1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2015, Linaro Limited
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
8 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
17 struct optee_call_waiter
{
18 struct list_head list_node
;
22 static void optee_cq_wait_init(struct optee_call_queue
*cq
,
23 struct optee_call_waiter
*w
)
26 * We're preparing to make a call to secure world. In case we can't
27 * allocate a thread in secure world we'll end up waiting in
28 * optee_cq_wait_for_completion().
30 * Normally if there's no contention in secure world the call will
31 * complete and we can cleanup directly with optee_cq_wait_final().
33 mutex_lock(&cq
->mutex
);
36 * We add ourselves to the queue, but we don't wait. This
37 * guarantees that we don't lose a completion if secure world
38 * returns busy and another thread just exited and try to complete
41 init_completion(&w
->c
);
42 list_add_tail(&w
->list_node
, &cq
->waiters
);
44 mutex_unlock(&cq
->mutex
);
47 static void optee_cq_wait_for_completion(struct optee_call_queue
*cq
,
48 struct optee_call_waiter
*w
)
50 wait_for_completion(&w
->c
);
52 mutex_lock(&cq
->mutex
);
54 /* Move to end of list to get out of the way for other waiters */
55 list_del(&w
->list_node
);
56 reinit_completion(&w
->c
);
57 list_add_tail(&w
->list_node
, &cq
->waiters
);
59 mutex_unlock(&cq
->mutex
);
62 static void optee_cq_complete_one(struct optee_call_queue
*cq
)
64 struct optee_call_waiter
*w
;
66 list_for_each_entry(w
, &cq
->waiters
, list_node
) {
67 if (!completion_done(&w
->c
)) {
74 static void optee_cq_wait_final(struct optee_call_queue
*cq
,
75 struct optee_call_waiter
*w
)
78 * We're done with the call to secure world. The thread in secure
79 * world that was used for this call is now available for some
82 mutex_lock(&cq
->mutex
);
84 /* Get out of the list */
85 list_del(&w
->list_node
);
87 /* Wake up one eventual waiting task */
88 optee_cq_complete_one(cq
);
91 * If we're completed we've got a completion from another task that
92 * was just done with its call to secure world. Since yet another
93 * thread now is available in secure world wake up another eventual
96 if (completion_done(&w
->c
))
97 optee_cq_complete_one(cq
);
99 mutex_unlock(&cq
->mutex
);
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session
*find_session(struct optee_context_data
*ctxdata
,
106 struct optee_session
*sess
;
108 list_for_each_entry(sess
, &ctxdata
->sess_list
, list_node
)
109 if (sess
->session_id
== session_id
)
116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117 * @ctx: calling context
118 * @parg: physical address of message to pass to secure world
120 * Does and SMC to OP-TEE in secure world and handles eventual resulting
121 * Remote Procedure Calls (RPC) from OP-TEE.
123 * Returns return code from secure world, 0 is OK
125 u32
optee_do_call_with_arg(struct tee_context
*ctx
, phys_addr_t parg
)
127 struct optee
*optee
= tee_get_drvdata(ctx
->teedev
);
128 struct optee_call_waiter w
;
129 struct optee_rpc_param param
= { };
130 struct optee_call_ctx call_ctx
= { };
133 param
.a0
= OPTEE_SMC_CALL_WITH_ARG
;
134 reg_pair_from_64(¶m
.a1
, ¶m
.a2
, parg
);
135 /* Initialize waiter */
136 optee_cq_wait_init(&optee
->call_queue
, &w
);
138 struct arm_smccc_res res
;
140 optee
->invoke_fn(param
.a0
, param
.a1
, param
.a2
, param
.a3
,
141 param
.a4
, param
.a5
, param
.a6
, param
.a7
,
144 if (res
.a0
== OPTEE_SMC_RETURN_ETHREAD_LIMIT
) {
146 * Out of threads in secure world, wait for a thread
149 optee_cq_wait_for_completion(&optee
->call_queue
, &w
);
150 } else if (OPTEE_SMC_RETURN_IS_RPC(res
.a0
)) {
156 optee_handle_rpc(ctx
, ¶m
, &call_ctx
);
163 optee_rpc_finalize_call(&call_ctx
);
165 * We're done with our thread in secure world, if there's any
166 * thread waiters wake up one.
168 optee_cq_wait_final(&optee
->call_queue
, &w
);
173 static struct tee_shm
*get_msg_arg(struct tee_context
*ctx
, size_t num_params
,
174 struct optee_msg_arg
**msg_arg
,
175 phys_addr_t
*msg_parg
)
179 struct optee_msg_arg
*ma
;
181 shm
= tee_shm_alloc(ctx
, OPTEE_MSG_GET_ARG_SIZE(num_params
),
186 ma
= tee_shm_get_va(shm
, 0);
192 rc
= tee_shm_get_pa(shm
, 0, msg_parg
);
196 memset(ma
, 0, OPTEE_MSG_GET_ARG_SIZE(num_params
));
197 ma
->num_params
= num_params
;
208 int optee_open_session(struct tee_context
*ctx
,
209 struct tee_ioctl_open_session_arg
*arg
,
210 struct tee_param
*param
)
212 struct optee_context_data
*ctxdata
= ctx
->data
;
215 struct optee_msg_arg
*msg_arg
;
216 phys_addr_t msg_parg
;
217 struct optee_session
*sess
= NULL
;
219 /* +2 for the meta parameters added below */
220 shm
= get_msg_arg(ctx
, arg
->num_params
+ 2, &msg_arg
, &msg_parg
);
224 msg_arg
->cmd
= OPTEE_MSG_CMD_OPEN_SESSION
;
225 msg_arg
->cancel_id
= arg
->cancel_id
;
228 * Initialize and add the meta parameters needed when opening a
231 msg_arg
->params
[0].attr
= OPTEE_MSG_ATTR_TYPE_VALUE_INPUT
|
233 msg_arg
->params
[1].attr
= OPTEE_MSG_ATTR_TYPE_VALUE_INPUT
|
235 memcpy(&msg_arg
->params
[0].u
.value
, arg
->uuid
, sizeof(arg
->uuid
));
236 msg_arg
->params
[1].u
.value
.c
= arg
->clnt_login
;
238 rc
= tee_session_calc_client_uuid((uuid_t
*)&msg_arg
->params
[1].u
.value
,
239 arg
->clnt_login
, arg
->clnt_uuid
);
243 rc
= optee_to_msg_param(msg_arg
->params
+ 2, arg
->num_params
, param
);
247 sess
= kzalloc(sizeof(*sess
), GFP_KERNEL
);
253 if (optee_do_call_with_arg(ctx
, msg_parg
)) {
254 msg_arg
->ret
= TEEC_ERROR_COMMUNICATION
;
255 msg_arg
->ret_origin
= TEEC_ORIGIN_COMMS
;
258 if (msg_arg
->ret
== TEEC_SUCCESS
) {
259 /* A new session has been created, add it to the list. */
260 sess
->session_id
= msg_arg
->session
;
261 mutex_lock(&ctxdata
->mutex
);
262 list_add(&sess
->list_node
, &ctxdata
->sess_list
);
263 mutex_unlock(&ctxdata
->mutex
);
268 if (optee_from_msg_param(param
, arg
->num_params
, msg_arg
->params
+ 2)) {
269 arg
->ret
= TEEC_ERROR_COMMUNICATION
;
270 arg
->ret_origin
= TEEC_ORIGIN_COMMS
;
271 /* Close session again to avoid leakage */
272 optee_close_session(ctx
, msg_arg
->session
);
274 arg
->session
= msg_arg
->session
;
275 arg
->ret
= msg_arg
->ret
;
276 arg
->ret_origin
= msg_arg
->ret_origin
;
284 int optee_close_session(struct tee_context
*ctx
, u32 session
)
286 struct optee_context_data
*ctxdata
= ctx
->data
;
288 struct optee_msg_arg
*msg_arg
;
289 phys_addr_t msg_parg
;
290 struct optee_session
*sess
;
292 /* Check that the session is valid and remove it from the list */
293 mutex_lock(&ctxdata
->mutex
);
294 sess
= find_session(ctxdata
, session
);
296 list_del(&sess
->list_node
);
297 mutex_unlock(&ctxdata
->mutex
);
302 shm
= get_msg_arg(ctx
, 0, &msg_arg
, &msg_parg
);
306 msg_arg
->cmd
= OPTEE_MSG_CMD_CLOSE_SESSION
;
307 msg_arg
->session
= session
;
308 optee_do_call_with_arg(ctx
, msg_parg
);
314 int optee_invoke_func(struct tee_context
*ctx
, struct tee_ioctl_invoke_arg
*arg
,
315 struct tee_param
*param
)
317 struct optee_context_data
*ctxdata
= ctx
->data
;
319 struct optee_msg_arg
*msg_arg
;
320 phys_addr_t msg_parg
;
321 struct optee_session
*sess
;
324 /* Check that the session is valid */
325 mutex_lock(&ctxdata
->mutex
);
326 sess
= find_session(ctxdata
, arg
->session
);
327 mutex_unlock(&ctxdata
->mutex
);
331 shm
= get_msg_arg(ctx
, arg
->num_params
, &msg_arg
, &msg_parg
);
334 msg_arg
->cmd
= OPTEE_MSG_CMD_INVOKE_COMMAND
;
335 msg_arg
->func
= arg
->func
;
336 msg_arg
->session
= arg
->session
;
337 msg_arg
->cancel_id
= arg
->cancel_id
;
339 rc
= optee_to_msg_param(msg_arg
->params
, arg
->num_params
, param
);
343 if (optee_do_call_with_arg(ctx
, msg_parg
)) {
344 msg_arg
->ret
= TEEC_ERROR_COMMUNICATION
;
345 msg_arg
->ret_origin
= TEEC_ORIGIN_COMMS
;
348 if (optee_from_msg_param(param
, arg
->num_params
, msg_arg
->params
)) {
349 msg_arg
->ret
= TEEC_ERROR_COMMUNICATION
;
350 msg_arg
->ret_origin
= TEEC_ORIGIN_COMMS
;
353 arg
->ret
= msg_arg
->ret
;
354 arg
->ret_origin
= msg_arg
->ret_origin
;
360 int optee_cancel_req(struct tee_context
*ctx
, u32 cancel_id
, u32 session
)
362 struct optee_context_data
*ctxdata
= ctx
->data
;
364 struct optee_msg_arg
*msg_arg
;
365 phys_addr_t msg_parg
;
366 struct optee_session
*sess
;
368 /* Check that the session is valid */
369 mutex_lock(&ctxdata
->mutex
);
370 sess
= find_session(ctxdata
, session
);
371 mutex_unlock(&ctxdata
->mutex
);
375 shm
= get_msg_arg(ctx
, 0, &msg_arg
, &msg_parg
);
379 msg_arg
->cmd
= OPTEE_MSG_CMD_CANCEL
;
380 msg_arg
->session
= session
;
381 msg_arg
->cancel_id
= cancel_id
;
382 optee_do_call_with_arg(ctx
, msg_parg
);
389 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
391 * @optee: main service struct
393 void optee_enable_shm_cache(struct optee
*optee
)
395 struct optee_call_waiter w
;
397 /* We need to retry until secure world isn't busy. */
398 optee_cq_wait_init(&optee
->call_queue
, &w
);
400 struct arm_smccc_res res
;
402 optee
->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE
, 0, 0, 0, 0, 0, 0,
404 if (res
.a0
== OPTEE_SMC_RETURN_OK
)
406 optee_cq_wait_for_completion(&optee
->call_queue
, &w
);
408 optee_cq_wait_final(&optee
->call_queue
, &w
);
412 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
414 * @optee: main service struct
416 void optee_disable_shm_cache(struct optee
*optee
)
418 struct optee_call_waiter w
;
420 /* We need to retry until secure world isn't busy. */
421 optee_cq_wait_init(&optee
->call_queue
, &w
);
424 struct arm_smccc_res smccc
;
425 struct optee_smc_disable_shm_cache_result result
;
428 optee
->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE
, 0, 0, 0, 0, 0, 0,
430 if (res
.result
.status
== OPTEE_SMC_RETURN_ENOTAVAIL
)
431 break; /* All shm's freed */
432 if (res
.result
.status
== OPTEE_SMC_RETURN_OK
) {
435 shm
= reg_pair_to_ptr(res
.result
.shm_upper32
,
436 res
.result
.shm_lower32
);
439 optee_cq_wait_for_completion(&optee
->call_queue
, &w
);
442 optee_cq_wait_final(&optee
->call_queue
, &w
);
445 #define PAGELIST_ENTRIES_PER_PAGE \
446 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
449 * optee_fill_pages_list() - write list of user pages to given shared
452 * @dst: page-aligned buffer where list of pages will be stored
453 * @pages: array of pages that represents shared buffer
454 * @num_pages: number of entries in @pages
455 * @page_offset: offset of user buffer from page start
457 * @dst should be big enough to hold list of user page addresses and
458 * links to the next pages of buffer
460 void optee_fill_pages_list(u64
*dst
, struct page
**pages
, int num_pages
,
464 phys_addr_t optee_page
;
466 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
470 u64 pages_list
[PAGELIST_ENTRIES_PER_PAGE
];
475 * Currently OP-TEE uses 4k page size and it does not looks
476 * like this will change in the future. On other hand, there are
477 * no know ARM architectures with page size < 4k.
478 * Thus the next built assert looks redundant. But the following
479 * code heavily relies on this assumption, so it is better be
482 BUILD_BUG_ON(PAGE_SIZE
< OPTEE_MSG_NONCONTIG_PAGE_SIZE
);
484 pages_data
= (void *)dst
;
486 * If linux page is bigger than 4k, and user buffer offset is
487 * larger than 4k/8k/12k/etc this will skip first 4k pages,
488 * because they bear no value data for OP-TEE.
490 optee_page
= page_to_phys(*pages
) +
491 round_down(page_offset
, OPTEE_MSG_NONCONTIG_PAGE_SIZE
);
494 pages_data
->pages_list
[n
++] = optee_page
;
496 if (n
== PAGELIST_ENTRIES_PER_PAGE
) {
497 pages_data
->next_page_data
=
498 virt_to_phys(pages_data
+ 1);
503 optee_page
+= OPTEE_MSG_NONCONTIG_PAGE_SIZE
;
504 if (!(optee_page
& ~PAGE_MASK
)) {
508 optee_page
= page_to_phys(*pages
);
514 * The final entry in each pagelist page is a pointer to the next
517 static size_t get_pages_list_size(size_t num_entries
)
519 int pages
= DIV_ROUND_UP(num_entries
, PAGELIST_ENTRIES_PER_PAGE
);
521 return pages
* OPTEE_MSG_NONCONTIG_PAGE_SIZE
;
524 u64
*optee_allocate_pages_list(size_t num_entries
)
526 return alloc_pages_exact(get_pages_list_size(num_entries
), GFP_KERNEL
);
529 void optee_free_pages_list(void *list
, size_t num_entries
)
531 free_pages_exact(list
, get_pages_list_size(num_entries
));
534 static bool is_normal_memory(pgprot_t p
)
536 #if defined(CONFIG_ARM)
537 return (((pgprot_val(p
) & L_PTE_MT_MASK
) == L_PTE_MT_WRITEALLOC
) ||
538 ((pgprot_val(p
) & L_PTE_MT_MASK
) == L_PTE_MT_WRITEBACK
));
539 #elif defined(CONFIG_ARM64)
540 return (pgprot_val(p
) & PTE_ATTRINDX_MASK
) == PTE_ATTRINDX(MT_NORMAL
);
542 #error "Unuspported architecture"
546 static int __check_mem_type(struct vm_area_struct
*vma
, unsigned long end
)
548 while (vma
&& is_normal_memory(vma
->vm_page_prot
)) {
549 if (vma
->vm_end
>= end
)
557 static int check_mem_type(unsigned long start
, size_t num_pages
)
559 struct mm_struct
*mm
= current
->mm
;
563 * Allow kernel address to register with OP-TEE as kernel
564 * pages are configured as normal memory only.
566 if (virt_addr_valid(start
))
570 rc
= __check_mem_type(find_vma(mm
, start
),
571 start
+ num_pages
* PAGE_SIZE
);
572 mmap_read_unlock(mm
);
577 int optee_shm_register(struct tee_context
*ctx
, struct tee_shm
*shm
,
578 struct page
**pages
, size_t num_pages
,
581 struct tee_shm
*shm_arg
= NULL
;
582 struct optee_msg_arg
*msg_arg
;
584 phys_addr_t msg_parg
;
590 rc
= check_mem_type(start
, num_pages
);
594 pages_list
= optee_allocate_pages_list(num_pages
);
598 shm_arg
= get_msg_arg(ctx
, 1, &msg_arg
, &msg_parg
);
599 if (IS_ERR(shm_arg
)) {
600 rc
= PTR_ERR(shm_arg
);
604 optee_fill_pages_list(pages_list
, pages
, num_pages
,
605 tee_shm_get_page_offset(shm
));
607 msg_arg
->cmd
= OPTEE_MSG_CMD_REGISTER_SHM
;
608 msg_arg
->params
->attr
= OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT
|
609 OPTEE_MSG_ATTR_NONCONTIG
;
610 msg_arg
->params
->u
.tmem
.shm_ref
= (unsigned long)shm
;
611 msg_arg
->params
->u
.tmem
.size
= tee_shm_get_size(shm
);
613 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
614 * store buffer offset from 4k page, as described in OP-TEE ABI.
616 msg_arg
->params
->u
.tmem
.buf_ptr
= virt_to_phys(pages_list
) |
617 (tee_shm_get_page_offset(shm
) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE
- 1));
619 if (optee_do_call_with_arg(ctx
, msg_parg
) ||
620 msg_arg
->ret
!= TEEC_SUCCESS
)
623 tee_shm_free(shm_arg
);
625 optee_free_pages_list(pages_list
, num_pages
);
629 int optee_shm_unregister(struct tee_context
*ctx
, struct tee_shm
*shm
)
631 struct tee_shm
*shm_arg
;
632 struct optee_msg_arg
*msg_arg
;
633 phys_addr_t msg_parg
;
636 shm_arg
= get_msg_arg(ctx
, 1, &msg_arg
, &msg_parg
);
638 return PTR_ERR(shm_arg
);
640 msg_arg
->cmd
= OPTEE_MSG_CMD_UNREGISTER_SHM
;
642 msg_arg
->params
[0].attr
= OPTEE_MSG_ATTR_TYPE_RMEM_INPUT
;
643 msg_arg
->params
[0].u
.rmem
.shm_ref
= (unsigned long)shm
;
645 if (optee_do_call_with_arg(ctx
, msg_parg
) ||
646 msg_arg
->ret
!= TEEC_SUCCESS
)
648 tee_shm_free(shm_arg
);
652 int optee_shm_register_supp(struct tee_context
*ctx
, struct tee_shm
*shm
,
653 struct page
**pages
, size_t num_pages
,
657 * We don't want to register supplicant memory in OP-TEE.
658 * Instead information about it will be passed in RPC code.
660 return check_mem_type(start
, num_pages
);
663 int optee_shm_unregister_supp(struct tee_context
*ctx
, struct tee_shm
*shm
)