1 // SPDX-License-Identifier: GPL-2.0-only
3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
23 #include <linux/of_device.h>
24 #include <linux/reset.h>
25 #include <linux/spi/spi.h>
27 #define SPI_COMMAND1 0x000
28 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
29 #define SPI_PACKED (1 << 5)
30 #define SPI_TX_EN (1 << 11)
31 #define SPI_RX_EN (1 << 12)
32 #define SPI_BOTH_EN_BYTE (1 << 13)
33 #define SPI_BOTH_EN_BIT (1 << 14)
34 #define SPI_LSBYTE_FE (1 << 15)
35 #define SPI_LSBIT_FE (1 << 16)
36 #define SPI_BIDIROE (1 << 17)
37 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
38 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
39 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
40 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
41 #define SPI_IDLE_SDA_MASK (3 << 18)
42 #define SPI_CS_SW_VAL (1 << 20)
43 #define SPI_CS_SW_HW (1 << 21)
44 /* SPI_CS_POL_INACTIVE bits are default high */
46 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
47 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
49 #define SPI_CS_SEL_0 (0 << 26)
50 #define SPI_CS_SEL_1 (1 << 26)
51 #define SPI_CS_SEL_2 (2 << 26)
52 #define SPI_CS_SEL_3 (3 << 26)
53 #define SPI_CS_SEL_MASK (3 << 26)
54 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
55 #define SPI_CONTROL_MODE_0 (0 << 28)
56 #define SPI_CONTROL_MODE_1 (1 << 28)
57 #define SPI_CONTROL_MODE_2 (2 << 28)
58 #define SPI_CONTROL_MODE_3 (3 << 28)
59 #define SPI_CONTROL_MODE_MASK (3 << 28)
60 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
61 #define SPI_M_S (1 << 30)
62 #define SPI_PIO (1 << 31)
64 #define SPI_COMMAND2 0x004
65 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
66 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
68 #define SPI_CS_TIMING1 0x008
69 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
70 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
71 ((((val) & 0xFFu) << ((cs) * 8)) | \
72 ((reg) & ~(0xFFu << ((cs) * 8))))
74 #define SPI_CS_TIMING2 0x00C
75 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
76 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
77 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
78 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
79 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
80 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
81 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
82 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
83 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
84 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
85 ((reg) & ~(1 << ((cs) * 8 + 5))))
86 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
87 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
88 ((reg) & ~(0x1F << ((cs) * 8))))
89 #define MAX_SETUP_HOLD_CYCLES 16
90 #define MAX_INACTIVE_CYCLES 32
92 #define SPI_TRANS_STATUS 0x010
93 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
94 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
95 #define SPI_RDY (1 << 30)
97 #define SPI_FIFO_STATUS 0x014
98 #define SPI_RX_FIFO_EMPTY (1 << 0)
99 #define SPI_RX_FIFO_FULL (1 << 1)
100 #define SPI_TX_FIFO_EMPTY (1 << 2)
101 #define SPI_TX_FIFO_FULL (1 << 3)
102 #define SPI_RX_FIFO_UNF (1 << 4)
103 #define SPI_RX_FIFO_OVF (1 << 5)
104 #define SPI_TX_FIFO_UNF (1 << 6)
105 #define SPI_TX_FIFO_OVF (1 << 7)
106 #define SPI_ERR (1 << 8)
107 #define SPI_TX_FIFO_FLUSH (1 << 14)
108 #define SPI_RX_FIFO_FLUSH (1 << 15)
109 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
110 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
111 #define SPI_FRAME_END (1 << 30)
112 #define SPI_CS_INACTIVE (1 << 31)
114 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
115 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
116 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
118 #define SPI_TX_DATA 0x018
119 #define SPI_RX_DATA 0x01C
121 #define SPI_DMA_CTL 0x020
122 #define SPI_TX_TRIG_1 (0 << 15)
123 #define SPI_TX_TRIG_4 (1 << 15)
124 #define SPI_TX_TRIG_8 (2 << 15)
125 #define SPI_TX_TRIG_16 (3 << 15)
126 #define SPI_TX_TRIG_MASK (3 << 15)
127 #define SPI_RX_TRIG_1 (0 << 19)
128 #define SPI_RX_TRIG_4 (1 << 19)
129 #define SPI_RX_TRIG_8 (2 << 19)
130 #define SPI_RX_TRIG_16 (3 << 19)
131 #define SPI_RX_TRIG_MASK (3 << 19)
132 #define SPI_IE_TX (1 << 28)
133 #define SPI_IE_RX (1 << 29)
134 #define SPI_CONT (1 << 30)
135 #define SPI_DMA (1 << 31)
136 #define SPI_DMA_EN SPI_DMA
138 #define SPI_DMA_BLK 0x024
139 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
141 #define SPI_TX_FIFO 0x108
142 #define SPI_RX_FIFO 0x188
143 #define SPI_INTR_MASK 0x18c
144 #define SPI_INTR_ALL_MASK (0x1fUL << 25)
145 #define MAX_CHIP_SELECT 4
146 #define SPI_FIFO_DEPTH 64
147 #define DATA_DIR_TX (1 << 0)
148 #define DATA_DIR_RX (1 << 1)
150 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
151 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
152 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
153 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
154 #define MAX_HOLD_CYCLES 16
155 #define SPI_DEFAULT_SPEED 25000000
157 struct tegra_spi_soc_data
{
158 bool has_intr_mask_reg
;
161 struct tegra_spi_client_data
{
162 int tx_clk_tap_delay
;
163 int rx_clk_tap_delay
;
166 struct tegra_spi_data
{
168 struct spi_master
*master
;
172 struct reset_control
*rst
;
178 struct spi_device
*cur_spi
;
179 struct spi_device
*cs_control
;
181 unsigned words_per_32bit
;
182 unsigned bytes_per_word
;
183 unsigned curr_dma_words
;
184 unsigned cur_direction
;
189 unsigned dma_buf_size
;
190 unsigned max_buf_size
;
191 bool is_curr_dma_xfer
;
192 bool use_hw_based_cs
;
194 struct completion rx_dma_complete
;
195 struct completion tx_dma_complete
;
204 u32 def_command1_reg
;
205 u32 def_command2_reg
;
210 struct completion xfer_completion
;
211 struct spi_transfer
*curr_xfer
;
212 struct dma_chan
*rx_dma_chan
;
214 dma_addr_t rx_dma_phys
;
215 struct dma_async_tx_descriptor
*rx_dma_desc
;
217 struct dma_chan
*tx_dma_chan
;
219 dma_addr_t tx_dma_phys
;
220 struct dma_async_tx_descriptor
*tx_dma_desc
;
221 const struct tegra_spi_soc_data
*soc_data
;
224 static int tegra_spi_runtime_suspend(struct device
*dev
);
225 static int tegra_spi_runtime_resume(struct device
*dev
);
227 static inline u32
tegra_spi_readl(struct tegra_spi_data
*tspi
,
230 return readl(tspi
->base
+ reg
);
233 static inline void tegra_spi_writel(struct tegra_spi_data
*tspi
,
234 u32 val
, unsigned long reg
)
236 writel(val
, tspi
->base
+ reg
);
238 /* Read back register to make sure that register writes completed */
239 if (reg
!= SPI_TX_FIFO
)
240 readl(tspi
->base
+ SPI_COMMAND1
);
243 static void tegra_spi_clear_status(struct tegra_spi_data
*tspi
)
247 /* Write 1 to clear status register */
248 val
= tegra_spi_readl(tspi
, SPI_TRANS_STATUS
);
249 tegra_spi_writel(tspi
, val
, SPI_TRANS_STATUS
);
251 /* Clear fifo status error if any */
252 val
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
254 tegra_spi_writel(tspi
, SPI_ERR
| SPI_FIFO_ERROR
,
258 static unsigned tegra_spi_calculate_curr_xfer_param(
259 struct spi_device
*spi
, struct tegra_spi_data
*tspi
,
260 struct spi_transfer
*t
)
262 unsigned remain_len
= t
->len
- tspi
->cur_pos
;
264 unsigned bits_per_word
= t
->bits_per_word
;
266 unsigned total_fifo_words
;
268 tspi
->bytes_per_word
= DIV_ROUND_UP(bits_per_word
, 8);
270 if ((bits_per_word
== 8 || bits_per_word
== 16 ||
271 bits_per_word
== 32) && t
->len
> 3) {
272 tspi
->is_packed
= true;
273 tspi
->words_per_32bit
= 32/bits_per_word
;
275 tspi
->is_packed
= false;
276 tspi
->words_per_32bit
= 1;
279 if (tspi
->is_packed
) {
280 max_len
= min(remain_len
, tspi
->max_buf_size
);
281 tspi
->curr_dma_words
= max_len
/tspi
->bytes_per_word
;
282 total_fifo_words
= (max_len
+ 3) / 4;
284 max_word
= (remain_len
- 1) / tspi
->bytes_per_word
+ 1;
285 max_word
= min(max_word
, tspi
->max_buf_size
/4);
286 tspi
->curr_dma_words
= max_word
;
287 total_fifo_words
= max_word
;
289 return total_fifo_words
;
292 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
293 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
296 unsigned tx_empty_count
;
298 unsigned max_n_32bit
;
300 unsigned int written_words
;
301 unsigned fifo_words_left
;
302 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
304 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
305 tx_empty_count
= SPI_TX_FIFO_EMPTY_COUNT(fifo_status
);
307 if (tspi
->is_packed
) {
308 fifo_words_left
= tx_empty_count
* tspi
->words_per_32bit
;
309 written_words
= min(fifo_words_left
, tspi
->curr_dma_words
);
310 nbytes
= written_words
* tspi
->bytes_per_word
;
311 max_n_32bit
= DIV_ROUND_UP(nbytes
, 4);
312 for (count
= 0; count
< max_n_32bit
; count
++) {
315 for (i
= 0; (i
< 4) && nbytes
; i
++, nbytes
--)
316 x
|= (u32
)(*tx_buf
++) << (i
* 8);
317 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
320 tspi
->cur_tx_pos
+= written_words
* tspi
->bytes_per_word
;
322 unsigned int write_bytes
;
323 max_n_32bit
= min(tspi
->curr_dma_words
, tx_empty_count
);
324 written_words
= max_n_32bit
;
325 nbytes
= written_words
* tspi
->bytes_per_word
;
326 if (nbytes
> t
->len
- tspi
->cur_pos
)
327 nbytes
= t
->len
- tspi
->cur_pos
;
328 write_bytes
= nbytes
;
329 for (count
= 0; count
< max_n_32bit
; count
++) {
332 for (i
= 0; nbytes
&& (i
< tspi
->bytes_per_word
);
334 x
|= (u32
)(*tx_buf
++) << (i
* 8);
335 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
338 tspi
->cur_tx_pos
+= write_bytes
;
341 return written_words
;
344 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
345 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
347 unsigned rx_full_count
;
350 unsigned int read_words
= 0;
352 u8
*rx_buf
= (u8
*)t
->rx_buf
+ tspi
->cur_rx_pos
;
354 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
355 rx_full_count
= SPI_RX_FIFO_FULL_COUNT(fifo_status
);
356 if (tspi
->is_packed
) {
357 len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
358 for (count
= 0; count
< rx_full_count
; count
++) {
359 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
);
361 for (i
= 0; len
&& (i
< 4); i
++, len
--)
362 *rx_buf
++ = (x
>> i
*8) & 0xFF;
364 read_words
+= tspi
->curr_dma_words
;
365 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
367 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
368 u8 bytes_per_word
= tspi
->bytes_per_word
;
369 unsigned int read_bytes
;
371 len
= rx_full_count
* bytes_per_word
;
372 if (len
> t
->len
- tspi
->cur_pos
)
373 len
= t
->len
- tspi
->cur_pos
;
375 for (count
= 0; count
< rx_full_count
; count
++) {
376 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
) & rx_mask
;
378 for (i
= 0; len
&& (i
< bytes_per_word
); i
++, len
--)
379 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
381 read_words
+= rx_full_count
;
382 tspi
->cur_rx_pos
+= read_bytes
;
388 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
389 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
391 /* Make the dma buffer to read by cpu */
392 dma_sync_single_for_cpu(tspi
->dev
, tspi
->tx_dma_phys
,
393 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
395 if (tspi
->is_packed
) {
396 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
398 memcpy(tspi
->tx_dma_buf
, t
->tx_buf
+ tspi
->cur_pos
, len
);
399 tspi
->cur_tx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
403 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
404 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
405 unsigned int write_bytes
;
407 if (consume
> t
->len
- tspi
->cur_pos
)
408 consume
= t
->len
- tspi
->cur_pos
;
409 write_bytes
= consume
;
410 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
413 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
415 x
|= (u32
)(*tx_buf
++) << (i
* 8);
416 tspi
->tx_dma_buf
[count
] = x
;
419 tspi
->cur_tx_pos
+= write_bytes
;
422 /* Make the dma buffer to read by dma */
423 dma_sync_single_for_device(tspi
->dev
, tspi
->tx_dma_phys
,
424 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
427 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
428 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
430 /* Make the dma buffer to read by cpu */
431 dma_sync_single_for_cpu(tspi
->dev
, tspi
->rx_dma_phys
,
432 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
434 if (tspi
->is_packed
) {
435 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
437 memcpy(t
->rx_buf
+ tspi
->cur_rx_pos
, tspi
->rx_dma_buf
, len
);
438 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
442 unsigned char *rx_buf
= t
->rx_buf
+ tspi
->cur_rx_pos
;
443 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
444 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
445 unsigned int read_bytes
;
447 if (consume
> t
->len
- tspi
->cur_pos
)
448 consume
= t
->len
- tspi
->cur_pos
;
449 read_bytes
= consume
;
450 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
451 u32 x
= tspi
->rx_dma_buf
[count
] & rx_mask
;
453 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
455 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
458 tspi
->cur_rx_pos
+= read_bytes
;
461 /* Make the dma buffer to read by dma */
462 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
463 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
466 static void tegra_spi_dma_complete(void *args
)
468 struct completion
*dma_complete
= args
;
470 complete(dma_complete
);
473 static int tegra_spi_start_tx_dma(struct tegra_spi_data
*tspi
, int len
)
475 reinit_completion(&tspi
->tx_dma_complete
);
476 tspi
->tx_dma_desc
= dmaengine_prep_slave_single(tspi
->tx_dma_chan
,
477 tspi
->tx_dma_phys
, len
, DMA_MEM_TO_DEV
,
478 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
479 if (!tspi
->tx_dma_desc
) {
480 dev_err(tspi
->dev
, "Not able to get desc for Tx\n");
484 tspi
->tx_dma_desc
->callback
= tegra_spi_dma_complete
;
485 tspi
->tx_dma_desc
->callback_param
= &tspi
->tx_dma_complete
;
487 dmaengine_submit(tspi
->tx_dma_desc
);
488 dma_async_issue_pending(tspi
->tx_dma_chan
);
492 static int tegra_spi_start_rx_dma(struct tegra_spi_data
*tspi
, int len
)
494 reinit_completion(&tspi
->rx_dma_complete
);
495 tspi
->rx_dma_desc
= dmaengine_prep_slave_single(tspi
->rx_dma_chan
,
496 tspi
->rx_dma_phys
, len
, DMA_DEV_TO_MEM
,
497 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
498 if (!tspi
->rx_dma_desc
) {
499 dev_err(tspi
->dev
, "Not able to get desc for Rx\n");
503 tspi
->rx_dma_desc
->callback
= tegra_spi_dma_complete
;
504 tspi
->rx_dma_desc
->callback_param
= &tspi
->rx_dma_complete
;
506 dmaengine_submit(tspi
->rx_dma_desc
);
507 dma_async_issue_pending(tspi
->rx_dma_chan
);
511 static int tegra_spi_flush_fifos(struct tegra_spi_data
*tspi
)
513 unsigned long timeout
= jiffies
+ HZ
;
516 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
517 if ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
518 status
|= SPI_RX_FIFO_FLUSH
| SPI_TX_FIFO_FLUSH
;
519 tegra_spi_writel(tspi
, status
, SPI_FIFO_STATUS
);
520 while ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
521 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
522 if (time_after(jiffies
, timeout
)) {
524 "timeout waiting for fifo flush\n");
535 static int tegra_spi_start_dma_based_transfer(
536 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
542 struct dma_slave_config dma_sconfig
= {0};
544 val
= SPI_DMA_BLK_SET(tspi
->curr_dma_words
- 1);
545 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
548 len
= DIV_ROUND_UP(tspi
->curr_dma_words
* tspi
->bytes_per_word
,
551 len
= tspi
->curr_dma_words
* 4;
553 /* Set attention level based on length of transfer */
555 val
|= SPI_TX_TRIG_1
| SPI_RX_TRIG_1
;
557 } else if (((len
) >> 4) & 0x1) {
558 val
|= SPI_TX_TRIG_4
| SPI_RX_TRIG_4
;
561 val
|= SPI_TX_TRIG_8
| SPI_RX_TRIG_8
;
565 if (!tspi
->soc_data
->has_intr_mask_reg
) {
566 if (tspi
->cur_direction
& DATA_DIR_TX
)
569 if (tspi
->cur_direction
& DATA_DIR_RX
)
573 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
574 tspi
->dma_control_reg
= val
;
576 dma_sconfig
.device_fc
= true;
577 if (tspi
->cur_direction
& DATA_DIR_TX
) {
578 dma_sconfig
.dst_addr
= tspi
->phys
+ SPI_TX_FIFO
;
579 dma_sconfig
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
580 dma_sconfig
.dst_maxburst
= dma_burst
;
581 ret
= dmaengine_slave_config(tspi
->tx_dma_chan
, &dma_sconfig
);
584 "DMA slave config failed: %d\n", ret
);
588 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi
, t
);
589 ret
= tegra_spi_start_tx_dma(tspi
, len
);
592 "Starting tx dma failed, err %d\n", ret
);
597 if (tspi
->cur_direction
& DATA_DIR_RX
) {
598 dma_sconfig
.src_addr
= tspi
->phys
+ SPI_RX_FIFO
;
599 dma_sconfig
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
600 dma_sconfig
.src_maxburst
= dma_burst
;
601 ret
= dmaengine_slave_config(tspi
->rx_dma_chan
, &dma_sconfig
);
604 "DMA slave config failed: %d\n", ret
);
608 /* Make the dma buffer to read by dma */
609 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
610 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
612 ret
= tegra_spi_start_rx_dma(tspi
, len
);
615 "Starting rx dma failed, err %d\n", ret
);
616 if (tspi
->cur_direction
& DATA_DIR_TX
)
617 dmaengine_terminate_all(tspi
->tx_dma_chan
);
621 tspi
->is_curr_dma_xfer
= true;
622 tspi
->dma_control_reg
= val
;
625 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
629 static int tegra_spi_start_cpu_based_transfer(
630 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
635 if (tspi
->cur_direction
& DATA_DIR_TX
)
636 cur_words
= tegra_spi_fill_tx_fifo_from_client_txbuf(tspi
, t
);
638 cur_words
= tspi
->curr_dma_words
;
640 val
= SPI_DMA_BLK_SET(cur_words
- 1);
641 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
644 if (tspi
->cur_direction
& DATA_DIR_TX
)
647 if (tspi
->cur_direction
& DATA_DIR_RX
)
650 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
651 tspi
->dma_control_reg
= val
;
653 tspi
->is_curr_dma_xfer
= false;
655 val
= tspi
->command1_reg
;
657 tegra_spi_writel(tspi
, val
, SPI_COMMAND1
);
661 static int tegra_spi_init_dma_param(struct tegra_spi_data
*tspi
,
664 struct dma_chan
*dma_chan
;
668 dma_chan
= dma_request_chan(tspi
->dev
, dma_to_memory
? "rx" : "tx");
669 if (IS_ERR(dma_chan
))
670 return dev_err_probe(tspi
->dev
, PTR_ERR(dma_chan
),
671 "Dma channel is not available\n");
673 dma_buf
= dma_alloc_coherent(tspi
->dev
, tspi
->dma_buf_size
,
674 &dma_phys
, GFP_KERNEL
);
676 dev_err(tspi
->dev
, " Not able to allocate the dma buffer\n");
677 dma_release_channel(dma_chan
);
682 tspi
->rx_dma_chan
= dma_chan
;
683 tspi
->rx_dma_buf
= dma_buf
;
684 tspi
->rx_dma_phys
= dma_phys
;
686 tspi
->tx_dma_chan
= dma_chan
;
687 tspi
->tx_dma_buf
= dma_buf
;
688 tspi
->tx_dma_phys
= dma_phys
;
693 static void tegra_spi_deinit_dma_param(struct tegra_spi_data
*tspi
,
698 struct dma_chan
*dma_chan
;
701 dma_buf
= tspi
->rx_dma_buf
;
702 dma_chan
= tspi
->rx_dma_chan
;
703 dma_phys
= tspi
->rx_dma_phys
;
704 tspi
->rx_dma_chan
= NULL
;
705 tspi
->rx_dma_buf
= NULL
;
707 dma_buf
= tspi
->tx_dma_buf
;
708 dma_chan
= tspi
->tx_dma_chan
;
709 dma_phys
= tspi
->tx_dma_phys
;
710 tspi
->tx_dma_buf
= NULL
;
711 tspi
->tx_dma_chan
= NULL
;
716 dma_free_coherent(tspi
->dev
, tspi
->dma_buf_size
, dma_buf
, dma_phys
);
717 dma_release_channel(dma_chan
);
720 static int tegra_spi_set_hw_cs_timing(struct spi_device
*spi
,
721 struct spi_delay
*setup
,
722 struct spi_delay
*hold
,
723 struct spi_delay
*inactive
)
725 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
726 u8 setup_dly
, hold_dly
, inactive_dly
;
732 if ((setup
&& setup
->unit
!= SPI_DELAY_UNIT_SCK
) ||
733 (hold
&& hold
->unit
!= SPI_DELAY_UNIT_SCK
) ||
734 (inactive
&& inactive
->unit
!= SPI_DELAY_UNIT_SCK
)) {
736 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
741 setup_dly
= setup
? setup
->value
: 0;
742 hold_dly
= hold
? hold
->value
: 0;
743 inactive_dly
= inactive
? inactive
->value
: 0;
745 setup_dly
= min_t(u8
, setup_dly
, MAX_SETUP_HOLD_CYCLES
);
746 hold_dly
= min_t(u8
, hold_dly
, MAX_SETUP_HOLD_CYCLES
);
747 if (setup_dly
&& hold_dly
) {
748 setup_hold
= SPI_SETUP_HOLD(setup_dly
- 1, hold_dly
- 1);
749 spi_cs_timing
= SPI_CS_SETUP_HOLD(tspi
->spi_cs_timing1
,
752 if (tspi
->spi_cs_timing1
!= spi_cs_timing
) {
753 tspi
->spi_cs_timing1
= spi_cs_timing
;
754 tegra_spi_writel(tspi
, spi_cs_timing
, SPI_CS_TIMING1
);
758 inactive_cycles
= min_t(u8
, inactive_dly
, MAX_INACTIVE_CYCLES
);
761 cs_state
= inactive_cycles
? 0 : 1;
762 spi_cs_timing
= tspi
->spi_cs_timing2
;
763 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing
, spi
->chip_select
,
765 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing
, spi
->chip_select
,
767 if (tspi
->spi_cs_timing2
!= spi_cs_timing
) {
768 tspi
->spi_cs_timing2
= spi_cs_timing
;
769 tegra_spi_writel(tspi
, spi_cs_timing
, SPI_CS_TIMING2
);
775 static u32
tegra_spi_setup_transfer_one(struct spi_device
*spi
,
776 struct spi_transfer
*t
,
777 bool is_first_of_msg
,
780 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
781 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
782 u32 speed
= t
->speed_hz
;
783 u8 bits_per_word
= t
->bits_per_word
;
784 u32 command1
, command2
;
786 u32 tx_tap
= 0, rx_tap
= 0;
788 if (speed
!= tspi
->cur_speed
) {
789 clk_set_rate(tspi
->clk
, speed
);
790 tspi
->cur_speed
= speed
;
795 tspi
->cur_rx_pos
= 0;
796 tspi
->cur_tx_pos
= 0;
799 if (is_first_of_msg
) {
800 tegra_spi_clear_status(tspi
);
802 command1
= tspi
->def_command1_reg
;
803 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
805 command1
&= ~SPI_CONTROL_MODE_MASK
;
806 req_mode
= spi
->mode
& 0x3;
807 if (req_mode
== SPI_MODE_0
)
808 command1
|= SPI_CONTROL_MODE_0
;
809 else if (req_mode
== SPI_MODE_1
)
810 command1
|= SPI_CONTROL_MODE_1
;
811 else if (req_mode
== SPI_MODE_2
)
812 command1
|= SPI_CONTROL_MODE_2
;
813 else if (req_mode
== SPI_MODE_3
)
814 command1
|= SPI_CONTROL_MODE_3
;
816 if (spi
->mode
& SPI_LSB_FIRST
)
817 command1
|= SPI_LSBIT_FE
;
819 command1
&= ~SPI_LSBIT_FE
;
821 if (spi
->mode
& SPI_3WIRE
)
822 command1
|= SPI_BIDIROE
;
824 command1
&= ~SPI_BIDIROE
;
826 if (tspi
->cs_control
) {
827 if (tspi
->cs_control
!= spi
)
828 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
829 tspi
->cs_control
= NULL
;
831 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
833 /* GPIO based chip select control */
835 gpiod_set_value(spi
->cs_gpiod
, 1);
837 if (is_single_xfer
&& !(t
->cs_change
)) {
838 tspi
->use_hw_based_cs
= true;
839 command1
&= ~(SPI_CS_SW_HW
| SPI_CS_SW_VAL
);
841 tspi
->use_hw_based_cs
= false;
842 command1
|= SPI_CS_SW_HW
;
843 if (spi
->mode
& SPI_CS_HIGH
)
844 command1
|= SPI_CS_SW_VAL
;
846 command1
&= ~SPI_CS_SW_VAL
;
849 if (tspi
->last_used_cs
!= spi
->chip_select
) {
850 if (cdata
&& cdata
->tx_clk_tap_delay
)
851 tx_tap
= cdata
->tx_clk_tap_delay
;
852 if (cdata
&& cdata
->rx_clk_tap_delay
)
853 rx_tap
= cdata
->rx_clk_tap_delay
;
854 command2
= SPI_TX_TAP_DELAY(tx_tap
) |
855 SPI_RX_TAP_DELAY(rx_tap
);
856 if (command2
!= tspi
->def_command2_reg
)
857 tegra_spi_writel(tspi
, command2
, SPI_COMMAND2
);
858 tspi
->last_used_cs
= spi
->chip_select
;
862 command1
= tspi
->command1_reg
;
863 command1
&= ~SPI_BIT_LENGTH(~0);
864 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
870 static int tegra_spi_start_transfer_one(struct spi_device
*spi
,
871 struct spi_transfer
*t
, u32 command1
)
873 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
874 unsigned total_fifo_words
;
877 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(spi
, tspi
, t
);
879 if (t
->rx_nbits
== SPI_NBITS_DUAL
|| t
->tx_nbits
== SPI_NBITS_DUAL
)
880 command1
|= SPI_BOTH_EN_BIT
;
882 command1
&= ~SPI_BOTH_EN_BIT
;
885 command1
|= SPI_PACKED
;
887 command1
&= ~SPI_PACKED
;
889 command1
&= ~(SPI_CS_SEL_MASK
| SPI_TX_EN
| SPI_RX_EN
);
890 tspi
->cur_direction
= 0;
892 command1
|= SPI_RX_EN
;
893 tspi
->cur_direction
|= DATA_DIR_RX
;
896 command1
|= SPI_TX_EN
;
897 tspi
->cur_direction
|= DATA_DIR_TX
;
899 command1
|= SPI_CS_SEL(spi
->chip_select
);
900 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
901 tspi
->command1_reg
= command1
;
903 dev_dbg(tspi
->dev
, "The def 0x%x and written 0x%x\n",
904 tspi
->def_command1_reg
, (unsigned)command1
);
906 ret
= tegra_spi_flush_fifos(tspi
);
909 if (total_fifo_words
> SPI_FIFO_DEPTH
)
910 ret
= tegra_spi_start_dma_based_transfer(tspi
, t
);
912 ret
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
916 static struct tegra_spi_client_data
917 *tegra_spi_parse_cdata_dt(struct spi_device
*spi
)
919 struct tegra_spi_client_data
*cdata
;
920 struct device_node
*slave_np
;
922 slave_np
= spi
->dev
.of_node
;
924 dev_dbg(&spi
->dev
, "device node not found\n");
928 cdata
= kzalloc(sizeof(*cdata
), GFP_KERNEL
);
932 of_property_read_u32(slave_np
, "nvidia,tx-clk-tap-delay",
933 &cdata
->tx_clk_tap_delay
);
934 of_property_read_u32(slave_np
, "nvidia,rx-clk-tap-delay",
935 &cdata
->rx_clk_tap_delay
);
939 static void tegra_spi_cleanup(struct spi_device
*spi
)
941 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
943 spi
->controller_data
= NULL
;
944 if (spi
->dev
.of_node
)
948 static int tegra_spi_setup(struct spi_device
*spi
)
950 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
951 struct tegra_spi_client_data
*cdata
= spi
->controller_data
;
956 dev_dbg(&spi
->dev
, "setup %d bpw, %scpol, %scpha, %dHz\n",
958 spi
->mode
& SPI_CPOL
? "" : "~",
959 spi
->mode
& SPI_CPHA
? "" : "~",
963 cdata
= tegra_spi_parse_cdata_dt(spi
);
964 spi
->controller_data
= cdata
;
967 ret
= pm_runtime_get_sync(tspi
->dev
);
969 pm_runtime_put_noidle(tspi
->dev
);
970 dev_err(tspi
->dev
, "pm runtime failed, e = %d\n", ret
);
972 tegra_spi_cleanup(spi
);
976 if (tspi
->soc_data
->has_intr_mask_reg
) {
977 val
= tegra_spi_readl(tspi
, SPI_INTR_MASK
);
978 val
&= ~SPI_INTR_ALL_MASK
;
979 tegra_spi_writel(tspi
, val
, SPI_INTR_MASK
);
982 spin_lock_irqsave(&tspi
->lock
, flags
);
983 /* GPIO based chip select control */
985 gpiod_set_value(spi
->cs_gpiod
, 0);
987 val
= tspi
->def_command1_reg
;
988 if (spi
->mode
& SPI_CS_HIGH
)
989 val
&= ~SPI_CS_POL_INACTIVE(spi
->chip_select
);
991 val
|= SPI_CS_POL_INACTIVE(spi
->chip_select
);
992 tspi
->def_command1_reg
= val
;
993 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
994 spin_unlock_irqrestore(&tspi
->lock
, flags
);
996 pm_runtime_put(tspi
->dev
);
1000 static void tegra_spi_transfer_end(struct spi_device
*spi
)
1002 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
1003 int cs_val
= (spi
->mode
& SPI_CS_HIGH
) ? 0 : 1;
1005 /* GPIO based chip select control */
1007 gpiod_set_value(spi
->cs_gpiod
, 0);
1009 if (!tspi
->use_hw_based_cs
) {
1011 tspi
->command1_reg
|= SPI_CS_SW_VAL
;
1013 tspi
->command1_reg
&= ~SPI_CS_SW_VAL
;
1014 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1017 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1020 static void tegra_spi_dump_regs(struct tegra_spi_data
*tspi
)
1022 dev_dbg(tspi
->dev
, "============ SPI REGISTER DUMP ============\n");
1023 dev_dbg(tspi
->dev
, "Command1: 0x%08x | Command2: 0x%08x\n",
1024 tegra_spi_readl(tspi
, SPI_COMMAND1
),
1025 tegra_spi_readl(tspi
, SPI_COMMAND2
));
1026 dev_dbg(tspi
->dev
, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1027 tegra_spi_readl(tspi
, SPI_DMA_CTL
),
1028 tegra_spi_readl(tspi
, SPI_DMA_BLK
));
1029 dev_dbg(tspi
->dev
, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1030 tegra_spi_readl(tspi
, SPI_TRANS_STATUS
),
1031 tegra_spi_readl(tspi
, SPI_FIFO_STATUS
));
1034 static int tegra_spi_transfer_one_message(struct spi_master
*master
,
1035 struct spi_message
*msg
)
1037 bool is_first_msg
= true;
1038 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1039 struct spi_transfer
*xfer
;
1040 struct spi_device
*spi
= msg
->spi
;
1046 msg
->actual_length
= 0;
1048 single_xfer
= list_is_singular(&msg
->transfers
);
1049 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1052 reinit_completion(&tspi
->xfer_completion
);
1054 cmd1
= tegra_spi_setup_transfer_one(spi
, xfer
, is_first_msg
,
1063 ret
= tegra_spi_start_transfer_one(spi
, xfer
, cmd1
);
1066 "spi can not start transfer, err %d\n", ret
);
1070 is_first_msg
= false;
1071 ret
= wait_for_completion_timeout(&tspi
->xfer_completion
,
1073 if (WARN_ON(ret
== 0)) {
1075 "spi transfer timeout, err %d\n", ret
);
1076 if (tspi
->is_curr_dma_xfer
&&
1077 (tspi
->cur_direction
& DATA_DIR_TX
))
1078 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1079 if (tspi
->is_curr_dma_xfer
&&
1080 (tspi
->cur_direction
& DATA_DIR_RX
))
1081 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1083 tegra_spi_dump_regs(tspi
);
1084 tegra_spi_flush_fifos(tspi
);
1085 reset_control_assert(tspi
->rst
);
1087 reset_control_deassert(tspi
->rst
);
1088 tspi
->last_used_cs
= master
->num_chipselect
+ 1;
1092 if (tspi
->tx_status
|| tspi
->rx_status
) {
1093 dev_err(tspi
->dev
, "Error in Transfer\n");
1095 tegra_spi_dump_regs(tspi
);
1098 msg
->actual_length
+= xfer
->len
;
1101 if (ret
< 0 || skip
) {
1102 tegra_spi_transfer_end(spi
);
1103 spi_transfer_delay_exec(xfer
);
1105 } else if (list_is_last(&xfer
->transfer_list
,
1107 if (xfer
->cs_change
)
1108 tspi
->cs_control
= spi
;
1110 tegra_spi_transfer_end(spi
);
1111 spi_transfer_delay_exec(xfer
);
1113 } else if (xfer
->cs_change
) {
1114 tegra_spi_transfer_end(spi
);
1115 spi_transfer_delay_exec(xfer
);
1122 spi_finalize_current_message(master
);
1126 static irqreturn_t
handle_cpu_based_xfer(struct tegra_spi_data
*tspi
)
1128 struct spi_transfer
*t
= tspi
->curr_xfer
;
1129 unsigned long flags
;
1131 spin_lock_irqsave(&tspi
->lock
, flags
);
1132 if (tspi
->tx_status
|| tspi
->rx_status
) {
1133 dev_err(tspi
->dev
, "CpuXfer ERROR bit set 0x%x\n",
1135 dev_err(tspi
->dev
, "CpuXfer 0x%08x:0x%08x\n",
1136 tspi
->command1_reg
, tspi
->dma_control_reg
);
1137 tegra_spi_dump_regs(tspi
);
1138 tegra_spi_flush_fifos(tspi
);
1139 complete(&tspi
->xfer_completion
);
1140 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1141 reset_control_assert(tspi
->rst
);
1143 reset_control_deassert(tspi
->rst
);
1147 if (tspi
->cur_direction
& DATA_DIR_RX
)
1148 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi
, t
);
1150 if (tspi
->cur_direction
& DATA_DIR_TX
)
1151 tspi
->cur_pos
= tspi
->cur_tx_pos
;
1153 tspi
->cur_pos
= tspi
->cur_rx_pos
;
1155 if (tspi
->cur_pos
== t
->len
) {
1156 complete(&tspi
->xfer_completion
);
1160 tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
, tspi
, t
);
1161 tegra_spi_start_cpu_based_transfer(tspi
, t
);
1163 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1167 static irqreturn_t
handle_dma_based_xfer(struct tegra_spi_data
*tspi
)
1169 struct spi_transfer
*t
= tspi
->curr_xfer
;
1172 unsigned total_fifo_words
;
1173 unsigned long flags
;
1175 /* Abort dmas if any error */
1176 if (tspi
->cur_direction
& DATA_DIR_TX
) {
1177 if (tspi
->tx_status
) {
1178 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1181 wait_status
= wait_for_completion_interruptible_timeout(
1182 &tspi
->tx_dma_complete
, SPI_DMA_TIMEOUT
);
1183 if (wait_status
<= 0) {
1184 dmaengine_terminate_all(tspi
->tx_dma_chan
);
1185 dev_err(tspi
->dev
, "TxDma Xfer failed\n");
1191 if (tspi
->cur_direction
& DATA_DIR_RX
) {
1192 if (tspi
->rx_status
) {
1193 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1196 wait_status
= wait_for_completion_interruptible_timeout(
1197 &tspi
->rx_dma_complete
, SPI_DMA_TIMEOUT
);
1198 if (wait_status
<= 0) {
1199 dmaengine_terminate_all(tspi
->rx_dma_chan
);
1200 dev_err(tspi
->dev
, "RxDma Xfer failed\n");
1206 spin_lock_irqsave(&tspi
->lock
, flags
);
1208 dev_err(tspi
->dev
, "DmaXfer: ERROR bit set 0x%x\n",
1210 dev_err(tspi
->dev
, "DmaXfer 0x%08x:0x%08x\n",
1211 tspi
->command1_reg
, tspi
->dma_control_reg
);
1212 tegra_spi_dump_regs(tspi
);
1213 tegra_spi_flush_fifos(tspi
);
1214 complete(&tspi
->xfer_completion
);
1215 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1216 reset_control_assert(tspi
->rst
);
1218 reset_control_deassert(tspi
->rst
);
1222 if (tspi
->cur_direction
& DATA_DIR_RX
)
1223 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi
, t
);
1225 if (tspi
->cur_direction
& DATA_DIR_TX
)
1226 tspi
->cur_pos
= tspi
->cur_tx_pos
;
1228 tspi
->cur_pos
= tspi
->cur_rx_pos
;
1230 if (tspi
->cur_pos
== t
->len
) {
1231 complete(&tspi
->xfer_completion
);
1235 /* Continue transfer in current message */
1236 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
,
1238 if (total_fifo_words
> SPI_FIFO_DEPTH
)
1239 err
= tegra_spi_start_dma_based_transfer(tspi
, t
);
1241 err
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
1244 spin_unlock_irqrestore(&tspi
->lock
, flags
);
1248 static irqreturn_t
tegra_spi_isr_thread(int irq
, void *context_data
)
1250 struct tegra_spi_data
*tspi
= context_data
;
1252 if (!tspi
->is_curr_dma_xfer
)
1253 return handle_cpu_based_xfer(tspi
);
1254 return handle_dma_based_xfer(tspi
);
1257 static irqreturn_t
tegra_spi_isr(int irq
, void *context_data
)
1259 struct tegra_spi_data
*tspi
= context_data
;
1261 tspi
->status_reg
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
1262 if (tspi
->cur_direction
& DATA_DIR_TX
)
1263 tspi
->tx_status
= tspi
->status_reg
&
1264 (SPI_TX_FIFO_UNF
| SPI_TX_FIFO_OVF
);
1266 if (tspi
->cur_direction
& DATA_DIR_RX
)
1267 tspi
->rx_status
= tspi
->status_reg
&
1268 (SPI_RX_FIFO_OVF
| SPI_RX_FIFO_UNF
);
1269 tegra_spi_clear_status(tspi
);
1271 return IRQ_WAKE_THREAD
;
1274 static struct tegra_spi_soc_data tegra114_spi_soc_data
= {
1275 .has_intr_mask_reg
= false,
1278 static struct tegra_spi_soc_data tegra124_spi_soc_data
= {
1279 .has_intr_mask_reg
= false,
1282 static struct tegra_spi_soc_data tegra210_spi_soc_data
= {
1283 .has_intr_mask_reg
= true,
1286 static const struct of_device_id tegra_spi_of_match
[] = {
1288 .compatible
= "nvidia,tegra114-spi",
1289 .data
= &tegra114_spi_soc_data
,
1291 .compatible
= "nvidia,tegra124-spi",
1292 .data
= &tegra124_spi_soc_data
,
1294 .compatible
= "nvidia,tegra210-spi",
1295 .data
= &tegra210_spi_soc_data
,
1299 MODULE_DEVICE_TABLE(of
, tegra_spi_of_match
);
1301 static int tegra_spi_probe(struct platform_device
*pdev
)
1303 struct spi_master
*master
;
1304 struct tegra_spi_data
*tspi
;
1309 master
= spi_alloc_master(&pdev
->dev
, sizeof(*tspi
));
1311 dev_err(&pdev
->dev
, "master allocation failed\n");
1314 platform_set_drvdata(pdev
, master
);
1315 tspi
= spi_master_get_devdata(master
);
1317 if (of_property_read_u32(pdev
->dev
.of_node
, "spi-max-frequency",
1318 &master
->max_speed_hz
))
1319 master
->max_speed_hz
= 25000000; /* 25MHz */
1321 /* the spi->mode bits understood by this driver: */
1322 master
->use_gpio_descriptors
= true;
1323 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
|
1324 SPI_TX_DUAL
| SPI_RX_DUAL
| SPI_3WIRE
;
1325 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1326 master
->setup
= tegra_spi_setup
;
1327 master
->cleanup
= tegra_spi_cleanup
;
1328 master
->transfer_one_message
= tegra_spi_transfer_one_message
;
1329 master
->set_cs_timing
= tegra_spi_set_hw_cs_timing
;
1330 master
->num_chipselect
= MAX_CHIP_SELECT
;
1331 master
->auto_runtime_pm
= true;
1332 bus_num
= of_alias_get_id(pdev
->dev
.of_node
, "spi");
1334 master
->bus_num
= bus_num
;
1336 tspi
->master
= master
;
1337 tspi
->dev
= &pdev
->dev
;
1338 spin_lock_init(&tspi
->lock
);
1340 tspi
->soc_data
= of_device_get_match_data(&pdev
->dev
);
1341 if (!tspi
->soc_data
) {
1342 dev_err(&pdev
->dev
, "unsupported tegra\n");
1344 goto exit_free_master
;
1347 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1348 tspi
->base
= devm_ioremap_resource(&pdev
->dev
, r
);
1349 if (IS_ERR(tspi
->base
)) {
1350 ret
= PTR_ERR(tspi
->base
);
1351 goto exit_free_master
;
1353 tspi
->phys
= r
->start
;
1355 spi_irq
= platform_get_irq(pdev
, 0);
1356 tspi
->irq
= spi_irq
;
1358 tspi
->clk
= devm_clk_get(&pdev
->dev
, "spi");
1359 if (IS_ERR(tspi
->clk
)) {
1360 dev_err(&pdev
->dev
, "can not get clock\n");
1361 ret
= PTR_ERR(tspi
->clk
);
1362 goto exit_free_master
;
1365 tspi
->rst
= devm_reset_control_get_exclusive(&pdev
->dev
, "spi");
1366 if (IS_ERR(tspi
->rst
)) {
1367 dev_err(&pdev
->dev
, "can not get reset\n");
1368 ret
= PTR_ERR(tspi
->rst
);
1369 goto exit_free_master
;
1372 tspi
->max_buf_size
= SPI_FIFO_DEPTH
<< 2;
1373 tspi
->dma_buf_size
= DEFAULT_SPI_DMA_BUF_LEN
;
1375 ret
= tegra_spi_init_dma_param(tspi
, true);
1377 goto exit_free_master
;
1378 ret
= tegra_spi_init_dma_param(tspi
, false);
1380 goto exit_rx_dma_free
;
1381 tspi
->max_buf_size
= tspi
->dma_buf_size
;
1382 init_completion(&tspi
->tx_dma_complete
);
1383 init_completion(&tspi
->rx_dma_complete
);
1385 init_completion(&tspi
->xfer_completion
);
1387 pm_runtime_enable(&pdev
->dev
);
1388 if (!pm_runtime_enabled(&pdev
->dev
)) {
1389 ret
= tegra_spi_runtime_resume(&pdev
->dev
);
1391 goto exit_pm_disable
;
1394 ret
= pm_runtime_get_sync(&pdev
->dev
);
1396 dev_err(&pdev
->dev
, "pm runtime get failed, e = %d\n", ret
);
1397 pm_runtime_put_noidle(&pdev
->dev
);
1398 goto exit_pm_disable
;
1401 reset_control_assert(tspi
->rst
);
1403 reset_control_deassert(tspi
->rst
);
1404 tspi
->def_command1_reg
= SPI_M_S
;
1405 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1406 tspi
->spi_cs_timing1
= tegra_spi_readl(tspi
, SPI_CS_TIMING1
);
1407 tspi
->spi_cs_timing2
= tegra_spi_readl(tspi
, SPI_CS_TIMING2
);
1408 tspi
->def_command2_reg
= tegra_spi_readl(tspi
, SPI_COMMAND2
);
1409 tspi
->last_used_cs
= master
->num_chipselect
+ 1;
1410 pm_runtime_put(&pdev
->dev
);
1411 ret
= request_threaded_irq(tspi
->irq
, tegra_spi_isr
,
1412 tegra_spi_isr_thread
, IRQF_ONESHOT
,
1413 dev_name(&pdev
->dev
), tspi
);
1415 dev_err(&pdev
->dev
, "Failed to register ISR for IRQ %d\n",
1417 goto exit_pm_disable
;
1420 master
->dev
.of_node
= pdev
->dev
.of_node
;
1421 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1423 dev_err(&pdev
->dev
, "can not register to master err %d\n", ret
);
1429 free_irq(spi_irq
, tspi
);
1431 pm_runtime_disable(&pdev
->dev
);
1432 if (!pm_runtime_status_suspended(&pdev
->dev
))
1433 tegra_spi_runtime_suspend(&pdev
->dev
);
1434 tegra_spi_deinit_dma_param(tspi
, false);
1436 tegra_spi_deinit_dma_param(tspi
, true);
1438 spi_master_put(master
);
1442 static int tegra_spi_remove(struct platform_device
*pdev
)
1444 struct spi_master
*master
= platform_get_drvdata(pdev
);
1445 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1447 free_irq(tspi
->irq
, tspi
);
1449 if (tspi
->tx_dma_chan
)
1450 tegra_spi_deinit_dma_param(tspi
, false);
1452 if (tspi
->rx_dma_chan
)
1453 tegra_spi_deinit_dma_param(tspi
, true);
1455 pm_runtime_disable(&pdev
->dev
);
1456 if (!pm_runtime_status_suspended(&pdev
->dev
))
1457 tegra_spi_runtime_suspend(&pdev
->dev
);
1462 #ifdef CONFIG_PM_SLEEP
1463 static int tegra_spi_suspend(struct device
*dev
)
1465 struct spi_master
*master
= dev_get_drvdata(dev
);
1467 return spi_master_suspend(master
);
1470 static int tegra_spi_resume(struct device
*dev
)
1472 struct spi_master
*master
= dev_get_drvdata(dev
);
1473 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1476 ret
= pm_runtime_get_sync(dev
);
1478 pm_runtime_put_noidle(dev
);
1479 dev_err(dev
, "pm runtime failed, e = %d\n", ret
);
1482 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1483 tegra_spi_writel(tspi
, tspi
->def_command2_reg
, SPI_COMMAND2
);
1484 tspi
->last_used_cs
= master
->num_chipselect
+ 1;
1485 pm_runtime_put(dev
);
1487 return spi_master_resume(master
);
1491 static int tegra_spi_runtime_suspend(struct device
*dev
)
1493 struct spi_master
*master
= dev_get_drvdata(dev
);
1494 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1496 /* Flush all write which are in PPSB queue by reading back */
1497 tegra_spi_readl(tspi
, SPI_COMMAND1
);
1499 clk_disable_unprepare(tspi
->clk
);
1503 static int tegra_spi_runtime_resume(struct device
*dev
)
1505 struct spi_master
*master
= dev_get_drvdata(dev
);
1506 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1509 ret
= clk_prepare_enable(tspi
->clk
);
1511 dev_err(tspi
->dev
, "clk_prepare failed: %d\n", ret
);
1517 static const struct dev_pm_ops tegra_spi_pm_ops
= {
1518 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend
,
1519 tegra_spi_runtime_resume
, NULL
)
1520 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend
, tegra_spi_resume
)
1522 static struct platform_driver tegra_spi_driver
= {
1524 .name
= "spi-tegra114",
1525 .pm
= &tegra_spi_pm_ops
,
1526 .of_match_table
= tegra_spi_of_match
,
1528 .probe
= tegra_spi_probe
,
1529 .remove
= tegra_spi_remove
,
1531 module_platform_driver(tegra_spi_driver
);
1533 MODULE_ALIAS("platform:spi-tegra114");
1534 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1535 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1536 MODULE_LICENSE("GPL v2");