1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
31 #include "spi-pxa2xx.h"
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
38 #define TIMOUT_DFLT 1000
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 /* LPSS offset from drv_data->ioaddr */
80 /* Register offsets from drv_data->lpss_base or -1 */
89 /* Chip select control */
90 unsigned cs_sel_shift
;
94 unsigned cs_clk_stays_gated
: 1;
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms
[] = {
104 .reg_capabilities
= -1,
106 .tx_threshold_lo
= 160,
107 .tx_threshold_hi
= 224,
114 .reg_capabilities
= -1,
116 .tx_threshold_lo
= 160,
117 .tx_threshold_hi
= 224,
124 .reg_capabilities
= -1,
126 .tx_threshold_lo
= 160,
127 .tx_threshold_hi
= 224,
129 .cs_sel_mask
= 1 << 2,
137 .reg_capabilities
= -1,
139 .tx_threshold_lo
= 32,
140 .tx_threshold_hi
= 56,
147 .reg_capabilities
= 0xfc,
149 .tx_threshold_lo
= 16,
150 .tx_threshold_hi
= 48,
152 .cs_sel_mask
= 3 << 8,
153 .cs_clk_stays_gated
= true,
160 .reg_capabilities
= 0xfc,
162 .tx_threshold_lo
= 32,
163 .tx_threshold_hi
= 56,
165 .cs_sel_mask
= 3 << 8,
166 .cs_clk_stays_gated
= true,
170 static inline const struct lpss_config
171 *lpss_get_config(const struct driver_data
*drv_data
)
173 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
176 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
178 switch (drv_data
->ssp_type
) {
191 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
193 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
196 static bool is_mmp2_ssp(const struct driver_data
*drv_data
)
198 return drv_data
->ssp_type
== MMP2_SSP
;
201 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
203 switch (drv_data
->ssp_type
) {
204 case QUARK_X1000_SSP
:
205 return QUARK_X1000_SSCR1_CHANGE_MASK
;
207 return CE4100_SSCR1_CHANGE_MASK
;
209 return SSCR1_CHANGE_MASK
;
214 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
216 switch (drv_data
->ssp_type
) {
217 case QUARK_X1000_SSP
:
218 return RX_THRESH_QUARK_X1000_DFLT
;
220 return RX_THRESH_CE4100_DFLT
;
222 return RX_THRESH_DFLT
;
226 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
230 switch (drv_data
->ssp_type
) {
231 case QUARK_X1000_SSP
:
232 mask
= QUARK_X1000_SSSR_TFL_MASK
;
235 mask
= CE4100_SSSR_TFL_MASK
;
238 mask
= SSSR_TFL_MASK
;
242 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
245 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
250 switch (drv_data
->ssp_type
) {
251 case QUARK_X1000_SSP
:
252 mask
= QUARK_X1000_SSCR1_RFT
;
255 mask
= CE4100_SSCR1_RFT
;
264 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
265 u32
*sccr1_reg
, u32 threshold
)
267 switch (drv_data
->ssp_type
) {
268 case QUARK_X1000_SSP
:
269 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
272 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
275 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
280 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
281 u32 clk_div
, u8 bits
)
283 switch (drv_data
->ssp_type
) {
284 case QUARK_X1000_SSP
:
286 | QUARK_X1000_SSCR0_Motorola
287 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
292 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
294 | (bits
> 16 ? SSCR0_EDSS
: 0);
299 * Read and write LPSS SSP private registers. Caller must first check that
300 * is_lpss_ssp() returns true before these can be called.
302 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
304 WARN_ON(!drv_data
->lpss_base
);
305 return readl(drv_data
->lpss_base
+ offset
);
308 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
309 unsigned offset
, u32 value
)
311 WARN_ON(!drv_data
->lpss_base
);
312 writel(value
, drv_data
->lpss_base
+ offset
);
316 * lpss_ssp_setup - perform LPSS SSP specific setup
317 * @drv_data: pointer to the driver private data
319 * Perform LPSS SSP specific setup. This function must be called first if
320 * one is going to use LPSS SSP private registers.
322 static void lpss_ssp_setup(struct driver_data
*drv_data
)
324 const struct lpss_config
*config
;
327 config
= lpss_get_config(drv_data
);
328 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
330 /* Enable software chip select control */
331 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
332 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
333 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
334 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
336 /* Enable multiblock DMA transfers */
337 if (drv_data
->controller_info
->enable_dma
) {
338 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
340 if (config
->reg_general
>= 0) {
341 value
= __lpss_ssp_read_priv(drv_data
,
342 config
->reg_general
);
343 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
344 __lpss_ssp_write_priv(drv_data
,
345 config
->reg_general
, value
);
350 static void lpss_ssp_select_cs(struct spi_device
*spi
,
351 const struct lpss_config
*config
)
353 struct driver_data
*drv_data
=
354 spi_controller_get_devdata(spi
->controller
);
357 if (!config
->cs_sel_mask
)
360 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
362 cs
= spi
->chip_select
;
363 cs
<<= config
->cs_sel_shift
;
364 if (cs
!= (value
& config
->cs_sel_mask
)) {
366 * When switching another chip select output active the
367 * output must be selected first and wait 2 ssp_clk cycles
368 * before changing state to active. Otherwise a short
369 * glitch will occur on the previous chip select since
370 * output select is latched but state control is not.
372 value
&= ~config
->cs_sel_mask
;
374 __lpss_ssp_write_priv(drv_data
,
375 config
->reg_cs_ctrl
, value
);
377 (drv_data
->controller
->max_speed_hz
/ 2));
381 static void lpss_ssp_cs_control(struct spi_device
*spi
, bool enable
)
383 struct driver_data
*drv_data
=
384 spi_controller_get_devdata(spi
->controller
);
385 const struct lpss_config
*config
;
388 config
= lpss_get_config(drv_data
);
391 lpss_ssp_select_cs(spi
, config
);
393 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
395 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
397 value
|= LPSS_CS_CONTROL_CS_HIGH
;
398 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
399 if (config
->cs_clk_stays_gated
) {
403 * Changing CS alone when dynamic clock gating is on won't
404 * actually flip CS at that time. This ruins SPI transfers
405 * that specify delays, or have no data. Toggle the clock mode
406 * to force on briefly to poke the CS pin to move.
408 clkgate
= __lpss_ssp_read_priv(drv_data
, LPSS_PRIV_CLOCK_GATE
);
409 value
= (clkgate
& ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK
) |
410 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON
;
412 __lpss_ssp_write_priv(drv_data
, LPSS_PRIV_CLOCK_GATE
, value
);
413 __lpss_ssp_write_priv(drv_data
, LPSS_PRIV_CLOCK_GATE
, clkgate
);
417 static void cs_assert(struct spi_device
*spi
)
419 struct chip_data
*chip
= spi_get_ctldata(spi
);
420 struct driver_data
*drv_data
=
421 spi_controller_get_devdata(spi
->controller
);
423 if (drv_data
->ssp_type
== CE4100_SSP
) {
424 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
428 if (chip
->cs_control
) {
429 chip
->cs_control(PXA2XX_CS_ASSERT
);
433 if (chip
->gpiod_cs
) {
434 gpiod_set_value(chip
->gpiod_cs
, chip
->gpio_cs_inverted
);
438 if (is_lpss_ssp(drv_data
))
439 lpss_ssp_cs_control(spi
, true);
442 static void cs_deassert(struct spi_device
*spi
)
444 struct chip_data
*chip
= spi_get_ctldata(spi
);
445 struct driver_data
*drv_data
=
446 spi_controller_get_devdata(spi
->controller
);
447 unsigned long timeout
;
449 if (drv_data
->ssp_type
== CE4100_SSP
)
452 /* Wait until SSP becomes idle before deasserting the CS */
453 timeout
= jiffies
+ msecs_to_jiffies(10);
454 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
455 !time_after(jiffies
, timeout
))
458 if (chip
->cs_control
) {
459 chip
->cs_control(PXA2XX_CS_DEASSERT
);
463 if (chip
->gpiod_cs
) {
464 gpiod_set_value(chip
->gpiod_cs
, !chip
->gpio_cs_inverted
);
468 if (is_lpss_ssp(drv_data
))
469 lpss_ssp_cs_control(spi
, false);
472 static void pxa2xx_spi_set_cs(struct spi_device
*spi
, bool level
)
480 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
482 unsigned long limit
= loops_per_jiffy
<< 1;
485 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
486 pxa2xx_spi_read(drv_data
, SSDR
);
487 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
488 write_SSSR_CS(drv_data
, SSSR_ROR
);
493 static void pxa2xx_spi_off(struct driver_data
*drv_data
)
495 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
496 if (is_mmp2_ssp(drv_data
))
499 pxa2xx_spi_write(drv_data
, SSCR0
,
500 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
503 static int null_writer(struct driver_data
*drv_data
)
505 u8 n_bytes
= drv_data
->n_bytes
;
507 if (pxa2xx_spi_txfifo_full(drv_data
)
508 || (drv_data
->tx
== drv_data
->tx_end
))
511 pxa2xx_spi_write(drv_data
, SSDR
, 0);
512 drv_data
->tx
+= n_bytes
;
517 static int null_reader(struct driver_data
*drv_data
)
519 u8 n_bytes
= drv_data
->n_bytes
;
521 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
522 && (drv_data
->rx
< drv_data
->rx_end
)) {
523 pxa2xx_spi_read(drv_data
, SSDR
);
524 drv_data
->rx
+= n_bytes
;
527 return drv_data
->rx
== drv_data
->rx_end
;
530 static int u8_writer(struct driver_data
*drv_data
)
532 if (pxa2xx_spi_txfifo_full(drv_data
)
533 || (drv_data
->tx
== drv_data
->tx_end
))
536 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
542 static int u8_reader(struct driver_data
*drv_data
)
544 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
545 && (drv_data
->rx
< drv_data
->rx_end
)) {
546 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
550 return drv_data
->rx
== drv_data
->rx_end
;
553 static int u16_writer(struct driver_data
*drv_data
)
555 if (pxa2xx_spi_txfifo_full(drv_data
)
556 || (drv_data
->tx
== drv_data
->tx_end
))
559 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
565 static int u16_reader(struct driver_data
*drv_data
)
567 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
568 && (drv_data
->rx
< drv_data
->rx_end
)) {
569 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
573 return drv_data
->rx
== drv_data
->rx_end
;
576 static int u32_writer(struct driver_data
*drv_data
)
578 if (pxa2xx_spi_txfifo_full(drv_data
)
579 || (drv_data
->tx
== drv_data
->tx_end
))
582 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
588 static int u32_reader(struct driver_data
*drv_data
)
590 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
591 && (drv_data
->rx
< drv_data
->rx_end
)) {
592 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
596 return drv_data
->rx
== drv_data
->rx_end
;
599 static void reset_sccr1(struct driver_data
*drv_data
)
601 struct chip_data
*chip
=
602 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
605 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
606 switch (drv_data
->ssp_type
) {
607 case QUARK_X1000_SSP
:
608 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
611 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
614 sccr1_reg
&= ~SSCR1_RFT
;
617 sccr1_reg
|= chip
->threshold
;
618 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
621 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
623 /* Stop and reset SSP */
624 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
625 reset_sccr1(drv_data
);
626 if (!pxa25x_ssp_comp(drv_data
))
627 pxa2xx_spi_write(drv_data
, SSTO
, 0);
628 pxa2xx_spi_flush(drv_data
);
629 pxa2xx_spi_off(drv_data
);
631 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
633 drv_data
->controller
->cur_msg
->status
= -EIO
;
634 spi_finalize_current_transfer(drv_data
->controller
);
637 static void int_transfer_complete(struct driver_data
*drv_data
)
639 /* Clear and disable interrupts */
640 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
641 reset_sccr1(drv_data
);
642 if (!pxa25x_ssp_comp(drv_data
))
643 pxa2xx_spi_write(drv_data
, SSTO
, 0);
645 spi_finalize_current_transfer(drv_data
->controller
);
648 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
650 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
651 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
653 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
655 if (irq_status
& SSSR_ROR
) {
656 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
660 if (irq_status
& SSSR_TUR
) {
661 int_error_stop(drv_data
, "interrupt_transfer: fifo underrun");
665 if (irq_status
& SSSR_TINT
) {
666 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
667 if (drv_data
->read(drv_data
)) {
668 int_transfer_complete(drv_data
);
673 /* Drain rx fifo, Fill tx fifo and prevent overruns */
675 if (drv_data
->read(drv_data
)) {
676 int_transfer_complete(drv_data
);
679 } while (drv_data
->write(drv_data
));
681 if (drv_data
->read(drv_data
)) {
682 int_transfer_complete(drv_data
);
686 if (drv_data
->tx
== drv_data
->tx_end
) {
690 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
691 sccr1_reg
&= ~SSCR1_TIE
;
694 * PXA25x_SSP has no timeout, set up rx threshould for the
695 * remaining RX bytes.
697 if (pxa25x_ssp_comp(drv_data
)) {
700 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
702 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
703 switch (drv_data
->n_bytes
) {
712 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
713 if (rx_thre
> bytes_left
)
714 rx_thre
= bytes_left
;
716 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
718 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
721 /* We did something */
725 static void handle_bad_msg(struct driver_data
*drv_data
)
727 pxa2xx_spi_off(drv_data
);
728 pxa2xx_spi_write(drv_data
, SSCR1
,
729 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
730 if (!pxa25x_ssp_comp(drv_data
))
731 pxa2xx_spi_write(drv_data
, SSTO
, 0);
732 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
734 dev_err(&drv_data
->pdev
->dev
,
735 "bad message state in interrupt handler\n");
738 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
740 struct driver_data
*drv_data
= dev_id
;
742 u32 mask
= drv_data
->mask_sr
;
746 * The IRQ might be shared with other peripherals so we must first
747 * check that are we RPM suspended or not. If we are we assume that
748 * the IRQ was not for us (we shouldn't be RPM suspended when the
749 * interrupt is enabled).
751 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
755 * If the device is not yet in RPM suspended state and we get an
756 * interrupt that is meant for another device, check if status bits
757 * are all set to one. That means that the device is already
760 status
= pxa2xx_spi_read(drv_data
, SSSR
);
764 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
766 /* Ignore possible writes if we don't need to write */
767 if (!(sccr1_reg
& SSCR1_TIE
))
770 /* Ignore RX timeout interrupt if it is disabled */
771 if (!(sccr1_reg
& SSCR1_TINTE
))
774 if (!(status
& mask
))
777 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
778 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
780 if (!drv_data
->controller
->cur_msg
) {
781 handle_bad_msg(drv_data
);
786 return drv_data
->transfer_handler(drv_data
);
790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
791 * input frequency by fractions of 2^24. It also has a divider by 5.
793 * There are formulas to get baud rate value for given input frequency and
794 * divider parameters, such as DDS_CLK_RATE and SCR:
798 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
801 * DDS_CLK_RATE either 2^n or 2^n / 5.
802 * SCR is in range 0 .. 255
804 * Divisor = 5^i * 2^j * 2 * k
805 * i = [0, 1] i = 1 iff j = 0 or j > 3
806 * j = [0, 23] j = 0 iff i = 1
808 * Special case: j = 0, i = 1: Divisor = 2 / 5
810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
812 * Case 1: 2^n, n = [0, 23]
813 * Case 2: 2^24 * 2 / 5 (0x666666)
814 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
816 * In all cases the lowest possible value is better.
818 * The function calculates parameters for all cases and chooses the one closest
819 * to the asked baud rate.
821 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
823 unsigned long xtal
= 200000000;
824 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
827 unsigned long fref1
= fref
/ 2; /* case 1 */
828 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
830 unsigned long q
, q1
, q2
;
836 /* Set initial value for DDS_CLK_RATE */
837 mul
= (1 << 24) >> 1;
839 /* Calculate initial quot */
840 q1
= DIV_ROUND_UP(fref1
, rate
);
842 /* Scale q1 if it's too big */
844 /* Scale q1 to range [1, 512] */
845 scale
= fls_long(q1
- 1);
851 /* Round the result if we have a remainder */
855 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
860 /* Get the remainder */
861 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
865 q2
= DIV_ROUND_UP(fref2
, rate
);
866 r2
= abs(fref2
/ q2
- rate
);
869 * Choose the best between two: less remainder we have the better. We
870 * can't go case 2 if q2 is greater than 256 since SCR register can
871 * hold only values 0 .. 255.
873 if (r2
>= r1
|| q2
> 256) {
874 /* case 1 is better */
878 /* case 2 is better */
881 mul
= (1 << 24) * 2 / 5;
884 /* Check case 3 only if the divisor is big enough */
885 if (fref
/ rate
>= 80) {
889 /* Calculate initial quot */
890 q1
= DIV_ROUND_UP(fref
, rate
);
893 /* Get the remainder */
894 fssp
= (u64
)fref
* m
;
895 do_div(fssp
, 1 << 24);
896 r1
= abs(fssp
- rate
);
898 /* Choose this one if it suits better */
900 /* case 3 is better */
910 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
912 unsigned long ssp_clk
= drv_data
->controller
->max_speed_hz
;
913 const struct ssp_device
*ssp
= drv_data
->ssp
;
915 rate
= min_t(int, ssp_clk
, rate
);
918 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
919 * that the SSP transmission rate can be greater than the device rate
921 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
922 return (DIV_ROUND_UP(ssp_clk
, 2 * rate
) - 1) & 0xff;
924 return (DIV_ROUND_UP(ssp_clk
, rate
) - 1) & 0xfff;
927 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
930 struct chip_data
*chip
=
931 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
932 unsigned int clk_div
;
934 switch (drv_data
->ssp_type
) {
935 case QUARK_X1000_SSP
:
936 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
939 clk_div
= ssp_get_clk_div(drv_data
, rate
);
945 static bool pxa2xx_spi_can_dma(struct spi_controller
*controller
,
946 struct spi_device
*spi
,
947 struct spi_transfer
*xfer
)
949 struct chip_data
*chip
= spi_get_ctldata(spi
);
951 return chip
->enable_dma
&&
952 xfer
->len
<= MAX_DMA_LEN
&&
953 xfer
->len
>= chip
->dma_burst_size
;
956 static int pxa2xx_spi_transfer_one(struct spi_controller
*controller
,
957 struct spi_device
*spi
,
958 struct spi_transfer
*transfer
)
960 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
961 struct spi_message
*message
= controller
->cur_msg
;
962 struct chip_data
*chip
= spi_get_ctldata(spi
);
963 u32 dma_thresh
= chip
->dma_threshold
;
964 u32 dma_burst
= chip
->dma_burst_size
;
965 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
974 /* Check if we can DMA this transfer */
975 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
977 /* reject already-mapped transfers; PIO won't always work */
978 if (message
->is_dma_mapped
979 || transfer
->rx_dma
|| transfer
->tx_dma
) {
981 "Mapped transfer length of %u is greater than %d\n",
982 transfer
->len
, MAX_DMA_LEN
);
986 /* warn ... we force this to PIO mode */
987 dev_warn_ratelimited(&spi
->dev
,
988 "DMA disabled for transfer length %ld greater than %d\n",
989 (long)transfer
->len
, MAX_DMA_LEN
);
992 /* Setup the transfer state based on the type of transfer */
993 if (pxa2xx_spi_flush(drv_data
) == 0) {
994 dev_err(&spi
->dev
, "Flush failed\n");
997 drv_data
->n_bytes
= chip
->n_bytes
;
998 drv_data
->tx
= (void *)transfer
->tx_buf
;
999 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
1000 drv_data
->rx
= transfer
->rx_buf
;
1001 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
1002 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
1003 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
1005 /* Change speed and bit per word on a per transfer */
1006 bits
= transfer
->bits_per_word
;
1007 speed
= transfer
->speed_hz
;
1009 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
1012 drv_data
->n_bytes
= 1;
1013 drv_data
->read
= drv_data
->read
!= null_reader
?
1014 u8_reader
: null_reader
;
1015 drv_data
->write
= drv_data
->write
!= null_writer
?
1016 u8_writer
: null_writer
;
1017 } else if (bits
<= 16) {
1018 drv_data
->n_bytes
= 2;
1019 drv_data
->read
= drv_data
->read
!= null_reader
?
1020 u16_reader
: null_reader
;
1021 drv_data
->write
= drv_data
->write
!= null_writer
?
1022 u16_writer
: null_writer
;
1023 } else if (bits
<= 32) {
1024 drv_data
->n_bytes
= 4;
1025 drv_data
->read
= drv_data
->read
!= null_reader
?
1026 u32_reader
: null_reader
;
1027 drv_data
->write
= drv_data
->write
!= null_writer
?
1028 u32_writer
: null_writer
;
1031 * if bits/word is changed in dma mode, then must check the
1032 * thresholds and burst also
1034 if (chip
->enable_dma
) {
1035 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1039 dev_warn_ratelimited(&spi
->dev
,
1040 "DMA burst size reduced to match bits_per_word\n");
1043 dma_mapped
= controller
->can_dma
&&
1044 controller
->can_dma(controller
, spi
, transfer
) &&
1045 controller
->cur_msg_mapped
;
1048 /* Ensure we have the correct interrupt handler */
1049 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1051 err
= pxa2xx_spi_dma_prepare(drv_data
, transfer
);
1055 /* Clear status and start DMA engine */
1056 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1057 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1059 pxa2xx_spi_dma_start(drv_data
);
1061 /* Ensure we have the correct interrupt handler */
1062 drv_data
->transfer_handler
= interrupt_transfer
;
1065 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1066 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1069 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1070 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1071 if (!pxa25x_ssp_comp(drv_data
))
1072 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1073 controller
->max_speed_hz
1074 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1075 dma_mapped
? "DMA" : "PIO");
1077 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1078 controller
->max_speed_hz
/ 2
1079 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1080 dma_mapped
? "DMA" : "PIO");
1082 if (is_lpss_ssp(drv_data
)) {
1083 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1084 != chip
->lpss_rx_threshold
)
1085 pxa2xx_spi_write(drv_data
, SSIRF
,
1086 chip
->lpss_rx_threshold
);
1087 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1088 != chip
->lpss_tx_threshold
)
1089 pxa2xx_spi_write(drv_data
, SSITF
,
1090 chip
->lpss_tx_threshold
);
1093 if (is_quark_x1000_ssp(drv_data
) &&
1094 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1095 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1097 /* see if we need to reload the config registers */
1098 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1099 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1100 != (cr1
& change_mask
)) {
1101 /* stop the SSP, and update the other bits */
1102 if (!is_mmp2_ssp(drv_data
))
1103 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1104 if (!pxa25x_ssp_comp(drv_data
))
1105 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1106 /* first set CR1 without interrupt and service enables */
1107 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1108 /* restart the SSP */
1109 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1112 if (!pxa25x_ssp_comp(drv_data
))
1113 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1116 if (is_mmp2_ssp(drv_data
)) {
1117 u8 tx_level
= (pxa2xx_spi_read(drv_data
, SSSR
)
1118 & SSSR_TFL_MASK
) >> 8;
1121 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1122 dev_warn(&spi
->dev
, "%d bytes of garbage in TXFIFO!\n",
1124 if (tx_level
> transfer
->len
)
1125 tx_level
= transfer
->len
;
1126 drv_data
->tx
+= tx_level
;
1130 if (spi_controller_is_slave(controller
)) {
1131 while (drv_data
->write(drv_data
))
1133 if (drv_data
->gpiod_ready
) {
1134 gpiod_set_value(drv_data
->gpiod_ready
, 1);
1136 gpiod_set_value(drv_data
->gpiod_ready
, 0);
1141 * Release the data by enabling service requests and interrupts,
1142 * without changing any mode bits
1144 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1149 static int pxa2xx_spi_slave_abort(struct spi_controller
*controller
)
1151 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1153 /* Stop and reset SSP */
1154 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1155 reset_sccr1(drv_data
);
1156 if (!pxa25x_ssp_comp(drv_data
))
1157 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1158 pxa2xx_spi_flush(drv_data
);
1159 pxa2xx_spi_off(drv_data
);
1161 dev_dbg(&drv_data
->pdev
->dev
, "transfer aborted\n");
1163 drv_data
->controller
->cur_msg
->status
= -EINTR
;
1164 spi_finalize_current_transfer(drv_data
->controller
);
1169 static void pxa2xx_spi_handle_err(struct spi_controller
*controller
,
1170 struct spi_message
*msg
)
1172 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1174 /* Disable the SSP */
1175 pxa2xx_spi_off(drv_data
);
1176 /* Clear and disable interrupts and service requests */
1177 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1178 pxa2xx_spi_write(drv_data
, SSCR1
,
1179 pxa2xx_spi_read(drv_data
, SSCR1
)
1180 & ~(drv_data
->int_cr1
| drv_data
->dma_cr1
));
1181 if (!pxa25x_ssp_comp(drv_data
))
1182 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1185 * Stop the DMA if running. Note DMA callback handler may have unset
1186 * the dma_running already, which is fine as stopping is not needed
1187 * then but we shouldn't rely this flag for anything else than
1188 * stopping. For instance to differentiate between PIO and DMA
1191 if (atomic_read(&drv_data
->dma_running
))
1192 pxa2xx_spi_dma_stop(drv_data
);
1195 static int pxa2xx_spi_unprepare_transfer(struct spi_controller
*controller
)
1197 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1199 /* Disable the SSP now */
1200 pxa2xx_spi_off(drv_data
);
1205 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1206 struct pxa2xx_spi_chip
*chip_info
)
1208 struct driver_data
*drv_data
=
1209 spi_controller_get_devdata(spi
->controller
);
1210 struct gpio_desc
*gpiod
;
1216 if (drv_data
->cs_gpiods
) {
1217 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1219 chip
->gpiod_cs
= gpiod
;
1220 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1221 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1227 if (chip_info
== NULL
)
1230 /* NOTE: setup() can be called multiple times, possibly with
1231 * different chip_info, release previously requested GPIO
1233 if (chip
->gpiod_cs
) {
1234 gpiod_put(chip
->gpiod_cs
);
1235 chip
->gpiod_cs
= NULL
;
1238 /* If (*cs_control) is provided, ignore GPIO chip select */
1239 if (chip_info
->cs_control
) {
1240 chip
->cs_control
= chip_info
->cs_control
;
1244 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1245 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1247 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1248 chip_info
->gpio_cs
);
1252 gpiod
= gpio_to_desc(chip_info
->gpio_cs
);
1253 chip
->gpiod_cs
= gpiod
;
1254 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1256 err
= gpiod_direction_output(gpiod
, !chip
->gpio_cs_inverted
);
1262 static int setup(struct spi_device
*spi
)
1264 struct pxa2xx_spi_chip
*chip_info
;
1265 struct chip_data
*chip
;
1266 const struct lpss_config
*config
;
1267 struct driver_data
*drv_data
=
1268 spi_controller_get_devdata(spi
->controller
);
1269 uint tx_thres
, tx_hi_thres
, rx_thres
;
1271 switch (drv_data
->ssp_type
) {
1272 case QUARK_X1000_SSP
:
1273 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1275 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1278 tx_thres
= TX_THRESH_CE4100_DFLT
;
1280 rx_thres
= RX_THRESH_CE4100_DFLT
;
1288 config
= lpss_get_config(drv_data
);
1289 tx_thres
= config
->tx_threshold_lo
;
1290 tx_hi_thres
= config
->tx_threshold_hi
;
1291 rx_thres
= config
->rx_threshold
;
1295 if (spi_controller_is_slave(drv_data
->controller
)) {
1299 tx_thres
= TX_THRESH_DFLT
;
1300 rx_thres
= RX_THRESH_DFLT
;
1305 /* Only alloc on first setup */
1306 chip
= spi_get_ctldata(spi
);
1308 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1312 if (drv_data
->ssp_type
== CE4100_SSP
) {
1313 if (spi
->chip_select
> 4) {
1315 "failed setup: cs number must not be > 4.\n");
1320 chip
->frm
= spi
->chip_select
;
1322 chip
->enable_dma
= drv_data
->controller_info
->enable_dma
;
1323 chip
->timeout
= TIMOUT_DFLT
;
1326 /* protocol drivers may change the chip settings, so...
1327 * if chip_info exists, use it */
1328 chip_info
= spi
->controller_data
;
1330 /* chip_info isn't always needed */
1333 if (chip_info
->timeout
)
1334 chip
->timeout
= chip_info
->timeout
;
1335 if (chip_info
->tx_threshold
)
1336 tx_thres
= chip_info
->tx_threshold
;
1337 if (chip_info
->tx_hi_threshold
)
1338 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1339 if (chip_info
->rx_threshold
)
1340 rx_thres
= chip_info
->rx_threshold
;
1341 chip
->dma_threshold
= 0;
1342 if (chip_info
->enable_loopback
)
1343 chip
->cr1
= SSCR1_LBM
;
1345 if (spi_controller_is_slave(drv_data
->controller
)) {
1346 chip
->cr1
|= SSCR1_SCFR
;
1347 chip
->cr1
|= SSCR1_SCLKDIR
;
1348 chip
->cr1
|= SSCR1_SFRMDIR
;
1349 chip
->cr1
|= SSCR1_SPH
;
1352 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1353 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1354 | SSITF_TxHiThresh(tx_hi_thres
);
1356 /* set dma burst and threshold outside of chip_info path so that if
1357 * chip_info goes away after setting chip->enable_dma, the
1358 * burst and threshold can still respond to changes in bits_per_word */
1359 if (chip
->enable_dma
) {
1360 /* set up legal burst and threshold for dma */
1361 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1363 &chip
->dma_burst_size
,
1364 &chip
->dma_threshold
)) {
1366 "in setup: DMA burst size reduced to match bits_per_word\n");
1369 "in setup: DMA burst size set to %u\n",
1370 chip
->dma_burst_size
);
1373 switch (drv_data
->ssp_type
) {
1374 case QUARK_X1000_SSP
:
1375 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1376 & QUARK_X1000_SSCR1_RFT
)
1377 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1378 & QUARK_X1000_SSCR1_TFT
);
1381 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1382 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1385 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1386 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1390 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1391 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1392 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1394 if (spi
->mode
& SPI_LOOP
)
1395 chip
->cr1
|= SSCR1_LBM
;
1397 if (spi
->bits_per_word
<= 8) {
1399 chip
->read
= u8_reader
;
1400 chip
->write
= u8_writer
;
1401 } else if (spi
->bits_per_word
<= 16) {
1403 chip
->read
= u16_reader
;
1404 chip
->write
= u16_writer
;
1405 } else if (spi
->bits_per_word
<= 32) {
1407 chip
->read
= u32_reader
;
1408 chip
->write
= u32_writer
;
1411 spi_set_ctldata(spi
, chip
);
1413 if (drv_data
->ssp_type
== CE4100_SSP
)
1416 return setup_cs(spi
, chip
, chip_info
);
1419 static void cleanup(struct spi_device
*spi
)
1421 struct chip_data
*chip
= spi_get_ctldata(spi
);
1422 struct driver_data
*drv_data
=
1423 spi_controller_get_devdata(spi
->controller
);
1428 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1430 gpiod_put(chip
->gpiod_cs
);
1436 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1437 { "INT33C0", LPSS_LPT_SSP
},
1438 { "INT33C1", LPSS_LPT_SSP
},
1439 { "INT3430", LPSS_LPT_SSP
},
1440 { "INT3431", LPSS_LPT_SSP
},
1441 { "80860F0E", LPSS_BYT_SSP
},
1442 { "8086228E", LPSS_BSW_SSP
},
1445 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1449 * PCI IDs of compound devices that integrate both host controller and private
1450 * integrated DMA engine. Please note these are not used in module
1451 * autoloading and probing in this module but matching the LPSS SSP type.
1453 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1455 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1456 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1458 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1459 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1461 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1462 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1464 { PCI_VDEVICE(INTEL
, 0xa3a9), LPSS_SPT_SSP
},
1465 { PCI_VDEVICE(INTEL
, 0xa3aa), LPSS_SPT_SSP
},
1467 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1468 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1469 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1471 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1472 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1473 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1475 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1476 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1477 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1479 { PCI_VDEVICE(INTEL
, 0x34aa), LPSS_CNL_SSP
},
1480 { PCI_VDEVICE(INTEL
, 0x34ab), LPSS_CNL_SSP
},
1481 { PCI_VDEVICE(INTEL
, 0x34fb), LPSS_CNL_SSP
},
1483 { PCI_VDEVICE(INTEL
, 0x4b2a), LPSS_BXT_SSP
},
1484 { PCI_VDEVICE(INTEL
, 0x4b2b), LPSS_BXT_SSP
},
1485 { PCI_VDEVICE(INTEL
, 0x4b37), LPSS_BXT_SSP
},
1487 { PCI_VDEVICE(INTEL
, 0x4daa), LPSS_CNL_SSP
},
1488 { PCI_VDEVICE(INTEL
, 0x4dab), LPSS_CNL_SSP
},
1489 { PCI_VDEVICE(INTEL
, 0x4dfb), LPSS_CNL_SSP
},
1491 { PCI_VDEVICE(INTEL
, 0x43aa), LPSS_CNL_SSP
},
1492 { PCI_VDEVICE(INTEL
, 0x43ab), LPSS_CNL_SSP
},
1493 { PCI_VDEVICE(INTEL
, 0x43fb), LPSS_CNL_SSP
},
1494 { PCI_VDEVICE(INTEL
, 0x43fd), LPSS_CNL_SSP
},
1496 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1497 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1498 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1500 { PCI_VDEVICE(INTEL
, 0x7aaa), LPSS_CNL_SSP
},
1501 { PCI_VDEVICE(INTEL
, 0x7aab), LPSS_CNL_SSP
},
1502 { PCI_VDEVICE(INTEL
, 0x7af9), LPSS_CNL_SSP
},
1503 { PCI_VDEVICE(INTEL
, 0x7afb), LPSS_CNL_SSP
},
1505 { PCI_VDEVICE(INTEL
, 0x9daa), LPSS_CNL_SSP
},
1506 { PCI_VDEVICE(INTEL
, 0x9dab), LPSS_CNL_SSP
},
1507 { PCI_VDEVICE(INTEL
, 0x9dfb), LPSS_CNL_SSP
},
1509 { PCI_VDEVICE(INTEL
, 0xa32a), LPSS_CNL_SSP
},
1510 { PCI_VDEVICE(INTEL
, 0xa32b), LPSS_CNL_SSP
},
1511 { PCI_VDEVICE(INTEL
, 0xa37b), LPSS_CNL_SSP
},
1513 { PCI_VDEVICE(INTEL
, 0x02aa), LPSS_CNL_SSP
},
1514 { PCI_VDEVICE(INTEL
, 0x02ab), LPSS_CNL_SSP
},
1515 { PCI_VDEVICE(INTEL
, 0x02fb), LPSS_CNL_SSP
},
1517 { PCI_VDEVICE(INTEL
, 0x06aa), LPSS_CNL_SSP
},
1518 { PCI_VDEVICE(INTEL
, 0x06ab), LPSS_CNL_SSP
},
1519 { PCI_VDEVICE(INTEL
, 0x06fb), LPSS_CNL_SSP
},
1521 { PCI_VDEVICE(INTEL
, 0xa0aa), LPSS_CNL_SSP
},
1522 { PCI_VDEVICE(INTEL
, 0xa0ab), LPSS_CNL_SSP
},
1523 { PCI_VDEVICE(INTEL
, 0xa0de), LPSS_CNL_SSP
},
1524 { PCI_VDEVICE(INTEL
, 0xa0df), LPSS_CNL_SSP
},
1525 { PCI_VDEVICE(INTEL
, 0xa0fb), LPSS_CNL_SSP
},
1526 { PCI_VDEVICE(INTEL
, 0xa0fd), LPSS_CNL_SSP
},
1527 { PCI_VDEVICE(INTEL
, 0xa0fe), LPSS_CNL_SSP
},
1531 static const struct of_device_id pxa2xx_spi_of_match
[] = {
1532 { .compatible
= "marvell,mmp2-ssp", .data
= (void *)MMP2_SSP
},
1535 MODULE_DEVICE_TABLE(of
, pxa2xx_spi_of_match
);
1539 static int pxa2xx_spi_get_port_id(struct device
*dev
)
1541 struct acpi_device
*adev
;
1545 adev
= ACPI_COMPANION(dev
);
1546 if (adev
&& adev
->pnp
.unique_id
&&
1547 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1552 #else /* !CONFIG_ACPI */
1554 static int pxa2xx_spi_get_port_id(struct device
*dev
)
1559 #endif /* CONFIG_ACPI */
1564 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1566 return param
== chan
->device
->dev
;
1569 #endif /* CONFIG_PCI */
1571 static struct pxa2xx_spi_controller
*
1572 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1574 struct pxa2xx_spi_controller
*pdata
;
1575 struct ssp_device
*ssp
;
1576 struct resource
*res
;
1577 struct device
*parent
= pdev
->dev
.parent
;
1578 struct pci_dev
*pcidev
= dev_is_pci(parent
) ? to_pci_dev(parent
) : NULL
;
1579 const struct pci_device_id
*pcidev_id
= NULL
;
1580 enum pxa_ssp_type type
;
1584 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
, pcidev
);
1586 match
= device_get_match_data(&pdev
->dev
);
1588 type
= (enum pxa_ssp_type
)match
;
1590 type
= (enum pxa_ssp_type
)pcidev_id
->driver_data
;
1592 return ERR_PTR(-EINVAL
);
1594 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1596 return ERR_PTR(-ENOMEM
);
1600 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1601 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1602 if (IS_ERR(ssp
->mmio_base
))
1603 return ERR_CAST(ssp
->mmio_base
);
1605 ssp
->phys_base
= res
->start
;
1609 pdata
->tx_param
= parent
;
1610 pdata
->rx_param
= parent
;
1611 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1615 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1616 if (IS_ERR(ssp
->clk
))
1617 return ERR_CAST(ssp
->clk
);
1619 ssp
->irq
= platform_get_irq(pdev
, 0);
1621 return ERR_PTR(ssp
->irq
);
1624 ssp
->dev
= &pdev
->dev
;
1625 ssp
->port_id
= pxa2xx_spi_get_port_id(&pdev
->dev
);
1627 pdata
->is_slave
= device_property_read_bool(&pdev
->dev
, "spi-slave");
1628 pdata
->num_chipselect
= 1;
1629 pdata
->enable_dma
= true;
1630 pdata
->dma_burst_size
= 1;
1635 static int pxa2xx_spi_fw_translate_cs(struct spi_controller
*controller
,
1638 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1640 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1641 switch (drv_data
->ssp_type
) {
1643 * For Atoms the ACPI DeviceSelection used by the Windows
1644 * driver starts from 1 instead of 0 so translate it here
1645 * to match what Linux expects.
1659 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device
*spi
)
1664 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1666 struct device
*dev
= &pdev
->dev
;
1667 struct pxa2xx_spi_controller
*platform_info
;
1668 struct spi_controller
*controller
;
1669 struct driver_data
*drv_data
;
1670 struct ssp_device
*ssp
;
1671 const struct lpss_config
*config
;
1675 platform_info
= dev_get_platdata(dev
);
1676 if (!platform_info
) {
1677 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1678 if (IS_ERR(platform_info
)) {
1679 dev_err(&pdev
->dev
, "missing platform data\n");
1680 return PTR_ERR(platform_info
);
1684 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1686 ssp
= &platform_info
->ssp
;
1688 if (!ssp
->mmio_base
) {
1689 dev_err(&pdev
->dev
, "failed to get ssp\n");
1693 if (platform_info
->is_slave
)
1694 controller
= devm_spi_alloc_slave(dev
, sizeof(*drv_data
));
1696 controller
= devm_spi_alloc_master(dev
, sizeof(*drv_data
));
1699 dev_err(&pdev
->dev
, "cannot alloc spi_controller\n");
1703 drv_data
= spi_controller_get_devdata(controller
);
1704 drv_data
->controller
= controller
;
1705 drv_data
->controller_info
= platform_info
;
1706 drv_data
->pdev
= pdev
;
1707 drv_data
->ssp
= ssp
;
1709 controller
->dev
.of_node
= pdev
->dev
.of_node
;
1710 /* the spi->mode bits understood by this driver: */
1711 controller
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1713 controller
->bus_num
= ssp
->port_id
;
1714 controller
->dma_alignment
= DMA_ALIGNMENT
;
1715 controller
->cleanup
= cleanup
;
1716 controller
->setup
= setup
;
1717 controller
->set_cs
= pxa2xx_spi_set_cs
;
1718 controller
->transfer_one
= pxa2xx_spi_transfer_one
;
1719 controller
->slave_abort
= pxa2xx_spi_slave_abort
;
1720 controller
->handle_err
= pxa2xx_spi_handle_err
;
1721 controller
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1722 controller
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1723 controller
->auto_runtime_pm
= true;
1724 controller
->flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
;
1726 drv_data
->ssp_type
= ssp
->type
;
1728 drv_data
->ioaddr
= ssp
->mmio_base
;
1729 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1730 if (pxa25x_ssp_comp(drv_data
)) {
1731 switch (drv_data
->ssp_type
) {
1732 case QUARK_X1000_SSP
:
1733 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1736 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1740 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1741 drv_data
->dma_cr1
= 0;
1742 drv_data
->clear_sr
= SSSR_ROR
;
1743 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1745 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1746 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1747 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1748 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1749 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
1750 | SSSR_ROR
| SSSR_TUR
;
1753 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1756 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1757 goto out_error_controller_alloc
;
1760 /* Setup DMA if requested */
1761 if (platform_info
->enable_dma
) {
1762 status
= pxa2xx_spi_dma_setup(drv_data
);
1764 dev_warn(dev
, "no DMA channels available, using PIO\n");
1765 platform_info
->enable_dma
= false;
1767 controller
->can_dma
= pxa2xx_spi_can_dma
;
1768 controller
->max_dma_len
= MAX_DMA_LEN
;
1769 controller
->max_transfer_size
=
1770 pxa2xx_spi_max_dma_transfer_size
;
1774 /* Enable SOC clock */
1775 status
= clk_prepare_enable(ssp
->clk
);
1777 goto out_error_dma_irq_alloc
;
1779 controller
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1781 * Set minimum speed for all other platforms than Intel Quark which is
1782 * able do under 1 Hz transfers.
1784 if (!pxa25x_ssp_comp(drv_data
))
1785 controller
->min_speed_hz
=
1786 DIV_ROUND_UP(controller
->max_speed_hz
, 4096);
1787 else if (!is_quark_x1000_ssp(drv_data
))
1788 controller
->min_speed_hz
=
1789 DIV_ROUND_UP(controller
->max_speed_hz
, 512);
1791 /* Load default SSP configuration */
1792 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1793 switch (drv_data
->ssp_type
) {
1794 case QUARK_X1000_SSP
:
1795 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1796 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1797 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1799 /* using the Motorola SPI protocol and use 8 bit frame */
1800 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1801 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1804 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1805 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1806 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1807 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1808 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1812 if (spi_controller_is_slave(controller
)) {
1820 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1821 SSCR1_TxTresh(TX_THRESH_DFLT
);
1823 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1824 tmp
= SSCR0_Motorola
| SSCR0_DataSize(8);
1825 if (!spi_controller_is_slave(controller
))
1826 tmp
|= SSCR0_SCR(2);
1827 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1831 if (!pxa25x_ssp_comp(drv_data
))
1832 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1834 if (!is_quark_x1000_ssp(drv_data
))
1835 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1837 if (is_lpss_ssp(drv_data
)) {
1838 lpss_ssp_setup(drv_data
);
1839 config
= lpss_get_config(drv_data
);
1840 if (config
->reg_capabilities
>= 0) {
1841 tmp
= __lpss_ssp_read_priv(drv_data
,
1842 config
->reg_capabilities
);
1843 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1844 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1845 platform_info
->num_chipselect
= ffz(tmp
);
1846 } else if (config
->cs_num
) {
1847 platform_info
->num_chipselect
= config
->cs_num
;
1850 controller
->num_chipselect
= platform_info
->num_chipselect
;
1852 count
= gpiod_count(&pdev
->dev
, "cs");
1856 controller
->num_chipselect
= max_t(int, count
,
1857 controller
->num_chipselect
);
1859 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1860 controller
->num_chipselect
, sizeof(struct gpio_desc
*),
1862 if (!drv_data
->cs_gpiods
) {
1864 goto out_error_clock_enabled
;
1867 for (i
= 0; i
< controller
->num_chipselect
; i
++) {
1868 struct gpio_desc
*gpiod
;
1870 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1871 if (IS_ERR(gpiod
)) {
1872 /* Means use native chip select */
1873 if (PTR_ERR(gpiod
) == -ENOENT
)
1876 status
= PTR_ERR(gpiod
);
1877 goto out_error_clock_enabled
;
1879 drv_data
->cs_gpiods
[i
] = gpiod
;
1884 if (platform_info
->is_slave
) {
1885 drv_data
->gpiod_ready
= devm_gpiod_get_optional(dev
,
1886 "ready", GPIOD_OUT_LOW
);
1887 if (IS_ERR(drv_data
->gpiod_ready
)) {
1888 status
= PTR_ERR(drv_data
->gpiod_ready
);
1889 goto out_error_clock_enabled
;
1893 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1894 pm_runtime_use_autosuspend(&pdev
->dev
);
1895 pm_runtime_set_active(&pdev
->dev
);
1896 pm_runtime_enable(&pdev
->dev
);
1898 /* Register with the SPI framework */
1899 platform_set_drvdata(pdev
, drv_data
);
1900 status
= spi_register_controller(controller
);
1902 dev_err(&pdev
->dev
, "problem registering spi controller\n");
1903 goto out_error_pm_runtime_enabled
;
1908 out_error_pm_runtime_enabled
:
1909 pm_runtime_disable(&pdev
->dev
);
1911 out_error_clock_enabled
:
1912 clk_disable_unprepare(ssp
->clk
);
1914 out_error_dma_irq_alloc
:
1915 pxa2xx_spi_dma_release(drv_data
);
1916 free_irq(ssp
->irq
, drv_data
);
1918 out_error_controller_alloc
:
1923 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1925 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1926 struct ssp_device
*ssp
= drv_data
->ssp
;
1928 pm_runtime_get_sync(&pdev
->dev
);
1930 spi_unregister_controller(drv_data
->controller
);
1932 /* Disable the SSP at the peripheral and SOC level */
1933 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1934 clk_disable_unprepare(ssp
->clk
);
1937 if (drv_data
->controller_info
->enable_dma
)
1938 pxa2xx_spi_dma_release(drv_data
);
1940 pm_runtime_put_noidle(&pdev
->dev
);
1941 pm_runtime_disable(&pdev
->dev
);
1944 free_irq(ssp
->irq
, drv_data
);
1952 #ifdef CONFIG_PM_SLEEP
1953 static int pxa2xx_spi_suspend(struct device
*dev
)
1955 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1956 struct ssp_device
*ssp
= drv_data
->ssp
;
1959 status
= spi_controller_suspend(drv_data
->controller
);
1962 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1964 if (!pm_runtime_suspended(dev
))
1965 clk_disable_unprepare(ssp
->clk
);
1970 static int pxa2xx_spi_resume(struct device
*dev
)
1972 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1973 struct ssp_device
*ssp
= drv_data
->ssp
;
1976 /* Enable the SSP clock */
1977 if (!pm_runtime_suspended(dev
)) {
1978 status
= clk_prepare_enable(ssp
->clk
);
1983 /* Start the queue running */
1984 return spi_controller_resume(drv_data
->controller
);
1989 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1991 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1993 clk_disable_unprepare(drv_data
->ssp
->clk
);
1997 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1999 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
2002 status
= clk_prepare_enable(drv_data
->ssp
->clk
);
2007 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
2008 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
2009 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
2010 pxa2xx_spi_runtime_resume
, NULL
)
2013 static struct platform_driver driver
= {
2015 .name
= "pxa2xx-spi",
2016 .pm
= &pxa2xx_spi_pm_ops
,
2017 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
2018 .of_match_table
= of_match_ptr(pxa2xx_spi_of_match
),
2020 .probe
= pxa2xx_spi_probe
,
2021 .remove
= pxa2xx_spi_remove
,
2024 static int __init
pxa2xx_spi_init(void)
2026 return platform_driver_register(&driver
);
2028 subsys_initcall(pxa2xx_spi_init
);
2030 static void __exit
pxa2xx_spi_exit(void)
2032 platform_driver_unregister(&driver
);
2034 module_exit(pxa2xx_spi_exit
);
2036 MODULE_SOFTDEP("pre: dw_dmac");