in Hz for this OPP
2211 * @u_volt: Voltage in uVolts for this OPP
2213 * This function adds an opp definition to the opp table and returns status.
2214 * The opp is made available by default and it can be controlled using
2215 * dev_pm_opp_enable/disable functions.
2217 * Return:
2218 * 0 On success OR
2219 * Duplicate OPPs (both freq and volt are same) and opp->available
2220 * -EEXIST Freq are same and volt are different OR
2221 * Duplicate OPPs (both freq and volt are same) and !opp->available
2222 * -ENOMEM Memory allocation failure
2224 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2226 struct opp_table *opp_table;
2227 int ret;
2229 opp_table = _add_opp_table(dev);
2230 if (IS_ERR(opp_table))
2231 return PTR_ERR(opp_table);
2233 /* Fix regulator count for dynamic OPPs */
2234 opp_table->regulator_count = 1;
2236 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2237 if (ret)
2238 dev_pm_opp_put_opp_table(opp_table);
2240 return ret;
2242 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2245 * _opp_set_availability() - helper to set the availability of an opp
2246 * @dev: device for which we do this operation
2247 * @freq: OPP frequency to modify availability
2248 * @availability_req: availability status requested for this opp
2250 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2251 * which is isolated here.
2253 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2254 * copy operation, returns 0 if no modification was done OR modification was
2255 * successful.
2257 static int _opp_set_availability(struct device *dev, unsigned long freq,
2258 bool availability_req)
2260 struct opp_table *opp_table;
2261 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2262 int r = 0;
2264 /* Find the opp_table */
2265 opp_table = _find_opp_table(dev);
2266 if (IS_ERR(opp_table)) {
2267 r = PTR_ERR(opp_table);
2268 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2269 return r;
2272 mutex_lock(&opp_table->lock);
2274 /* Do we have the frequency? */
2275 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2276 if (tmp_opp->rate == freq) {
2277 opp = tmp_opp;
2278 break;
2282 if (IS_ERR(opp)) {
2283 r = PTR_ERR(opp);
2284 goto unlock;
2287 /* Is update really needed? */
2288 if (opp->available == availability_req)
2289 goto unlock;
2291 opp->available = availability_req;
2293 dev_pm_opp_get(opp);
2294 mutex_unlock(&opp_table->lock);
2296 /* Notify the change of the OPP availability */
2297 if (availability_req)
2298 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2299 opp);
2300 else
2301 blocking_notifier_call_chain(&opp_table->head,
2302 OPP_EVENT_DISABLE, opp);
2304 dev_pm_opp_put(opp);
2305 goto put_table;
2307 unlock:
2308 mutex_unlock(&opp_table->lock);
2309 put_table:
2310 dev_pm_opp_put_opp_table(opp_table);
2311 return r;
2315 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2316 * @dev: device for which we do this operation
2317 * @freq: OPP frequency to adjust voltage of
2318 * @u_volt: new OPP target voltage
2319 * @u_volt_min: new OPP min voltage
2320 * @u_volt_max: new OPP max voltage
2322 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2323 * copy operation, returns 0 if no modifcation was done OR modification was
2324 * successful.
2326 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2327 unsigned long u_volt, unsigned long u_volt_min,
2328 unsigned long u_volt_max)
2331 struct opp_table *opp_table;
2332 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2333 int r = 0;
2335 /* Find the opp_table */
2336 opp_table = _find_opp_table(dev);
2337 if (IS_ERR(opp_table)) {
2338 r = PTR_ERR(opp_table);
2339 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2340 return r;
2343 mutex_lock(&opp_table->lock);
2345 /* Do we have the frequency? */
2346 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2347 if (tmp_opp->rate == freq) {
2348 opp = tmp_opp;
2349 break;
2353 if (IS_ERR(opp)) {
2354 r = PTR_ERR(opp);
2355 goto adjust_unlock;
2358 /* Is update really needed? */
2359 if (opp->supplies->u_volt == u_volt)
2360 goto adjust_unlock;
2362 opp->supplies->u_volt = u_volt;
2363 opp->supplies->u_volt_min = u_volt_min;
2364 opp->supplies->u_volt_max = u_volt_max;
2366 dev_pm_opp_get(opp);
2367 mutex_unlock(&opp_table->lock);
2369 /* Notify the voltage change of the OPP */
2370 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2371 opp);
2373 dev_pm_opp_put(opp);
2374 goto adjust_put_table;
2376 adjust_unlock:
2377 mutex_unlock(&opp_table->lock);
2378 adjust_put_table:
2379 dev_pm_opp_put_opp_table(opp_table);
2380 return r;
2382 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2385 * dev_pm_opp_enable() - Enable a specific OPP
2386 * @dev: device for which we do this operation
2387 * @freq: OPP frequency to enable
2389 * Enables a provided opp. If the operation is valid, this returns 0, else the
2390 * corresponding error value. It is meant to be used for users an OPP available
2391 * after being temporarily made unavailable with dev_pm_opp_disable.
2393 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2394 * copy operation, returns 0 if no modification was done OR modification was
2395 * successful.
2397 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2399 return _opp_set_availability(dev, freq, true);
2401 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2404 * dev_pm_opp_disable() - Disable a specific OPP
2405 * @dev: device for which we do this operation
2406 * @freq: OPP frequency to disable
2408 * Disables a provided opp. If the operation is valid, this returns
2409 * 0, else the corresponding error value. It is meant to be a temporary
2410 * control by users to make this OPP not available until the circumstances are
2411 * right to make it available again (with a call to dev_pm_opp_enable).
2413 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2414 * copy operation, returns 0 if no modification was done OR modification was
2415 * successful.
2417 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2419 return _opp_set_availability(dev, freq, false);
2421 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2424 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2425 * @dev: Device for which notifier needs to be registered
2426 * @nb: Notifier block to be registered
2428 * Return: 0 on success or a negative error value.
2430 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2432 struct opp_table *opp_table;
2433 int ret;
2435 opp_table = _find_opp_table(dev);
2436 if (IS_ERR(opp_table))
2437 return PTR_ERR(opp_table);
2439 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2441 dev_pm_opp_put_opp_table(opp_table);
2443 return ret;
2445 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2448 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2449 * @dev: Device for which notifier needs to be unregistered
2450 * @nb: Notifier block to be unregistered
2452 * Return: 0 on success or a negative error value.
2454 int dev_pm_opp_unregister_notifier(struct device *dev,
2455 struct notifier_block *nb)
2457 struct opp_table *opp_table;
2458 int ret;
2460 opp_table = _find_opp_table(dev);
2461 if (IS_ERR(opp_table))
2462 return PTR_ERR(opp_table);
2464 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2466 dev_pm_opp_put_opp_table(opp_table);
2468 return ret;
2470 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2473 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2474 * @dev: device pointer used to lookup OPP table.
2476 * Free both OPPs created using static entries present in DT and the
2477 * dynamically added entries.
2479 void dev_pm_opp_remove_table(struct device *dev)
2481 struct opp_table *opp_table;
2483 /* Check for existing table for 'dev' */
2484 opp_table = _find_opp_table(dev);
2485 if (IS_ERR(opp_table)) {
2486 int error = PTR_ERR(opp_table);
2488 if (error != -ENODEV)
2489 WARN(1, "%s: opp_table: %d\n",
2490 IS_ERR_OR_NULL(dev) ?
2491 "Invalid device" : dev_name(dev),
2492 error);
2493 return;
2497 * Drop the extra reference only if the OPP table was successfully added
2498 * with dev_pm_opp_of_add_table() earlier.
2500 if (_opp_remove_all_static(opp_table))
2501 dev_pm_opp_put_opp_table(opp_table);
2503 /* Drop reference taken by _find_opp_table() */
2504 dev_pm_opp_put_opp_table(opp_table);
2506 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);