1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr
);
46 static void spidev_release(struct device
*dev
)
48 struct spi_device
*spi
= to_spi_device(dev
);
50 /* spi controllers may cleanup for released devices */
51 if (spi
->controller
->cleanup
)
52 spi
->controller
->cleanup(spi
);
54 spi_controller_put(spi
->controller
);
55 kfree(spi
->driver_override
);
60 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
62 const struct spi_device
*spi
= to_spi_device(dev
);
65 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
69 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
71 static DEVICE_ATTR_RO(modalias
);
73 static ssize_t
driver_override_store(struct device
*dev
,
74 struct device_attribute
*a
,
75 const char *buf
, size_t count
)
77 struct spi_device
*spi
= to_spi_device(dev
);
78 const char *end
= memchr(buf
, '\n', count
);
79 const size_t len
= end
? end
- buf
: count
;
80 const char *driver_override
, *old
;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len
>= (PAGE_SIZE
- 1))
86 driver_override
= kstrndup(buf
, len
, GFP_KERNEL
);
91 old
= spi
->driver_override
;
93 spi
->driver_override
= driver_override
;
95 /* Empty string, disable driver override */
96 spi
->driver_override
= NULL
;
97 kfree(driver_override
);
105 static ssize_t
driver_override_show(struct device
*dev
,
106 struct device_attribute
*a
, char *buf
)
108 const struct spi_device
*spi
= to_spi_device(dev
);
112 len
= snprintf(buf
, PAGE_SIZE
, "%s\n", spi
->driver_override
? : "");
116 static DEVICE_ATTR_RW(driver_override
);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages
, "%lu");
161 SPI_STATISTICS_SHOW(transfers
, "%lu");
162 SPI_STATISTICS_SHOW(errors
, "%lu");
163 SPI_STATISTICS_SHOW(timedout
, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
167 SPI_STATISTICS_SHOW(spi_async
, "%lu");
169 SPI_STATISTICS_SHOW(bytes
, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
197 static struct attribute
*spi_dev_attrs
[] = {
198 &dev_attr_modalias
.attr
,
199 &dev_attr_driver_override
.attr
,
203 static const struct attribute_group spi_dev_group
= {
204 .attrs
= spi_dev_attrs
,
207 static struct attribute
*spi_device_statistics_attrs
[] = {
208 &dev_attr_spi_device_messages
.attr
,
209 &dev_attr_spi_device_transfers
.attr
,
210 &dev_attr_spi_device_errors
.attr
,
211 &dev_attr_spi_device_timedout
.attr
,
212 &dev_attr_spi_device_spi_sync
.attr
,
213 &dev_attr_spi_device_spi_sync_immediate
.attr
,
214 &dev_attr_spi_device_spi_async
.attr
,
215 &dev_attr_spi_device_bytes
.attr
,
216 &dev_attr_spi_device_bytes_rx
.attr
,
217 &dev_attr_spi_device_bytes_tx
.attr
,
218 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
219 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
220 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
221 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
222 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
223 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
224 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
225 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
226 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
227 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
228 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
229 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
230 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
231 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
232 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
233 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
234 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
235 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
239 static const struct attribute_group spi_device_statistics_group
= {
240 .name
= "statistics",
241 .attrs
= spi_device_statistics_attrs
,
244 static const struct attribute_group
*spi_dev_groups
[] = {
246 &spi_device_statistics_group
,
250 static struct attribute
*spi_controller_statistics_attrs
[] = {
251 &dev_attr_spi_controller_messages
.attr
,
252 &dev_attr_spi_controller_transfers
.attr
,
253 &dev_attr_spi_controller_errors
.attr
,
254 &dev_attr_spi_controller_timedout
.attr
,
255 &dev_attr_spi_controller_spi_sync
.attr
,
256 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
257 &dev_attr_spi_controller_spi_async
.attr
,
258 &dev_attr_spi_controller_bytes
.attr
,
259 &dev_attr_spi_controller_bytes_rx
.attr
,
260 &dev_attr_spi_controller_bytes_tx
.attr
,
261 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
262 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
263 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
264 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
265 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
266 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
267 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
268 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
269 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
270 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
271 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
272 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
273 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
274 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
275 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
276 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
277 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
278 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
282 static const struct attribute_group spi_controller_statistics_group
= {
283 .name
= "statistics",
284 .attrs
= spi_controller_statistics_attrs
,
287 static const struct attribute_group
*spi_master_groups
[] = {
288 &spi_controller_statistics_group
,
292 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
293 struct spi_transfer
*xfer
,
294 struct spi_controller
*ctlr
)
297 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
302 spin_lock_irqsave(&stats
->lock
, flags
);
305 stats
->transfer_bytes_histo
[l2len
]++;
307 stats
->bytes
+= xfer
->len
;
308 if ((xfer
->tx_buf
) &&
309 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
310 stats
->bytes_tx
+= xfer
->len
;
311 if ((xfer
->rx_buf
) &&
312 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
313 stats
->bytes_rx
+= xfer
->len
;
315 spin_unlock_irqrestore(&stats
->lock
, flags
);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
324 const struct spi_device
*sdev
)
326 while (id
->name
[0]) {
327 if (!strcmp(sdev
->modalias
, id
->name
))
334 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
336 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
338 return spi_match_id(sdrv
->id_table
, sdev
);
340 EXPORT_SYMBOL_GPL(spi_get_device_id
);
342 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
344 const struct spi_device
*spi
= to_spi_device(dev
);
345 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
347 /* Check override first, and if set, only use the named driver */
348 if (spi
->driver_override
)
349 return strcmp(spi
->driver_override
, drv
->name
) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev
, drv
))
356 if (acpi_driver_match_device(dev
, drv
))
360 return !!spi_match_id(sdrv
->id_table
, spi
);
362 return strcmp(spi
->modalias
, drv
->name
) == 0;
365 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
367 const struct spi_device
*spi
= to_spi_device(dev
);
370 rc
= acpi_device_uevent_modalias(dev
, env
);
374 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
377 static int spi_probe(struct device
*dev
)
379 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
380 struct spi_device
*spi
= to_spi_device(dev
);
383 ret
= of_clk_set_defaults(dev
->of_node
, false);
388 spi
->irq
= of_irq_get(dev
->of_node
, 0);
389 if (spi
->irq
== -EPROBE_DEFER
)
390 return -EPROBE_DEFER
;
395 ret
= dev_pm_domain_attach(dev
, true);
400 ret
= sdrv
->probe(spi
);
402 dev_pm_domain_detach(dev
, true);
408 static int spi_remove(struct device
*dev
)
410 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
415 ret
= sdrv
->remove(to_spi_device(dev
));
418 "Failed to unbind driver (%pe), ignoring\n",
422 dev_pm_domain_detach(dev
, true);
427 static void spi_shutdown(struct device
*dev
)
430 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
433 sdrv
->shutdown(to_spi_device(dev
));
437 struct bus_type spi_bus_type
= {
439 .dev_groups
= spi_dev_groups
,
440 .match
= spi_match_device
,
441 .uevent
= spi_uevent
,
443 .remove
= spi_remove
,
444 .shutdown
= spi_shutdown
,
446 EXPORT_SYMBOL_GPL(spi_bus_type
);
449 * __spi_register_driver - register a SPI driver
450 * @owner: owner module of the driver to register
451 * @sdrv: the driver to register
454 * Return: zero on success, else a negative error code.
456 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
458 sdrv
->driver
.owner
= owner
;
459 sdrv
->driver
.bus
= &spi_bus_type
;
460 return driver_register(&sdrv
->driver
);
462 EXPORT_SYMBOL_GPL(__spi_register_driver
);
464 /*-------------------------------------------------------------------------*/
466 /* SPI devices should normally not be created by SPI device drivers; that
467 * would make them board-specific. Similarly with SPI controller drivers.
468 * Device registration normally goes into like arch/.../mach.../board-YYY.c
469 * with other readonly (flashable) information about mainboard devices.
473 struct list_head list
;
474 struct spi_board_info board_info
;
477 static LIST_HEAD(board_list
);
478 static LIST_HEAD(spi_controller_list
);
481 * Used to protect add/del operation for board_info list and
482 * spi_controller list, and their matching process
483 * also used to protect object of type struct idr
485 static DEFINE_MUTEX(board_lock
);
488 * Prevents addition of devices with same chip select and
489 * addition of devices below an unregistering controller.
491 static DEFINE_MUTEX(spi_add_lock
);
494 * spi_alloc_device - Allocate a new SPI device
495 * @ctlr: Controller to which device is connected
498 * Allows a driver to allocate and initialize a spi_device without
499 * registering it immediately. This allows a driver to directly
500 * fill the spi_device with device parameters before calling
501 * spi_add_device() on it.
503 * Caller is responsible to call spi_add_device() on the returned
504 * spi_device structure to add it to the SPI controller. If the caller
505 * needs to discard the spi_device without adding it, then it should
506 * call spi_dev_put() on it.
508 * Return: a pointer to the new device, or NULL.
510 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
512 struct spi_device
*spi
;
514 if (!spi_controller_get(ctlr
))
517 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
519 spi_controller_put(ctlr
);
523 spi
->master
= spi
->controller
= ctlr
;
524 spi
->dev
.parent
= &ctlr
->dev
;
525 spi
->dev
.bus
= &spi_bus_type
;
526 spi
->dev
.release
= spidev_release
;
527 spi
->cs_gpio
= -ENOENT
;
528 spi
->mode
= ctlr
->buswidth_override_bits
;
530 spin_lock_init(&spi
->statistics
.lock
);
532 device_initialize(&spi
->dev
);
535 EXPORT_SYMBOL_GPL(spi_alloc_device
);
537 static void spi_dev_set_name(struct spi_device
*spi
)
539 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
542 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
546 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
550 static int spi_dev_check(struct device
*dev
, void *data
)
552 struct spi_device
*spi
= to_spi_device(dev
);
553 struct spi_device
*new_spi
= data
;
555 if (spi
->controller
== new_spi
->controller
&&
556 spi
->chip_select
== new_spi
->chip_select
)
562 * spi_add_device - Add spi_device allocated with spi_alloc_device
563 * @spi: spi_device to register
565 * Companion function to spi_alloc_device. Devices allocated with
566 * spi_alloc_device can be added onto the spi bus with this function.
568 * Return: 0 on success; negative errno on failure
570 int spi_add_device(struct spi_device
*spi
)
572 struct spi_controller
*ctlr
= spi
->controller
;
573 struct device
*dev
= ctlr
->dev
.parent
;
576 /* Chipselects are numbered 0..max; validate. */
577 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
578 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
579 ctlr
->num_chipselect
);
583 /* Set the bus ID string */
584 spi_dev_set_name(spi
);
586 /* We need to make sure there's no other device with this
587 * chipselect **BEFORE** we call setup(), else we'll trash
588 * its configuration. Lock against concurrent add() calls.
590 mutex_lock(&spi_add_lock
);
592 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
594 dev_err(dev
, "chipselect %d already in use\n",
599 /* Controller may unregister concurrently */
600 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
) &&
601 !device_is_registered(&ctlr
->dev
)) {
606 /* Descriptors take precedence */
608 spi
->cs_gpiod
= ctlr
->cs_gpiods
[spi
->chip_select
];
609 else if (ctlr
->cs_gpios
)
610 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
612 /* Drivers may modify this initial i/o setup, but will
613 * normally rely on the device being setup. Devices
614 * using SPI_CS_HIGH can't coexist well otherwise...
616 status
= spi_setup(spi
);
618 dev_err(dev
, "can't setup %s, status %d\n",
619 dev_name(&spi
->dev
), status
);
623 /* Device may be bound to an active driver when this returns */
624 status
= device_add(&spi
->dev
);
626 dev_err(dev
, "can't add %s, status %d\n",
627 dev_name(&spi
->dev
), status
);
629 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
632 mutex_unlock(&spi_add_lock
);
635 EXPORT_SYMBOL_GPL(spi_add_device
);
638 * spi_new_device - instantiate one new SPI device
639 * @ctlr: Controller to which device is connected
640 * @chip: Describes the SPI device
643 * On typical mainboards, this is purely internal; and it's not needed
644 * after board init creates the hard-wired devices. Some development
645 * platforms may not be able to use spi_register_board_info though, and
646 * this is exported so that for example a USB or parport based adapter
647 * driver could add devices (which it would learn about out-of-band).
649 * Return: the new device, or NULL.
651 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
652 struct spi_board_info
*chip
)
654 struct spi_device
*proxy
;
657 /* NOTE: caller did any chip->bus_num checks necessary.
659 * Also, unless we change the return value convention to use
660 * error-or-pointer (not NULL-or-pointer), troubleshootability
661 * suggests syslogged diagnostics are best here (ugh).
664 proxy
= spi_alloc_device(ctlr
);
668 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
670 proxy
->chip_select
= chip
->chip_select
;
671 proxy
->max_speed_hz
= chip
->max_speed_hz
;
672 proxy
->mode
= chip
->mode
;
673 proxy
->irq
= chip
->irq
;
674 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
675 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
676 proxy
->controller_data
= chip
->controller_data
;
677 proxy
->controller_state
= NULL
;
679 if (chip
->properties
) {
680 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
683 "failed to add properties to '%s': %d\n",
684 chip
->modalias
, status
);
689 status
= spi_add_device(proxy
);
691 goto err_remove_props
;
696 if (chip
->properties
)
697 device_remove_properties(&proxy
->dev
);
702 EXPORT_SYMBOL_GPL(spi_new_device
);
705 * spi_unregister_device - unregister a single SPI device
706 * @spi: spi_device to unregister
708 * Start making the passed SPI device vanish. Normally this would be handled
709 * by spi_unregister_controller().
711 void spi_unregister_device(struct spi_device
*spi
)
716 if (spi
->dev
.of_node
) {
717 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
718 of_node_put(spi
->dev
.of_node
);
720 if (ACPI_COMPANION(&spi
->dev
))
721 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
722 device_unregister(&spi
->dev
);
724 EXPORT_SYMBOL_GPL(spi_unregister_device
);
726 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
727 struct spi_board_info
*bi
)
729 struct spi_device
*dev
;
731 if (ctlr
->bus_num
!= bi
->bus_num
)
734 dev
= spi_new_device(ctlr
, bi
);
736 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
741 * spi_register_board_info - register SPI devices for a given board
742 * @info: array of chip descriptors
743 * @n: how many descriptors are provided
746 * Board-specific early init code calls this (probably during arch_initcall)
747 * with segments of the SPI device table. Any device nodes are created later,
748 * after the relevant parent SPI controller (bus_num) is defined. We keep
749 * this table of devices forever, so that reloading a controller driver will
750 * not make Linux forget about these hard-wired devices.
752 * Other code can also call this, e.g. a particular add-on board might provide
753 * SPI devices through its expansion connector, so code initializing that board
754 * would naturally declare its SPI devices.
756 * The board info passed can safely be __initdata ... but be careful of
757 * any embedded pointers (platform_data, etc), they're copied as-is.
758 * Device properties are deep-copied though.
760 * Return: zero on success, else a negative error code.
762 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
764 struct boardinfo
*bi
;
770 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
774 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
775 struct spi_controller
*ctlr
;
777 memcpy(&bi
->board_info
, info
, sizeof(*info
));
778 if (info
->properties
) {
779 bi
->board_info
.properties
=
780 property_entries_dup(info
->properties
);
781 if (IS_ERR(bi
->board_info
.properties
))
782 return PTR_ERR(bi
->board_info
.properties
);
785 mutex_lock(&board_lock
);
786 list_add_tail(&bi
->list
, &board_list
);
787 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
788 spi_match_controller_to_boardinfo(ctlr
,
790 mutex_unlock(&board_lock
);
796 /*-------------------------------------------------------------------------*/
798 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
800 bool enable1
= enable
;
803 * Avoid calling into the driver (or doing delays) if the chip select
804 * isn't actually changing from the last time this was called.
806 if ((spi
->controller
->last_cs_enable
== enable
) &&
807 (spi
->controller
->last_cs_mode_high
== (spi
->mode
& SPI_CS_HIGH
)))
810 spi
->controller
->last_cs_enable
= enable
;
811 spi
->controller
->last_cs_mode_high
= spi
->mode
& SPI_CS_HIGH
;
813 if (!spi
->controller
->set_cs_timing
) {
815 spi_delay_exec(&spi
->controller
->cs_setup
, NULL
);
817 spi_delay_exec(&spi
->controller
->cs_hold
, NULL
);
820 if (spi
->mode
& SPI_CS_HIGH
)
823 if (spi
->cs_gpiod
|| gpio_is_valid(spi
->cs_gpio
)) {
824 if (!(spi
->mode
& SPI_NO_CS
)) {
826 /* polarity handled by gpiolib */
827 gpiod_set_value_cansleep(spi
->cs_gpiod
,
831 * invert the enable line, as active low is
834 gpio_set_value_cansleep(spi
->cs_gpio
, !enable
);
836 /* Some SPI masters need both GPIO CS & slave_select */
837 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
838 spi
->controller
->set_cs
)
839 spi
->controller
->set_cs(spi
, !enable
);
840 } else if (spi
->controller
->set_cs
) {
841 spi
->controller
->set_cs(spi
, !enable
);
844 if (!spi
->controller
->set_cs_timing
) {
846 spi_delay_exec(&spi
->controller
->cs_inactive
, NULL
);
850 #ifdef CONFIG_HAS_DMA
851 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
852 struct sg_table
*sgt
, void *buf
, size_t len
,
853 enum dma_data_direction dir
)
855 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
856 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
857 #ifdef CONFIG_HIGHMEM
858 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
859 (unsigned long)buf
< (PKMAP_BASE
+
860 (LAST_PKMAP
* PAGE_SIZE
)));
862 const bool kmap_buf
= false;
866 struct page
*vm_page
;
867 struct scatterlist
*sg
;
872 if (vmalloced_buf
|| kmap_buf
) {
873 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
874 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
875 } else if (virt_addr_valid(buf
)) {
876 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
877 sgs
= DIV_ROUND_UP(len
, desc_len
);
882 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
887 for (i
= 0; i
< sgs
; i
++) {
889 if (vmalloced_buf
|| kmap_buf
) {
891 * Next scatterlist entry size is the minimum between
892 * the desc_len and the remaining buffer length that
895 min
= min_t(size_t, desc_len
,
897 PAGE_SIZE
- offset_in_page(buf
)));
899 vm_page
= vmalloc_to_page(buf
);
901 vm_page
= kmap_to_page(buf
);
906 sg_set_page(sg
, vm_page
,
907 min
, offset_in_page(buf
));
909 min
= min_t(size_t, len
, desc_len
);
911 sg_set_buf(sg
, sg_buf
, min
);
919 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
932 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
933 struct sg_table
*sgt
, enum dma_data_direction dir
)
935 if (sgt
->orig_nents
) {
936 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
941 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
943 struct device
*tx_dev
, *rx_dev
;
944 struct spi_transfer
*xfer
;
951 tx_dev
= ctlr
->dma_tx
->device
->dev
;
953 tx_dev
= ctlr
->dev
.parent
;
956 rx_dev
= ctlr
->dma_rx
->device
->dev
;
958 rx_dev
= ctlr
->dev
.parent
;
960 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
961 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
964 if (xfer
->tx_buf
!= NULL
) {
965 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
966 (void *)xfer
->tx_buf
, xfer
->len
,
972 if (xfer
->rx_buf
!= NULL
) {
973 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
974 xfer
->rx_buf
, xfer
->len
,
977 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
984 ctlr
->cur_msg_mapped
= true;
989 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
991 struct spi_transfer
*xfer
;
992 struct device
*tx_dev
, *rx_dev
;
994 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
998 tx_dev
= ctlr
->dma_tx
->device
->dev
;
1000 tx_dev
= ctlr
->dev
.parent
;
1003 rx_dev
= ctlr
->dma_rx
->device
->dev
;
1005 rx_dev
= ctlr
->dev
.parent
;
1007 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1008 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
1011 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
1012 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
1015 ctlr
->cur_msg_mapped
= false;
1019 #else /* !CONFIG_HAS_DMA */
1020 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
1021 struct spi_message
*msg
)
1026 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
1027 struct spi_message
*msg
)
1031 #endif /* !CONFIG_HAS_DMA */
1033 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
1034 struct spi_message
*msg
)
1036 struct spi_transfer
*xfer
;
1038 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1040 * Restore the original value of tx_buf or rx_buf if they are
1043 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
1044 xfer
->tx_buf
= NULL
;
1045 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1046 xfer
->rx_buf
= NULL
;
1049 return __spi_unmap_msg(ctlr
, msg
);
1052 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1054 struct spi_transfer
*xfer
;
1056 unsigned int max_tx
, max_rx
;
1058 if ((ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
))
1059 && !(msg
->spi
->mode
& SPI_3WIRE
)) {
1063 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1064 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1066 max_tx
= max(xfer
->len
, max_tx
);
1067 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1069 max_rx
= max(xfer
->len
, max_rx
);
1073 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1074 GFP_KERNEL
| GFP_DMA
);
1077 ctlr
->dummy_tx
= tmp
;
1078 memset(tmp
, 0, max_tx
);
1082 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1083 GFP_KERNEL
| GFP_DMA
);
1086 ctlr
->dummy_rx
= tmp
;
1089 if (max_tx
|| max_rx
) {
1090 list_for_each_entry(xfer
, &msg
->transfers
,
1095 xfer
->tx_buf
= ctlr
->dummy_tx
;
1097 xfer
->rx_buf
= ctlr
->dummy_rx
;
1102 return __spi_map_msg(ctlr
, msg
);
1105 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1106 struct spi_message
*msg
,
1107 struct spi_transfer
*xfer
)
1109 struct spi_statistics
*statm
= &ctlr
->statistics
;
1110 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1111 u32 speed_hz
= xfer
->speed_hz
;
1112 unsigned long long ms
;
1114 if (spi_controller_is_slave(ctlr
)) {
1115 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1116 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1123 ms
= 8LL * 1000LL * xfer
->len
;
1124 do_div(ms
, speed_hz
);
1125 ms
+= ms
+ 200; /* some tolerance */
1130 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1131 msecs_to_jiffies(ms
));
1134 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1135 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1136 dev_err(&msg
->spi
->dev
,
1137 "SPI transfer timed out\n");
1145 static void _spi_transfer_delay_ns(u32 ns
)
1152 u32 us
= DIV_ROUND_UP(ns
, 1000);
1157 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1161 int spi_delay_to_ns(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1163 u32 delay
= _delay
->value
;
1164 u32 unit
= _delay
->unit
;
1171 case SPI_DELAY_UNIT_USECS
:
1174 case SPI_DELAY_UNIT_NSECS
: /* nothing to do here */
1176 case SPI_DELAY_UNIT_SCK
:
1177 /* clock cycles need to be obtained from spi_transfer */
1180 /* if there is no effective speed know, then approximate
1181 * by underestimating with half the requested hz
1183 hz
= xfer
->effective_speed_hz
?: xfer
->speed_hz
/ 2;
1186 delay
*= DIV_ROUND_UP(1000000000, hz
);
1194 EXPORT_SYMBOL_GPL(spi_delay_to_ns
);
1196 int spi_delay_exec(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1205 delay
= spi_delay_to_ns(_delay
, xfer
);
1209 _spi_transfer_delay_ns(delay
);
1213 EXPORT_SYMBOL_GPL(spi_delay_exec
);
1215 static void _spi_transfer_cs_change_delay(struct spi_message
*msg
,
1216 struct spi_transfer
*xfer
)
1218 u32 delay
= xfer
->cs_change_delay
.value
;
1219 u32 unit
= xfer
->cs_change_delay
.unit
;
1222 /* return early on "fast" mode - for everything but USECS */
1224 if (unit
== SPI_DELAY_UNIT_USECS
)
1225 _spi_transfer_delay_ns(10000);
1229 ret
= spi_delay_exec(&xfer
->cs_change_delay
, xfer
);
1231 dev_err_once(&msg
->spi
->dev
,
1232 "Use of unsupported delay unit %i, using default of 10us\n",
1234 _spi_transfer_delay_ns(10000);
1239 * spi_transfer_one_message - Default implementation of transfer_one_message()
1241 * This is a standard implementation of transfer_one_message() for
1242 * drivers which implement a transfer_one() operation. It provides
1243 * standard handling of delays and chip select management.
1245 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1246 struct spi_message
*msg
)
1248 struct spi_transfer
*xfer
;
1249 bool keep_cs
= false;
1251 struct spi_statistics
*statm
= &ctlr
->statistics
;
1252 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1254 spi_set_cs(msg
->spi
, true);
1256 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1257 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1259 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1260 trace_spi_transfer_start(msg
, xfer
);
1262 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1263 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1265 if (!ctlr
->ptp_sts_supported
) {
1266 xfer
->ptp_sts_word_pre
= 0;
1267 ptp_read_system_prets(xfer
->ptp_sts
);
1270 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1271 reinit_completion(&ctlr
->xfer_completion
);
1274 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1276 if (ctlr
->cur_msg_mapped
&&
1277 (xfer
->error
& SPI_TRANS_FAIL_NO_START
)) {
1278 __spi_unmap_msg(ctlr
, msg
);
1279 ctlr
->fallback
= true;
1280 xfer
->error
&= ~SPI_TRANS_FAIL_NO_START
;
1284 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1286 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1288 dev_err(&msg
->spi
->dev
,
1289 "SPI transfer failed: %d\n", ret
);
1294 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1300 dev_err(&msg
->spi
->dev
,
1301 "Bufferless transfer has length %u\n",
1305 if (!ctlr
->ptp_sts_supported
) {
1306 ptp_read_system_postts(xfer
->ptp_sts
);
1307 xfer
->ptp_sts_word_post
= xfer
->len
;
1310 trace_spi_transfer_stop(msg
, xfer
);
1312 if (msg
->status
!= -EINPROGRESS
)
1315 spi_transfer_delay_exec(xfer
);
1317 if (xfer
->cs_change
) {
1318 if (list_is_last(&xfer
->transfer_list
,
1322 spi_set_cs(msg
->spi
, false);
1323 _spi_transfer_cs_change_delay(msg
, xfer
);
1324 spi_set_cs(msg
->spi
, true);
1328 msg
->actual_length
+= xfer
->len
;
1332 if (ret
!= 0 || !keep_cs
)
1333 spi_set_cs(msg
->spi
, false);
1335 if (msg
->status
== -EINPROGRESS
)
1338 if (msg
->status
&& ctlr
->handle_err
)
1339 ctlr
->handle_err(ctlr
, msg
);
1341 spi_finalize_current_message(ctlr
);
1347 * spi_finalize_current_transfer - report completion of a transfer
1348 * @ctlr: the controller reporting completion
1350 * Called by SPI drivers using the core transfer_one_message()
1351 * implementation to notify it that the current interrupt driven
1352 * transfer has finished and the next one may be scheduled.
1354 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1356 complete(&ctlr
->xfer_completion
);
1358 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1360 static void spi_idle_runtime_pm(struct spi_controller
*ctlr
)
1362 if (ctlr
->auto_runtime_pm
) {
1363 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1364 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1369 * __spi_pump_messages - function which processes spi message queue
1370 * @ctlr: controller to process queue for
1371 * @in_kthread: true if we are in the context of the message pump thread
1373 * This function checks if there is any spi message in the queue that
1374 * needs processing and if so call out to the driver to initialize hardware
1375 * and transfer each message.
1377 * Note that it is called both from the kthread itself and also from
1378 * inside spi_sync(); the queue extraction handling at the top of the
1379 * function should deal with this safely.
1381 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1383 struct spi_transfer
*xfer
;
1384 struct spi_message
*msg
;
1385 bool was_busy
= false;
1386 unsigned long flags
;
1390 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1392 /* Make sure we are not already running a message */
1393 if (ctlr
->cur_msg
) {
1394 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1398 /* If another context is idling the device then defer */
1400 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
1401 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1405 /* Check if the queue is idle */
1406 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1408 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1412 /* Defer any non-atomic teardown to the thread */
1414 if (!ctlr
->dummy_rx
&& !ctlr
->dummy_tx
&&
1415 !ctlr
->unprepare_transfer_hardware
) {
1416 spi_idle_runtime_pm(ctlr
);
1418 trace_spi_controller_idle(ctlr
);
1420 kthread_queue_work(ctlr
->kworker
,
1421 &ctlr
->pump_messages
);
1423 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1428 ctlr
->idling
= true;
1429 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1431 kfree(ctlr
->dummy_rx
);
1432 ctlr
->dummy_rx
= NULL
;
1433 kfree(ctlr
->dummy_tx
);
1434 ctlr
->dummy_tx
= NULL
;
1435 if (ctlr
->unprepare_transfer_hardware
&&
1436 ctlr
->unprepare_transfer_hardware(ctlr
))
1438 "failed to unprepare transfer hardware\n");
1439 spi_idle_runtime_pm(ctlr
);
1440 trace_spi_controller_idle(ctlr
);
1442 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1443 ctlr
->idling
= false;
1444 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1448 /* Extract head of queue */
1449 msg
= list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1450 ctlr
->cur_msg
= msg
;
1452 list_del_init(&msg
->queue
);
1457 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1459 mutex_lock(&ctlr
->io_mutex
);
1461 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1462 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1464 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1465 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1467 mutex_unlock(&ctlr
->io_mutex
);
1473 trace_spi_controller_busy(ctlr
);
1475 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1476 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1479 "failed to prepare transfer hardware: %d\n",
1482 if (ctlr
->auto_runtime_pm
)
1483 pm_runtime_put(ctlr
->dev
.parent
);
1486 spi_finalize_current_message(ctlr
);
1488 mutex_unlock(&ctlr
->io_mutex
);
1493 trace_spi_message_start(msg
);
1495 if (ctlr
->prepare_message
) {
1496 ret
= ctlr
->prepare_message(ctlr
, msg
);
1498 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1501 spi_finalize_current_message(ctlr
);
1504 ctlr
->cur_msg_prepared
= true;
1507 ret
= spi_map_msg(ctlr
, msg
);
1510 spi_finalize_current_message(ctlr
);
1514 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1515 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1516 xfer
->ptp_sts_word_pre
= 0;
1517 ptp_read_system_prets(xfer
->ptp_sts
);
1521 ret
= ctlr
->transfer_one_message(ctlr
, msg
);
1524 "failed to transfer one message from queue\n");
1529 mutex_unlock(&ctlr
->io_mutex
);
1531 /* Prod the scheduler in case transfer_one() was busy waiting */
1537 * spi_pump_messages - kthread work function which processes spi message queue
1538 * @work: pointer to kthread work struct contained in the controller struct
1540 static void spi_pump_messages(struct kthread_work
*work
)
1542 struct spi_controller
*ctlr
=
1543 container_of(work
, struct spi_controller
, pump_messages
);
1545 __spi_pump_messages(ctlr
, true);
1549 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1550 * TX timestamp for the requested byte from the SPI
1551 * transfer. The frequency with which this function
1552 * must be called (once per word, once for the whole
1553 * transfer, once per batch of words etc) is arbitrary
1554 * as long as the @tx buffer offset is greater than or
1555 * equal to the requested byte at the time of the
1556 * call. The timestamp is only taken once, at the
1557 * first such call. It is assumed that the driver
1558 * advances its @tx buffer pointer monotonically.
1559 * @ctlr: Pointer to the spi_controller structure of the driver
1560 * @xfer: Pointer to the transfer being timestamped
1561 * @progress: How many words (not bytes) have been transferred so far
1562 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1563 * transfer, for less jitter in time measurement. Only compatible
1564 * with PIO drivers. If true, must follow up with
1565 * spi_take_timestamp_post or otherwise system will crash.
1566 * WARNING: for fully predictable results, the CPU frequency must
1567 * also be under control (governor).
1569 void spi_take_timestamp_pre(struct spi_controller
*ctlr
,
1570 struct spi_transfer
*xfer
,
1571 size_t progress
, bool irqs_off
)
1576 if (xfer
->timestamped
)
1579 if (progress
> xfer
->ptp_sts_word_pre
)
1582 /* Capture the resolution of the timestamp */
1583 xfer
->ptp_sts_word_pre
= progress
;
1586 local_irq_save(ctlr
->irq_flags
);
1590 ptp_read_system_prets(xfer
->ptp_sts
);
1592 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre
);
1595 * spi_take_timestamp_post - helper for drivers to collect the end of the
1596 * TX timestamp for the requested byte from the SPI
1597 * transfer. Can be called with an arbitrary
1598 * frequency: only the first call where @tx exceeds
1599 * or is equal to the requested word will be
1601 * @ctlr: Pointer to the spi_controller structure of the driver
1602 * @xfer: Pointer to the transfer being timestamped
1603 * @progress: How many words (not bytes) have been transferred so far
1604 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1606 void spi_take_timestamp_post(struct spi_controller
*ctlr
,
1607 struct spi_transfer
*xfer
,
1608 size_t progress
, bool irqs_off
)
1613 if (xfer
->timestamped
)
1616 if (progress
< xfer
->ptp_sts_word_post
)
1619 ptp_read_system_postts(xfer
->ptp_sts
);
1622 local_irq_restore(ctlr
->irq_flags
);
1626 /* Capture the resolution of the timestamp */
1627 xfer
->ptp_sts_word_post
= progress
;
1629 xfer
->timestamped
= true;
1631 EXPORT_SYMBOL_GPL(spi_take_timestamp_post
);
1634 * spi_set_thread_rt - set the controller to pump at realtime priority
1635 * @ctlr: controller to boost priority of
1637 * This can be called because the controller requested realtime priority
1638 * (by setting the ->rt value before calling spi_register_controller()) or
1639 * because a device on the bus said that its transfers needed realtime
1642 * NOTE: at the moment if any device on a bus says it needs realtime then
1643 * the thread will be at realtime priority for all transfers on that
1644 * controller. If this eventually becomes a problem we may see if we can
1645 * find a way to boost the priority only temporarily during relevant
1648 static void spi_set_thread_rt(struct spi_controller
*ctlr
)
1650 dev_info(&ctlr
->dev
,
1651 "will run message pump with realtime priority\n");
1652 sched_set_fifo(ctlr
->kworker
->task
);
1655 static int spi_init_queue(struct spi_controller
*ctlr
)
1657 ctlr
->running
= false;
1660 ctlr
->kworker
= kthread_create_worker(0, dev_name(&ctlr
->dev
));
1661 if (IS_ERR(ctlr
->kworker
)) {
1662 dev_err(&ctlr
->dev
, "failed to create message pump kworker\n");
1663 return PTR_ERR(ctlr
->kworker
);
1666 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1669 * Controller config will indicate if this controller should run the
1670 * message pump with high (realtime) priority to reduce the transfer
1671 * latency on the bus by minimising the delay between a transfer
1672 * request and the scheduling of the message pump thread. Without this
1673 * setting the message pump thread will remain at default priority.
1676 spi_set_thread_rt(ctlr
);
1682 * spi_get_next_queued_message() - called by driver to check for queued
1684 * @ctlr: the controller to check for queued messages
1686 * If there are more messages in the queue, the next message is returned from
1689 * Return: the next message in the queue, else NULL if the queue is empty.
1691 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1693 struct spi_message
*next
;
1694 unsigned long flags
;
1696 /* get a pointer to the next message, if any */
1697 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1698 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1700 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1704 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1707 * spi_finalize_current_message() - the current message is complete
1708 * @ctlr: the controller to return the message to
1710 * Called by the driver to notify the core that the message in the front of the
1711 * queue is complete and can be removed from the queue.
1713 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1715 struct spi_transfer
*xfer
;
1716 struct spi_message
*mesg
;
1717 unsigned long flags
;
1720 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1721 mesg
= ctlr
->cur_msg
;
1722 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1724 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1725 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
1726 ptp_read_system_postts(xfer
->ptp_sts
);
1727 xfer
->ptp_sts_word_post
= xfer
->len
;
1731 if (unlikely(ctlr
->ptp_sts_supported
))
1732 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
)
1733 WARN_ON_ONCE(xfer
->ptp_sts
&& !xfer
->timestamped
);
1735 spi_unmap_msg(ctlr
, mesg
);
1737 /* In the prepare_messages callback the spi bus has the opportunity to
1738 * split a transfer to smaller chunks.
1739 * Release splited transfers here since spi_map_msg is done on the
1740 * splited transfers.
1742 spi_res_release(ctlr
, mesg
);
1744 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1745 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1747 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1752 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1753 ctlr
->cur_msg
= NULL
;
1754 ctlr
->cur_msg_prepared
= false;
1755 ctlr
->fallback
= false;
1756 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
1757 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1759 trace_spi_message_done(mesg
);
1763 mesg
->complete(mesg
->context
);
1765 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1767 static int spi_start_queue(struct spi_controller
*ctlr
)
1769 unsigned long flags
;
1771 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1773 if (ctlr
->running
|| ctlr
->busy
) {
1774 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1778 ctlr
->running
= true;
1779 ctlr
->cur_msg
= NULL
;
1780 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1782 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
1787 static int spi_stop_queue(struct spi_controller
*ctlr
)
1789 unsigned long flags
;
1790 unsigned limit
= 500;
1793 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1796 * This is a bit lame, but is optimized for the common execution path.
1797 * A wait_queue on the ctlr->busy could be used, but then the common
1798 * execution path (pump_messages) would be required to call wake_up or
1799 * friends on every SPI message. Do this instead.
1801 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1802 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1803 usleep_range(10000, 11000);
1804 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1807 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1810 ctlr
->running
= false;
1812 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1815 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1821 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1825 ret
= spi_stop_queue(ctlr
);
1828 * kthread_flush_worker will block until all work is done.
1829 * If the reason that stop_queue timed out is that the work will never
1830 * finish, then it does no good to call flush/stop thread, so
1834 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1838 kthread_destroy_worker(ctlr
->kworker
);
1843 static int __spi_queued_transfer(struct spi_device
*spi
,
1844 struct spi_message
*msg
,
1847 struct spi_controller
*ctlr
= spi
->controller
;
1848 unsigned long flags
;
1850 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1852 if (!ctlr
->running
) {
1853 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1856 msg
->actual_length
= 0;
1857 msg
->status
= -EINPROGRESS
;
1859 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1860 if (!ctlr
->busy
&& need_pump
)
1861 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
1863 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1868 * spi_queued_transfer - transfer function for queued transfers
1869 * @spi: spi device which is requesting transfer
1870 * @msg: spi message which is to handled is queued to driver queue
1872 * Return: zero on success, else a negative error code.
1874 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1876 return __spi_queued_transfer(spi
, msg
, true);
1879 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1883 ctlr
->transfer
= spi_queued_transfer
;
1884 if (!ctlr
->transfer_one_message
)
1885 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1887 /* Initialize and start queue */
1888 ret
= spi_init_queue(ctlr
);
1890 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1891 goto err_init_queue
;
1893 ctlr
->queued
= true;
1894 ret
= spi_start_queue(ctlr
);
1896 dev_err(&ctlr
->dev
, "problem starting queue\n");
1897 goto err_start_queue
;
1903 spi_destroy_queue(ctlr
);
1909 * spi_flush_queue - Send all pending messages in the queue from the callers'
1911 * @ctlr: controller to process queue for
1913 * This should be used when one wants to ensure all pending messages have been
1914 * sent before doing something. Is used by the spi-mem code to make sure SPI
1915 * memory operations do not preempt regular SPI transfers that have been queued
1916 * before the spi-mem operation.
1918 void spi_flush_queue(struct spi_controller
*ctlr
)
1920 if (ctlr
->transfer
== spi_queued_transfer
)
1921 __spi_pump_messages(ctlr
, false);
1924 /*-------------------------------------------------------------------------*/
1926 #if defined(CONFIG_OF)
1927 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1928 struct device_node
*nc
)
1933 /* Mode (clock phase/polarity/etc.) */
1934 if (of_property_read_bool(nc
, "spi-cpha"))
1935 spi
->mode
|= SPI_CPHA
;
1936 if (of_property_read_bool(nc
, "spi-cpol"))
1937 spi
->mode
|= SPI_CPOL
;
1938 if (of_property_read_bool(nc
, "spi-3wire"))
1939 spi
->mode
|= SPI_3WIRE
;
1940 if (of_property_read_bool(nc
, "spi-lsb-first"))
1941 spi
->mode
|= SPI_LSB_FIRST
;
1942 if (of_property_read_bool(nc
, "spi-cs-high"))
1943 spi
->mode
|= SPI_CS_HIGH
;
1945 /* Device DUAL/QUAD mode */
1946 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1951 spi
->mode
|= SPI_TX_DUAL
;
1954 spi
->mode
|= SPI_TX_QUAD
;
1957 spi
->mode
|= SPI_TX_OCTAL
;
1960 dev_warn(&ctlr
->dev
,
1961 "spi-tx-bus-width %d not supported\n",
1967 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1972 spi
->mode
|= SPI_RX_DUAL
;
1975 spi
->mode
|= SPI_RX_QUAD
;
1978 spi
->mode
|= SPI_RX_OCTAL
;
1981 dev_warn(&ctlr
->dev
,
1982 "spi-rx-bus-width %d not supported\n",
1988 if (spi_controller_is_slave(ctlr
)) {
1989 if (!of_node_name_eq(nc
, "slave")) {
1990 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1997 /* Device address */
1998 rc
= of_property_read_u32(nc
, "reg", &value
);
2000 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
2004 spi
->chip_select
= value
;
2007 if (!of_property_read_u32(nc
, "spi-max-frequency", &value
))
2008 spi
->max_speed_hz
= value
;
2013 static struct spi_device
*
2014 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
2016 struct spi_device
*spi
;
2019 /* Alloc an spi_device */
2020 spi
= spi_alloc_device(ctlr
);
2022 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
2027 /* Select device driver */
2028 rc
= of_modalias_node(nc
, spi
->modalias
,
2029 sizeof(spi
->modalias
));
2031 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
2035 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
2039 /* Store a pointer to the node in the device structure */
2041 spi
->dev
.of_node
= nc
;
2043 /* Register the new device */
2044 rc
= spi_add_device(spi
);
2046 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
2047 goto err_of_node_put
;
2060 * of_register_spi_devices() - Register child devices onto the SPI bus
2061 * @ctlr: Pointer to spi_controller device
2063 * Registers an spi_device for each child node of controller node which
2064 * represents a valid SPI slave.
2066 static void of_register_spi_devices(struct spi_controller
*ctlr
)
2068 struct spi_device
*spi
;
2069 struct device_node
*nc
;
2071 if (!ctlr
->dev
.of_node
)
2074 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
2075 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
2077 spi
= of_register_spi_device(ctlr
, nc
);
2079 dev_warn(&ctlr
->dev
,
2080 "Failed to create SPI device for %pOF\n", nc
);
2081 of_node_clear_flag(nc
, OF_POPULATED
);
2086 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
2090 struct acpi_spi_lookup
{
2091 struct spi_controller
*ctlr
;
2099 static void acpi_spi_parse_apple_properties(struct acpi_device
*dev
,
2100 struct acpi_spi_lookup
*lookup
)
2102 const union acpi_object
*obj
;
2104 if (!x86_apple_machine
)
2107 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
2108 && obj
->buffer
.length
>= 4)
2109 lookup
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
2111 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
2112 && obj
->buffer
.length
== 8)
2113 lookup
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
2115 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
2116 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
2117 lookup
->mode
|= SPI_LSB_FIRST
;
2119 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
2120 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2121 lookup
->mode
|= SPI_CPOL
;
2123 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
2124 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2125 lookup
->mode
|= SPI_CPHA
;
2128 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
2130 struct acpi_spi_lookup
*lookup
= data
;
2131 struct spi_controller
*ctlr
= lookup
->ctlr
;
2133 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
2134 struct acpi_resource_spi_serialbus
*sb
;
2135 acpi_handle parent_handle
;
2138 sb
= &ares
->data
.spi_serial_bus
;
2139 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
2141 status
= acpi_get_handle(NULL
,
2142 sb
->resource_source
.string_ptr
,
2145 if (ACPI_FAILURE(status
) ||
2146 ACPI_HANDLE(ctlr
->dev
.parent
) != parent_handle
)
2150 * ACPI DeviceSelection numbering is handled by the
2151 * host controller driver in Windows and can vary
2152 * from driver to driver. In Linux we always expect
2153 * 0 .. max - 1 so we need to ask the driver to
2154 * translate between the two schemes.
2156 if (ctlr
->fw_translate_cs
) {
2157 int cs
= ctlr
->fw_translate_cs(ctlr
,
2158 sb
->device_selection
);
2161 lookup
->chip_select
= cs
;
2163 lookup
->chip_select
= sb
->device_selection
;
2166 lookup
->max_speed_hz
= sb
->connection_speed
;
2167 lookup
->bits_per_word
= sb
->data_bit_length
;
2169 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
2170 lookup
->mode
|= SPI_CPHA
;
2171 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
2172 lookup
->mode
|= SPI_CPOL
;
2173 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
2174 lookup
->mode
|= SPI_CS_HIGH
;
2176 } else if (lookup
->irq
< 0) {
2179 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
2180 lookup
->irq
= r
.start
;
2183 /* Always tell the ACPI core to skip this resource */
2187 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
2188 struct acpi_device
*adev
)
2190 acpi_handle parent_handle
= NULL
;
2191 struct list_head resource_list
;
2192 struct acpi_spi_lookup lookup
= {};
2193 struct spi_device
*spi
;
2196 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
2197 acpi_device_enumerated(adev
))
2203 INIT_LIST_HEAD(&resource_list
);
2204 ret
= acpi_dev_get_resources(adev
, &resource_list
,
2205 acpi_spi_add_resource
, &lookup
);
2206 acpi_dev_free_resource_list(&resource_list
);
2209 /* found SPI in _CRS but it points to another controller */
2212 if (!lookup
.max_speed_hz
&&
2213 !ACPI_FAILURE(acpi_get_parent(adev
->handle
, &parent_handle
)) &&
2214 ACPI_HANDLE(ctlr
->dev
.parent
) == parent_handle
) {
2215 /* Apple does not use _CRS but nested devices for SPI slaves */
2216 acpi_spi_parse_apple_properties(adev
, &lookup
);
2219 if (!lookup
.max_speed_hz
)
2222 spi
= spi_alloc_device(ctlr
);
2224 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
2225 dev_name(&adev
->dev
));
2226 return AE_NO_MEMORY
;
2230 ACPI_COMPANION_SET(&spi
->dev
, adev
);
2231 spi
->max_speed_hz
= lookup
.max_speed_hz
;
2232 spi
->mode
|= lookup
.mode
;
2233 spi
->irq
= lookup
.irq
;
2234 spi
->bits_per_word
= lookup
.bits_per_word
;
2235 spi
->chip_select
= lookup
.chip_select
;
2237 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
2238 sizeof(spi
->modalias
));
2241 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
2243 acpi_device_set_enumerated(adev
);
2245 adev
->power
.flags
.ignore_parent
= true;
2246 if (spi_add_device(spi
)) {
2247 adev
->power
.flags
.ignore_parent
= false;
2248 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
2249 dev_name(&adev
->dev
));
2256 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
2257 void *data
, void **return_value
)
2259 struct spi_controller
*ctlr
= data
;
2260 struct acpi_device
*adev
;
2262 if (acpi_bus_get_device(handle
, &adev
))
2265 return acpi_register_spi_device(ctlr
, adev
);
2268 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2270 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
2275 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
2279 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, ACPI_ROOT_OBJECT
,
2280 SPI_ACPI_ENUMERATE_MAX_DEPTH
,
2281 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
2282 if (ACPI_FAILURE(status
))
2283 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
2286 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
2287 #endif /* CONFIG_ACPI */
2289 static void spi_controller_release(struct device
*dev
)
2291 struct spi_controller
*ctlr
;
2293 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2297 static struct class spi_master_class
= {
2298 .name
= "spi_master",
2299 .owner
= THIS_MODULE
,
2300 .dev_release
= spi_controller_release
,
2301 .dev_groups
= spi_master_groups
,
2304 #ifdef CONFIG_SPI_SLAVE
2306 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2308 * @spi: device used for the current transfer
2310 int spi_slave_abort(struct spi_device
*spi
)
2312 struct spi_controller
*ctlr
= spi
->controller
;
2314 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
2315 return ctlr
->slave_abort(ctlr
);
2319 EXPORT_SYMBOL_GPL(spi_slave_abort
);
2321 static int match_true(struct device
*dev
, void *data
)
2326 static ssize_t
slave_show(struct device
*dev
, struct device_attribute
*attr
,
2329 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2331 struct device
*child
;
2333 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2334 return sprintf(buf
, "%s\n",
2335 child
? to_spi_device(child
)->modalias
: NULL
);
2338 static ssize_t
slave_store(struct device
*dev
, struct device_attribute
*attr
,
2339 const char *buf
, size_t count
)
2341 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2343 struct spi_device
*spi
;
2344 struct device
*child
;
2348 rc
= sscanf(buf
, "%31s", name
);
2349 if (rc
!= 1 || !name
[0])
2352 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2354 /* Remove registered slave */
2355 device_unregister(child
);
2359 if (strcmp(name
, "(null)")) {
2360 /* Register new slave */
2361 spi
= spi_alloc_device(ctlr
);
2365 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2367 rc
= spi_add_device(spi
);
2377 static DEVICE_ATTR_RW(slave
);
2379 static struct attribute
*spi_slave_attrs
[] = {
2380 &dev_attr_slave
.attr
,
2384 static const struct attribute_group spi_slave_group
= {
2385 .attrs
= spi_slave_attrs
,
2388 static const struct attribute_group
*spi_slave_groups
[] = {
2389 &spi_controller_statistics_group
,
2394 static struct class spi_slave_class
= {
2395 .name
= "spi_slave",
2396 .owner
= THIS_MODULE
,
2397 .dev_release
= spi_controller_release
,
2398 .dev_groups
= spi_slave_groups
,
2401 extern struct class spi_slave_class
; /* dummy */
2405 * __spi_alloc_controller - allocate an SPI master or slave controller
2406 * @dev: the controller, possibly using the platform_bus
2407 * @size: how much zeroed driver-private data to allocate; the pointer to this
2408 * memory is in the driver_data field of the returned device, accessible
2409 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2410 * drivers granting DMA access to portions of their private data need to
2411 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2412 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2413 * slave (true) controller
2414 * Context: can sleep
2416 * This call is used only by SPI controller drivers, which are the
2417 * only ones directly touching chip registers. It's how they allocate
2418 * an spi_controller structure, prior to calling spi_register_controller().
2420 * This must be called from context that can sleep.
2422 * The caller is responsible for assigning the bus number and initializing the
2423 * controller's methods before calling spi_register_controller(); and (after
2424 * errors adding the device) calling spi_controller_put() to prevent a memory
2427 * Return: the SPI controller structure on success, else NULL.
2429 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2430 unsigned int size
, bool slave
)
2432 struct spi_controller
*ctlr
;
2433 size_t ctlr_size
= ALIGN(sizeof(*ctlr
), dma_get_cache_alignment());
2438 ctlr
= kzalloc(size
+ ctlr_size
, GFP_KERNEL
);
2442 device_initialize(&ctlr
->dev
);
2444 ctlr
->num_chipselect
= 1;
2445 ctlr
->slave
= slave
;
2446 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2447 ctlr
->dev
.class = &spi_slave_class
;
2449 ctlr
->dev
.class = &spi_master_class
;
2450 ctlr
->dev
.parent
= dev
;
2451 pm_suspend_ignore_children(&ctlr
->dev
, true);
2452 spi_controller_set_devdata(ctlr
, (void *)ctlr
+ ctlr_size
);
2456 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2458 static void devm_spi_release_controller(struct device
*dev
, void *ctlr
)
2460 spi_controller_put(*(struct spi_controller
**)ctlr
);
2464 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2465 * @dev: physical device of SPI controller
2466 * @size: how much zeroed driver-private data to allocate
2467 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2468 * Context: can sleep
2470 * Allocate an SPI controller and automatically release a reference on it
2471 * when @dev is unbound from its driver. Drivers are thus relieved from
2472 * having to call spi_controller_put().
2474 * The arguments to this function are identical to __spi_alloc_controller().
2476 * Return: the SPI controller structure on success, else NULL.
2478 struct spi_controller
*__devm_spi_alloc_controller(struct device
*dev
,
2482 struct spi_controller
**ptr
, *ctlr
;
2484 ptr
= devres_alloc(devm_spi_release_controller
, sizeof(*ptr
),
2489 ctlr
= __spi_alloc_controller(dev
, size
, slave
);
2492 devres_add(dev
, ptr
);
2499 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller
);
2502 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2505 struct device_node
*np
= ctlr
->dev
.of_node
;
2510 nb
= of_gpio_named_count(np
, "cs-gpios");
2511 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2513 /* Return error only for an incorrectly formed cs-gpios property */
2514 if (nb
== 0 || nb
== -ENOENT
)
2519 cs
= devm_kcalloc(&ctlr
->dev
, ctlr
->num_chipselect
, sizeof(int),
2521 ctlr
->cs_gpios
= cs
;
2523 if (!ctlr
->cs_gpios
)
2526 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2529 for (i
= 0; i
< nb
; i
++)
2530 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2535 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2542 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2543 * @ctlr: The SPI master to grab GPIO descriptors for
2545 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
2548 struct gpio_desc
**cs
;
2549 struct device
*dev
= &ctlr
->dev
;
2550 unsigned long native_cs_mask
= 0;
2551 unsigned int num_cs_gpios
= 0;
2553 nb
= gpiod_count(dev
, "cs");
2554 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2556 /* No GPIOs at all is fine, else return the error */
2557 if (nb
== 0 || nb
== -ENOENT
)
2562 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
2566 ctlr
->cs_gpiods
= cs
;
2568 for (i
= 0; i
< nb
; i
++) {
2570 * Most chipselects are active low, the inverted
2571 * semantics are handled by special quirks in gpiolib,
2572 * so initializing them GPIOD_OUT_LOW here means
2573 * "unasserted", in most cases this will drive the physical
2576 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
2579 return PTR_ERR(cs
[i
]);
2583 * If we find a CS GPIO, name it after the device and
2588 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
2592 gpiod_set_consumer_name(cs
[i
], gpioname
);
2597 if (ctlr
->max_native_cs
&& i
>= ctlr
->max_native_cs
) {
2598 dev_err(dev
, "Invalid native chip select %d\n", i
);
2601 native_cs_mask
|= BIT(i
);
2604 ctlr
->unused_native_cs
= ffz(native_cs_mask
);
2605 if (num_cs_gpios
&& ctlr
->max_native_cs
&&
2606 ctlr
->unused_native_cs
>= ctlr
->max_native_cs
) {
2607 dev_err(dev
, "No unused native chip select available\n");
2614 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
2617 * The controller may implement only the high-level SPI-memory like
2618 * operations if it does not support regular SPI transfers, and this is
2620 * If ->mem_ops is NULL, we request that at least one of the
2621 * ->transfer_xxx() method be implemented.
2623 if (ctlr
->mem_ops
) {
2624 if (!ctlr
->mem_ops
->exec_op
)
2626 } else if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
2627 !ctlr
->transfer_one_message
) {
2635 * spi_register_controller - register SPI master or slave controller
2636 * @ctlr: initialized master, originally from spi_alloc_master() or
2638 * Context: can sleep
2640 * SPI controllers connect to their drivers using some non-SPI bus,
2641 * such as the platform bus. The final stage of probe() in that code
2642 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2644 * SPI controllers use board specific (often SOC specific) bus numbers,
2645 * and board-specific addressing for SPI devices combines those numbers
2646 * with chip select numbers. Since SPI does not directly support dynamic
2647 * device identification, boards need configuration tables telling which
2648 * chip is at which address.
2650 * This must be called from context that can sleep. It returns zero on
2651 * success, else a negative error code (dropping the controller's refcount).
2652 * After a successful return, the caller is responsible for calling
2653 * spi_unregister_controller().
2655 * Return: zero on success, else a negative error code.
2657 int spi_register_controller(struct spi_controller
*ctlr
)
2659 struct device
*dev
= ctlr
->dev
.parent
;
2660 struct boardinfo
*bi
;
2662 int id
, first_dynamic
;
2668 * Make sure all necessary hooks are implemented before registering
2669 * the SPI controller.
2671 status
= spi_controller_check_ops(ctlr
);
2675 if (ctlr
->bus_num
>= 0) {
2676 /* devices with a fixed bus num must check-in with the num */
2677 mutex_lock(&board_lock
);
2678 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2679 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2680 mutex_unlock(&board_lock
);
2681 if (WARN(id
< 0, "couldn't get idr"))
2682 return id
== -ENOSPC
? -EBUSY
: id
;
2684 } else if (ctlr
->dev
.of_node
) {
2685 /* allocate dynamic bus number using Linux idr */
2686 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2689 mutex_lock(&board_lock
);
2690 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2691 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2692 mutex_unlock(&board_lock
);
2693 if (WARN(id
< 0, "couldn't get idr"))
2694 return id
== -ENOSPC
? -EBUSY
: id
;
2697 if (ctlr
->bus_num
< 0) {
2698 first_dynamic
= of_alias_get_highest_id("spi");
2699 if (first_dynamic
< 0)
2704 mutex_lock(&board_lock
);
2705 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2707 mutex_unlock(&board_lock
);
2708 if (WARN(id
< 0, "couldn't get idr"))
2712 INIT_LIST_HEAD(&ctlr
->queue
);
2713 spin_lock_init(&ctlr
->queue_lock
);
2714 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2715 mutex_init(&ctlr
->bus_lock_mutex
);
2716 mutex_init(&ctlr
->io_mutex
);
2717 ctlr
->bus_lock_flag
= 0;
2718 init_completion(&ctlr
->xfer_completion
);
2719 if (!ctlr
->max_dma_len
)
2720 ctlr
->max_dma_len
= INT_MAX
;
2722 /* register the device, then userspace will see it.
2723 * registration fails if the bus ID is in use.
2725 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2727 if (!spi_controller_is_slave(ctlr
)) {
2728 if (ctlr
->use_gpio_descriptors
) {
2729 status
= spi_get_gpio_descs(ctlr
);
2733 * A controller using GPIO descriptors always
2734 * supports SPI_CS_HIGH if need be.
2736 ctlr
->mode_bits
|= SPI_CS_HIGH
;
2738 /* Legacy code path for GPIOs from DT */
2739 status
= of_spi_get_gpio_numbers(ctlr
);
2746 * Even if it's just one always-selected device, there must
2747 * be at least one chipselect.
2749 if (!ctlr
->num_chipselect
) {
2754 status
= device_add(&ctlr
->dev
);
2757 dev_dbg(dev
, "registered %s %s\n",
2758 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2759 dev_name(&ctlr
->dev
));
2762 * If we're using a queued driver, start the queue. Note that we don't
2763 * need the queueing logic if the driver is only supporting high-level
2764 * memory operations.
2766 if (ctlr
->transfer
) {
2767 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2768 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
2769 status
= spi_controller_initialize_queue(ctlr
);
2771 device_del(&ctlr
->dev
);
2775 /* add statistics */
2776 spin_lock_init(&ctlr
->statistics
.lock
);
2778 mutex_lock(&board_lock
);
2779 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2780 list_for_each_entry(bi
, &board_list
, list
)
2781 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2782 mutex_unlock(&board_lock
);
2784 /* Register devices from the device tree and ACPI */
2785 of_register_spi_devices(ctlr
);
2786 acpi_register_spi_devices(ctlr
);
2790 mutex_lock(&board_lock
);
2791 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2792 mutex_unlock(&board_lock
);
2795 EXPORT_SYMBOL_GPL(spi_register_controller
);
2797 static void devm_spi_unregister(struct device
*dev
, void *res
)
2799 spi_unregister_controller(*(struct spi_controller
**)res
);
2803 * devm_spi_register_controller - register managed SPI master or slave
2805 * @dev: device managing SPI controller
2806 * @ctlr: initialized controller, originally from spi_alloc_master() or
2808 * Context: can sleep
2810 * Register a SPI device as with spi_register_controller() which will
2811 * automatically be unregistered and freed.
2813 * Return: zero on success, else a negative error code.
2815 int devm_spi_register_controller(struct device
*dev
,
2816 struct spi_controller
*ctlr
)
2818 struct spi_controller
**ptr
;
2821 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2825 ret
= spi_register_controller(ctlr
);
2828 devres_add(dev
, ptr
);
2835 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2837 static int devm_spi_match_controller(struct device
*dev
, void *res
, void *ctlr
)
2839 return *(struct spi_controller
**)res
== ctlr
;
2842 static int __unregister(struct device
*dev
, void *null
)
2844 spi_unregister_device(to_spi_device(dev
));
2849 * spi_unregister_controller - unregister SPI master or slave controller
2850 * @ctlr: the controller being unregistered
2851 * Context: can sleep
2853 * This call is used only by SPI controller drivers, which are the
2854 * only ones directly touching chip registers.
2856 * This must be called from context that can sleep.
2858 * Note that this function also drops a reference to the controller.
2860 void spi_unregister_controller(struct spi_controller
*ctlr
)
2862 struct spi_controller
*found
;
2863 int id
= ctlr
->bus_num
;
2865 /* Prevent addition of new devices, unregister existing ones */
2866 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
))
2867 mutex_lock(&spi_add_lock
);
2869 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2871 /* First make sure that this controller was ever added */
2872 mutex_lock(&board_lock
);
2873 found
= idr_find(&spi_master_idr
, id
);
2874 mutex_unlock(&board_lock
);
2876 if (spi_destroy_queue(ctlr
))
2877 dev_err(&ctlr
->dev
, "queue remove failed\n");
2879 mutex_lock(&board_lock
);
2880 list_del(&ctlr
->list
);
2881 mutex_unlock(&board_lock
);
2883 device_del(&ctlr
->dev
);
2885 /* Release the last reference on the controller if its driver
2886 * has not yet been converted to devm_spi_alloc_master/slave().
2888 if (!devres_find(ctlr
->dev
.parent
, devm_spi_release_controller
,
2889 devm_spi_match_controller
, ctlr
))
2890 put_device(&ctlr
->dev
);
2893 mutex_lock(&board_lock
);
2895 idr_remove(&spi_master_idr
, id
);
2896 mutex_unlock(&board_lock
);
2898 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
))
2899 mutex_unlock(&spi_add_lock
);
2901 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2903 int spi_controller_suspend(struct spi_controller
*ctlr
)
2907 /* Basically no-ops for non-queued controllers */
2911 ret
= spi_stop_queue(ctlr
);
2913 dev_err(&ctlr
->dev
, "queue stop failed\n");
2917 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2919 int spi_controller_resume(struct spi_controller
*ctlr
)
2926 ret
= spi_start_queue(ctlr
);
2928 dev_err(&ctlr
->dev
, "queue restart failed\n");
2932 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2934 static int __spi_controller_match(struct device
*dev
, const void *data
)
2936 struct spi_controller
*ctlr
;
2937 const u16
*bus_num
= data
;
2939 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2940 return ctlr
->bus_num
== *bus_num
;
2944 * spi_busnum_to_master - look up master associated with bus_num
2945 * @bus_num: the master's bus number
2946 * Context: can sleep
2948 * This call may be used with devices that are registered after
2949 * arch init time. It returns a refcounted pointer to the relevant
2950 * spi_controller (which the caller must release), or NULL if there is
2951 * no such master registered.
2953 * Return: the SPI master structure on success, else NULL.
2955 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2958 struct spi_controller
*ctlr
= NULL
;
2960 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2961 __spi_controller_match
);
2963 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2964 /* reference got in class_find_device */
2967 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2969 /*-------------------------------------------------------------------------*/
2971 /* Core methods for SPI resource management */
2974 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2975 * during the processing of a spi_message while using
2977 * @spi: the spi device for which we allocate memory
2978 * @release: the release code to execute for this resource
2979 * @size: size to alloc and return
2980 * @gfp: GFP allocation flags
2982 * Return: the pointer to the allocated data
2984 * This may get enhanced in the future to allocate from a memory pool
2985 * of the @spi_device or @spi_controller to avoid repeated allocations.
2987 void *spi_res_alloc(struct spi_device
*spi
,
2988 spi_res_release_t release
,
2989 size_t size
, gfp_t gfp
)
2991 struct spi_res
*sres
;
2993 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2997 INIT_LIST_HEAD(&sres
->entry
);
2998 sres
->release
= release
;
3002 EXPORT_SYMBOL_GPL(spi_res_alloc
);
3005 * spi_res_free - free an spi resource
3006 * @res: pointer to the custom data of a resource
3009 void spi_res_free(void *res
)
3011 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
3016 WARN_ON(!list_empty(&sres
->entry
));
3019 EXPORT_SYMBOL_GPL(spi_res_free
);
3022 * spi_res_add - add a spi_res to the spi_message
3023 * @message: the spi message
3024 * @res: the spi_resource
3026 void spi_res_add(struct spi_message
*message
, void *res
)
3028 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
3030 WARN_ON(!list_empty(&sres
->entry
));
3031 list_add_tail(&sres
->entry
, &message
->resources
);
3033 EXPORT_SYMBOL_GPL(spi_res_add
);
3036 * spi_res_release - release all spi resources for this message
3037 * @ctlr: the @spi_controller
3038 * @message: the @spi_message
3040 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
3042 struct spi_res
*res
, *tmp
;
3044 list_for_each_entry_safe_reverse(res
, tmp
, &message
->resources
, entry
) {
3046 res
->release(ctlr
, message
, res
->data
);
3048 list_del(&res
->entry
);
3053 EXPORT_SYMBOL_GPL(spi_res_release
);
3055 /*-------------------------------------------------------------------------*/
3057 /* Core methods for spi_message alterations */
3059 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
3060 struct spi_message
*msg
,
3063 struct spi_replaced_transfers
*rxfer
= res
;
3066 /* call extra callback if requested */
3068 rxfer
->release(ctlr
, msg
, res
);
3070 /* insert replaced transfers back into the message */
3071 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
3073 /* remove the formerly inserted entries */
3074 for (i
= 0; i
< rxfer
->inserted
; i
++)
3075 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
3079 * spi_replace_transfers - replace transfers with several transfers
3080 * and register change with spi_message.resources
3081 * @msg: the spi_message we work upon
3082 * @xfer_first: the first spi_transfer we want to replace
3083 * @remove: number of transfers to remove
3084 * @insert: the number of transfers we want to insert instead
3085 * @release: extra release code necessary in some circumstances
3086 * @extradatasize: extra data to allocate (with alignment guarantees
3087 * of struct @spi_transfer)
3090 * Returns: pointer to @spi_replaced_transfers,
3091 * PTR_ERR(...) in case of errors.
3093 struct spi_replaced_transfers
*spi_replace_transfers(
3094 struct spi_message
*msg
,
3095 struct spi_transfer
*xfer_first
,
3098 spi_replaced_release_t release
,
3099 size_t extradatasize
,
3102 struct spi_replaced_transfers
*rxfer
;
3103 struct spi_transfer
*xfer
;
3106 /* allocate the structure using spi_res */
3107 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
3108 struct_size(rxfer
, inserted_transfers
, insert
)
3112 return ERR_PTR(-ENOMEM
);
3114 /* the release code to invoke before running the generic release */
3115 rxfer
->release
= release
;
3117 /* assign extradata */
3120 &rxfer
->inserted_transfers
[insert
];
3122 /* init the replaced_transfers list */
3123 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
3125 /* assign the list_entry after which we should reinsert
3126 * the @replaced_transfers - it may be spi_message.messages!
3128 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
3130 /* remove the requested number of transfers */
3131 for (i
= 0; i
< remove
; i
++) {
3132 /* if the entry after replaced_after it is msg->transfers
3133 * then we have been requested to remove more transfers
3134 * than are in the list
3136 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
3137 dev_err(&msg
->spi
->dev
,
3138 "requested to remove more spi_transfers than are available\n");
3139 /* insert replaced transfers back into the message */
3140 list_splice(&rxfer
->replaced_transfers
,
3141 rxfer
->replaced_after
);
3143 /* free the spi_replace_transfer structure */
3144 spi_res_free(rxfer
);
3146 /* and return with an error */
3147 return ERR_PTR(-EINVAL
);
3150 /* remove the entry after replaced_after from list of
3151 * transfers and add it to list of replaced_transfers
3153 list_move_tail(rxfer
->replaced_after
->next
,
3154 &rxfer
->replaced_transfers
);
3157 /* create copy of the given xfer with identical settings
3158 * based on the first transfer to get removed
3160 for (i
= 0; i
< insert
; i
++) {
3161 /* we need to run in reverse order */
3162 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
3164 /* copy all spi_transfer data */
3165 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
3168 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
3170 /* clear cs_change and delay for all but the last */
3172 xfer
->cs_change
= false;
3173 xfer
->delay_usecs
= 0;
3174 xfer
->delay
.value
= 0;
3178 /* set up inserted */
3179 rxfer
->inserted
= insert
;
3181 /* and register it with spi_res/spi_message */
3182 spi_res_add(msg
, rxfer
);
3186 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
3188 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
3189 struct spi_message
*msg
,
3190 struct spi_transfer
**xferp
,
3194 struct spi_transfer
*xfer
= *xferp
, *xfers
;
3195 struct spi_replaced_transfers
*srt
;
3199 /* calculate how many we have to replace */
3200 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
3202 /* create replacement */
3203 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
3205 return PTR_ERR(srt
);
3206 xfers
= srt
->inserted_transfers
;
3208 /* now handle each of those newly inserted spi_transfers
3209 * note that the replacements spi_transfers all are preset
3210 * to the same values as *xferp, so tx_buf, rx_buf and len
3211 * are all identical (as well as most others)
3212 * so we just have to fix up len and the pointers.
3214 * this also includes support for the depreciated
3215 * spi_message.is_dma_mapped interface
3218 /* the first transfer just needs the length modified, so we
3219 * run it outside the loop
3221 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
3223 /* all the others need rx_buf/tx_buf also set */
3224 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
3225 /* update rx_buf, tx_buf and dma */
3226 if (xfers
[i
].rx_buf
)
3227 xfers
[i
].rx_buf
+= offset
;
3228 if (xfers
[i
].rx_dma
)
3229 xfers
[i
].rx_dma
+= offset
;
3230 if (xfers
[i
].tx_buf
)
3231 xfers
[i
].tx_buf
+= offset
;
3232 if (xfers
[i
].tx_dma
)
3233 xfers
[i
].tx_dma
+= offset
;
3236 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
3239 /* we set up xferp to the last entry we have inserted,
3240 * so that we skip those already split transfers
3242 *xferp
= &xfers
[count
- 1];
3244 /* increment statistics counters */
3245 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3246 transfers_split_maxsize
);
3247 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
3248 transfers_split_maxsize
);
3254 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3255 * when an individual transfer exceeds a
3257 * @ctlr: the @spi_controller for this transfer
3258 * @msg: the @spi_message to transform
3259 * @maxsize: the maximum when to apply this
3260 * @gfp: GFP allocation flags
3262 * Return: status of transformation
3264 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
3265 struct spi_message
*msg
,
3269 struct spi_transfer
*xfer
;
3272 /* iterate over the transfer_list,
3273 * but note that xfer is advanced to the last transfer inserted
3274 * to avoid checking sizes again unnecessarily (also xfer does
3275 * potentiall belong to a different list by the time the
3276 * replacement has happened
3278 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3279 if (xfer
->len
> maxsize
) {
3280 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3289 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
3291 /*-------------------------------------------------------------------------*/
3293 /* Core methods for SPI controller protocol drivers. Some of the
3294 * other core methods are currently defined as inline functions.
3297 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
3300 if (ctlr
->bits_per_word_mask
) {
3301 /* Only 32 bits fit in the mask */
3302 if (bits_per_word
> 32)
3304 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
3312 * spi_setup - setup SPI mode and clock rate
3313 * @spi: the device whose settings are being modified
3314 * Context: can sleep, and no requests are queued to the device
3316 * SPI protocol drivers may need to update the transfer mode if the
3317 * device doesn't work with its default. They may likewise need
3318 * to update clock rates or word sizes from initial values. This function
3319 * changes those settings, and must be called from a context that can sleep.
3320 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3321 * effect the next time the device is selected and data is transferred to
3322 * or from it. When this function returns, the spi device is deselected.
3324 * Note that this call will fail if the protocol driver specifies an option
3325 * that the underlying controller or its driver does not support. For
3326 * example, not all hardware supports wire transfers using nine bit words,
3327 * LSB-first wire encoding, or active-high chipselects.
3329 * Return: zero on success, else a negative error code.
3331 int spi_setup(struct spi_device
*spi
)
3333 unsigned bad_bits
, ugly_bits
;
3336 /* check mode to prevent that DUAL and QUAD set at the same time
3338 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
3339 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
3341 "setup: can not select dual and quad at the same time\n");
3344 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3346 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
3347 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3348 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
3350 /* help drivers fail *cleanly* when they need options
3351 * that aren't supported with their current controller
3352 * SPI_CS_WORD has a fallback software implementation,
3353 * so it is ignored here.
3355 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
);
3356 /* nothing prevents from working with active-high CS in case if it
3357 * is driven by GPIO.
3359 if (gpio_is_valid(spi
->cs_gpio
))
3360 bad_bits
&= ~SPI_CS_HIGH
;
3361 ugly_bits
= bad_bits
&
3362 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3363 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
3366 "setup: ignoring unsupported mode bits %x\n",
3368 spi
->mode
&= ~ugly_bits
;
3369 bad_bits
&= ~ugly_bits
;
3372 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
3377 if (!spi
->bits_per_word
)
3378 spi
->bits_per_word
= 8;
3380 status
= __spi_validate_bits_per_word(spi
->controller
,
3381 spi
->bits_per_word
);
3385 if (spi
->controller
->max_speed_hz
&&
3386 (!spi
->max_speed_hz
||
3387 spi
->max_speed_hz
> spi
->controller
->max_speed_hz
))
3388 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
3390 mutex_lock(&spi
->controller
->io_mutex
);
3392 if (spi
->controller
->setup
)
3393 status
= spi
->controller
->setup(spi
);
3395 if (spi
->controller
->auto_runtime_pm
&& spi
->controller
->set_cs
) {
3396 status
= pm_runtime_get_sync(spi
->controller
->dev
.parent
);
3398 mutex_unlock(&spi
->controller
->io_mutex
);
3399 pm_runtime_put_noidle(spi
->controller
->dev
.parent
);
3400 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3406 * We do not want to return positive value from pm_runtime_get,
3407 * there are many instances of devices calling spi_setup() and
3408 * checking for a non-zero return value instead of a negative
3413 spi_set_cs(spi
, false);
3414 pm_runtime_mark_last_busy(spi
->controller
->dev
.parent
);
3415 pm_runtime_put_autosuspend(spi
->controller
->dev
.parent
);
3417 spi_set_cs(spi
, false);
3420 mutex_unlock(&spi
->controller
->io_mutex
);
3422 if (spi
->rt
&& !spi
->controller
->rt
) {
3423 spi
->controller
->rt
= true;
3424 spi_set_thread_rt(spi
->controller
);
3427 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3428 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
3429 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
3430 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
3431 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
3432 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
3433 spi
->bits_per_word
, spi
->max_speed_hz
,
3438 EXPORT_SYMBOL_GPL(spi_setup
);
3441 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3442 * @spi: the device that requires specific CS timing configuration
3443 * @setup: CS setup time specified via @spi_delay
3444 * @hold: CS hold time specified via @spi_delay
3445 * @inactive: CS inactive delay between transfers specified via @spi_delay
3447 * Return: zero on success, else a negative error code.
3449 int spi_set_cs_timing(struct spi_device
*spi
, struct spi_delay
*setup
,
3450 struct spi_delay
*hold
, struct spi_delay
*inactive
)
3454 if (spi
->controller
->set_cs_timing
)
3455 return spi
->controller
->set_cs_timing(spi
, setup
, hold
,
3458 if ((setup
&& setup
->unit
== SPI_DELAY_UNIT_SCK
) ||
3459 (hold
&& hold
->unit
== SPI_DELAY_UNIT_SCK
) ||
3460 (inactive
&& inactive
->unit
== SPI_DELAY_UNIT_SCK
)) {
3462 "Clock-cycle delays for CS not supported in SW mode\n");
3466 len
= sizeof(struct spi_delay
);
3468 /* copy delays to controller */
3470 memcpy(&spi
->controller
->cs_setup
, setup
, len
);
3472 memset(&spi
->controller
->cs_setup
, 0, len
);
3475 memcpy(&spi
->controller
->cs_hold
, hold
, len
);
3477 memset(&spi
->controller
->cs_hold
, 0, len
);
3480 memcpy(&spi
->controller
->cs_inactive
, inactive
, len
);
3482 memset(&spi
->controller
->cs_inactive
, 0, len
);
3486 EXPORT_SYMBOL_GPL(spi_set_cs_timing
);
3488 static int _spi_xfer_word_delay_update(struct spi_transfer
*xfer
,
3489 struct spi_device
*spi
)
3493 delay1
= spi_delay_to_ns(&xfer
->word_delay
, xfer
);
3497 delay2
= spi_delay_to_ns(&spi
->word_delay
, xfer
);
3501 if (delay1
< delay2
)
3502 memcpy(&xfer
->word_delay
, &spi
->word_delay
,
3503 sizeof(xfer
->word_delay
));
3508 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
3510 struct spi_controller
*ctlr
= spi
->controller
;
3511 struct spi_transfer
*xfer
;
3514 if (list_empty(&message
->transfers
))
3517 /* If an SPI controller does not support toggling the CS line on each
3518 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3519 * for the CS line, we can emulate the CS-per-word hardware function by
3520 * splitting transfers into one-word transfers and ensuring that
3521 * cs_change is set for each transfer.
3523 if ((spi
->mode
& SPI_CS_WORD
) && (!(ctlr
->mode_bits
& SPI_CS_WORD
) ||
3525 gpio_is_valid(spi
->cs_gpio
))) {
3529 maxsize
= (spi
->bits_per_word
+ 7) / 8;
3531 /* spi_split_transfers_maxsize() requires message->spi */
3534 ret
= spi_split_transfers_maxsize(ctlr
, message
, maxsize
,
3539 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3540 /* don't change cs_change on the last entry in the list */
3541 if (list_is_last(&xfer
->transfer_list
, &message
->transfers
))
3543 xfer
->cs_change
= 1;
3547 /* Half-duplex links include original MicroWire, and ones with
3548 * only one data pin like SPI_3WIRE (switches direction) or where
3549 * either MOSI or MISO is missing. They can also be caused by
3550 * software limitations.
3552 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
3553 (spi
->mode
& SPI_3WIRE
)) {
3554 unsigned flags
= ctlr
->flags
;
3556 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3557 if (xfer
->rx_buf
&& xfer
->tx_buf
)
3559 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
3561 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
3567 * Set transfer bits_per_word and max speed as spi device default if
3568 * it is not set for this transfer.
3569 * Set transfer tx_nbits and rx_nbits as single transfer default
3570 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3571 * Ensure transfer word_delay is at least as long as that required by
3574 message
->frame_length
= 0;
3575 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3576 xfer
->effective_speed_hz
= 0;
3577 message
->frame_length
+= xfer
->len
;
3578 if (!xfer
->bits_per_word
)
3579 xfer
->bits_per_word
= spi
->bits_per_word
;
3581 if (!xfer
->speed_hz
)
3582 xfer
->speed_hz
= spi
->max_speed_hz
;
3584 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
3585 xfer
->speed_hz
= ctlr
->max_speed_hz
;
3587 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
3591 * SPI transfer length should be multiple of SPI word size
3592 * where SPI word size should be power-of-two multiple
3594 if (xfer
->bits_per_word
<= 8)
3596 else if (xfer
->bits_per_word
<= 16)
3601 /* No partial transfers accepted */
3602 if (xfer
->len
% w_size
)
3605 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
3606 xfer
->speed_hz
< ctlr
->min_speed_hz
)
3609 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
3610 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
3611 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
3612 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
3613 /* check transfer tx/rx_nbits:
3614 * 1. check the value matches one of single, dual and quad
3615 * 2. check tx/rx_nbits match the mode in spi_device
3618 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
3619 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
3620 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
3622 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
3623 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
3625 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
3626 !(spi
->mode
& SPI_TX_QUAD
))
3629 /* check transfer rx_nbits */
3631 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
3632 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
3633 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
3635 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
3636 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
3638 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
3639 !(spi
->mode
& SPI_RX_QUAD
))
3643 if (_spi_xfer_word_delay_update(xfer
, spi
))
3647 message
->status
= -EINPROGRESS
;
3652 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3654 struct spi_controller
*ctlr
= spi
->controller
;
3655 struct spi_transfer
*xfer
;
3658 * Some controllers do not support doing regular SPI transfers. Return
3659 * ENOTSUPP when this is the case.
3661 if (!ctlr
->transfer
)
3666 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
3667 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
3669 trace_spi_message_submit(message
);
3671 if (!ctlr
->ptp_sts_supported
) {
3672 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3673 xfer
->ptp_sts_word_pre
= 0;
3674 ptp_read_system_prets(xfer
->ptp_sts
);
3678 return ctlr
->transfer(spi
, message
);
3682 * spi_async - asynchronous SPI transfer
3683 * @spi: device with which data will be exchanged
3684 * @message: describes the data transfers, including completion callback
3685 * Context: any (irqs may be blocked, etc)
3687 * This call may be used in_irq and other contexts which can't sleep,
3688 * as well as from task contexts which can sleep.
3690 * The completion callback is invoked in a context which can't sleep.
3691 * Before that invocation, the value of message->status is undefined.
3692 * When the callback is issued, message->status holds either zero (to
3693 * indicate complete success) or a negative error code. After that
3694 * callback returns, the driver which issued the transfer request may
3695 * deallocate the associated memory; it's no longer in use by any SPI
3696 * core or controller driver code.
3698 * Note that although all messages to a spi_device are handled in
3699 * FIFO order, messages may go to different devices in other orders.
3700 * Some device might be higher priority, or have various "hard" access
3701 * time requirements, for example.
3703 * On detection of any fault during the transfer, processing of
3704 * the entire message is aborted, and the device is deselected.
3705 * Until returning from the associated message completion callback,
3706 * no other spi_message queued to that device will be processed.
3707 * (This rule applies equally to all the synchronous transfer calls,
3708 * which are wrappers around this core asynchronous primitive.)
3710 * Return: zero on success, else a negative error code.
3712 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3714 struct spi_controller
*ctlr
= spi
->controller
;
3716 unsigned long flags
;
3718 ret
= __spi_validate(spi
, message
);
3722 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3724 if (ctlr
->bus_lock_flag
)
3727 ret
= __spi_async(spi
, message
);
3729 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3733 EXPORT_SYMBOL_GPL(spi_async
);
3736 * spi_async_locked - version of spi_async with exclusive bus usage
3737 * @spi: device with which data will be exchanged
3738 * @message: describes the data transfers, including completion callback
3739 * Context: any (irqs may be blocked, etc)
3741 * This call may be used in_irq and other contexts which can't sleep,
3742 * as well as from task contexts which can sleep.
3744 * The completion callback is invoked in a context which can't sleep.
3745 * Before that invocation, the value of message->status is undefined.
3746 * When the callback is issued, message->status holds either zero (to
3747 * indicate complete success) or a negative error code. After that
3748 * callback returns, the driver which issued the transfer request may
3749 * deallocate the associated memory; it's no longer in use by any SPI
3750 * core or controller driver code.
3752 * Note that although all messages to a spi_device are handled in
3753 * FIFO order, messages may go to different devices in other orders.
3754 * Some device might be higher priority, or have various "hard" access
3755 * time requirements, for example.
3757 * On detection of any fault during the transfer, processing of
3758 * the entire message is aborted, and the device is deselected.
3759 * Until returning from the associated message completion callback,
3760 * no other spi_message queued to that device will be processed.
3761 * (This rule applies equally to all the synchronous transfer calls,
3762 * which are wrappers around this core asynchronous primitive.)
3764 * Return: zero on success, else a negative error code.
3766 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3768 struct spi_controller
*ctlr
= spi
->controller
;
3770 unsigned long flags
;
3772 ret
= __spi_validate(spi
, message
);
3776 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3778 ret
= __spi_async(spi
, message
);
3780 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3785 EXPORT_SYMBOL_GPL(spi_async_locked
);
3787 /*-------------------------------------------------------------------------*/
3789 /* Utility methods for SPI protocol drivers, layered on
3790 * top of the core. Some other utility methods are defined as
3794 static void spi_complete(void *arg
)
3799 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3801 DECLARE_COMPLETION_ONSTACK(done
);
3803 struct spi_controller
*ctlr
= spi
->controller
;
3804 unsigned long flags
;
3806 status
= __spi_validate(spi
, message
);
3810 message
->complete
= spi_complete
;
3811 message
->context
= &done
;
3814 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3815 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3817 /* If we're not using the legacy transfer method then we will
3818 * try to transfer in the calling context so special case.
3819 * This code would be less tricky if we could remove the
3820 * support for driver implemented message queues.
3822 if (ctlr
->transfer
== spi_queued_transfer
) {
3823 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3825 trace_spi_message_submit(message
);
3827 status
= __spi_queued_transfer(spi
, message
, false);
3829 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3831 status
= spi_async_locked(spi
, message
);
3835 /* Push out the messages in the calling context if we
3838 if (ctlr
->transfer
== spi_queued_transfer
) {
3839 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3840 spi_sync_immediate
);
3841 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3842 spi_sync_immediate
);
3843 __spi_pump_messages(ctlr
, false);
3846 wait_for_completion(&done
);
3847 status
= message
->status
;
3849 message
->context
= NULL
;
3854 * spi_sync - blocking/synchronous SPI data transfers
3855 * @spi: device with which data will be exchanged
3856 * @message: describes the data transfers
3857 * Context: can sleep
3859 * This call may only be used from a context that may sleep. The sleep
3860 * is non-interruptible, and has no timeout. Low-overhead controller
3861 * drivers may DMA directly into and out of the message buffers.
3863 * Note that the SPI device's chip select is active during the message,
3864 * and then is normally disabled between messages. Drivers for some
3865 * frequently-used devices may want to minimize costs of selecting a chip,
3866 * by leaving it selected in anticipation that the next message will go
3867 * to the same chip. (That may increase power usage.)
3869 * Also, the caller is guaranteeing that the memory associated with the
3870 * message will not be freed before this call returns.
3872 * Return: zero on success, else a negative error code.
3874 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3878 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3879 ret
= __spi_sync(spi
, message
);
3880 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3884 EXPORT_SYMBOL_GPL(spi_sync
);
3887 * spi_sync_locked - version of spi_sync with exclusive bus usage
3888 * @spi: device with which data will be exchanged
3889 * @message: describes the data transfers
3890 * Context: can sleep
3892 * This call may only be used from a context that may sleep. The sleep
3893 * is non-interruptible, and has no timeout. Low-overhead controller
3894 * drivers may DMA directly into and out of the message buffers.
3896 * This call should be used by drivers that require exclusive access to the
3897 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3898 * be released by a spi_bus_unlock call when the exclusive access is over.
3900 * Return: zero on success, else a negative error code.
3902 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3904 return __spi_sync(spi
, message
);
3906 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3909 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3910 * @ctlr: SPI bus master that should be locked for exclusive bus access
3911 * Context: can sleep
3913 * This call may only be used from a context that may sleep. The sleep
3914 * is non-interruptible, and has no timeout.
3916 * This call should be used by drivers that require exclusive access to the
3917 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3918 * exclusive access is over. Data transfer must be done by spi_sync_locked
3919 * and spi_async_locked calls when the SPI bus lock is held.
3921 * Return: always zero.
3923 int spi_bus_lock(struct spi_controller
*ctlr
)
3925 unsigned long flags
;
3927 mutex_lock(&ctlr
->bus_lock_mutex
);
3929 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3930 ctlr
->bus_lock_flag
= 1;
3931 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3933 /* mutex remains locked until spi_bus_unlock is called */
3937 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3940 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3941 * @ctlr: SPI bus master that was locked for exclusive bus access
3942 * Context: can sleep
3944 * This call may only be used from a context that may sleep. The sleep
3945 * is non-interruptible, and has no timeout.
3947 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3950 * Return: always zero.
3952 int spi_bus_unlock(struct spi_controller
*ctlr
)
3954 ctlr
->bus_lock_flag
= 0;
3956 mutex_unlock(&ctlr
->bus_lock_mutex
);
3960 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3962 /* portable code must never pass more than 32 bytes */
3963 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3968 * spi_write_then_read - SPI synchronous write followed by read
3969 * @spi: device with which data will be exchanged
3970 * @txbuf: data to be written (need not be dma-safe)
3971 * @n_tx: size of txbuf, in bytes
3972 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3973 * @n_rx: size of rxbuf, in bytes
3974 * Context: can sleep
3976 * This performs a half duplex MicroWire style transaction with the
3977 * device, sending txbuf and then reading rxbuf. The return value
3978 * is zero for success, else a negative errno status code.
3979 * This call may only be used from a context that may sleep.
3981 * Parameters to this routine are always copied using a small buffer.
3982 * Performance-sensitive or bulk transfer code should instead use
3983 * spi_{async,sync}() calls with dma-safe buffers.
3985 * Return: zero on success, else a negative error code.
3987 int spi_write_then_read(struct spi_device
*spi
,
3988 const void *txbuf
, unsigned n_tx
,
3989 void *rxbuf
, unsigned n_rx
)
3991 static DEFINE_MUTEX(lock
);
3994 struct spi_message message
;
3995 struct spi_transfer x
[2];
3998 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3999 * copying here, (as a pure convenience thing), but we can
4000 * keep heap costs out of the hot path unless someone else is
4001 * using the pre-allocated buffer or the transfer is too large.
4003 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
4004 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
4005 GFP_KERNEL
| GFP_DMA
);
4012 spi_message_init(&message
);
4013 memset(x
, 0, sizeof(x
));
4016 spi_message_add_tail(&x
[0], &message
);
4020 spi_message_add_tail(&x
[1], &message
);
4023 memcpy(local_buf
, txbuf
, n_tx
);
4024 x
[0].tx_buf
= local_buf
;
4025 x
[1].rx_buf
= local_buf
+ n_tx
;
4028 status
= spi_sync(spi
, &message
);
4030 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
4032 if (x
[0].tx_buf
== buf
)
4033 mutex_unlock(&lock
);
4039 EXPORT_SYMBOL_GPL(spi_write_then_read
);
4041 /*-------------------------------------------------------------------------*/
4043 #if IS_ENABLED(CONFIG_OF)
4044 /* must call put_device() when done with returned spi_device device */
4045 struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
4047 struct device
*dev
= bus_find_device_by_of_node(&spi_bus_type
, node
);
4049 return dev
? to_spi_device(dev
) : NULL
;
4051 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node
);
4052 #endif /* IS_ENABLED(CONFIG_OF) */
4054 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4055 /* the spi controllers are not using spi_bus, so we find it with another way */
4056 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
4060 dev
= class_find_device_by_of_node(&spi_master_class
, node
);
4061 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4062 dev
= class_find_device_by_of_node(&spi_slave_class
, node
);
4066 /* reference got in class_find_device */
4067 return container_of(dev
, struct spi_controller
, dev
);
4070 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
4073 struct of_reconfig_data
*rd
= arg
;
4074 struct spi_controller
*ctlr
;
4075 struct spi_device
*spi
;
4077 switch (of_reconfig_get_state_change(action
, arg
)) {
4078 case OF_RECONFIG_CHANGE_ADD
:
4079 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
4081 return NOTIFY_OK
; /* not for us */
4083 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
4084 put_device(&ctlr
->dev
);
4088 spi
= of_register_spi_device(ctlr
, rd
->dn
);
4089 put_device(&ctlr
->dev
);
4092 pr_err("%s: failed to create for '%pOF'\n",
4094 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
4095 return notifier_from_errno(PTR_ERR(spi
));
4099 case OF_RECONFIG_CHANGE_REMOVE
:
4100 /* already depopulated? */
4101 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
4104 /* find our device by node */
4105 spi
= of_find_spi_device_by_node(rd
->dn
);
4107 return NOTIFY_OK
; /* no? not meant for us */
4109 /* unregister takes one ref away */
4110 spi_unregister_device(spi
);
4112 /* and put the reference of the find */
4113 put_device(&spi
->dev
);
4120 static struct notifier_block spi_of_notifier
= {
4121 .notifier_call
= of_spi_notify
,
4123 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4124 extern struct notifier_block spi_of_notifier
;
4125 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4127 #if IS_ENABLED(CONFIG_ACPI)
4128 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
4130 return ACPI_COMPANION(dev
->parent
) == data
;
4133 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
4137 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
4138 spi_acpi_controller_match
);
4139 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4140 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
4141 spi_acpi_controller_match
);
4145 return container_of(dev
, struct spi_controller
, dev
);
4148 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
4152 dev
= bus_find_device_by_acpi_dev(&spi_bus_type
, adev
);
4153 return to_spi_device(dev
);
4156 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
4159 struct acpi_device
*adev
= arg
;
4160 struct spi_controller
*ctlr
;
4161 struct spi_device
*spi
;
4164 case ACPI_RECONFIG_DEVICE_ADD
:
4165 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
4169 acpi_register_spi_device(ctlr
, adev
);
4170 put_device(&ctlr
->dev
);
4172 case ACPI_RECONFIG_DEVICE_REMOVE
:
4173 if (!acpi_device_enumerated(adev
))
4176 spi
= acpi_spi_find_device_by_adev(adev
);
4180 spi_unregister_device(spi
);
4181 put_device(&spi
->dev
);
4188 static struct notifier_block spi_acpi_notifier
= {
4189 .notifier_call
= acpi_spi_notify
,
4192 extern struct notifier_block spi_acpi_notifier
;
4195 static int __init
spi_init(void)
4199 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
4205 status
= bus_register(&spi_bus_type
);
4209 status
= class_register(&spi_master_class
);
4213 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
4214 status
= class_register(&spi_slave_class
);
4219 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
4220 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
4221 if (IS_ENABLED(CONFIG_ACPI
))
4222 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
4227 class_unregister(&spi_master_class
);
4229 bus_unregister(&spi_bus_type
);
4237 /* board_info is normally registered in arch_initcall(),
4238 * but even essential drivers wait till later
4240 * REVISIT only boardinfo really needs static linking. the rest (device and
4241 * driver registration) _could_ be dynamically linked (modular) ... costs
4242 * include needing to have boardinfo data structures be much more public.
4244 postcore_initcall(spi_init
);