1 // SPDX-License-Identifier: GPL-2.0-only
3 * TI K3 R5F (MCU) Remote Processor driver
5 * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/omap-mailbox.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/remoteproc.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
25 #include "omap_remoteproc.h"
26 #include "remoteproc_internal.h"
27 #include "ti_sci_proc.h"
29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
30 #define K3_R5_TCM_DEV_ADDR 0x41010000
32 /* R5 TI-SCI Processor Configuration Flags */
33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
41 /* Available from J7200 SoCs onwards */
42 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
44 /* R5 TI-SCI Processor Control Flags */
45 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
47 /* R5 TI-SCI Processor Status Flags */
48 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
49 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
50 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
51 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
54 * struct k3_r5_mem - internal memory structure
55 * @cpu_addr: MPU virtual address of the memory region
56 * @bus_addr: Bus address used to access the memory region
57 * @dev_addr: Device address from remoteproc view
58 * @size: Size of the memory region
61 void __iomem
*cpu_addr
;
68 CLUSTER_MODE_SPLIT
= 0,
69 CLUSTER_MODE_LOCKSTEP
,
73 * struct k3_r5_soc_data - match data to handle SoC variations
74 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
75 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
77 struct k3_r5_soc_data
{
79 bool tcm_ecc_autoinit
;
83 * struct k3_r5_cluster - K3 R5F Cluster structure
84 * @dev: cached device pointer
85 * @mode: Mode to configure the Cluster - Split or LockStep
86 * @cores: list of R5 cores within the cluster
87 * @soc_data: SoC-specific feature data for a R5FSS
89 struct k3_r5_cluster
{
91 enum cluster_mode mode
;
92 struct list_head cores
;
93 const struct k3_r5_soc_data
*soc_data
;
97 * struct k3_r5_core - K3 R5 core structure
98 * @elem: linked list item
99 * @dev: cached device pointer
100 * @rproc: rproc handle representing this core
101 * @mem: internal memory regions data
102 * @sram: on-chip SRAM memory regions data
103 * @num_mems: number of internal memory regions
104 * @num_sram: number of on-chip SRAM memory regions
105 * @reset: reset control handle
106 * @tsp: TI-SCI processor control handle
107 * @ti_sci: TI-SCI handle
108 * @ti_sci_id: TI-SCI device identifier
109 * @atcm_enable: flag to control ATCM enablement
110 * @btcm_enable: flag to control BTCM enablement
111 * @loczrama: flag to dictate which TCM is at device address 0x0
114 struct list_head elem
;
117 struct k3_r5_mem
*mem
;
118 struct k3_r5_mem
*sram
;
121 struct reset_control
*reset
;
122 struct ti_sci_proc
*tsp
;
123 const struct ti_sci_handle
*ti_sci
;
131 * struct k3_r5_rproc - K3 remote processor state
132 * @dev: cached device pointer
133 * @cluster: cached pointer to parent cluster structure
134 * @mbox: mailbox channel handle
135 * @client: mailbox client to request the mailbox channel
136 * @rproc: rproc handle
137 * @core: cached pointer to r5 core structure being used
138 * @rmem: reserved memory regions data
139 * @num_rmems: number of reserved memory regions
143 struct k3_r5_cluster
*cluster
;
144 struct mbox_chan
*mbox
;
145 struct mbox_client client
;
147 struct k3_r5_core
*core
;
148 struct k3_r5_mem
*rmem
;
153 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
154 * @client: mailbox client pointer used for requesting the mailbox channel
155 * @data: mailbox payload
157 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
158 * message is received. Usually, the mailbox payload simply contains
159 * the index of the virtqueue that is kicked by the remote processor,
160 * and we let remoteproc core handle it.
162 * In addition to virtqueue indices, we also have some out-of-band values
163 * that indicate different events. Those values are deliberately very
164 * large so they don't coincide with virtqueue indices.
166 static void k3_r5_rproc_mbox_callback(struct mbox_client
*client
, void *data
)
168 struct k3_r5_rproc
*kproc
= container_of(client
, struct k3_r5_rproc
,
170 struct device
*dev
= kproc
->rproc
->dev
.parent
;
171 const char *name
= kproc
->rproc
->name
;
172 u32 msg
= omap_mbox_message(data
);
174 dev_dbg(dev
, "mbox msg: 0x%x\n", msg
);
179 * remoteproc detected an exception, but error recovery is not
180 * supported. So, just log this for now
182 dev_err(dev
, "K3 R5F rproc %s crashed\n", name
);
184 case RP_MBOX_ECHO_REPLY
:
185 dev_info(dev
, "received echo reply from %s\n", name
);
188 /* silently handle all other valid messages */
189 if (msg
>= RP_MBOX_READY
&& msg
< RP_MBOX_END_MSG
)
191 if (msg
> kproc
->rproc
->max_notifyid
) {
192 dev_dbg(dev
, "dropping unknown message 0x%x", msg
);
195 /* msg contains the index of the triggered vring */
196 if (rproc_vq_interrupt(kproc
->rproc
, msg
) == IRQ_NONE
)
197 dev_dbg(dev
, "no message was found in vqid %d\n", msg
);
201 /* kick a virtqueue */
202 static void k3_r5_rproc_kick(struct rproc
*rproc
, int vqid
)
204 struct k3_r5_rproc
*kproc
= rproc
->priv
;
205 struct device
*dev
= rproc
->dev
.parent
;
206 mbox_msg_t msg
= (mbox_msg_t
)vqid
;
209 /* send the index of the triggered virtqueue in the mailbox payload */
210 ret
= mbox_send_message(kproc
->mbox
, (void *)msg
);
212 dev_err(dev
, "failed to send mailbox message, status = %d\n",
216 static int k3_r5_split_reset(struct k3_r5_core
*core
)
220 ret
= reset_control_assert(core
->reset
);
222 dev_err(core
->dev
, "local-reset assert failed, ret = %d\n",
227 ret
= core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
230 dev_err(core
->dev
, "module-reset assert failed, ret = %d\n",
232 if (reset_control_deassert(core
->reset
))
233 dev_warn(core
->dev
, "local-reset deassert back failed\n");
239 static int k3_r5_split_release(struct k3_r5_core
*core
)
243 ret
= core
->ti_sci
->ops
.dev_ops
.get_device(core
->ti_sci
,
246 dev_err(core
->dev
, "module-reset deassert failed, ret = %d\n",
251 ret
= reset_control_deassert(core
->reset
);
253 dev_err(core
->dev
, "local-reset deassert failed, ret = %d\n",
255 if (core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
257 dev_warn(core
->dev
, "module-reset assert back failed\n");
263 static int k3_r5_lockstep_reset(struct k3_r5_cluster
*cluster
)
265 struct k3_r5_core
*core
;
268 /* assert local reset on all applicable cores */
269 list_for_each_entry(core
, &cluster
->cores
, elem
) {
270 ret
= reset_control_assert(core
->reset
);
272 dev_err(core
->dev
, "local-reset assert failed, ret = %d\n",
274 core
= list_prev_entry(core
, elem
);
275 goto unroll_local_reset
;
279 /* disable PSC modules on all applicable cores */
280 list_for_each_entry(core
, &cluster
->cores
, elem
) {
281 ret
= core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
284 dev_err(core
->dev
, "module-reset assert failed, ret = %d\n",
286 goto unroll_module_reset
;
293 list_for_each_entry_continue_reverse(core
, &cluster
->cores
, elem
) {
294 if (core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
296 dev_warn(core
->dev
, "module-reset assert back failed\n");
298 core
= list_last_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
300 list_for_each_entry_from_reverse(core
, &cluster
->cores
, elem
) {
301 if (reset_control_deassert(core
->reset
))
302 dev_warn(core
->dev
, "local-reset deassert back failed\n");
308 static int k3_r5_lockstep_release(struct k3_r5_cluster
*cluster
)
310 struct k3_r5_core
*core
;
313 /* enable PSC modules on all applicable cores */
314 list_for_each_entry_reverse(core
, &cluster
->cores
, elem
) {
315 ret
= core
->ti_sci
->ops
.dev_ops
.get_device(core
->ti_sci
,
318 dev_err(core
->dev
, "module-reset deassert failed, ret = %d\n",
320 core
= list_next_entry(core
, elem
);
321 goto unroll_module_reset
;
325 /* deassert local reset on all applicable cores */
326 list_for_each_entry_reverse(core
, &cluster
->cores
, elem
) {
327 ret
= reset_control_deassert(core
->reset
);
329 dev_err(core
->dev
, "module-reset deassert failed, ret = %d\n",
331 goto unroll_local_reset
;
338 list_for_each_entry_continue(core
, &cluster
->cores
, elem
) {
339 if (reset_control_assert(core
->reset
))
340 dev_warn(core
->dev
, "local-reset assert back failed\n");
342 core
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
344 list_for_each_entry_from(core
, &cluster
->cores
, elem
) {
345 if (core
->ti_sci
->ops
.dev_ops
.put_device(core
->ti_sci
,
347 dev_warn(core
->dev
, "module-reset assert back failed\n");
353 static inline int k3_r5_core_halt(struct k3_r5_core
*core
)
355 return ti_sci_proc_set_control(core
->tsp
,
356 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT
, 0);
359 static inline int k3_r5_core_run(struct k3_r5_core
*core
)
361 return ti_sci_proc_set_control(core
->tsp
,
362 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT
);
366 * The R5F cores have controls for both a reset and a halt/run. The code
367 * execution from DDR requires the initial boot-strapping code to be run
368 * from the internal TCMs. This function is used to release the resets on
369 * applicable cores to allow loading into the TCMs. The .prepare() ops is
370 * invoked by remoteproc core before any firmware loading, and is followed
371 * by the .start() ops after loading to actually let the R5 cores run.
373 static int k3_r5_rproc_prepare(struct rproc
*rproc
)
375 struct k3_r5_rproc
*kproc
= rproc
->priv
;
376 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
377 struct k3_r5_core
*core
= kproc
->core
;
378 struct device
*dev
= kproc
->dev
;
379 u32 ctrl
= 0, cfg
= 0, stat
= 0;
384 ret
= ti_sci_proc_get_status(core
->tsp
, &boot_vec
, &cfg
, &ctrl
, &stat
);
387 mem_init_dis
= !!(cfg
& PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS
);
389 ret
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) ?
390 k3_r5_lockstep_release(cluster
) : k3_r5_split_release(core
);
392 dev_err(dev
, "unable to enable cores for TCM loading, ret = %d\n",
398 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
399 * of TCMs, so there is no need to perform the s/w memzero. This bit is
400 * configurable through System Firmware, the default value does perform
401 * auto-init, but account for it in case it is disabled
403 if (cluster
->soc_data
->tcm_ecc_autoinit
&& !mem_init_dis
) {
404 dev_dbg(dev
, "leveraging h/w init for TCM memories\n");
409 * Zero out both TCMs unconditionally (access from v8 Arm core is not
410 * affected by ATCM & BTCM enable configuration values) so that ECC
411 * can be effective on all TCM addresses.
413 dev_dbg(dev
, "zeroing out ATCM memory\n");
414 memset(core
->mem
[0].cpu_addr
, 0x00, core
->mem
[0].size
);
416 dev_dbg(dev
, "zeroing out BTCM memory\n");
417 memset(core
->mem
[1].cpu_addr
, 0x00, core
->mem
[1].size
);
423 * This function implements the .unprepare() ops and performs the complimentary
424 * operations to that of the .prepare() ops. The function is used to assert the
425 * resets on all applicable cores for the rproc device (depending on LockStep
426 * or Split mode). This completes the second portion of powering down the R5F
427 * cores. The cores themselves are only halted in the .stop() ops, and the
428 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
431 static int k3_r5_rproc_unprepare(struct rproc
*rproc
)
433 struct k3_r5_rproc
*kproc
= rproc
->priv
;
434 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
435 struct k3_r5_core
*core
= kproc
->core
;
436 struct device
*dev
= kproc
->dev
;
439 ret
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) ?
440 k3_r5_lockstep_reset(cluster
) : k3_r5_split_reset(core
);
442 dev_err(dev
, "unable to disable cores, ret = %d\n", ret
);
448 * The R5F start sequence includes two different operations
449 * 1. Configure the boot vector for R5F core(s)
450 * 2. Unhalt/Run the R5F core(s)
452 * The sequence is different between LockStep and Split modes. The LockStep
453 * mode requires the boot vector to be configured only for Core0, and then
454 * unhalt both the cores to start the execution - Core1 needs to be unhalted
455 * first followed by Core0. The Split-mode requires that Core0 to be maintained
456 * always in a higher power state that Core1 (implying Core1 needs to be started
457 * always only after Core0 is started).
459 static int k3_r5_rproc_start(struct rproc
*rproc
)
461 struct k3_r5_rproc
*kproc
= rproc
->priv
;
462 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
463 struct mbox_client
*client
= &kproc
->client
;
464 struct device
*dev
= kproc
->dev
;
465 struct k3_r5_core
*core
;
470 client
->tx_done
= NULL
;
471 client
->rx_callback
= k3_r5_rproc_mbox_callback
;
472 client
->tx_block
= false;
473 client
->knows_txdone
= false;
475 kproc
->mbox
= mbox_request_channel(client
, 0);
476 if (IS_ERR(kproc
->mbox
)) {
478 dev_err(dev
, "mbox_request_channel failed: %ld\n",
479 PTR_ERR(kproc
->mbox
));
484 * Ping the remote processor, this is only for sanity-sake for now;
485 * there is no functional effect whatsoever.
487 * Note that the reply will _not_ arrive immediately: this message
488 * will wait in the mailbox fifo until the remote processor is booted.
490 ret
= mbox_send_message(kproc
->mbox
, (void *)RP_MBOX_ECHO_REQUEST
);
492 dev_err(dev
, "mbox_send_message failed: %d\n", ret
);
496 boot_addr
= rproc
->bootaddr
;
497 /* TODO: add boot_addr sanity checking */
498 dev_dbg(dev
, "booting R5F core using boot addr = 0x%x\n", boot_addr
);
500 /* boot vector need not be programmed for Core1 in LockStep mode */
502 ret
= ti_sci_proc_set_config(core
->tsp
, boot_addr
, 0, 0);
506 /* unhalt/run all applicable cores */
507 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
508 list_for_each_entry_reverse(core
, &cluster
->cores
, elem
) {
509 ret
= k3_r5_core_run(core
);
511 goto unroll_core_run
;
514 ret
= k3_r5_core_run(core
);
522 list_for_each_entry_continue(core
, &cluster
->cores
, elem
) {
523 if (k3_r5_core_halt(core
))
524 dev_warn(core
->dev
, "core halt back failed\n");
527 mbox_free_channel(kproc
->mbox
);
532 * The R5F stop function includes the following operations
533 * 1. Halt R5F core(s)
535 * The sequence is different between LockStep and Split modes, and the order
536 * of cores the operations are performed are also in general reverse to that
537 * of the start function. The LockStep mode requires each operation to be
538 * performed first on Core0 followed by Core1. The Split-mode requires that
539 * Core0 to be maintained always in a higher power state that Core1 (implying
540 * Core1 needs to be stopped first before Core0).
542 * Note that the R5F halt operation in general is not effective when the R5F
543 * core is running, but is needed to make sure the core won't run after
544 * deasserting the reset the subsequent time. The asserting of reset can
545 * be done here, but is preferred to be done in the .unprepare() ops - this
546 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
547 * and .unprepare() ops, and also balances them well between sysfs 'state'
548 * flow and device bind/unbind or module removal.
550 static int k3_r5_rproc_stop(struct rproc
*rproc
)
552 struct k3_r5_rproc
*kproc
= rproc
->priv
;
553 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
554 struct k3_r5_core
*core
= kproc
->core
;
557 /* halt all applicable cores */
558 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
559 list_for_each_entry(core
, &cluster
->cores
, elem
) {
560 ret
= k3_r5_core_halt(core
);
562 core
= list_prev_entry(core
, elem
);
563 goto unroll_core_halt
;
567 ret
= k3_r5_core_halt(core
);
572 mbox_free_channel(kproc
->mbox
);
577 list_for_each_entry_from_reverse(core
, &cluster
->cores
, elem
) {
578 if (k3_r5_core_run(core
))
579 dev_warn(core
->dev
, "core run back failed\n");
586 * Internal Memory translation helper
588 * Custom function implementing the rproc .da_to_va ops to provide address
589 * translation (device address to kernel virtual address) for internal RAMs
590 * present in a DSP or IPU device). The translated addresses can be used
591 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
593 static void *k3_r5_rproc_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
)
595 struct k3_r5_rproc
*kproc
= rproc
->priv
;
596 struct k3_r5_core
*core
= kproc
->core
;
597 void __iomem
*va
= NULL
;
598 phys_addr_t bus_addr
;
599 u32 dev_addr
, offset
;
606 /* handle both R5 and SoC views of ATCM and BTCM */
607 for (i
= 0; i
< core
->num_mems
; i
++) {
608 bus_addr
= core
->mem
[i
].bus_addr
;
609 dev_addr
= core
->mem
[i
].dev_addr
;
610 size
= core
->mem
[i
].size
;
612 /* handle R5-view addresses of TCMs */
613 if (da
>= dev_addr
&& ((da
+ len
) <= (dev_addr
+ size
))) {
614 offset
= da
- dev_addr
;
615 va
= core
->mem
[i
].cpu_addr
+ offset
;
616 return (__force
void *)va
;
619 /* handle SoC-view addresses of TCMs */
620 if (da
>= bus_addr
&& ((da
+ len
) <= (bus_addr
+ size
))) {
621 offset
= da
- bus_addr
;
622 va
= core
->mem
[i
].cpu_addr
+ offset
;
623 return (__force
void *)va
;
627 /* handle any SRAM regions using SoC-view addresses */
628 for (i
= 0; i
< core
->num_sram
; i
++) {
629 dev_addr
= core
->sram
[i
].dev_addr
;
630 size
= core
->sram
[i
].size
;
632 if (da
>= dev_addr
&& ((da
+ len
) <= (dev_addr
+ size
))) {
633 offset
= da
- dev_addr
;
634 va
= core
->sram
[i
].cpu_addr
+ offset
;
635 return (__force
void *)va
;
639 /* handle static DDR reserved memory regions */
640 for (i
= 0; i
< kproc
->num_rmems
; i
++) {
641 dev_addr
= kproc
->rmem
[i
].dev_addr
;
642 size
= kproc
->rmem
[i
].size
;
644 if (da
>= dev_addr
&& ((da
+ len
) <= (dev_addr
+ size
))) {
645 offset
= da
- dev_addr
;
646 va
= kproc
->rmem
[i
].cpu_addr
+ offset
;
647 return (__force
void *)va
;
654 static const struct rproc_ops k3_r5_rproc_ops
= {
655 .prepare
= k3_r5_rproc_prepare
,
656 .unprepare
= k3_r5_rproc_unprepare
,
657 .start
= k3_r5_rproc_start
,
658 .stop
= k3_r5_rproc_stop
,
659 .kick
= k3_r5_rproc_kick
,
660 .da_to_va
= k3_r5_rproc_da_to_va
,
664 * Internal R5F Core configuration
666 * Each R5FSS has a cluster-level setting for configuring the processor
667 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
668 * oriented Split mode. Each R5F core has a number of settings to either
669 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
670 * address 0x0. These settings need to be configured before the resets for the
671 * corresponding core are released. These settings are all protected and managed
672 * by the System Processor.
674 * This function is used to pre-configure these settings for each R5F core, and
675 * the configuration is all done through various ti_sci_proc functions that
676 * communicate with the System Processor. The function also ensures that both
677 * the cores are halted before the .prepare() step.
679 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
680 * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode
681 * is dictated by an eFUSE register bit, and the config settings retrieved from
682 * DT are adjusted accordingly as per the permitted cluster mode. All cluster
683 * level settings like Cluster mode and TEINIT (exception handling state
684 * dictating ARM or Thumb mode) can only be set and retrieved using Core0.
686 * The function behavior is different based on the cluster mode. The R5F cores
687 * are configured independently as per their individual settings in Split mode.
688 * They are identically configured in LockStep mode using the primary Core0
689 * settings. However, some individual settings cannot be set in LockStep mode.
690 * This is overcome by switching to Split-mode initially and then programming
691 * both the cores with the same settings, before reconfiguing again for
694 static int k3_r5_rproc_configure(struct k3_r5_rproc
*kproc
)
696 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
697 struct device
*dev
= kproc
->dev
;
698 struct k3_r5_core
*core0
, *core
, *temp
;
699 u32 ctrl
= 0, cfg
= 0, stat
= 0;
700 u32 set_cfg
= 0, clr_cfg
= 0;
705 core0
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
706 core
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) ? core0
: kproc
->core
;
708 ret
= ti_sci_proc_get_status(core
->tsp
, &boot_vec
, &cfg
, &ctrl
,
713 dev_dbg(dev
, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
714 boot_vec
, cfg
, ctrl
, stat
);
716 lockstep_en
= !!(stat
& PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED
);
717 if (!lockstep_en
&& cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
718 dev_err(cluster
->dev
, "lockstep mode not permitted, force configuring for split-mode\n");
719 cluster
->mode
= CLUSTER_MODE_SPLIT
;
722 /* always enable ARM mode and set boot vector to 0 */
725 clr_cfg
= PROC_BOOT_CFG_FLAG_R5_TEINIT
;
727 * LockStep configuration bit is Read-only on Split-mode _only_
728 * devices and system firmware will NACK any requests with the
729 * bit configured, so program it only on permitted devices
732 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
;
735 if (core
->atcm_enable
)
736 set_cfg
|= PROC_BOOT_CFG_FLAG_R5_ATCM_EN
;
738 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_ATCM_EN
;
740 if (core
->btcm_enable
)
741 set_cfg
|= PROC_BOOT_CFG_FLAG_R5_BTCM_EN
;
743 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_BTCM_EN
;
746 set_cfg
|= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE
;
748 clr_cfg
|= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE
;
750 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) {
752 * work around system firmware limitations to make sure both
753 * cores are programmed symmetrically in LockStep. LockStep
754 * and TEINIT config is only allowed with Core0.
756 list_for_each_entry(temp
, &cluster
->cores
, elem
) {
757 ret
= k3_r5_core_halt(temp
);
762 clr_cfg
&= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
;
763 clr_cfg
&= ~PROC_BOOT_CFG_FLAG_R5_TEINIT
;
765 ret
= ti_sci_proc_set_config(temp
->tsp
, boot_vec
,
771 set_cfg
= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP
;
773 ret
= ti_sci_proc_set_config(core
->tsp
, boot_vec
,
776 ret
= k3_r5_core_halt(core
);
780 ret
= ti_sci_proc_set_config(core
->tsp
, boot_vec
,
788 static int k3_r5_reserved_mem_init(struct k3_r5_rproc
*kproc
)
790 struct device
*dev
= kproc
->dev
;
791 struct device_node
*np
= dev_of_node(dev
);
792 struct device_node
*rmem_np
;
793 struct reserved_mem
*rmem
;
797 num_rmems
= of_property_count_elems_of_size(np
, "memory-region",
799 if (num_rmems
<= 0) {
800 dev_err(dev
, "device does not have reserved memory regions, ret = %d\n",
805 dev_err(dev
, "device needs atleast two memory regions to be defined, num = %d\n",
810 /* use reserved memory region 0 for vring DMA allocations */
811 ret
= of_reserved_mem_device_init_by_idx(dev
, np
, 0);
813 dev_err(dev
, "device cannot initialize DMA pool, ret = %d\n",
819 kproc
->rmem
= kcalloc(num_rmems
, sizeof(*kproc
->rmem
), GFP_KERNEL
);
825 /* use remaining reserved memory regions for static carveouts */
826 for (i
= 0; i
< num_rmems
; i
++) {
827 rmem_np
= of_parse_phandle(np
, "memory-region", i
+ 1);
833 rmem
= of_reserved_mem_lookup(rmem_np
);
835 of_node_put(rmem_np
);
839 of_node_put(rmem_np
);
841 kproc
->rmem
[i
].bus_addr
= rmem
->base
;
843 * R5Fs do not have an MMU, but have a Region Address Translator
844 * (RAT) module that provides a fixed entry translation between
845 * the 32-bit processor addresses to 64-bit bus addresses. The
846 * RAT is programmable only by the R5F cores. Support for RAT
847 * is currently not supported, so 64-bit address regions are not
848 * supported. The absence of MMUs implies that the R5F device
849 * addresses/supported memory regions are restricted to 32-bit
850 * bus addresses, and are identical
852 kproc
->rmem
[i
].dev_addr
= (u32
)rmem
->base
;
853 kproc
->rmem
[i
].size
= rmem
->size
;
854 kproc
->rmem
[i
].cpu_addr
= ioremap_wc(rmem
->base
, rmem
->size
);
855 if (!kproc
->rmem
[i
].cpu_addr
) {
856 dev_err(dev
, "failed to map reserved memory#%d at %pa of size %pa\n",
857 i
+ 1, &rmem
->base
, &rmem
->size
);
862 dev_dbg(dev
, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
863 i
+ 1, &kproc
->rmem
[i
].bus_addr
,
864 kproc
->rmem
[i
].size
, kproc
->rmem
[i
].cpu_addr
,
865 kproc
->rmem
[i
].dev_addr
);
867 kproc
->num_rmems
= num_rmems
;
872 for (i
--; i
>= 0; i
--)
873 iounmap(kproc
->rmem
[i
].cpu_addr
);
876 of_reserved_mem_device_release(dev
);
880 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc
*kproc
)
884 for (i
= 0; i
< kproc
->num_rmems
; i
++)
885 iounmap(kproc
->rmem
[i
].cpu_addr
);
888 of_reserved_mem_device_release(kproc
->dev
);
892 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
893 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
894 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
895 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
896 * leveraging the Core1 TCMs as well in certain modes where they would have
897 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs). This is done by
898 * making a Core1 TCM visible immediately after the corresponding Core0 TCM.
899 * The SoC memory map uses the larger 64 KB sizes for the Core0 TCMs, and the
900 * dts representation reflects this increased size on supported SoCs. The Core0
901 * TCM sizes therefore have to be adjusted to only half the original size in
904 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc
*kproc
)
906 struct k3_r5_cluster
*cluster
= kproc
->cluster
;
907 struct k3_r5_core
*core
= kproc
->core
;
908 struct device
*cdev
= core
->dev
;
909 struct k3_r5_core
*core0
;
911 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
||
912 !cluster
->soc_data
->tcm_is_double
)
915 core0
= list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
917 WARN_ON(core
->mem
[0].size
!= SZ_64K
);
918 WARN_ON(core
->mem
[1].size
!= SZ_64K
);
920 core
->mem
[0].size
/= 2;
921 core
->mem
[1].size
/= 2;
923 dev_dbg(cdev
, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
924 core
->mem
[0].size
, core
->mem
[1].size
);
928 static int k3_r5_cluster_rproc_init(struct platform_device
*pdev
)
930 struct k3_r5_cluster
*cluster
= platform_get_drvdata(pdev
);
931 struct device
*dev
= &pdev
->dev
;
932 struct k3_r5_rproc
*kproc
;
933 struct k3_r5_core
*core
, *core1
;
939 core1
= list_last_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
940 list_for_each_entry(core
, &cluster
->cores
, elem
) {
942 ret
= rproc_of_parse_firmware(cdev
, 0, &fw_name
);
944 dev_err(dev
, "failed to parse firmware-name property, ret = %d\n",
949 rproc
= rproc_alloc(cdev
, dev_name(cdev
), &k3_r5_rproc_ops
,
950 fw_name
, sizeof(*kproc
));
956 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
957 rproc
->has_iommu
= false;
958 /* error recovery is not supported at present */
959 rproc
->recovery_disabled
= true;
962 kproc
->cluster
= cluster
;
965 kproc
->rproc
= rproc
;
968 ret
= k3_r5_rproc_configure(kproc
);
970 dev_err(dev
, "initial configure failed, ret = %d\n",
975 k3_r5_adjust_tcm_sizes(kproc
);
977 ret
= k3_r5_reserved_mem_init(kproc
);
979 dev_err(dev
, "reserved memory init failed, ret = %d\n",
984 ret
= rproc_add(rproc
);
986 dev_err(dev
, "rproc_add failed, ret = %d\n", ret
);
990 /* create only one rproc in lockstep mode */
991 if (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
)
1000 k3_r5_reserved_mem_exit(kproc
);
1005 /* undo core0 upon any failures on core1 in split-mode */
1006 if (cluster
->mode
== CLUSTER_MODE_SPLIT
&& core
== core1
) {
1007 core
= list_prev_entry(core
, elem
);
1008 rproc
= core
->rproc
;
1009 kproc
= rproc
->priv
;
1015 static void k3_r5_cluster_rproc_exit(void *data
)
1017 struct k3_r5_cluster
*cluster
= platform_get_drvdata(data
);
1018 struct k3_r5_rproc
*kproc
;
1019 struct k3_r5_core
*core
;
1020 struct rproc
*rproc
;
1023 * lockstep mode has only one rproc associated with first core, whereas
1024 * split-mode has two rprocs associated with each core, and requires
1025 * that core1 be powered down first
1027 core
= (cluster
->mode
== CLUSTER_MODE_LOCKSTEP
) ?
1028 list_first_entry(&cluster
->cores
, struct k3_r5_core
, elem
) :
1029 list_last_entry(&cluster
->cores
, struct k3_r5_core
, elem
);
1031 list_for_each_entry_from_reverse(core
, &cluster
->cores
, elem
) {
1032 rproc
= core
->rproc
;
1033 kproc
= rproc
->priv
;
1037 k3_r5_reserved_mem_exit(kproc
);
1044 static int k3_r5_core_of_get_internal_memories(struct platform_device
*pdev
,
1045 struct k3_r5_core
*core
)
1047 static const char * const mem_names
[] = {"atcm", "btcm"};
1048 struct device
*dev
= &pdev
->dev
;
1049 struct resource
*res
;
1053 num_mems
= ARRAY_SIZE(mem_names
);
1054 core
->mem
= devm_kcalloc(dev
, num_mems
, sizeof(*core
->mem
), GFP_KERNEL
);
1058 for (i
= 0; i
< num_mems
; i
++) {
1059 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1062 dev_err(dev
, "found no memory resource for %s\n",
1066 if (!devm_request_mem_region(dev
, res
->start
,
1069 dev_err(dev
, "could not request %s region for resource\n",
1075 * TCMs are designed in general to support RAM-like backing
1076 * memories. So, map these as Normal Non-Cached memories. This
1077 * also avoids/fixes any potential alignment faults due to
1078 * unaligned data accesses when using memcpy() or memset()
1079 * functions (normally seen with device type memory).
1081 core
->mem
[i
].cpu_addr
= devm_ioremap_wc(dev
, res
->start
,
1082 resource_size(res
));
1083 if (!core
->mem
[i
].cpu_addr
) {
1084 dev_err(dev
, "failed to map %s memory\n", mem_names
[i
]);
1087 core
->mem
[i
].bus_addr
= res
->start
;
1091 * The R5F cores can place ATCM & BTCM anywhere in its address
1092 * based on the corresponding Region Registers in the System
1093 * Control coprocessor. For now, place ATCM and BTCM at
1094 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1095 * SoCs) based on loczrama setting
1097 if (!strcmp(mem_names
[i
], "atcm")) {
1098 core
->mem
[i
].dev_addr
= core
->loczrama
?
1099 0 : K3_R5_TCM_DEV_ADDR
;
1101 core
->mem
[i
].dev_addr
= core
->loczrama
?
1102 K3_R5_TCM_DEV_ADDR
: 0;
1104 core
->mem
[i
].size
= resource_size(res
);
1106 dev_dbg(dev
, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1107 mem_names
[i
], &core
->mem
[i
].bus_addr
,
1108 core
->mem
[i
].size
, core
->mem
[i
].cpu_addr
,
1109 core
->mem
[i
].dev_addr
);
1111 core
->num_mems
= num_mems
;
1116 static int k3_r5_core_of_get_sram_memories(struct platform_device
*pdev
,
1117 struct k3_r5_core
*core
)
1119 struct device_node
*np
= pdev
->dev
.of_node
;
1120 struct device
*dev
= &pdev
->dev
;
1121 struct device_node
*sram_np
;
1122 struct resource res
;
1126 num_sram
= of_property_count_elems_of_size(np
, "sram", sizeof(phandle
));
1127 if (num_sram
<= 0) {
1128 dev_dbg(dev
, "device does not use reserved on-chip memories, num_sram = %d\n",
1133 core
->sram
= devm_kcalloc(dev
, num_sram
, sizeof(*core
->sram
), GFP_KERNEL
);
1137 for (i
= 0; i
< num_sram
; i
++) {
1138 sram_np
= of_parse_phandle(np
, "sram", i
);
1142 if (!of_device_is_available(sram_np
)) {
1143 of_node_put(sram_np
);
1147 ret
= of_address_to_resource(sram_np
, 0, &res
);
1148 of_node_put(sram_np
);
1152 core
->sram
[i
].bus_addr
= res
.start
;
1153 core
->sram
[i
].dev_addr
= res
.start
;
1154 core
->sram
[i
].size
= resource_size(&res
);
1155 core
->sram
[i
].cpu_addr
= devm_ioremap_wc(dev
, res
.start
,
1156 resource_size(&res
));
1157 if (!core
->sram
[i
].cpu_addr
) {
1158 dev_err(dev
, "failed to parse and map sram%d memory at %pad\n",
1163 dev_dbg(dev
, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1164 i
, &core
->sram
[i
].bus_addr
,
1165 core
->sram
[i
].size
, core
->sram
[i
].cpu_addr
,
1166 core
->sram
[i
].dev_addr
);
1168 core
->num_sram
= num_sram
;
1174 struct ti_sci_proc
*k3_r5_core_of_get_tsp(struct device
*dev
,
1175 const struct ti_sci_handle
*sci
)
1177 struct ti_sci_proc
*tsp
;
1181 ret
= of_property_read_u32_array(dev_of_node(dev
), "ti,sci-proc-ids",
1184 return ERR_PTR(ret
);
1186 tsp
= devm_kzalloc(dev
, sizeof(*tsp
), GFP_KERNEL
);
1188 return ERR_PTR(-ENOMEM
);
1192 tsp
->ops
= &sci
->ops
.proc_ops
;
1193 tsp
->proc_id
= temp
[0];
1194 tsp
->host_id
= temp
[1];
1199 static int k3_r5_core_of_init(struct platform_device
*pdev
)
1201 struct device
*dev
= &pdev
->dev
;
1202 struct device_node
*np
= dev_of_node(dev
);
1203 struct k3_r5_core
*core
;
1206 if (!devres_open_group(dev
, k3_r5_core_of_init
, GFP_KERNEL
))
1209 core
= devm_kzalloc(dev
, sizeof(*core
), GFP_KERNEL
);
1217 * Use SoC Power-on-Reset values as default if no DT properties are
1218 * used to dictate the TCM configurations
1220 core
->atcm_enable
= 0;
1221 core
->btcm_enable
= 1;
1224 ret
= of_property_read_u32(np
, "ti,atcm-enable", &core
->atcm_enable
);
1225 if (ret
< 0 && ret
!= -EINVAL
) {
1226 dev_err(dev
, "invalid format for ti,atcm-enable, ret = %d\n",
1231 ret
= of_property_read_u32(np
, "ti,btcm-enable", &core
->btcm_enable
);
1232 if (ret
< 0 && ret
!= -EINVAL
) {
1233 dev_err(dev
, "invalid format for ti,btcm-enable, ret = %d\n",
1238 ret
= of_property_read_u32(np
, "ti,loczrama", &core
->loczrama
);
1239 if (ret
< 0 && ret
!= -EINVAL
) {
1240 dev_err(dev
, "invalid format for ti,loczrama, ret = %d\n", ret
);
1244 core
->ti_sci
= devm_ti_sci_get_by_phandle(dev
, "ti,sci");
1245 if (IS_ERR(core
->ti_sci
)) {
1246 ret
= PTR_ERR(core
->ti_sci
);
1247 if (ret
!= -EPROBE_DEFER
) {
1248 dev_err(dev
, "failed to get ti-sci handle, ret = %d\n",
1251 core
->ti_sci
= NULL
;
1255 ret
= of_property_read_u32(np
, "ti,sci-dev-id", &core
->ti_sci_id
);
1257 dev_err(dev
, "missing 'ti,sci-dev-id' property\n");
1261 core
->reset
= devm_reset_control_get_exclusive(dev
, NULL
);
1262 if (IS_ERR_OR_NULL(core
->reset
)) {
1263 ret
= PTR_ERR_OR_ZERO(core
->reset
);
1266 if (ret
!= -EPROBE_DEFER
) {
1267 dev_err(dev
, "failed to get reset handle, ret = %d\n",
1273 core
->tsp
= k3_r5_core_of_get_tsp(dev
, core
->ti_sci
);
1274 if (IS_ERR(core
->tsp
)) {
1275 dev_err(dev
, "failed to construct ti-sci proc control, ret = %d\n",
1277 ret
= PTR_ERR(core
->tsp
);
1281 ret
= k3_r5_core_of_get_internal_memories(pdev
, core
);
1283 dev_err(dev
, "failed to get internal memories, ret = %d\n",
1288 ret
= k3_r5_core_of_get_sram_memories(pdev
, core
);
1290 dev_err(dev
, "failed to get sram memories, ret = %d\n", ret
);
1294 ret
= ti_sci_proc_request(core
->tsp
);
1296 dev_err(dev
, "ti_sci_proc_request failed, ret = %d\n", ret
);
1300 platform_set_drvdata(pdev
, core
);
1301 devres_close_group(dev
, k3_r5_core_of_init
);
1306 devres_release_group(dev
, k3_r5_core_of_init
);
1311 * free the resources explicitly since driver model is not being used
1312 * for the child R5F devices
1314 static void k3_r5_core_of_exit(struct platform_device
*pdev
)
1316 struct k3_r5_core
*core
= platform_get_drvdata(pdev
);
1317 struct device
*dev
= &pdev
->dev
;
1320 ret
= ti_sci_proc_release(core
->tsp
);
1322 dev_err(dev
, "failed to release proc, ret = %d\n", ret
);
1324 platform_set_drvdata(pdev
, NULL
);
1325 devres_release_group(dev
, k3_r5_core_of_init
);
1328 static void k3_r5_cluster_of_exit(void *data
)
1330 struct k3_r5_cluster
*cluster
= platform_get_drvdata(data
);
1331 struct platform_device
*cpdev
;
1332 struct k3_r5_core
*core
, *temp
;
1334 list_for_each_entry_safe_reverse(core
, temp
, &cluster
->cores
, elem
) {
1335 list_del(&core
->elem
);
1336 cpdev
= to_platform_device(core
->dev
);
1337 k3_r5_core_of_exit(cpdev
);
1341 static int k3_r5_cluster_of_init(struct platform_device
*pdev
)
1343 struct k3_r5_cluster
*cluster
= platform_get_drvdata(pdev
);
1344 struct device
*dev
= &pdev
->dev
;
1345 struct device_node
*np
= dev_of_node(dev
);
1346 struct platform_device
*cpdev
;
1347 struct device_node
*child
;
1348 struct k3_r5_core
*core
;
1351 for_each_available_child_of_node(np
, child
) {
1352 cpdev
= of_find_device_by_node(child
);
1355 dev_err(dev
, "could not get R5 core platform device\n");
1359 ret
= k3_r5_core_of_init(cpdev
);
1361 dev_err(dev
, "k3_r5_core_of_init failed, ret = %d\n",
1363 put_device(&cpdev
->dev
);
1367 core
= platform_get_drvdata(cpdev
);
1368 put_device(&cpdev
->dev
);
1369 list_add_tail(&core
->elem
, &cluster
->cores
);
1375 k3_r5_cluster_of_exit(pdev
);
1379 static int k3_r5_probe(struct platform_device
*pdev
)
1381 struct device
*dev
= &pdev
->dev
;
1382 struct device_node
*np
= dev_of_node(dev
);
1383 struct k3_r5_cluster
*cluster
;
1384 const struct k3_r5_soc_data
*data
;
1388 data
= of_device_get_match_data(&pdev
->dev
);
1390 dev_err(dev
, "SoC-specific data is not defined\n");
1394 cluster
= devm_kzalloc(dev
, sizeof(*cluster
), GFP_KERNEL
);
1399 cluster
->mode
= CLUSTER_MODE_LOCKSTEP
;
1400 cluster
->soc_data
= data
;
1401 INIT_LIST_HEAD(&cluster
->cores
);
1403 ret
= of_property_read_u32(np
, "ti,cluster-mode", &cluster
->mode
);
1404 if (ret
< 0 && ret
!= -EINVAL
) {
1405 dev_err(dev
, "invalid format for ti,cluster-mode, ret = %d\n",
1410 num_cores
= of_get_available_child_count(np
);
1411 if (num_cores
!= 2) {
1412 dev_err(dev
, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
1417 platform_set_drvdata(pdev
, cluster
);
1419 ret
= devm_of_platform_populate(dev
);
1421 dev_err(dev
, "devm_of_platform_populate failed, ret = %d\n",
1426 ret
= k3_r5_cluster_of_init(pdev
);
1428 dev_err(dev
, "k3_r5_cluster_of_init failed, ret = %d\n", ret
);
1432 ret
= devm_add_action_or_reset(dev
, k3_r5_cluster_of_exit
, pdev
);
1436 ret
= k3_r5_cluster_rproc_init(pdev
);
1438 dev_err(dev
, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1443 ret
= devm_add_action_or_reset(dev
, k3_r5_cluster_rproc_exit
, pdev
);
1450 static const struct k3_r5_soc_data am65_j721e_soc_data
= {
1451 .tcm_is_double
= false,
1452 .tcm_ecc_autoinit
= false,
1455 static const struct k3_r5_soc_data j7200_soc_data
= {
1456 .tcm_is_double
= true,
1457 .tcm_ecc_autoinit
= true,
1460 static const struct of_device_id k3_r5_of_match
[] = {
1461 { .compatible
= "ti,am654-r5fss", .data
= &am65_j721e_soc_data
, },
1462 { .compatible
= "ti,j721e-r5fss", .data
= &am65_j721e_soc_data
, },
1463 { .compatible
= "ti,j7200-r5fss", .data
= &j7200_soc_data
, },
1466 MODULE_DEVICE_TABLE(of
, k3_r5_of_match
);
1468 static struct platform_driver k3_r5_rproc_driver
= {
1469 .probe
= k3_r5_probe
,
1471 .name
= "k3_r5_rproc",
1472 .of_match_table
= k3_r5_of_match
,
1476 module_platform_driver(k3_r5_rproc_driver
);
1478 MODULE_LICENSE("GPL v2");
1479 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1480 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");