Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / perf / arm_pmu.c
blob794a37d5085376c54b571274f360f9c427d5c5d9
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
4 /*
5 * ARM performance counter support.
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/irq_regs.h>
29 static int armpmu_count_irq_users(const int irq);
31 struct pmu_irq_ops {
32 void (*enable_pmuirq)(unsigned int irq);
33 void (*disable_pmuirq)(unsigned int irq);
34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
39 free_irq(irq, per_cpu_ptr(devid, cpu));
42 static const struct pmu_irq_ops pmuirq_ops = {
43 .enable_pmuirq = enable_irq,
44 .disable_pmuirq = disable_irq_nosync,
45 .free_pmuirq = armpmu_free_pmuirq
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
50 free_nmi(irq, per_cpu_ptr(devid, cpu));
53 static const struct pmu_irq_ops pmunmi_ops = {
54 .enable_pmuirq = enable_nmi,
55 .disable_pmuirq = disable_nmi_nosync,
56 .free_pmuirq = armpmu_free_pmunmi
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
61 enable_percpu_irq(irq, IRQ_TYPE_NONE);
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 void __percpu *devid)
67 if (armpmu_count_irq_users(irq) == 1)
68 free_percpu_irq(irq, devid);
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 .disable_pmuirq = disable_percpu_irq,
74 .free_pmuirq = armpmu_free_percpu_pmuirq
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
79 if (!prepare_percpu_nmi(irq))
80 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
85 disable_percpu_nmi(irq);
86 teardown_percpu_nmi(irq);
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 void __percpu *devid)
92 if (armpmu_count_irq_users(irq) == 1)
93 free_percpu_nmi(irq, devid);
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 .free_pmuirq = armpmu_free_percpu_pmunmi
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
106 static bool has_nmi;
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
110 if (event->hw.flags & ARMPMU_EVT_64BIT)
111 return GENMASK_ULL(63, 0);
112 else
113 return GENMASK_ULL(31, 0);
116 static int
117 armpmu_map_cache_event(const unsigned (*cache_map)
118 [PERF_COUNT_HW_CACHE_MAX]
119 [PERF_COUNT_HW_CACHE_OP_MAX]
120 [PERF_COUNT_HW_CACHE_RESULT_MAX],
121 u64 config)
123 unsigned int cache_type, cache_op, cache_result, ret;
125 cache_type = (config >> 0) & 0xff;
126 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127 return -EINVAL;
129 cache_op = (config >> 8) & 0xff;
130 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131 return -EINVAL;
133 cache_result = (config >> 16) & 0xff;
134 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135 return -EINVAL;
137 if (!cache_map)
138 return -ENOENT;
140 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
142 if (ret == CACHE_OP_UNSUPPORTED)
143 return -ENOENT;
145 return ret;
148 static int
149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
151 int mapping;
153 if (config >= PERF_COUNT_HW_MAX)
154 return -EINVAL;
156 if (!event_map)
157 return -ENOENT;
159 mapping = (*event_map)[config];
160 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 static int
164 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
166 return (int)(config & raw_event_mask);
170 armpmu_map_event(struct perf_event *event,
171 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172 const unsigned (*cache_map)
173 [PERF_COUNT_HW_CACHE_MAX]
174 [PERF_COUNT_HW_CACHE_OP_MAX]
175 [PERF_COUNT_HW_CACHE_RESULT_MAX],
176 u32 raw_event_mask)
178 u64 config = event->attr.config;
179 int type = event->attr.type;
181 if (type == event->pmu->type)
182 return armpmu_map_raw_event(raw_event_mask, config);
184 switch (type) {
185 case PERF_TYPE_HARDWARE:
186 return armpmu_map_hw_event(event_map, config);
187 case PERF_TYPE_HW_CACHE:
188 return armpmu_map_cache_event(cache_map, config);
189 case PERF_TYPE_RAW:
190 return armpmu_map_raw_event(raw_event_mask, config);
193 return -ENOENT;
196 int armpmu_event_set_period(struct perf_event *event)
198 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199 struct hw_perf_event *hwc = &event->hw;
200 s64 left = local64_read(&hwc->period_left);
201 s64 period = hwc->sample_period;
202 u64 max_period;
203 int ret = 0;
205 max_period = arm_pmu_event_max_period(event);
206 if (unlikely(left <= -period)) {
207 left = period;
208 local64_set(&hwc->period_left, left);
209 hwc->last_period = period;
210 ret = 1;
213 if (unlikely(left <= 0)) {
214 left += period;
215 local64_set(&hwc->period_left, left);
216 hwc->last_period = period;
217 ret = 1;
221 * Limit the maximum period to prevent the counter value
222 * from overtaking the one we are about to program. In
223 * effect we are reducing max_period to account for
224 * interrupt latency (and we are being very conservative).
226 if (left > (max_period >> 1))
227 left = (max_period >> 1);
229 local64_set(&hwc->prev_count, (u64)-left);
231 armpmu->write_counter(event, (u64)(-left) & max_period);
233 perf_event_update_userpage(event);
235 return ret;
238 u64 armpmu_event_update(struct perf_event *event)
240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 struct hw_perf_event *hwc = &event->hw;
242 u64 delta, prev_raw_count, new_raw_count;
243 u64 max_period = arm_pmu_event_max_period(event);
245 again:
246 prev_raw_count = local64_read(&hwc->prev_count);
247 new_raw_count = armpmu->read_counter(event);
249 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250 new_raw_count) != prev_raw_count)
251 goto again;
253 delta = (new_raw_count - prev_raw_count) & max_period;
255 local64_add(delta, &event->count);
256 local64_sub(delta, &hwc->period_left);
258 return new_raw_count;
261 static void
262 armpmu_read(struct perf_event *event)
264 armpmu_event_update(event);
267 static void
268 armpmu_stop(struct perf_event *event, int flags)
270 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271 struct hw_perf_event *hwc = &event->hw;
274 * ARM pmu always has to update the counter, so ignore
275 * PERF_EF_UPDATE, see comments in armpmu_start().
277 if (!(hwc->state & PERF_HES_STOPPED)) {
278 armpmu->disable(event);
279 armpmu_event_update(event);
280 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
284 static void armpmu_start(struct perf_event *event, int flags)
286 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287 struct hw_perf_event *hwc = &event->hw;
290 * ARM pmu always has to reprogram the period, so ignore
291 * PERF_EF_RELOAD, see the comment below.
293 if (flags & PERF_EF_RELOAD)
294 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
296 hwc->state = 0;
298 * Set the period again. Some counters can't be stopped, so when we
299 * were stopped we simply disabled the IRQ source and the counter
300 * may have been left counting. If we don't do this step then we may
301 * get an interrupt too soon or *way* too late if the overflow has
302 * happened since disabling.
304 armpmu_event_set_period(event);
305 armpmu->enable(event);
308 static void
309 armpmu_del(struct perf_event *event, int flags)
311 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313 struct hw_perf_event *hwc = &event->hw;
314 int idx = hwc->idx;
316 armpmu_stop(event, PERF_EF_UPDATE);
317 hw_events->events[idx] = NULL;
318 armpmu->clear_event_idx(hw_events, event);
319 perf_event_update_userpage(event);
320 /* Clear the allocated counter */
321 hwc->idx = -1;
324 static int
325 armpmu_add(struct perf_event *event, int flags)
327 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329 struct hw_perf_event *hwc = &event->hw;
330 int idx;
332 /* An event following a process won't be stopped earlier */
333 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334 return -ENOENT;
336 /* If we don't have a space for the counter then finish early. */
337 idx = armpmu->get_event_idx(hw_events, event);
338 if (idx < 0)
339 return idx;
342 * If there is an event in the counter we are going to use then make
343 * sure it is disabled.
345 event->hw.idx = idx;
346 armpmu->disable(event);
347 hw_events->events[idx] = event;
349 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350 if (flags & PERF_EF_START)
351 armpmu_start(event, PERF_EF_RELOAD);
353 /* Propagate our changes to the userspace mapping. */
354 perf_event_update_userpage(event);
356 return 0;
359 static int
360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361 struct perf_event *event)
363 struct arm_pmu *armpmu;
365 if (is_software_event(event))
366 return 1;
369 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370 * core perf code won't check that the pmu->ctx == leader->ctx
371 * until after pmu->event_init(event).
373 if (event->pmu != pmu)
374 return 0;
376 if (event->state < PERF_EVENT_STATE_OFF)
377 return 1;
379 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380 return 1;
382 armpmu = to_arm_pmu(event->pmu);
383 return armpmu->get_event_idx(hw_events, event) >= 0;
386 static int
387 validate_group(struct perf_event *event)
389 struct perf_event *sibling, *leader = event->group_leader;
390 struct pmu_hw_events fake_pmu;
393 * Initialise the fake PMU. We only need to populate the
394 * used_mask for the purposes of validation.
396 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
398 if (!validate_event(event->pmu, &fake_pmu, leader))
399 return -EINVAL;
401 for_each_sibling_event(sibling, leader) {
402 if (!validate_event(event->pmu, &fake_pmu, sibling))
403 return -EINVAL;
406 if (!validate_event(event->pmu, &fake_pmu, event))
407 return -EINVAL;
409 return 0;
412 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
414 struct arm_pmu *armpmu;
415 int ret;
416 u64 start_clock, finish_clock;
419 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
420 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
421 * do any necessary shifting, we just need to perform the first
422 * dereference.
424 armpmu = *(void **)dev;
425 if (WARN_ON_ONCE(!armpmu))
426 return IRQ_NONE;
428 start_clock = sched_clock();
429 ret = armpmu->handle_irq(armpmu);
430 finish_clock = sched_clock();
432 perf_sample_event_took(finish_clock - start_clock);
433 return ret;
436 static int
437 __hw_perf_event_init(struct perf_event *event)
439 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
440 struct hw_perf_event *hwc = &event->hw;
441 int mapping;
443 hwc->flags = 0;
444 mapping = armpmu->map_event(event);
446 if (mapping < 0) {
447 pr_debug("event %x:%llx not supported\n", event->attr.type,
448 event->attr.config);
449 return mapping;
453 * We don't assign an index until we actually place the event onto
454 * hardware. Use -1 to signify that we haven't decided where to put it
455 * yet. For SMP systems, each core has it's own PMU so we can't do any
456 * clever allocation or constraints checking at this point.
458 hwc->idx = -1;
459 hwc->config_base = 0;
460 hwc->config = 0;
461 hwc->event_base = 0;
464 * Check whether we need to exclude the counter from certain modes.
466 if (armpmu->set_event_filter &&
467 armpmu->set_event_filter(hwc, &event->attr)) {
468 pr_debug("ARM performance counters do not support "
469 "mode exclusion\n");
470 return -EOPNOTSUPP;
474 * Store the event encoding into the config_base field.
476 hwc->config_base |= (unsigned long)mapping;
478 if (!is_sampling_event(event)) {
480 * For non-sampling runs, limit the sample_period to half
481 * of the counter width. That way, the new counter value
482 * is far less likely to overtake the previous one unless
483 * you have some serious IRQ latency issues.
485 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
486 hwc->last_period = hwc->sample_period;
487 local64_set(&hwc->period_left, hwc->sample_period);
490 if (event->group_leader != event) {
491 if (validate_group(event) != 0)
492 return -EINVAL;
495 return 0;
498 static int armpmu_event_init(struct perf_event *event)
500 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
503 * Reject CPU-affine events for CPUs that are of a different class to
504 * that which this PMU handles. Process-following events (where
505 * event->cpu == -1) can be migrated between CPUs, and thus we have to
506 * reject them later (in armpmu_add) if they're scheduled on a
507 * different class of CPU.
509 if (event->cpu != -1 &&
510 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511 return -ENOENT;
513 /* does not support taken branch sampling */
514 if (has_branch_stack(event))
515 return -EOPNOTSUPP;
517 if (armpmu->map_event(event) == -ENOENT)
518 return -ENOENT;
520 return __hw_perf_event_init(event);
523 static void armpmu_enable(struct pmu *pmu)
525 struct arm_pmu *armpmu = to_arm_pmu(pmu);
526 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
527 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
529 /* For task-bound events we may be called on other CPUs */
530 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
531 return;
533 if (enabled)
534 armpmu->start(armpmu);
537 static void armpmu_disable(struct pmu *pmu)
539 struct arm_pmu *armpmu = to_arm_pmu(pmu);
541 /* For task-bound events we may be called on other CPUs */
542 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
543 return;
545 armpmu->stop(armpmu);
549 * In heterogeneous systems, events are specific to a particular
550 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
551 * the same microarchitecture.
553 static int armpmu_filter_match(struct perf_event *event)
555 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
556 unsigned int cpu = smp_processor_id();
557 int ret;
559 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
560 if (ret && armpmu->filter_match)
561 return armpmu->filter_match(event);
563 return ret;
566 static ssize_t armpmu_cpumask_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
569 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
570 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
573 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
575 static struct attribute *armpmu_common_attrs[] = {
576 &dev_attr_cpus.attr,
577 NULL,
580 static struct attribute_group armpmu_common_attr_group = {
581 .attrs = armpmu_common_attrs,
584 /* Set at runtime when we know what CPU type we are. */
585 static struct arm_pmu *__oprofile_cpu_pmu;
588 * Despite the names, these two functions are CPU-specific and are used
589 * by the OProfile/perf code.
591 const char *perf_pmu_name(void)
593 if (!__oprofile_cpu_pmu)
594 return NULL;
596 return __oprofile_cpu_pmu->name;
598 EXPORT_SYMBOL_GPL(perf_pmu_name);
600 int perf_num_counters(void)
602 int max_events = 0;
604 if (__oprofile_cpu_pmu != NULL)
605 max_events = __oprofile_cpu_pmu->num_events;
607 return max_events;
609 EXPORT_SYMBOL_GPL(perf_num_counters);
611 static int armpmu_count_irq_users(const int irq)
613 int cpu, count = 0;
615 for_each_possible_cpu(cpu) {
616 if (per_cpu(cpu_irq, cpu) == irq)
617 count++;
620 return count;
623 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
625 const struct pmu_irq_ops *ops = NULL;
626 int cpu;
628 for_each_possible_cpu(cpu) {
629 if (per_cpu(cpu_irq, cpu) != irq)
630 continue;
632 ops = per_cpu(cpu_irq_ops, cpu);
633 if (ops)
634 break;
637 return ops;
640 void armpmu_free_irq(int irq, int cpu)
642 if (per_cpu(cpu_irq, cpu) == 0)
643 return;
644 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
645 return;
647 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
649 per_cpu(cpu_irq, cpu) = 0;
650 per_cpu(cpu_irq_ops, cpu) = NULL;
653 int armpmu_request_irq(int irq, int cpu)
655 int err = 0;
656 const irq_handler_t handler = armpmu_dispatch_irq;
657 const struct pmu_irq_ops *irq_ops;
659 if (!irq)
660 return 0;
662 if (!irq_is_percpu_devid(irq)) {
663 unsigned long irq_flags;
665 err = irq_force_affinity(irq, cpumask_of(cpu));
667 if (err && num_possible_cpus() > 1) {
668 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
669 irq, cpu);
670 goto err_out;
673 irq_flags = IRQF_PERCPU |
674 IRQF_NOBALANCING |
675 IRQF_NO_THREAD;
677 irq_set_status_flags(irq, IRQ_NOAUTOEN);
679 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
680 per_cpu_ptr(&cpu_armpmu, cpu));
682 /* If cannot get an NMI, get a normal interrupt */
683 if (err) {
684 err = request_irq(irq, handler, irq_flags, "arm-pmu",
685 per_cpu_ptr(&cpu_armpmu, cpu));
686 irq_ops = &pmuirq_ops;
687 } else {
688 has_nmi = true;
689 irq_ops = &pmunmi_ops;
691 } else if (armpmu_count_irq_users(irq) == 0) {
692 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
694 /* If cannot get an NMI, get a normal interrupt */
695 if (err) {
696 err = request_percpu_irq(irq, handler, "arm-pmu",
697 &cpu_armpmu);
698 irq_ops = &percpu_pmuirq_ops;
699 } else {
700 has_nmi= true;
701 irq_ops = &percpu_pmunmi_ops;
703 } else {
704 /* Per cpudevid irq was already requested by another CPU */
705 irq_ops = armpmu_find_irq_ops(irq);
707 if (WARN_ON(!irq_ops))
708 err = -EINVAL;
711 if (err)
712 goto err_out;
714 per_cpu(cpu_irq, cpu) = irq;
715 per_cpu(cpu_irq_ops, cpu) = irq_ops;
716 return 0;
718 err_out:
719 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
720 return err;
723 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
725 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
726 return per_cpu(hw_events->irq, cpu);
729 bool arm_pmu_irq_is_nmi(void)
731 return has_nmi;
735 * PMU hardware loses all context when a CPU goes offline.
736 * When a CPU is hotplugged back in, since some hardware registers are
737 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
738 * junk values out of them.
740 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
742 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
743 int irq;
745 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
746 return 0;
747 if (pmu->reset)
748 pmu->reset(pmu);
750 per_cpu(cpu_armpmu, cpu) = pmu;
752 irq = armpmu_get_cpu_irq(pmu, cpu);
753 if (irq)
754 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
756 return 0;
759 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
761 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
762 int irq;
764 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
765 return 0;
767 irq = armpmu_get_cpu_irq(pmu, cpu);
768 if (irq)
769 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
771 per_cpu(cpu_armpmu, cpu) = NULL;
773 return 0;
776 #ifdef CONFIG_CPU_PM
777 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
779 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
780 struct perf_event *event;
781 int idx;
783 for (idx = 0; idx < armpmu->num_events; idx++) {
784 event = hw_events->events[idx];
785 if (!event)
786 continue;
788 switch (cmd) {
789 case CPU_PM_ENTER:
791 * Stop and update the counter
793 armpmu_stop(event, PERF_EF_UPDATE);
794 break;
795 case CPU_PM_EXIT:
796 case CPU_PM_ENTER_FAILED:
798 * Restore and enable the counter.
799 * armpmu_start() indirectly calls
801 * perf_event_update_userpage()
803 * that requires RCU read locking to be functional,
804 * wrap the call within RCU_NONIDLE to make the
805 * RCU subsystem aware this cpu is not idle from
806 * an RCU perspective for the armpmu_start() call
807 * duration.
809 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
810 break;
811 default:
812 break;
817 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
818 void *v)
820 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
821 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
822 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
824 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
825 return NOTIFY_DONE;
828 * Always reset the PMU registers on power-up even if
829 * there are no events running.
831 if (cmd == CPU_PM_EXIT && armpmu->reset)
832 armpmu->reset(armpmu);
834 if (!enabled)
835 return NOTIFY_OK;
837 switch (cmd) {
838 case CPU_PM_ENTER:
839 armpmu->stop(armpmu);
840 cpu_pm_pmu_setup(armpmu, cmd);
841 break;
842 case CPU_PM_EXIT:
843 case CPU_PM_ENTER_FAILED:
844 cpu_pm_pmu_setup(armpmu, cmd);
845 armpmu->start(armpmu);
846 break;
847 default:
848 return NOTIFY_DONE;
851 return NOTIFY_OK;
854 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
856 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
857 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
860 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
862 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
864 #else
865 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
866 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
867 #endif
869 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
871 int err;
873 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
874 &cpu_pmu->node);
875 if (err)
876 goto out;
878 err = cpu_pm_pmu_register(cpu_pmu);
879 if (err)
880 goto out_unregister;
882 return 0;
884 out_unregister:
885 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
886 &cpu_pmu->node);
887 out:
888 return err;
891 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
893 cpu_pm_pmu_unregister(cpu_pmu);
894 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
895 &cpu_pmu->node);
898 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
900 struct arm_pmu *pmu;
901 int cpu;
903 pmu = kzalloc(sizeof(*pmu), flags);
904 if (!pmu) {
905 pr_info("failed to allocate PMU device!\n");
906 goto out;
909 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
910 if (!pmu->hw_events) {
911 pr_info("failed to allocate per-cpu PMU data.\n");
912 goto out_free_pmu;
915 pmu->pmu = (struct pmu) {
916 .pmu_enable = armpmu_enable,
917 .pmu_disable = armpmu_disable,
918 .event_init = armpmu_event_init,
919 .add = armpmu_add,
920 .del = armpmu_del,
921 .start = armpmu_start,
922 .stop = armpmu_stop,
923 .read = armpmu_read,
924 .filter_match = armpmu_filter_match,
925 .attr_groups = pmu->attr_groups,
927 * This is a CPU PMU potentially in a heterogeneous
928 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
929 * and we have taken ctx sharing into account (e.g. with our
930 * pmu::filter_match callback and pmu::event_init group
931 * validation).
933 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
936 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
937 &armpmu_common_attr_group;
939 for_each_possible_cpu(cpu) {
940 struct pmu_hw_events *events;
942 events = per_cpu_ptr(pmu->hw_events, cpu);
943 raw_spin_lock_init(&events->pmu_lock);
944 events->percpu_pmu = pmu;
947 return pmu;
949 out_free_pmu:
950 kfree(pmu);
951 out:
952 return NULL;
955 struct arm_pmu *armpmu_alloc(void)
957 return __armpmu_alloc(GFP_KERNEL);
960 struct arm_pmu *armpmu_alloc_atomic(void)
962 return __armpmu_alloc(GFP_ATOMIC);
966 void armpmu_free(struct arm_pmu *pmu)
968 free_percpu(pmu->hw_events);
969 kfree(pmu);
972 int armpmu_register(struct arm_pmu *pmu)
974 int ret;
976 ret = cpu_pmu_init(pmu);
977 if (ret)
978 return ret;
980 if (!pmu->set_event_filter)
981 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
983 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
984 if (ret)
985 goto out_destroy;
987 if (!__oprofile_cpu_pmu)
988 __oprofile_cpu_pmu = pmu;
990 pr_info("enabled with %s PMU driver, %d counters available%s\n",
991 pmu->name, pmu->num_events,
992 has_nmi ? ", using NMIs" : "");
994 return 0;
996 out_destroy:
997 cpu_pmu_destroy(pmu);
998 return ret;
1001 static int arm_pmu_hp_init(void)
1003 int ret;
1005 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1006 "perf/arm/pmu:starting",
1007 arm_perf_starting_cpu,
1008 arm_perf_teardown_cpu);
1009 if (ret)
1010 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1011 ret);
1012 return ret;
1014 subsys_initcall(arm_pmu_hp_init);