Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / drivers / tee / optee / call.c
blobc981757ba0d4052733484c89a566be15255c08fc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Linaro Limited
4 */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
17 struct optee_call_waiter {
18 struct list_head list_node;
19 struct completion c;
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23 struct optee_call_waiter *w)
26 * We're preparing to make a call to secure world. In case we can't
27 * allocate a thread in secure world we'll end up waiting in
28 * optee_cq_wait_for_completion().
30 * Normally if there's no contention in secure world the call will
31 * complete and we can cleanup directly with optee_cq_wait_final().
33 mutex_lock(&cq->mutex);
36 * We add ourselves to the queue, but we don't wait. This
37 * guarantees that we don't lose a completion if secure world
38 * returns busy and another thread just exited and try to complete
39 * someone.
41 init_completion(&w->c);
42 list_add_tail(&w->list_node, &cq->waiters);
44 mutex_unlock(&cq->mutex);
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48 struct optee_call_waiter *w)
50 wait_for_completion(&w->c);
52 mutex_lock(&cq->mutex);
54 /* Move to end of list to get out of the way for other waiters */
55 list_del(&w->list_node);
56 reinit_completion(&w->c);
57 list_add_tail(&w->list_node, &cq->waiters);
59 mutex_unlock(&cq->mutex);
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
64 struct optee_call_waiter *w;
66 list_for_each_entry(w, &cq->waiters, list_node) {
67 if (!completion_done(&w->c)) {
68 complete(&w->c);
69 break;
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75 struct optee_call_waiter *w)
78 * We're done with the call to secure world. The thread in secure
79 * world that was used for this call is now available for some
80 * other task to use.
82 mutex_lock(&cq->mutex);
84 /* Get out of the list */
85 list_del(&w->list_node);
87 /* Wake up one eventual waiting task */
88 optee_cq_complete_one(cq);
91 * If we're completed we've got a completion from another task that
92 * was just done with its call to secure world. Since yet another
93 * thread now is available in secure world wake up another eventual
94 * waiting task.
96 if (completion_done(&w->c))
97 optee_cq_complete_one(cq);
99 mutex_unlock(&cq->mutex);
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104 u32 session_id)
106 struct optee_session *sess;
108 list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109 if (sess->session_id == session_id)
110 return sess;
112 return NULL;
116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117 * @ctx: calling context
118 * @parg: physical address of message to pass to secure world
120 * Does and SMC to OP-TEE in secure world and handles eventual resulting
121 * Remote Procedure Calls (RPC) from OP-TEE.
123 * Returns return code from secure world, 0 is OK
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
127 struct optee *optee = tee_get_drvdata(ctx->teedev);
128 struct optee_call_waiter w;
129 struct optee_rpc_param param = { };
130 struct optee_call_ctx call_ctx = { };
131 u32 ret;
133 param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134 reg_pair_from_64(&param.a1, &param.a2, parg);
135 /* Initialize waiter */
136 optee_cq_wait_init(&optee->call_queue, &w);
137 while (true) {
138 struct arm_smccc_res res;
140 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141 param.a4, param.a5, param.a6, param.a7,
142 &res);
144 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
146 * Out of threads in secure world, wait for a thread
147 * become available.
149 optee_cq_wait_for_completion(&optee->call_queue, &w);
150 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151 might_sleep();
152 param.a0 = res.a0;
153 param.a1 = res.a1;
154 param.a2 = res.a2;
155 param.a3 = res.a3;
156 optee_handle_rpc(ctx, &param, &call_ctx);
157 } else {
158 ret = res.a0;
159 break;
163 optee_rpc_finalize_call(&call_ctx);
165 * We're done with our thread in secure world, if there's any
166 * thread waiters wake up one.
168 optee_cq_wait_final(&optee->call_queue, &w);
170 return ret;
173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174 struct optee_msg_arg **msg_arg,
175 phys_addr_t *msg_parg)
177 int rc;
178 struct tee_shm *shm;
179 struct optee_msg_arg *ma;
181 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182 TEE_SHM_MAPPED);
183 if (IS_ERR(shm))
184 return shm;
186 ma = tee_shm_get_va(shm, 0);
187 if (IS_ERR(ma)) {
188 rc = PTR_ERR(ma);
189 goto out;
192 rc = tee_shm_get_pa(shm, 0, msg_parg);
193 if (rc)
194 goto out;
196 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197 ma->num_params = num_params;
198 *msg_arg = ma;
199 out:
200 if (rc) {
201 tee_shm_free(shm);
202 return ERR_PTR(rc);
205 return shm;
208 int optee_open_session(struct tee_context *ctx,
209 struct tee_ioctl_open_session_arg *arg,
210 struct tee_param *param)
212 struct optee_context_data *ctxdata = ctx->data;
213 int rc;
214 struct tee_shm *shm;
215 struct optee_msg_arg *msg_arg;
216 phys_addr_t msg_parg;
217 struct optee_session *sess = NULL;
219 /* +2 for the meta parameters added below */
220 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221 if (IS_ERR(shm))
222 return PTR_ERR(shm);
224 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225 msg_arg->cancel_id = arg->cancel_id;
228 * Initialize and add the meta parameters needed when opening a
229 * session.
231 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232 OPTEE_MSG_ATTR_META;
233 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234 OPTEE_MSG_ATTR_META;
235 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236 msg_arg->params[1].u.value.c = arg->clnt_login;
238 rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
239 arg->clnt_login, arg->clnt_uuid);
240 if (rc)
241 goto out;
243 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
244 if (rc)
245 goto out;
247 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
248 if (!sess) {
249 rc = -ENOMEM;
250 goto out;
253 if (optee_do_call_with_arg(ctx, msg_parg)) {
254 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
255 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
258 if (msg_arg->ret == TEEC_SUCCESS) {
259 /* A new session has been created, add it to the list. */
260 sess->session_id = msg_arg->session;
261 mutex_lock(&ctxdata->mutex);
262 list_add(&sess->list_node, &ctxdata->sess_list);
263 mutex_unlock(&ctxdata->mutex);
264 } else {
265 kfree(sess);
268 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
269 arg->ret = TEEC_ERROR_COMMUNICATION;
270 arg->ret_origin = TEEC_ORIGIN_COMMS;
271 /* Close session again to avoid leakage */
272 optee_close_session(ctx, msg_arg->session);
273 } else {
274 arg->session = msg_arg->session;
275 arg->ret = msg_arg->ret;
276 arg->ret_origin = msg_arg->ret_origin;
278 out:
279 tee_shm_free(shm);
281 return rc;
284 int optee_close_session(struct tee_context *ctx, u32 session)
286 struct optee_context_data *ctxdata = ctx->data;
287 struct tee_shm *shm;
288 struct optee_msg_arg *msg_arg;
289 phys_addr_t msg_parg;
290 struct optee_session *sess;
292 /* Check that the session is valid and remove it from the list */
293 mutex_lock(&ctxdata->mutex);
294 sess = find_session(ctxdata, session);
295 if (sess)
296 list_del(&sess->list_node);
297 mutex_unlock(&ctxdata->mutex);
298 if (!sess)
299 return -EINVAL;
300 kfree(sess);
302 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
303 if (IS_ERR(shm))
304 return PTR_ERR(shm);
306 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
307 msg_arg->session = session;
308 optee_do_call_with_arg(ctx, msg_parg);
310 tee_shm_free(shm);
311 return 0;
314 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
315 struct tee_param *param)
317 struct optee_context_data *ctxdata = ctx->data;
318 struct tee_shm *shm;
319 struct optee_msg_arg *msg_arg;
320 phys_addr_t msg_parg;
321 struct optee_session *sess;
322 int rc;
324 /* Check that the session is valid */
325 mutex_lock(&ctxdata->mutex);
326 sess = find_session(ctxdata, arg->session);
327 mutex_unlock(&ctxdata->mutex);
328 if (!sess)
329 return -EINVAL;
331 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
332 if (IS_ERR(shm))
333 return PTR_ERR(shm);
334 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
335 msg_arg->func = arg->func;
336 msg_arg->session = arg->session;
337 msg_arg->cancel_id = arg->cancel_id;
339 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
340 if (rc)
341 goto out;
343 if (optee_do_call_with_arg(ctx, msg_parg)) {
344 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
345 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
348 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
349 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
350 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
353 arg->ret = msg_arg->ret;
354 arg->ret_origin = msg_arg->ret_origin;
355 out:
356 tee_shm_free(shm);
357 return rc;
360 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
362 struct optee_context_data *ctxdata = ctx->data;
363 struct tee_shm *shm;
364 struct optee_msg_arg *msg_arg;
365 phys_addr_t msg_parg;
366 struct optee_session *sess;
368 /* Check that the session is valid */
369 mutex_lock(&ctxdata->mutex);
370 sess = find_session(ctxdata, session);
371 mutex_unlock(&ctxdata->mutex);
372 if (!sess)
373 return -EINVAL;
375 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
376 if (IS_ERR(shm))
377 return PTR_ERR(shm);
379 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
380 msg_arg->session = session;
381 msg_arg->cancel_id = cancel_id;
382 optee_do_call_with_arg(ctx, msg_parg);
384 tee_shm_free(shm);
385 return 0;
389 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
390 * in OP-TEE
391 * @optee: main service struct
393 void optee_enable_shm_cache(struct optee *optee)
395 struct optee_call_waiter w;
397 /* We need to retry until secure world isn't busy. */
398 optee_cq_wait_init(&optee->call_queue, &w);
399 while (true) {
400 struct arm_smccc_res res;
402 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
403 0, &res);
404 if (res.a0 == OPTEE_SMC_RETURN_OK)
405 break;
406 optee_cq_wait_for_completion(&optee->call_queue, &w);
408 optee_cq_wait_final(&optee->call_queue, &w);
412 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
413 * in OP-TEE
414 * @optee: main service struct
416 void optee_disable_shm_cache(struct optee *optee)
418 struct optee_call_waiter w;
420 /* We need to retry until secure world isn't busy. */
421 optee_cq_wait_init(&optee->call_queue, &w);
422 while (true) {
423 union {
424 struct arm_smccc_res smccc;
425 struct optee_smc_disable_shm_cache_result result;
426 } res;
428 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
429 0, &res.smccc);
430 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
431 break; /* All shm's freed */
432 if (res.result.status == OPTEE_SMC_RETURN_OK) {
433 struct tee_shm *shm;
435 shm = reg_pair_to_ptr(res.result.shm_upper32,
436 res.result.shm_lower32);
437 tee_shm_free(shm);
438 } else {
439 optee_cq_wait_for_completion(&optee->call_queue, &w);
442 optee_cq_wait_final(&optee->call_queue, &w);
445 #define PAGELIST_ENTRIES_PER_PAGE \
446 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
449 * optee_fill_pages_list() - write list of user pages to given shared
450 * buffer.
452 * @dst: page-aligned buffer where list of pages will be stored
453 * @pages: array of pages that represents shared buffer
454 * @num_pages: number of entries in @pages
455 * @page_offset: offset of user buffer from page start
457 * @dst should be big enough to hold list of user page addresses and
458 * links to the next pages of buffer
460 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
461 size_t page_offset)
463 int n = 0;
464 phys_addr_t optee_page;
466 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
467 * for details.
469 struct {
470 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
471 u64 next_page_data;
472 } *pages_data;
475 * Currently OP-TEE uses 4k page size and it does not looks
476 * like this will change in the future. On other hand, there are
477 * no know ARM architectures with page size < 4k.
478 * Thus the next built assert looks redundant. But the following
479 * code heavily relies on this assumption, so it is better be
480 * safe than sorry.
482 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
484 pages_data = (void *)dst;
486 * If linux page is bigger than 4k, and user buffer offset is
487 * larger than 4k/8k/12k/etc this will skip first 4k pages,
488 * because they bear no value data for OP-TEE.
490 optee_page = page_to_phys(*pages) +
491 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
493 while (true) {
494 pages_data->pages_list[n++] = optee_page;
496 if (n == PAGELIST_ENTRIES_PER_PAGE) {
497 pages_data->next_page_data =
498 virt_to_phys(pages_data + 1);
499 pages_data++;
500 n = 0;
503 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
504 if (!(optee_page & ~PAGE_MASK)) {
505 if (!--num_pages)
506 break;
507 pages++;
508 optee_page = page_to_phys(*pages);
514 * The final entry in each pagelist page is a pointer to the next
515 * pagelist page.
517 static size_t get_pages_list_size(size_t num_entries)
519 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
521 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
524 u64 *optee_allocate_pages_list(size_t num_entries)
526 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
529 void optee_free_pages_list(void *list, size_t num_entries)
531 free_pages_exact(list, get_pages_list_size(num_entries));
534 static bool is_normal_memory(pgprot_t p)
536 #if defined(CONFIG_ARM)
537 return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
538 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
539 #elif defined(CONFIG_ARM64)
540 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
541 #else
542 #error "Unuspported architecture"
543 #endif
546 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
548 while (vma && is_normal_memory(vma->vm_page_prot)) {
549 if (vma->vm_end >= end)
550 return 0;
551 vma = vma->vm_next;
554 return -EINVAL;
557 static int check_mem_type(unsigned long start, size_t num_pages)
559 struct mm_struct *mm = current->mm;
560 int rc;
563 * Allow kernel address to register with OP-TEE as kernel
564 * pages are configured as normal memory only.
566 if (virt_addr_valid(start))
567 return 0;
569 mmap_read_lock(mm);
570 rc = __check_mem_type(find_vma(mm, start),
571 start + num_pages * PAGE_SIZE);
572 mmap_read_unlock(mm);
574 return rc;
577 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
578 struct page **pages, size_t num_pages,
579 unsigned long start)
581 struct tee_shm *shm_arg = NULL;
582 struct optee_msg_arg *msg_arg;
583 u64 *pages_list;
584 phys_addr_t msg_parg;
585 int rc;
587 if (!num_pages)
588 return -EINVAL;
590 rc = check_mem_type(start, num_pages);
591 if (rc)
592 return rc;
594 pages_list = optee_allocate_pages_list(num_pages);
595 if (!pages_list)
596 return -ENOMEM;
598 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
599 if (IS_ERR(shm_arg)) {
600 rc = PTR_ERR(shm_arg);
601 goto out;
604 optee_fill_pages_list(pages_list, pages, num_pages,
605 tee_shm_get_page_offset(shm));
607 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
608 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
609 OPTEE_MSG_ATTR_NONCONTIG;
610 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
611 msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
613 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
614 * store buffer offset from 4k page, as described in OP-TEE ABI.
616 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
617 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
619 if (optee_do_call_with_arg(ctx, msg_parg) ||
620 msg_arg->ret != TEEC_SUCCESS)
621 rc = -EINVAL;
623 tee_shm_free(shm_arg);
624 out:
625 optee_free_pages_list(pages_list, num_pages);
626 return rc;
629 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
631 struct tee_shm *shm_arg;
632 struct optee_msg_arg *msg_arg;
633 phys_addr_t msg_parg;
634 int rc = 0;
636 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
637 if (IS_ERR(shm_arg))
638 return PTR_ERR(shm_arg);
640 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
642 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
643 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
645 if (optee_do_call_with_arg(ctx, msg_parg) ||
646 msg_arg->ret != TEEC_SUCCESS)
647 rc = -EINVAL;
648 tee_shm_free(shm_arg);
649 return rc;
652 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
653 struct page **pages, size_t num_pages,
654 unsigned long start)
657 * We don't want to register supplicant memory in OP-TEE.
658 * Instead information about it will be passed in RPC code.
660 return check_mem_type(start, num_pages);
663 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
665 return 0;