1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
27 #include <linux/iopoll.h>
30 #include <asm/unaligned.h>
32 #include <linux/irq.h>
33 #include <linux/platform_device.h>
35 #define DRIVER_VERSION "0.0.50"
37 #define OXU_DEVICEID 0x00
38 #define OXU_REV_MASK 0xffff0000
39 #define OXU_REV_SHIFT 16
40 #define OXU_REV_2100 0x2100
41 #define OXU_BO_SHIFT 8
42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
43 #define OXU_MAJ_REV_SHIFT 4
44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
45 #define OXU_MIN_REV_SHIFT 0
46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
47 #define OXU_HOSTIFCONFIG 0x04
48 #define OXU_SOFTRESET 0x08
49 #define OXU_SRESET (1 << 0)
51 #define OXU_PIOBURSTREADCTRL 0x0C
53 #define OXU_CHIPIRQSTATUS 0x10
54 #define OXU_CHIPIRQEN_SET 0x14
55 #define OXU_CHIPIRQEN_CLR 0x18
56 #define OXU_USBSPHLPWUI 0x00000080
57 #define OXU_USBOTGLPWUI 0x00000040
58 #define OXU_USBSPHI 0x00000002
59 #define OXU_USBOTGI 0x00000001
61 #define OXU_CLKCTRL_SET 0x1C
62 #define OXU_SYSCLKEN 0x00000008
63 #define OXU_USBSPHCLKEN 0x00000002
64 #define OXU_USBOTGCLKEN 0x00000001
67 #define OXU_SPHPOEN 0x00000100
68 #define OXU_OVRCCURPUPDEN 0x00000800
69 #define OXU_ASO_OP (1 << 10)
70 #define OXU_COMPARATOR 0x000004000
72 #define OXU_USBMODE 0x1A8
73 #define OXU_VBPS 0x00000020
74 #define OXU_ES_LITTLE 0x00000000
75 #define OXU_CM_HOST_ONLY 0x00000003
78 * Proper EHCI structs & defines
81 /* Magic numbers that can affect system performance */
82 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
83 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
84 #define EHCI_TUNE_RL_TT 0
85 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
86 #define EHCI_TUNE_MULT_TT 1
87 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
93 /* Section 2.2 Host Controller Capability Registers */
95 /* these fields are specified as 8 and 16 bit registers,
96 * but some hosts can't perform 8 or 16 bit PCI accesses.
99 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
100 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
101 u32 hcs_params
; /* HCSPARAMS - offset 0x4 */
102 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
103 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
104 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
105 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
106 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
107 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
108 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
110 u32 hcc_params
; /* HCCPARAMS - offset 0x8 */
111 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
112 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
113 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
114 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
116 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
117 u8 portroute
[8]; /* nibbles for routing - offset 0xC */
121 /* Section 2.3 Host Controller Operational Registers */
123 /* USBCMD: offset 0x00 */
125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126 #define CMD_PARK (1<<11) /* enable "park" on async qh */
127 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
128 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
129 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
130 #define CMD_ASE (1<<5) /* async schedule enable */
131 #define CMD_PSE (1<<4) /* periodic schedule enable */
132 /* 3:2 is periodic frame list size */
133 #define CMD_RESET (1<<1) /* reset HC not bus */
134 #define CMD_RUN (1<<0) /* start/stop HC */
136 /* USBSTS: offset 0x04 */
138 #define STS_ASS (1<<15) /* Async Schedule Status */
139 #define STS_PSS (1<<14) /* Periodic Schedule Status */
140 #define STS_RECL (1<<13) /* Reclamation */
141 #define STS_HALT (1<<12) /* Not running (any reason) */
142 /* some bits reserved */
143 /* these STS_* flags are also intr_enable bits (USBINTR) */
144 #define STS_IAA (1<<5) /* Interrupted on async advance */
145 #define STS_FATAL (1<<4) /* such as some PCI access errors */
146 #define STS_FLR (1<<3) /* frame list rolled over */
147 #define STS_PCD (1<<2) /* port change detect */
148 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
149 #define STS_INT (1<<0) /* "normal" completion (short, ...) */
151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
153 /* USBINTR: offset 0x08 */
156 /* FRINDEX: offset 0x0C */
157 u32 frame_index
; /* current microframe number */
158 /* CTRLDSSEGMENT: offset 0x10 */
159 u32 segment
; /* address bits 63:32 if needed */
160 /* PERIODICLISTBASE: offset 0x14 */
161 u32 frame_list
; /* points to periodic list */
162 /* ASYNCLISTADDR: offset 0x18 */
163 u32 async_next
; /* address of next async queue head */
167 /* CONFIGFLAG: offset 0x40 */
169 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */
171 /* PORTSC: offset 0x44 */
172 u32 port_status
[0]; /* up to N_PORTS */
174 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
175 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
176 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
177 /* 19:16 for port testing */
178 #define PORT_LED_OFF (0<<14)
179 #define PORT_LED_AMBER (1<<14)
180 #define PORT_LED_GREEN (2<<14)
181 #define PORT_LED_MASK (3<<14)
182 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */
183 #define PORT_POWER (1<<12) /* true: has power (see PPC) */
184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
187 #define PORT_RESET (1<<8) /* reset port */
188 #define PORT_SUSPEND (1<<7) /* suspend port */
189 #define PORT_RESUME (1<<6) /* resume it */
190 #define PORT_OCC (1<<5) /* over current change */
191 #define PORT_OC (1<<4) /* over current active */
192 #define PORT_PEC (1<<3) /* port enable change */
193 #define PORT_PE (1<<2) /* port enable */
194 #define PORT_CSC (1<<1) /* connect status change */
195 #define PORT_CONNECT (1<<0) /* device connected */
196 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
199 /* Appendix C, Debug port ... intended for use with special "debug devices"
200 * that can help if there's no serial console. (nonstandard enumeration.)
202 struct ehci_dbg_port
{
204 #define DBGP_OWNER (1<<30)
205 #define DBGP_ENABLED (1<<28)
206 #define DBGP_DONE (1<<16)
207 #define DBGP_INUSE (1<<10)
208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
209 # define DBGP_ERR_BAD 1
210 # define DBGP_ERR_SIGNAL 2
211 #define DBGP_ERROR (1<<6)
212 #define DBGP_GO (1<<5)
213 #define DBGP_OUT (1<<4)
214 #define DBGP_LEN(x) (((x)>>0)&0x0f)
216 #define DBGP_PID_GET(x) (((x)>>16)&0xff)
217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
221 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
224 #define QTD_NEXT(dma) cpu_to_le32((u32)dma)
227 * EHCI Specification 0.95 Section 3.5
228 * QTD: describe data transfer components (buffer, direction, ...)
229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
231 * These are associated only with "QH" (Queue Head) structures,
232 * used with control, bulk, and interrupt transfers.
235 /* first part defined by EHCI spec */
236 __le32 hw_next
; /* see EHCI 3.5.1 */
237 __le32 hw_alt_next
; /* see EHCI 3.5.2 */
238 __le32 hw_token
; /* see EHCI 3.5.3 */
239 #define QTD_TOGGLE (1 << 31) /* data toggle */
240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
241 #define QTD_IOC (1 << 15) /* interrupt on complete */
242 #define QTD_CERR(tok) (((tok)>>10) & 0x3)
243 #define QTD_PID(tok) (((tok)>>8) & 0x3)
244 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
245 #define QTD_STS_HALT (1 << 6) /* halted on error */
246 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
247 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
248 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */
249 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
250 #define QTD_STS_STS (1 << 1) /* split transaction state */
251 #define QTD_STS_PING (1 << 0) /* issue PING? */
252 __le32 hw_buf
[5]; /* see EHCI 3.5.4 */
253 __le32 hw_buf_hi
[5]; /* Appendix B */
255 /* the rest is HCD-private */
256 dma_addr_t qtd_dma
; /* qtd address */
257 struct list_head qtd_list
; /* sw qtd list */
258 struct urb
*urb
; /* qtd's urb */
259 size_t length
; /* length of buffer */
263 dma_addr_t buffer_dma
;
264 void *transfer_buffer
;
268 /* mask NakCnt+T in qh->hw_alt_next */
269 #define QTD_MASK cpu_to_le32 (~0x1f)
271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
276 /* values for that type tag */
277 #define Q_TYPE_QH cpu_to_le32 (1 << 1)
279 /* next async queue entry, or pointer to interrupt/periodic QH */
280 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
282 /* for periodic/async schedules and qtd lists, mark end of list */
283 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
286 * Entries in periodic shadow table are pointers to one of four kinds
287 * of data structure. That's dictated by the hardware; a type tag is
288 * encoded in the low bits of the hardware's periodic schedule. Use
289 * Q_NEXT_TYPE to get the tag.
291 * For entries in the async schedule, the type tag always says "qh".
294 struct ehci_qh
*qh
; /* Q_TYPE_QH */
295 __le32
*hw_next
; /* (all types) */
300 * EHCI Specification 0.95 Section 3.6
301 * QH: describes control/bulk/interrupt endpoints
302 * See Fig 3-7 "Queue Head Structure Layout".
304 * These appear in both the async and (for interrupt) periodic schedules.
308 /* first part defined by EHCI spec */
309 __le32 hw_next
; /* see EHCI 3.6.1 */
310 __le32 hw_info1
; /* see EHCI 3.6.2 */
311 #define QH_HEAD 0x00008000
312 __le32 hw_info2
; /* see EHCI 3.6.2 */
313 #define QH_SMASK 0x000000ff
314 #define QH_CMASK 0x0000ff00
315 #define QH_HUBADDR 0x007f0000
316 #define QH_HUBPORT 0x3f800000
317 #define QH_MULT 0xc0000000
318 __le32 hw_current
; /* qtd list - see EHCI 3.6.4 */
320 /* qtd overlay (hardware parts of a struct ehci_qtd) */
327 /* the rest is HCD-private */
328 dma_addr_t qh_dma
; /* address of qh */
329 union ehci_shadow qh_next
; /* ptr to qh; or periodic */
330 struct list_head qtd_list
; /* sw qtd list */
331 struct ehci_qtd
*dummy
;
332 struct ehci_qh
*reclaim
; /* next to reclaim */
339 #define QH_STATE_LINKED 1 /* HC sees this */
340 #define QH_STATE_UNLINK 2 /* HC may still see this */
341 #define QH_STATE_IDLE 3 /* HC doesn't see this */
342 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
343 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
345 /* periodic schedule info */
346 u8 usecs
; /* intr bandwidth */
347 u8 gap_uf
; /* uframes split/csplit gap */
348 u8 c_usecs
; /* ... split completion bw */
349 u16 tt_usecs
; /* tt downstream bandwidth */
350 unsigned short period
; /* polling interval */
351 unsigned short start
; /* where polling starts */
352 #define NO_FRAME ((unsigned short)~0) /* pick new start */
353 struct usb_device
*dev
; /* access to TT */
357 * Proper OXU210HP structs
360 #define OXU_OTG_CORE_OFFSET 0x00400
361 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
362 #define OXU_SPH_CORE_OFFSET 0x00800
363 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
365 #define OXU_OTG_MEM 0xE000
366 #define OXU_SPH_MEM 0x16000
368 /* Only how many elements & element structure are specifies here. */
369 /* 2 host controllers are enabled - total size <= 28 kbytes */
370 #define DEFAULT_I_TDPS 1024
377 #define BUFFER_SIZE 512
380 struct usb_hcd
*hcd
[2];
384 u8 buffer
[BUFFER_SIZE
];
385 } __aligned(BUFFER_SIZE
);
387 struct oxu_onchip_mem
{
388 struct oxu_buf db_pool
[BUFFER_NUM
];
390 u32 frame_list
[DEFAULT_I_TDPS
];
391 struct ehci_qh qh_pool
[QHEAD_NUM
];
392 struct ehci_qtd qtd_pool
[QTD_NUM
];
393 } __aligned(4 << 10);
395 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
403 struct oxu_hcd
{ /* one per controller */
404 unsigned int is_otg
:1;
406 u8 qh_used
[QHEAD_NUM
];
407 u8 qtd_used
[QTD_NUM
];
408 u8 db_used
[BUFFER_NUM
];
409 u8 murb_used
[MURB_NUM
];
411 struct oxu_onchip_mem __iomem
*mem
;
414 struct timer_list urb_timer
;
416 struct ehci_caps __iomem
*caps
;
417 struct ehci_regs __iomem
*regs
;
419 u32 hcs_params
; /* cached register copy */
422 /* async schedule support */
423 struct ehci_qh
*async
;
424 struct ehci_qh
*reclaim
;
425 unsigned int reclaim_ready
:1;
426 unsigned int scanning
:1;
428 /* periodic schedule support */
429 unsigned int periodic_size
;
430 __le32
*periodic
; /* hw periodic table */
431 dma_addr_t periodic_dma
;
432 unsigned int i_thresh
; /* uframes HC might cache */
434 union ehci_shadow
*pshadow
; /* mirror hw periodic table */
435 int next_uframe
; /* scan periodic, start here */
436 unsigned int periodic_sched
; /* periodic activity count */
438 /* per root hub port */
439 unsigned long reset_done
[EHCI_MAX_ROOT_PORTS
];
440 /* bit vectors (one bit per port) */
441 unsigned long bus_suspended
; /* which ports were
442 * already suspended at the
443 * start of a bus suspend
445 unsigned long companion_ports
;/* which ports are dedicated
446 * to the companion controller
449 struct timer_list watchdog
;
450 unsigned long actions
;
452 unsigned long next_statechange
;
456 struct list_head urb_list
; /* this is the head to urb
457 * queue that didn't get enough
460 struct oxu_murb
*murb_pool
; /* murb per split big urb */
461 unsigned int urb_len
;
463 u8 sbrn
; /* packed release number */
466 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
467 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
468 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
469 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
471 enum ehci_timer_action
{
482 #define oxu_dbg(oxu, fmt, args...) \
483 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
484 #define oxu_err(oxu, fmt, args...) \
485 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
486 #define oxu_info(oxu, fmt, args...) \
487 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
489 #ifdef CONFIG_DYNAMIC_DEBUG
493 static inline struct usb_hcd
*oxu_to_hcd(struct oxu_hcd
*oxu
)
495 return container_of((void *) oxu
, struct usb_hcd
, hcd_priv
);
498 static inline struct oxu_hcd
*hcd_to_oxu(struct usb_hcd
*hcd
)
500 return (struct oxu_hcd
*) (hcd
->hcd_priv
);
508 #undef OXU_VERBOSE_DEBUG
510 #ifdef OXU_VERBOSE_DEBUG
511 #define oxu_vdbg oxu_dbg
513 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
518 static int __attribute__((__unused__
))
519 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
521 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
522 label
, label
[0] ? " " : "", status
,
523 (status
& STS_ASS
) ? " Async" : "",
524 (status
& STS_PSS
) ? " Periodic" : "",
525 (status
& STS_RECL
) ? " Recl" : "",
526 (status
& STS_HALT
) ? " Halt" : "",
527 (status
& STS_IAA
) ? " IAA" : "",
528 (status
& STS_FATAL
) ? " FATAL" : "",
529 (status
& STS_FLR
) ? " FLR" : "",
530 (status
& STS_PCD
) ? " PCD" : "",
531 (status
& STS_ERR
) ? " ERR" : "",
532 (status
& STS_INT
) ? " INT" : ""
536 static int __attribute__((__unused__
))
537 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
539 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
540 label
, label
[0] ? " " : "", enable
,
541 (enable
& STS_IAA
) ? " IAA" : "",
542 (enable
& STS_FATAL
) ? " FATAL" : "",
543 (enable
& STS_FLR
) ? " FLR" : "",
544 (enable
& STS_PCD
) ? " PCD" : "",
545 (enable
& STS_ERR
) ? " ERR" : "",
546 (enable
& STS_INT
) ? " INT" : ""
550 static const char *const fls_strings
[] =
551 { "1024", "512", "256", "??" };
553 static int dbg_command_buf(char *buf
, unsigned len
,
554 const char *label
, u32 command
)
556 return scnprintf(buf
, len
,
557 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
558 label
, label
[0] ? " " : "", command
,
559 (command
& CMD_PARK
) ? "park" : "(park)",
560 CMD_PARK_CNT(command
),
561 (command
>> 16) & 0x3f,
562 (command
& CMD_LRESET
) ? " LReset" : "",
563 (command
& CMD_IAAD
) ? " IAAD" : "",
564 (command
& CMD_ASE
) ? " Async" : "",
565 (command
& CMD_PSE
) ? " Periodic" : "",
566 fls_strings
[(command
>> 2) & 0x3],
567 (command
& CMD_RESET
) ? " Reset" : "",
568 (command
& CMD_RUN
) ? "RUN" : "HALT"
572 static int dbg_port_buf(char *buf
, unsigned len
, const char *label
,
573 int port
, u32 status
)
577 /* signaling state */
578 switch (status
& (3 << 10)) {
583 sig
= "k"; /* low speed */
593 return scnprintf(buf
, len
,
594 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
595 label
, label
[0] ? " " : "", port
, status
,
596 (status
& PORT_POWER
) ? " POWER" : "",
597 (status
& PORT_OWNER
) ? " OWNER" : "",
599 (status
& PORT_RESET
) ? " RESET" : "",
600 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
601 (status
& PORT_RESUME
) ? " RESUME" : "",
602 (status
& PORT_OCC
) ? " OCC" : "",
603 (status
& PORT_OC
) ? " OC" : "",
604 (status
& PORT_PEC
) ? " PEC" : "",
605 (status
& PORT_PE
) ? " PE" : "",
606 (status
& PORT_CSC
) ? " CSC" : "",
607 (status
& PORT_CONNECT
) ? " CONNECT" : ""
613 static inline int __attribute__((__unused__
))
614 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
617 static inline int __attribute__((__unused__
))
618 dbg_command_buf(char *buf
, unsigned len
, const char *label
, u32 command
)
621 static inline int __attribute__((__unused__
))
622 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
625 static inline int __attribute__((__unused__
))
626 dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
, u32 status
)
631 /* functions have the "wrong" filename when they're output... */
632 #define dbg_status(oxu, label, status) { \
634 dbg_status_buf(_buf, sizeof _buf, label, status); \
635 oxu_dbg(oxu, "%s\n", _buf); \
638 #define dbg_cmd(oxu, label, command) { \
640 dbg_command_buf(_buf, sizeof _buf, label, command); \
641 oxu_dbg(oxu, "%s\n", _buf); \
644 #define dbg_port(oxu, label, port, status) { \
646 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
647 oxu_dbg(oxu, "%s\n", _buf); \
654 /* Initial IRQ latency: faster than hw default */
655 static int log2_irq_thresh
; /* 0 to 6 */
656 module_param(log2_irq_thresh
, int, S_IRUGO
);
657 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
659 /* Initial park setting: slower than hw default */
660 static unsigned park
;
661 module_param(park
, uint
, S_IRUGO
);
662 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
664 /* For flakey hardware, ignore overcurrent indicators */
665 static bool ignore_oc
;
666 module_param(ignore_oc
, bool, S_IRUGO
);
667 MODULE_PARM_DESC(ignore_oc
, "ignore bogus hardware overcurrent indications");
670 static void ehci_work(struct oxu_hcd
*oxu
);
671 static int oxu_hub_control(struct usb_hcd
*hcd
,
672 u16 typeReq
, u16 wValue
, u16 wIndex
,
673 char *buf
, u16 wLength
);
679 /* Low level read/write registers functions */
680 static inline u32
oxu_readl(void __iomem
*base
, u32 reg
)
682 return readl(base
+ reg
);
685 static inline void oxu_writel(void __iomem
*base
, u32 reg
, u32 val
)
687 writel(val
, base
+ reg
);
690 static inline void timer_action_done(struct oxu_hcd
*oxu
,
691 enum ehci_timer_action action
)
693 clear_bit(action
, &oxu
->actions
);
696 static inline void timer_action(struct oxu_hcd
*oxu
,
697 enum ehci_timer_action action
)
699 if (!test_and_set_bit(action
, &oxu
->actions
)) {
703 case TIMER_IAA_WATCHDOG
:
704 t
= EHCI_IAA_JIFFIES
;
706 case TIMER_IO_WATCHDOG
:
709 case TIMER_ASYNC_OFF
:
710 t
= EHCI_ASYNC_JIFFIES
;
712 case TIMER_ASYNC_SHRINK
:
714 t
= EHCI_SHRINK_JIFFIES
;
718 /* all timings except IAA watchdog can be overridden.
719 * async queue SHRINK often precedes IAA. while it's ready
720 * to go OFF neither can matter, and afterwards the IO
721 * watchdog stops unless there's still periodic traffic.
723 if (action
!= TIMER_IAA_WATCHDOG
724 && t
> oxu
->watchdog
.expires
725 && timer_pending(&oxu
->watchdog
))
727 mod_timer(&oxu
->watchdog
, t
);
732 * handshake - spin reading hc until handshake completes or fails
733 * @ptr: address of hc register to be read
734 * @mask: bits to look at in result of read
735 * @done: value of those bits when handshake succeeds
736 * @usec: timeout in microseconds
738 * Returns negative errno, or zero on success
740 * Success happens when the "mask" bits have the specified value (hardware
741 * handshake done). There are two failure modes: "usec" have passed (major
742 * hardware flakeout), or the register reads as all-ones (hardware removed).
744 * That last failure should_only happen in cases like physical cardbus eject
745 * before driver shutdown. But it also seems to be caused by bugs in cardbus
746 * bridge shutdown: shutting down the bridge before the devices using it.
748 static int handshake(struct oxu_hcd
*oxu
, void __iomem
*ptr
,
749 u32 mask
, u32 done
, int usec
)
754 ret
= readl_poll_timeout_atomic(ptr
, result
,
755 ((result
& mask
) == done
||
758 if (result
== U32_MAX
) /* card removed */
764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
765 static int ehci_halt(struct oxu_hcd
*oxu
)
767 u32 temp
= readl(&oxu
->regs
->status
);
769 /* disable any irqs left enabled by previous code */
770 writel(0, &oxu
->regs
->intr_enable
);
772 if ((temp
& STS_HALT
) != 0)
775 temp
= readl(&oxu
->regs
->command
);
777 writel(temp
, &oxu
->regs
->command
);
778 return handshake(oxu
, &oxu
->regs
->status
,
779 STS_HALT
, STS_HALT
, 16 * 125);
782 /* Put TDI/ARC silicon into EHCI mode */
783 static void tdi_reset(struct oxu_hcd
*oxu
)
785 u32 __iomem
*reg_ptr
;
788 reg_ptr
= (u32 __iomem
*)(((u8 __iomem
*)oxu
->regs
) + 0x68);
789 tmp
= readl(reg_ptr
);
791 writel(tmp
, reg_ptr
);
794 /* Reset a non-running (STS_HALT == 1) controller */
795 static int ehci_reset(struct oxu_hcd
*oxu
)
798 u32 command
= readl(&oxu
->regs
->command
);
800 command
|= CMD_RESET
;
801 dbg_cmd(oxu
, "reset", command
);
802 writel(command
, &oxu
->regs
->command
);
803 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
804 oxu
->next_statechange
= jiffies
;
805 retval
= handshake(oxu
, &oxu
->regs
->command
,
806 CMD_RESET
, 0, 250 * 1000);
816 /* Idle the controller (from running) */
817 static void ehci_quiesce(struct oxu_hcd
*oxu
)
822 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
));
825 /* wait for any schedule enables/disables to take effect */
826 temp
= readl(&oxu
->regs
->command
) << 10;
827 temp
&= STS_ASS
| STS_PSS
;
828 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
829 temp
, 16 * 125) != 0) {
830 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
834 /* then disable anything that's still active */
835 temp
= readl(&oxu
->regs
->command
);
836 temp
&= ~(CMD_ASE
| CMD_IAAD
| CMD_PSE
);
837 writel(temp
, &oxu
->regs
->command
);
839 /* hardware can take 16 microframes to turn off ... */
840 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
842 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
847 static int check_reset_complete(struct oxu_hcd
*oxu
, int index
,
848 u32 __iomem
*status_reg
, int port_status
)
850 if (!(port_status
& PORT_CONNECT
)) {
851 oxu
->reset_done
[index
] = 0;
855 /* if reset finished and it's still not enabled -- handoff */
856 if (!(port_status
& PORT_PE
)) {
857 oxu_dbg(oxu
, "Failed to enable port %d on root hub TT\n",
861 oxu_dbg(oxu
, "port %d high speed\n", index
+ 1);
866 static void ehci_hub_descriptor(struct oxu_hcd
*oxu
,
867 struct usb_hub_descriptor
*desc
)
869 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
872 desc
->bDescriptorType
= USB_DT_HUB
;
873 desc
->bPwrOn2PwrGood
= 10; /* oxu 1.0, 2.3.9 says 20ms max */
874 desc
->bHubContrCurrent
= 0;
876 desc
->bNbrPorts
= ports
;
877 temp
= 1 + (ports
/ 8);
878 desc
->bDescLength
= 7 + 2 * temp
;
880 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
881 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
882 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
884 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
885 if (HCS_PPC(oxu
->hcs_params
))
886 temp
|= HUB_CHAR_INDV_PORT_LPSM
; /* per-port power control */
888 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
889 desc
->wHubCharacteristics
= (__force __u16
)cpu_to_le16(temp
);
893 /* Allocate an OXU210HP on-chip memory data buffer
895 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
896 * Each transfer descriptor has one or more on-chip memory data buffers.
898 * Data buffers are allocated from a fix sized pool of data blocks.
899 * To minimise fragmentation and give reasonable memory utlisation,
900 * data buffers are allocated with sizes the power of 2 multiples of
901 * the block size, starting on an address a multiple of the allocated size.
903 * FIXME: callers of this function require a buffer to be allocated for
904 * len=0. This is a waste of on-chip memory and should be fix. Then this
905 * function should be changed to not allocate a buffer for len=0.
907 static int oxu_buf_alloc(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
, int len
)
909 int n_blocks
; /* minium blocks needed to hold len */
910 int a_blocks
; /* blocks allocated */
913 /* Don't allocte bigger than supported */
914 if (len
> BUFFER_SIZE
* BUFFER_NUM
) {
915 oxu_err(oxu
, "buffer too big (%d)\n", len
);
919 spin_lock(&oxu
->mem_lock
);
921 /* Number of blocks needed to hold len */
922 n_blocks
= (len
+ BUFFER_SIZE
- 1) / BUFFER_SIZE
;
924 /* Round the number of blocks up to the power of 2 */
925 for (a_blocks
= 1; a_blocks
< n_blocks
; a_blocks
<<= 1)
928 /* Find a suitable available data buffer */
929 for (i
= 0; i
< BUFFER_NUM
;
930 i
+= max(a_blocks
, (int)oxu
->db_used
[i
])) {
932 /* Check all the required blocks are available */
933 for (j
= 0; j
< a_blocks
; j
++)
934 if (oxu
->db_used
[i
+ j
])
940 /* Allocate blocks found! */
941 qtd
->buffer
= (void *) &oxu
->mem
->db_pool
[i
];
942 qtd
->buffer_dma
= virt_to_phys(qtd
->buffer
);
944 qtd
->qtd_buffer_len
= BUFFER_SIZE
* a_blocks
;
945 oxu
->db_used
[i
] = a_blocks
;
947 spin_unlock(&oxu
->mem_lock
);
954 spin_unlock(&oxu
->mem_lock
);
959 static void oxu_buf_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
963 spin_lock(&oxu
->mem_lock
);
965 index
= (qtd
->buffer
- (void *) &oxu
->mem
->db_pool
[0])
967 oxu
->db_used
[index
] = 0;
968 qtd
->qtd_buffer_len
= 0;
972 spin_unlock(&oxu
->mem_lock
);
975 static inline void ehci_qtd_init(struct ehci_qtd
*qtd
, dma_addr_t dma
)
977 memset(qtd
, 0, sizeof *qtd
);
979 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
980 qtd
->hw_next
= EHCI_LIST_END
;
981 qtd
->hw_alt_next
= EHCI_LIST_END
;
982 INIT_LIST_HEAD(&qtd
->qtd_list
);
985 static inline void oxu_qtd_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
990 oxu_buf_free(oxu
, qtd
);
992 spin_lock(&oxu
->mem_lock
);
994 index
= qtd
- &oxu
->mem
->qtd_pool
[0];
995 oxu
->qtd_used
[index
] = 0;
997 spin_unlock(&oxu
->mem_lock
);
1000 static struct ehci_qtd
*ehci_qtd_alloc(struct oxu_hcd
*oxu
)
1003 struct ehci_qtd
*qtd
= NULL
;
1005 spin_lock(&oxu
->mem_lock
);
1007 for (i
= 0; i
< QTD_NUM
; i
++)
1008 if (!oxu
->qtd_used
[i
])
1012 qtd
= (struct ehci_qtd
*) &oxu
->mem
->qtd_pool
[i
];
1013 memset(qtd
, 0, sizeof *qtd
);
1015 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
1016 qtd
->hw_next
= EHCI_LIST_END
;
1017 qtd
->hw_alt_next
= EHCI_LIST_END
;
1018 INIT_LIST_HEAD(&qtd
->qtd_list
);
1020 qtd
->qtd_dma
= virt_to_phys(qtd
);
1022 oxu
->qtd_used
[i
] = 1;
1025 spin_unlock(&oxu
->mem_lock
);
1030 static void oxu_qh_free(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1034 spin_lock(&oxu
->mem_lock
);
1036 index
= qh
- &oxu
->mem
->qh_pool
[0];
1037 oxu
->qh_used
[index
] = 0;
1039 spin_unlock(&oxu
->mem_lock
);
1042 static void qh_destroy(struct kref
*kref
)
1044 struct ehci_qh
*qh
= container_of(kref
, struct ehci_qh
, kref
);
1045 struct oxu_hcd
*oxu
= qh
->oxu
;
1047 /* clean qtds first, and know this is not linked */
1048 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1049 oxu_dbg(oxu
, "unused qh not empty!\n");
1053 oxu_qtd_free(oxu
, qh
->dummy
);
1054 oxu_qh_free(oxu
, qh
);
1057 static struct ehci_qh
*oxu_qh_alloc(struct oxu_hcd
*oxu
)
1060 struct ehci_qh
*qh
= NULL
;
1062 spin_lock(&oxu
->mem_lock
);
1064 for (i
= 0; i
< QHEAD_NUM
; i
++)
1065 if (!oxu
->qh_used
[i
])
1068 if (i
< QHEAD_NUM
) {
1069 qh
= (struct ehci_qh
*) &oxu
->mem
->qh_pool
[i
];
1070 memset(qh
, 0, sizeof *qh
);
1072 kref_init(&qh
->kref
);
1074 qh
->qh_dma
= virt_to_phys(qh
);
1075 INIT_LIST_HEAD(&qh
->qtd_list
);
1077 /* dummy td enables safe urb queuing */
1078 qh
->dummy
= ehci_qtd_alloc(oxu
);
1079 if (qh
->dummy
== NULL
) {
1080 oxu_dbg(oxu
, "no dummy td\n");
1081 oxu
->qh_used
[i
] = 0;
1086 oxu
->qh_used
[i
] = 1;
1089 spin_unlock(&oxu
->mem_lock
);
1094 /* to share a qh (cpu threads, or hc) */
1095 static inline struct ehci_qh
*qh_get(struct ehci_qh
*qh
)
1097 kref_get(&qh
->kref
);
1101 static inline void qh_put(struct ehci_qh
*qh
)
1103 kref_put(&qh
->kref
, qh_destroy
);
1106 static void oxu_murb_free(struct oxu_hcd
*oxu
, struct oxu_murb
*murb
)
1110 spin_lock(&oxu
->mem_lock
);
1112 index
= murb
- &oxu
->murb_pool
[0];
1113 oxu
->murb_used
[index
] = 0;
1115 spin_unlock(&oxu
->mem_lock
);
1118 static struct oxu_murb
*oxu_murb_alloc(struct oxu_hcd
*oxu
)
1122 struct oxu_murb
*murb
= NULL
;
1124 spin_lock(&oxu
->mem_lock
);
1126 for (i
= 0; i
< MURB_NUM
; i
++)
1127 if (!oxu
->murb_used
[i
])
1131 murb
= &(oxu
->murb_pool
)[i
];
1133 oxu
->murb_used
[i
] = 1;
1136 spin_unlock(&oxu
->mem_lock
);
1141 /* The queue heads and transfer descriptors are managed from pools tied
1142 * to each of the "per device" structures.
1143 * This is the initialisation and cleanup code.
1145 static void ehci_mem_cleanup(struct oxu_hcd
*oxu
)
1147 kfree(oxu
->murb_pool
);
1148 oxu
->murb_pool
= NULL
;
1154 del_timer(&oxu
->urb_timer
);
1156 oxu
->periodic
= NULL
;
1158 /* shadow periodic table */
1159 kfree(oxu
->pshadow
);
1160 oxu
->pshadow
= NULL
;
1163 /* Remember to add cleanup code (above) if you add anything here.
1165 static int ehci_mem_init(struct oxu_hcd
*oxu
, gfp_t flags
)
1169 for (i
= 0; i
< oxu
->periodic_size
; i
++)
1170 oxu
->mem
->frame_list
[i
] = EHCI_LIST_END
;
1171 for (i
= 0; i
< QHEAD_NUM
; i
++)
1172 oxu
->qh_used
[i
] = 0;
1173 for (i
= 0; i
< QTD_NUM
; i
++)
1174 oxu
->qtd_used
[i
] = 0;
1176 oxu
->murb_pool
= kcalloc(MURB_NUM
, sizeof(struct oxu_murb
), flags
);
1177 if (!oxu
->murb_pool
)
1180 for (i
= 0; i
< MURB_NUM
; i
++)
1181 oxu
->murb_used
[i
] = 0;
1183 oxu
->async
= oxu_qh_alloc(oxu
);
1187 oxu
->periodic
= (__le32
*) &oxu
->mem
->frame_list
;
1188 oxu
->periodic_dma
= virt_to_phys(oxu
->periodic
);
1190 for (i
= 0; i
< oxu
->periodic_size
; i
++)
1191 oxu
->periodic
[i
] = EHCI_LIST_END
;
1193 /* software shadow of hardware table */
1194 oxu
->pshadow
= kcalloc(oxu
->periodic_size
, sizeof(void *), flags
);
1195 if (oxu
->pshadow
!= NULL
)
1199 oxu_dbg(oxu
, "couldn't init memory\n");
1200 ehci_mem_cleanup(oxu
);
1204 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1206 static int qtd_fill(struct ehci_qtd
*qtd
, dma_addr_t buf
, size_t len
,
1207 int token
, int maxpacket
)
1212 /* one buffer entry per 4K ... first might be short or unaligned */
1213 qtd
->hw_buf
[0] = cpu_to_le32((u32
)addr
);
1214 qtd
->hw_buf_hi
[0] = cpu_to_le32((u32
)(addr
>> 32));
1215 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
1216 if (likely(len
< count
)) /* ... iff needed */
1222 /* per-qtd limit: from 16K to 20K (best alignment) */
1223 for (i
= 1; count
< len
&& i
< 5; i
++) {
1225 qtd
->hw_buf
[i
] = cpu_to_le32((u32
)addr
);
1226 qtd
->hw_buf_hi
[i
] = cpu_to_le32((u32
)(addr
>> 32));
1228 if ((count
+ 0x1000) < len
)
1234 /* short packets may only terminate transfers */
1236 count
-= (count
% maxpacket
);
1238 qtd
->hw_token
= cpu_to_le32((count
<< 16) | token
);
1239 qtd
->length
= count
;
1244 static inline void qh_update(struct oxu_hcd
*oxu
,
1245 struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
1247 /* writes to an active overlay are unsafe */
1248 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
1250 qh
->hw_qtd_next
= QTD_NEXT(qtd
->qtd_dma
);
1251 qh
->hw_alt_next
= EHCI_LIST_END
;
1253 /* Except for control endpoints, we make hardware maintain data
1254 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1258 if (!(qh
->hw_info1
& cpu_to_le32(1 << 14))) {
1259 unsigned is_out
, epnum
;
1261 is_out
= !(qtd
->hw_token
& cpu_to_le32(1 << 8));
1262 epnum
= (le32_to_cpup(&qh
->hw_info1
) >> 8) & 0x0f;
1263 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
1264 qh
->hw_token
&= ~cpu_to_le32(QTD_TOGGLE
);
1265 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
1269 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1271 qh
->hw_token
&= cpu_to_le32(QTD_TOGGLE
| QTD_STS_PING
);
1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276 * recovery (including urb dequeue) would need software changes to a QH...
1278 static void qh_refresh(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1280 struct ehci_qtd
*qtd
;
1282 if (list_empty(&qh
->qtd_list
))
1285 qtd
= list_entry(qh
->qtd_list
.next
,
1286 struct ehci_qtd
, qtd_list
);
1287 /* first qtd may already be partially processed */
1288 if (cpu_to_le32(qtd
->qtd_dma
) == qh
->hw_current
)
1293 qh_update(oxu
, qh
, qtd
);
1296 static void qtd_copy_status(struct oxu_hcd
*oxu
, struct urb
*urb
,
1297 size_t length
, u32 token
)
1299 /* count IN/OUT bytes, not SETUP (even short packets) */
1300 if (likely(QTD_PID(token
) != 2))
1301 urb
->actual_length
+= length
- QTD_LENGTH(token
);
1303 /* don't modify error codes */
1304 if (unlikely(urb
->status
!= -EINPROGRESS
))
1307 /* force cleanup after short read; not always an error */
1308 if (unlikely(IS_SHORT_READ(token
)))
1309 urb
->status
= -EREMOTEIO
;
1311 /* serious "can't proceed" faults reported by the hardware */
1312 if (token
& QTD_STS_HALT
) {
1313 if (token
& QTD_STS_BABBLE
) {
1314 /* FIXME "must" disable babbling device's port too */
1315 urb
->status
= -EOVERFLOW
;
1316 } else if (token
& QTD_STS_MMF
) {
1317 /* fs/ls interrupt xfer missed the complete-split */
1318 urb
->status
= -EPROTO
;
1319 } else if (token
& QTD_STS_DBE
) {
1320 urb
->status
= (QTD_PID(token
) == 1) /* IN ? */
1321 ? -ENOSR
/* hc couldn't read data */
1322 : -ECOMM
; /* hc couldn't write data */
1323 } else if (token
& QTD_STS_XACT
) {
1324 /* timeout, bad crc, wrong PID, etc; retried */
1325 if (QTD_CERR(token
))
1326 urb
->status
= -EPIPE
;
1328 oxu_dbg(oxu
, "devpath %s ep%d%s 3strikes\n",
1330 usb_pipeendpoint(urb
->pipe
),
1331 usb_pipein(urb
->pipe
) ? "in" : "out");
1332 urb
->status
= -EPROTO
;
1334 /* CERR nonzero + no errors + halt --> stall */
1335 } else if (QTD_CERR(token
))
1336 urb
->status
= -EPIPE
;
1338 urb
->status
= -EPROTO
;
1340 oxu_vdbg(oxu
, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341 usb_pipedevice(urb
->pipe
),
1342 usb_pipeendpoint(urb
->pipe
),
1343 usb_pipein(urb
->pipe
) ? "in" : "out",
1344 token
, urb
->status
);
1348 static void ehci_urb_done(struct oxu_hcd
*oxu
, struct urb
*urb
)
1349 __releases(oxu
->lock
)
1350 __acquires(oxu
->lock
)
1352 if (likely(urb
->hcpriv
!= NULL
)) {
1353 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
1355 /* S-mask in a QH means it's an interrupt urb */
1356 if ((qh
->hw_info2
& cpu_to_le32(QH_SMASK
)) != 0) {
1358 /* ... update hc-wide periodic stats (for usbfs) */
1359 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
--;
1365 switch (urb
->status
) {
1366 case -EINPROGRESS
: /* success */
1369 default: /* fault */
1371 case -EREMOTEIO
: /* fault or normal */
1372 if (!(urb
->transfer_flags
& URB_SHORT_NOT_OK
))
1375 case -ECONNRESET
: /* canceled */
1380 #ifdef OXU_URB_TRACE
1381 oxu_dbg(oxu
, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 __func__
, urb
->dev
->devpath
, urb
,
1383 usb_pipeendpoint(urb
->pipe
),
1384 usb_pipein(urb
->pipe
) ? "in" : "out",
1386 urb
->actual_length
, urb
->transfer_buffer_length
);
1389 /* complete() can reenter this HCD */
1390 spin_unlock(&oxu
->lock
);
1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu
), urb
, urb
->status
);
1392 spin_lock(&oxu
->lock
);
1395 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1396 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1398 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1399 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current. Returns number of completions called,
1405 * indicating how much "real" work we did.
1407 static unsigned qh_completions(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1409 struct ehci_qtd
*last
= NULL
, *end
= qh
->dummy
;
1410 struct ehci_qtd
*qtd
, *tmp
;
1415 struct oxu_murb
*murb
= NULL
;
1417 if (unlikely(list_empty(&qh
->qtd_list
)))
1420 /* completions (or tasks on other cpus) must never clobber HALT
1421 * till we've gone through and cleaned everything up, even when
1422 * they add urbs to this qh's queue or mark them for unlinking.
1424 * NOTE: unlinking expects to be done in queue order.
1426 state
= qh
->qh_state
;
1427 qh
->qh_state
= QH_STATE_COMPLETING
;
1428 stopped
= (state
== QH_STATE_IDLE
);
1430 /* remove de-activated QTDs from front of queue.
1431 * after faults (including short reads), cleanup this urb
1432 * then let the queue advance.
1433 * if queue is stopped, handles unlinks.
1435 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
1441 /* Clean up any state from previous QTD ...*/
1443 if (likely(last
->urb
!= urb
)) {
1444 if (last
->urb
->complete
== NULL
) {
1445 murb
= (struct oxu_murb
*) last
->urb
;
1446 last
->urb
= murb
->main
;
1448 ehci_urb_done(oxu
, last
->urb
);
1451 oxu_murb_free(oxu
, murb
);
1453 ehci_urb_done(oxu
, last
->urb
);
1457 oxu_qtd_free(oxu
, last
);
1461 /* ignore urbs submitted during completions we reported */
1465 /* hardware copies qtd out of qh overlay */
1467 token
= le32_to_cpu(qtd
->hw_token
);
1469 /* always clean up qtds the hc de-activated */
1470 if ((token
& QTD_STS_ACTIVE
) == 0) {
1472 if ((token
& QTD_STS_HALT
) != 0) {
1475 /* magic dummy for some short reads; qh won't advance.
1476 * that silicon quirk can kick in with this dummy too.
1478 } else if (IS_SHORT_READ(token
) &&
1479 !(qtd
->hw_alt_next
& EHCI_LIST_END
)) {
1484 /* stop scanning when we reach qtds the hc is using */
1485 } else if (likely(!stopped
&&
1486 HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))) {
1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)))
1493 urb
->status
= -ESHUTDOWN
;
1495 /* ignore active urbs unless some previous qtd
1496 * for the urb faulted (including short read) or
1497 * its urb was canceled. we may patch qh or qtds.
1499 if (likely(urb
->status
== -EINPROGRESS
))
1502 /* issue status after short control reads */
1503 if (unlikely(do_status
!= 0)
1504 && QTD_PID(token
) == 0 /* OUT */) {
1509 /* token in overlay may be most current */
1510 if (state
== QH_STATE_IDLE
1511 && cpu_to_le32(qtd
->qtd_dma
)
1513 token
= le32_to_cpu(qh
->hw_token
);
1515 /* force halt for unlinked or blocked qh, so we'll
1516 * patch the qh later and so that completions can't
1517 * activate it while we "know" it's stopped.
1519 if ((HALT_BIT
& qh
->hw_token
) == 0) {
1521 qh
->hw_token
|= HALT_BIT
;
1526 /* Remove it from the queue */
1527 qtd_copy_status(oxu
, urb
->complete
?
1528 urb
: ((struct oxu_murb
*) urb
)->main
,
1529 qtd
->length
, token
);
1530 if ((usb_pipein(qtd
->urb
->pipe
)) &&
1531 (NULL
!= qtd
->transfer_buffer
))
1532 memcpy(qtd
->transfer_buffer
, qtd
->buffer
, qtd
->length
);
1533 do_status
= (urb
->status
== -EREMOTEIO
)
1534 && usb_pipecontrol(urb
->pipe
);
1536 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
1537 last
= list_entry(qtd
->qtd_list
.prev
,
1538 struct ehci_qtd
, qtd_list
);
1539 last
->hw_next
= qtd
->hw_next
;
1541 list_del(&qtd
->qtd_list
);
1545 /* last urb's completion might still need calling */
1546 if (likely(last
!= NULL
)) {
1547 if (last
->urb
->complete
== NULL
) {
1548 murb
= (struct oxu_murb
*) last
->urb
;
1549 last
->urb
= murb
->main
;
1551 ehci_urb_done(oxu
, last
->urb
);
1554 oxu_murb_free(oxu
, murb
);
1556 ehci_urb_done(oxu
, last
->urb
);
1559 oxu_qtd_free(oxu
, last
);
1562 /* restore original state; caller must unlink or relink */
1563 qh
->qh_state
= state
;
1565 /* be sure the hardware's done with the qh before refreshing
1566 * it after fault cleanup, or recovering from silicon wrongly
1567 * overlaying the dummy qtd (which reduces DMA chatter).
1569 if (stopped
!= 0 || qh
->hw_qtd_next
== EHCI_LIST_END
) {
1572 qh_refresh(oxu
, qh
);
1574 case QH_STATE_LINKED
:
1575 /* should be rare for periodic transfers,
1576 * except maybe high bandwidth ...
1578 if ((cpu_to_le32(QH_SMASK
)
1579 & qh
->hw_info2
) != 0) {
1580 intr_deschedule(oxu
, qh
);
1581 (void) qh_schedule(oxu
, qh
);
1583 unlink_async(oxu
, qh
);
1585 /* otherwise, unlink already started */
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1600 static void qtd_list_free(struct oxu_hcd
*oxu
,
1601 struct urb
*urb
, struct list_head
*head
)
1603 struct ehci_qtd
*qtd
, *temp
;
1605 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
1606 list_del(&qtd
->qtd_list
);
1607 oxu_qtd_free(oxu
, qtd
);
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1613 static struct list_head
*qh_urb_transaction(struct oxu_hcd
*oxu
,
1615 struct list_head
*head
,
1618 struct ehci_qtd
*qtd
, *qtd_prev
;
1623 void *transfer_buf
= NULL
;
1627 * URBs map to sequences of QTDs: one logical transaction
1629 qtd
= ehci_qtd_alloc(oxu
);
1632 list_add_tail(&qtd
->qtd_list
, head
);
1635 token
= QTD_STS_ACTIVE
;
1636 token
|= (EHCI_TUNE_CERR
<< 10);
1637 /* for split transactions, SplitXState initialized to zero */
1639 len
= urb
->transfer_buffer_length
;
1640 is_input
= usb_pipein(urb
->pipe
);
1641 if (!urb
->transfer_buffer
&& urb
->transfer_buffer_length
&& is_input
)
1642 urb
->transfer_buffer
= phys_to_virt(urb
->transfer_dma
);
1644 if (usb_pipecontrol(urb
->pipe
)) {
1646 ret
= oxu_buf_alloc(oxu
, qtd
, sizeof(struct usb_ctrlrequest
));
1650 qtd_fill(qtd
, qtd
->buffer_dma
, sizeof(struct usb_ctrlrequest
),
1651 token
| (2 /* "setup" */ << 8), 8);
1652 memcpy(qtd
->buffer
, qtd
->urb
->setup_packet
,
1653 sizeof(struct usb_ctrlrequest
));
1655 /* ... and always at least one more pid */
1656 token
^= QTD_TOGGLE
;
1658 qtd
= ehci_qtd_alloc(oxu
);
1662 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1663 list_add_tail(&qtd
->qtd_list
, head
);
1665 /* for zero length DATA stages, STATUS is always IN */
1667 token
|= (1 /* "in" */ << 8);
1671 * Data transfer stage: buffer setup
1674 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1678 buf
= qtd
->buffer_dma
;
1679 transfer_buf
= urb
->transfer_buffer
;
1682 memcpy(qtd
->buffer
, qtd
->urb
->transfer_buffer
, len
);
1685 token
|= (1 /* "in" */ << 8);
1686 /* else it's already initted to "out" pid (0 << 8) */
1688 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
1691 * buffer gets wrapped in one or more qtds;
1692 * last one may be "short" (including zero len)
1693 * and may serve as a control status ack
1698 this_qtd_len
= qtd_fill(qtd
, buf
, len
, token
, maxpacket
);
1699 qtd
->transfer_buffer
= transfer_buf
;
1700 len
-= this_qtd_len
;
1701 buf
+= this_qtd_len
;
1702 transfer_buf
+= this_qtd_len
;
1704 qtd
->hw_alt_next
= oxu
->async
->hw_alt_next
;
1706 /* qh makes control packets use qtd toggle; maybe switch it */
1707 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
1708 token
^= QTD_TOGGLE
;
1710 if (likely(len
<= 0))
1714 qtd
= ehci_qtd_alloc(oxu
);
1717 if (likely(len
> 0)) {
1718 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1723 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1724 list_add_tail(&qtd
->qtd_list
, head
);
1727 /* unless the bulk/interrupt caller wants a chance to clean
1728 * up after short reads, hc should advance qh past this urb
1730 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
1731 || usb_pipecontrol(urb
->pipe
)))
1732 qtd
->hw_alt_next
= EHCI_LIST_END
;
1735 * control requests may need a terminating data "status" ack;
1736 * bulk ones may need a terminating short packet (zero length).
1738 if (likely(urb
->transfer_buffer_length
!= 0)) {
1741 if (usb_pipecontrol(urb
->pipe
)) {
1743 token
^= 0x0100; /* "in" <--> "out" */
1744 token
|= QTD_TOGGLE
; /* force DATA1 */
1745 } else if (usb_pipebulk(urb
->pipe
)
1746 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
1747 && !(urb
->transfer_buffer_length
% maxpacket
)) {
1752 qtd
= ehci_qtd_alloc(oxu
);
1756 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1757 list_add_tail(&qtd
->qtd_list
, head
);
1759 /* never any data in such packets */
1760 qtd_fill(qtd
, 0, 0, token
, 0);
1764 /* by default, enable interrupt on urb completion */
1765 qtd
->hw_token
|= cpu_to_le32(QTD_IOC
);
1769 qtd_list_free(oxu
, urb
, head
);
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled. For highspeed, that's
1777 * just one microframe in the s-mask. For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1780 static struct ehci_qh
*qh_make(struct oxu_hcd
*oxu
,
1781 struct urb
*urb
, gfp_t flags
)
1783 struct ehci_qh
*qh
= oxu_qh_alloc(oxu
);
1784 u32 info1
= 0, info2
= 0;
1792 * init endpoint/device data for this QH
1794 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
1795 info1
|= usb_pipedevice(urb
->pipe
) << 0;
1797 is_input
= usb_pipein(urb
->pipe
);
1798 type
= usb_pipetype(urb
->pipe
);
1799 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
1801 /* Compute interrupt scheduling parameters just once, and save.
1802 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 * - split transactions need a second CSPLIT uframe; same question
1804 * - splits also need a schedule gap (for full/low speed I/O)
1805 * - qh has a polling interval
1807 * For control/bulk requests, the HC or TT handles these.
1809 if (type
== PIPE_INTERRUPT
) {
1810 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
1812 hb_mult(maxp
) * max_packet(maxp
)));
1813 qh
->start
= NO_FRAME
;
1815 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
1819 qh
->period
= urb
->interval
>> 3;
1820 if (qh
->period
== 0 && urb
->interval
!= 1) {
1821 /* NOTE interval 2 or 4 uframes could work.
1822 * But interval 1 scheduling is simpler, and
1823 * includes high bandwidth.
1825 oxu_dbg(oxu
, "intr period %d uframes, NYET!\n",
1830 struct usb_tt
*tt
= urb
->dev
->tt
;
1833 /* gap is f(FS/LS transfer times) */
1834 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
1835 is_input
, 0, maxp
) / (125 * 1000);
1837 /* FIXME this just approximates SPLIT/CSPLIT times */
1838 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
1839 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
1840 qh
->usecs
= HS_USECS(1);
1841 } else { /* SPLIT+DATA, gap, CSPLIT */
1842 qh
->usecs
+= HS_USECS(1);
1843 qh
->c_usecs
= HS_USECS(0);
1846 think_time
= tt
? tt
->think_time
: 0;
1847 qh
->tt_usecs
= NS_TO_US(think_time
+
1848 usb_calc_bus_time(urb
->dev
->speed
,
1849 is_input
, 0, max_packet(maxp
)));
1850 qh
->period
= urb
->interval
;
1854 /* support for tt scheduling, and access to toggles */
1858 switch (urb
->dev
->speed
) {
1860 info1
|= (1 << 12); /* EPS "low" */
1863 case USB_SPEED_FULL
:
1864 /* EPS 0 means "full" */
1865 if (type
!= PIPE_INTERRUPT
)
1866 info1
|= (EHCI_TUNE_RL_TT
<< 28);
1867 if (type
== PIPE_CONTROL
) {
1868 info1
|= (1 << 27); /* for TT */
1869 info1
|= 1 << 14; /* toggle from qtd */
1871 info1
|= maxp
<< 16;
1873 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
1874 info2
|= urb
->dev
->ttport
<< 23;
1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1880 case USB_SPEED_HIGH
: /* no TT involved */
1881 info1
|= (2 << 12); /* EPS "high" */
1882 if (type
== PIPE_CONTROL
) {
1883 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1884 info1
|= 64 << 16; /* usb2 fixed maxpacket */
1885 info1
|= 1 << 14; /* toggle from qtd */
1886 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1887 } else if (type
== PIPE_BULK
) {
1888 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1889 info1
|= 512 << 16; /* usb2 fixed maxpacket */
1890 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1891 } else { /* PIPE_INTERRUPT */
1892 info1
|= max_packet(maxp
) << 16;
1893 info2
|= hb_mult(maxp
) << 30;
1897 oxu_dbg(oxu
, "bogus dev %p speed %d\n", urb
->dev
, urb
->dev
->speed
);
1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1905 /* init as live, toggle clear, advance to dummy */
1906 qh
->qh_state
= QH_STATE_IDLE
;
1907 qh
->hw_info1
= cpu_to_le32(info1
);
1908 qh
->hw_info2
= cpu_to_le32(info2
);
1909 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
1910 qh_refresh(oxu
, qh
);
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1916 static void qh_link_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1918 __le32 dma
= QH_NEXT(qh
->qh_dma
);
1919 struct ehci_qh
*head
;
1921 /* (re)start the async schedule? */
1923 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
1924 if (!head
->qh_next
.qh
) {
1925 u32 cmd
= readl(&oxu
->regs
->command
);
1927 if (!(cmd
& CMD_ASE
)) {
1928 /* in case a clear of CMD_ASE didn't take yet */
1929 (void)handshake(oxu
, &oxu
->regs
->status
,
1931 cmd
|= CMD_ASE
| CMD_RUN
;
1932 writel(cmd
, &oxu
->regs
->command
);
1933 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
1934 /* posted write need not be known to HC yet ... */
1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 if (qh
->qh_state
== QH_STATE_IDLE
)
1940 qh_refresh(oxu
, qh
);
1942 /* splice right after start */
1943 qh
->qh_next
= head
->qh_next
;
1944 qh
->hw_next
= head
->hw_next
;
1947 head
->qh_next
.qh
= qh
;
1948 head
->hw_next
= dma
;
1950 qh
->qh_state
= QH_STATE_LINKED
;
1951 /* qtd completions reported later by interrupt */
1954 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1962 static struct ehci_qh
*qh_append_tds(struct oxu_hcd
*oxu
,
1963 struct urb
*urb
, struct list_head
*qtd_list
,
1964 int epnum
, void **ptr
)
1966 struct ehci_qh
*qh
= NULL
;
1968 qh
= (struct ehci_qh
*) *ptr
;
1969 if (unlikely(qh
== NULL
)) {
1970 /* can't sleep here, we have oxu->lock... */
1971 qh
= qh_make(oxu
, urb
, GFP_ATOMIC
);
1974 if (likely(qh
!= NULL
)) {
1975 struct ehci_qtd
*qtd
;
1977 if (unlikely(list_empty(qtd_list
)))
1980 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
,
1983 /* control qh may need patching ... */
1984 if (unlikely(epnum
== 0)) {
1986 /* usb_reset_device() briefly reverts to address 0 */
1987 if (usb_pipedevice(urb
->pipe
) == 0)
1988 qh
->hw_info1
&= ~QH_ADDR_MASK
;
1991 /* just one way to queue requests: swap with the dummy qtd.
1992 * only hc or qh_refresh() ever modify the overlay.
1994 if (likely(qtd
!= NULL
)) {
1995 struct ehci_qtd
*dummy
;
1999 /* to avoid racing the HC, use the dummy td instead of
2000 * the first td of our list (becomes new dummy). both
2001 * tds stay deactivated until we're done, when the
2002 * HC is allowed to fetch the old dummy (4.10.2).
2004 token
= qtd
->hw_token
;
2005 qtd
->hw_token
= HALT_BIT
;
2009 dma
= dummy
->qtd_dma
;
2011 dummy
->qtd_dma
= dma
;
2013 list_del(&qtd
->qtd_list
);
2014 list_add(&dummy
->qtd_list
, qtd_list
);
2015 list_splice(qtd_list
, qh
->qtd_list
.prev
);
2017 ehci_qtd_init(qtd
, qtd
->qtd_dma
);
2020 /* hc must see the new dummy at list end */
2022 qtd
= list_entry(qh
->qtd_list
.prev
,
2023 struct ehci_qtd
, qtd_list
);
2024 qtd
->hw_next
= QTD_NEXT(dma
);
2026 /* let the hc process these next qtds */
2027 dummy
->hw_token
= (token
& ~(0x80));
2029 dummy
->hw_token
= token
;
2031 urb
->hcpriv
= qh_get(qh
);
2037 static int submit_async(struct oxu_hcd
*oxu
, struct urb
*urb
,
2038 struct list_head
*qtd_list
, gfp_t mem_flags
)
2040 int epnum
= urb
->ep
->desc
.bEndpointAddress
;
2041 unsigned long flags
;
2042 struct ehci_qh
*qh
= NULL
;
2044 #ifdef OXU_URB_TRACE
2045 struct ehci_qtd
*qtd
;
2047 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
2049 oxu_dbg(oxu
, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050 __func__
, urb
->dev
->devpath
, urb
,
2051 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
2052 urb
->transfer_buffer_length
,
2053 qtd
, urb
->ep
->hcpriv
);
2056 spin_lock_irqsave(&oxu
->lock
, flags
);
2057 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
2062 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
2063 if (unlikely(qh
== NULL
)) {
2068 /* Control/bulk operations through TTs don't need scheduling,
2069 * the HC and TT handle it when the TT has a buffer ready.
2071 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
2072 qh_link_async(oxu
, qh_get(qh
));
2074 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2075 if (unlikely(qh
== NULL
))
2076 qtd_list_free(oxu
, urb
, qtd_list
);
2080 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2082 static void end_unlink_async(struct oxu_hcd
*oxu
)
2084 struct ehci_qh
*qh
= oxu
->reclaim
;
2085 struct ehci_qh
*next
;
2087 timer_action_done(oxu
, TIMER_IAA_WATCHDOG
);
2089 qh
->qh_state
= QH_STATE_IDLE
;
2090 qh
->qh_next
.qh
= NULL
;
2091 qh_put(qh
); /* refcount from reclaim */
2093 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2095 oxu
->reclaim
= next
;
2096 oxu
->reclaim_ready
= 0;
2099 qh_completions(oxu
, qh
);
2101 if (!list_empty(&qh
->qtd_list
)
2102 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2103 qh_link_async(oxu
, qh
);
2105 qh_put(qh
); /* refcount from async list */
2107 /* it's not free to turn the async schedule on/off; leave it
2108 * active but idle for a while once it empties.
2110 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)
2111 && oxu
->async
->qh_next
.qh
== NULL
)
2112 timer_action(oxu
, TIMER_ASYNC_OFF
);
2116 oxu
->reclaim
= NULL
;
2117 start_unlink_async(oxu
, next
);
2121 /* makes sure the async qh will become idle */
2122 /* caller must own oxu->lock */
2124 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2126 int cmd
= readl(&oxu
->regs
->command
);
2127 struct ehci_qh
*prev
;
2130 assert_spin_locked(&oxu
->lock
);
2131 BUG_ON(oxu
->reclaim
|| (qh
->qh_state
!= QH_STATE_LINKED
2132 && qh
->qh_state
!= QH_STATE_UNLINK_WAIT
));
2135 /* stop async schedule right now? */
2136 if (unlikely(qh
== oxu
->async
)) {
2137 /* can't get here without STS_ASS set */
2138 if (oxu_to_hcd(oxu
)->state
!= HC_STATE_HALT
2140 /* ... and CMD_IAAD clear */
2141 writel(cmd
& ~CMD_ASE
, &oxu
->regs
->command
);
2143 /* handshake later, if we need to */
2144 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
2149 qh
->qh_state
= QH_STATE_UNLINK
;
2150 oxu
->reclaim
= qh
= qh_get(qh
);
2153 while (prev
->qh_next
.qh
!= qh
)
2154 prev
= prev
->qh_next
.qh
;
2156 prev
->hw_next
= qh
->hw_next
;
2157 prev
->qh_next
= qh
->qh_next
;
2160 if (unlikely(oxu_to_hcd(oxu
)->state
== HC_STATE_HALT
)) {
2161 /* if (unlikely(qh->reclaim != 0))
2162 * this will recurse, probably not much
2164 end_unlink_async(oxu
);
2168 oxu
->reclaim_ready
= 0;
2170 writel(cmd
, &oxu
->regs
->command
);
2171 (void) readl(&oxu
->regs
->command
);
2172 timer_action(oxu
, TIMER_IAA_WATCHDOG
);
2175 static void scan_async(struct oxu_hcd
*oxu
)
2178 enum ehci_timer_action action
= TIMER_IO_WATCHDOG
;
2180 if (!++(oxu
->stamp
))
2182 timer_action_done(oxu
, TIMER_ASYNC_SHRINK
);
2184 qh
= oxu
->async
->qh_next
.qh
;
2185 if (likely(qh
!= NULL
)) {
2187 /* clean any finished work for this qh */
2188 if (!list_empty(&qh
->qtd_list
)
2189 && qh
->stamp
!= oxu
->stamp
) {
2192 /* unlinks could happen here; completion
2193 * reporting drops the lock. rescan using
2194 * the latest schedule, but don't rescan
2195 * qhs we already finished (no looping).
2198 qh
->stamp
= oxu
->stamp
;
2199 temp
= qh_completions(oxu
, qh
);
2205 /* unlink idle entries, reducing HC PCI usage as well
2206 * as HCD schedule-scanning costs. delay for any qh
2207 * we just scanned, there's a not-unusual case that it
2208 * doesn't stay idle for long.
2209 * (plus, avoids some kind of re-activation race.)
2211 if (list_empty(&qh
->qtd_list
)) {
2212 if (qh
->stamp
== oxu
->stamp
)
2213 action
= TIMER_ASYNC_SHRINK
;
2214 else if (!oxu
->reclaim
2215 && qh
->qh_state
== QH_STATE_LINKED
)
2216 start_unlink_async(oxu
, qh
);
2219 qh
= qh
->qh_next
.qh
;
2222 if (action
== TIMER_ASYNC_SHRINK
)
2223 timer_action(oxu
, TIMER_ASYNC_SHRINK
);
2227 * periodic_next_shadow - return "next" pointer on shadow list
2228 * @periodic: host pointer to qh/itd/sitd
2229 * @tag: hardware tag for type of this record
2231 static union ehci_shadow
*periodic_next_shadow(union ehci_shadow
*periodic
,
2237 return &periodic
->qh
->qh_next
;
2241 /* caller must hold oxu->lock */
2242 static void periodic_unlink(struct oxu_hcd
*oxu
, unsigned frame
, void *ptr
)
2244 union ehci_shadow
*prev_p
= &oxu
->pshadow
[frame
];
2245 __le32
*hw_p
= &oxu
->periodic
[frame
];
2246 union ehci_shadow here
= *prev_p
;
2248 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2249 while (here
.ptr
&& here
.ptr
!= ptr
) {
2250 prev_p
= periodic_next_shadow(prev_p
, Q_NEXT_TYPE(*hw_p
));
2251 hw_p
= here
.hw_next
;
2254 /* an interrupt entry (at list end) could have been shared */
2258 /* update shadow and hardware lists ... the old "next" pointers
2259 * from ptr may still be in use, the caller updates them.
2261 *prev_p
= *periodic_next_shadow(&here
, Q_NEXT_TYPE(*hw_p
));
2262 *hw_p
= *here
.hw_next
;
2265 /* how many of the uframe's 125 usecs are allocated? */
2266 static unsigned short periodic_usecs(struct oxu_hcd
*oxu
,
2267 unsigned frame
, unsigned uframe
)
2269 __le32
*hw_p
= &oxu
->periodic
[frame
];
2270 union ehci_shadow
*q
= &oxu
->pshadow
[frame
];
2274 switch (Q_NEXT_TYPE(*hw_p
)) {
2277 /* is it in the S-mask? */
2278 if (q
->qh
->hw_info2
& cpu_to_le32(1 << uframe
))
2279 usecs
+= q
->qh
->usecs
;
2280 /* ... or C-mask? */
2281 if (q
->qh
->hw_info2
& cpu_to_le32(1 << (8 + uframe
)))
2282 usecs
+= q
->qh
->c_usecs
;
2283 hw_p
= &q
->qh
->hw_next
;
2284 q
= &q
->qh
->qh_next
;
2290 oxu_err(oxu
, "uframe %d sched overrun: %d usecs\n",
2291 frame
* 8 + uframe
, usecs
);
2296 static int enable_periodic(struct oxu_hcd
*oxu
)
2301 /* did clearing PSE did take effect yet?
2302 * takes effect only at frame boundaries...
2304 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, 0, 9 * 125);
2306 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
2307 usb_hc_died(oxu_to_hcd(oxu
));
2311 cmd
= readl(&oxu
->regs
->command
) | CMD_PSE
;
2312 writel(cmd
, &oxu
->regs
->command
);
2313 /* posted write ... PSS happens later */
2314 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
2316 /* make sure ehci_work scans these */
2317 oxu
->next_uframe
= readl(&oxu
->regs
->frame_index
)
2318 % (oxu
->periodic_size
<< 3);
2322 static int disable_periodic(struct oxu_hcd
*oxu
)
2327 /* did setting PSE not take effect yet?
2328 * takes effect only at frame boundaries...
2330 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, STS_PSS
, 9 * 125);
2332 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
2333 usb_hc_died(oxu_to_hcd(oxu
));
2337 cmd
= readl(&oxu
->regs
->command
) & ~CMD_PSE
;
2338 writel(cmd
, &oxu
->regs
->command
);
2339 /* posted write ... */
2341 oxu
->next_uframe
= -1;
2345 /* periodic schedule slots have iso tds (normal or split) first, then a
2346 * sparse tree for active interrupt transfers.
2348 * this just links in a qh; caller guarantees uframe masks are set right.
2349 * no FSTN support (yet; oxu 0.96+)
2351 static int qh_link_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2354 unsigned period
= qh
->period
;
2356 dev_dbg(&qh
->dev
->dev
,
2357 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2358 period
, le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
2359 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
2361 /* high bandwidth, or otherwise every microframe */
2365 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
) {
2366 union ehci_shadow
*prev
= &oxu
->pshadow
[i
];
2367 __le32
*hw_p
= &oxu
->periodic
[i
];
2368 union ehci_shadow here
= *prev
;
2371 /* skip the iso nodes at list head */
2373 type
= Q_NEXT_TYPE(*hw_p
);
2374 if (type
== Q_TYPE_QH
)
2376 prev
= periodic_next_shadow(prev
, type
);
2377 hw_p
= &here
.qh
->hw_next
;
2381 /* sorting each branch by period (slow-->fast)
2382 * enables sharing interior tree nodes
2384 while (here
.ptr
&& qh
!= here
.qh
) {
2385 if (qh
->period
> here
.qh
->period
)
2387 prev
= &here
.qh
->qh_next
;
2388 hw_p
= &here
.qh
->hw_next
;
2391 /* link in this qh, unless some earlier pass did that */
2392 if (qh
!= here
.qh
) {
2395 qh
->hw_next
= *hw_p
;
2398 *hw_p
= QH_NEXT(qh
->qh_dma
);
2401 qh
->qh_state
= QH_STATE_LINKED
;
2404 /* update per-qh bandwidth for usbfs */
2405 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
+= qh
->period
2406 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
2409 /* maybe enable periodic schedule processing */
2410 if (!oxu
->periodic_sched
++)
2411 return enable_periodic(oxu
);
2416 static void qh_unlink_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2422 * IF this isn't high speed
2423 * and this qh is active in the current uframe
2424 * (and overlay token SplitXstate is false?)
2426 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2429 /* high bandwidth, or otherwise part of every microframe */
2430 period
= qh
->period
;
2434 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
)
2435 periodic_unlink(oxu
, i
, qh
);
2437 /* update per-qh bandwidth for usbfs */
2438 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
-= qh
->period
2439 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
2442 dev_dbg(&qh
->dev
->dev
,
2443 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2445 le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
2446 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
2448 /* qh->qh_next still "live" to HC */
2449 qh
->qh_state
= QH_STATE_UNLINK
;
2450 qh
->qh_next
.ptr
= NULL
;
2453 /* maybe turn off periodic schedule */
2454 oxu
->periodic_sched
--;
2455 if (!oxu
->periodic_sched
)
2456 (void) disable_periodic(oxu
);
2459 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2463 qh_unlink_periodic(oxu
, qh
);
2465 /* simple/paranoid: always delay, expecting the HC needs to read
2466 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467 * expect hub_wq to clean up after any CSPLITs we won't issue.
2468 * active high speed queues may need bigger delays...
2470 if (list_empty(&qh
->qtd_list
)
2471 || (cpu_to_le32(QH_CMASK
) & qh
->hw_info2
) != 0)
2474 wait
= 55; /* worst case: 3 * 1024 */
2477 qh
->qh_state
= QH_STATE_IDLE
;
2478 qh
->hw_next
= EHCI_LIST_END
;
2482 static int check_period(struct oxu_hcd
*oxu
,
2483 unsigned frame
, unsigned uframe
,
2484 unsigned period
, unsigned usecs
)
2488 /* complete split running into next frame?
2489 * given FSTN support, we could sometimes check...
2495 * 80% periodic == 100 usec/uframe available
2496 * convert "usecs we need" to "max already claimed"
2498 usecs
= 100 - usecs
;
2500 /* we "know" 2 and 4 uframe intervals were rejected; so
2501 * for period 0, check _every_ microframe in the schedule.
2503 if (unlikely(period
== 0)) {
2505 for (uframe
= 0; uframe
< 7; uframe
++) {
2506 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2507 if (claimed
> usecs
)
2510 } while ((frame
+= 1) < oxu
->periodic_size
);
2512 /* just check the specified uframe, at that period */
2515 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2516 if (claimed
> usecs
)
2518 } while ((frame
+= period
) < oxu
->periodic_size
);
2524 static int check_intr_schedule(struct oxu_hcd
*oxu
,
2525 unsigned frame
, unsigned uframe
,
2526 const struct ehci_qh
*qh
, __le32
*c_maskp
)
2528 int retval
= -ENOSPC
;
2530 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
2533 if (!check_period(oxu
, frame
, uframe
, qh
->period
, qh
->usecs
))
2545 /* "first fit" scheduling policy used the first time through,
2546 * or when the previous schedule slot can't be re-used.
2548 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2553 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
2555 qh_refresh(oxu
, qh
);
2556 qh
->hw_next
= EHCI_LIST_END
;
2559 /* reuse the previous schedule slots, if we can */
2560 if (frame
< qh
->period
) {
2561 uframe
= ffs(le32_to_cpup(&qh
->hw_info2
) & QH_SMASK
);
2562 status
= check_intr_schedule(oxu
, frame
, --uframe
,
2570 /* else scan the schedule to find a group of slots such that all
2571 * uframes have enough periodic bandwidth available.
2574 /* "normal" case, uframing flexible except with splits */
2576 frame
= qh
->period
- 1;
2578 for (uframe
= 0; uframe
< 8; uframe
++) {
2579 status
= check_intr_schedule(oxu
,
2585 } while (status
&& frame
--);
2587 /* qh->period == 0 means every uframe */
2590 status
= check_intr_schedule(oxu
, 0, 0, qh
, &c_mask
);
2596 /* reset S-frame and (maybe) C-frame masks */
2597 qh
->hw_info2
&= cpu_to_le32(~(QH_CMASK
| QH_SMASK
));
2598 qh
->hw_info2
|= qh
->period
2599 ? cpu_to_le32(1 << uframe
)
2600 : cpu_to_le32(QH_SMASK
);
2601 qh
->hw_info2
|= c_mask
;
2603 oxu_dbg(oxu
, "reused qh %p schedule\n", qh
);
2605 /* stuff into the periodic schedule */
2606 status
= qh_link_periodic(oxu
, qh
);
2611 static int intr_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2612 struct list_head
*qtd_list
, gfp_t mem_flags
)
2615 unsigned long flags
;
2618 struct list_head empty
;
2620 /* get endpoint and transfer/schedule data */
2621 epnum
= urb
->ep
->desc
.bEndpointAddress
;
2623 spin_lock_irqsave(&oxu
->lock
, flags
);
2625 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
2626 status
= -ESHUTDOWN
;
2630 /* get qh and force any scheduling errors */
2631 INIT_LIST_HEAD(&empty
);
2632 qh
= qh_append_tds(oxu
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
2637 if (qh
->qh_state
== QH_STATE_IDLE
) {
2638 status
= qh_schedule(oxu
, qh
);
2643 /* then queue the urb's tds to the qh */
2644 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
2647 /* ... update usbfs periodic stats */
2648 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
++;
2651 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2653 qtd_list_free(oxu
, urb
, qtd_list
);
2658 static inline int itd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2661 oxu_dbg(oxu
, "iso support is missing!\n");
2665 static inline int sitd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2668 oxu_dbg(oxu
, "split iso support is missing!\n");
2672 static void scan_periodic(struct oxu_hcd
*oxu
)
2674 unsigned frame
, clock
, now_uframe
, mod
;
2677 mod
= oxu
->periodic_size
<< 3;
2680 * When running, scan from last scan point up to "now"
2681 * else clean up by scanning everything that's left.
2682 * Touches as few pages as possible: cache-friendly.
2684 now_uframe
= oxu
->next_uframe
;
2685 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2686 clock
= readl(&oxu
->regs
->frame_index
);
2688 clock
= now_uframe
+ mod
- 1;
2692 union ehci_shadow q
, *q_p
;
2695 /* don't scan past the live uframe */
2696 frame
= now_uframe
>> 3;
2697 if (frame
!= (clock
>> 3)) {
2698 /* safe to scan the whole frame at once */
2703 /* scan each element in frame's queue for completions */
2704 q_p
= &oxu
->pshadow
[frame
];
2705 hw_p
= &oxu
->periodic
[frame
];
2707 type
= Q_NEXT_TYPE(*hw_p
);
2710 while (q
.ptr
!= NULL
) {
2711 union ehci_shadow temp
;
2715 /* handle any completions */
2716 temp
.qh
= qh_get(q
.qh
);
2717 type
= Q_NEXT_TYPE(q
.qh
->hw_next
);
2719 modified
= qh_completions(oxu
, temp
.qh
);
2720 if (unlikely(list_empty(&temp
.qh
->qtd_list
)))
2721 intr_deschedule(oxu
, temp
.qh
);
2725 oxu_dbg(oxu
, "corrupt type %d frame %d shadow %p\n",
2726 type
, frame
, q
.ptr
);
2730 /* assume completion callbacks modify the queue */
2731 if (unlikely(modified
))
2735 /* Stop when we catch up to the HC */
2737 /* FIXME: this assumes we won't get lapped when
2738 * latencies climb; that should be rare, but...
2739 * detect it, and just go all the way around.
2740 * FLR might help detect this case, so long as latencies
2741 * don't exceed periodic_size msec (default 1.024 sec).
2744 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2746 if (now_uframe
== clock
) {
2749 if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2751 oxu
->next_uframe
= now_uframe
;
2752 now
= readl(&oxu
->regs
->frame_index
) % mod
;
2753 if (now_uframe
== now
)
2756 /* rescan the rest of this frame, then ... */
2765 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766 * The firmware seems to think that powering off is a wakeup event!
2767 * This routine turns off remote wakeup and everything else, on all ports.
2769 static void ehci_turn_off_all_ports(struct oxu_hcd
*oxu
)
2771 int port
= HCS_N_PORTS(oxu
->hcs_params
);
2774 writel(PORT_RWC_BITS
, &oxu
->regs
->port_status
[port
]);
2777 static void ehci_port_power(struct oxu_hcd
*oxu
, int is_on
)
2781 if (!HCS_PPC(oxu
->hcs_params
))
2784 oxu_dbg(oxu
, "...power%s ports...\n", is_on
? "up" : "down");
2785 for (port
= HCS_N_PORTS(oxu
->hcs_params
); port
> 0; ) {
2787 oxu_hub_control(oxu_to_hcd(oxu
), SetPortFeature
,
2788 USB_PORT_FEAT_POWER
, port
--, NULL
, 0);
2790 oxu_hub_control(oxu_to_hcd(oxu
), ClearPortFeature
,
2791 USB_PORT_FEAT_POWER
, port
--, NULL
, 0);
2797 /* Called from some interrupts, timers, and so on.
2798 * It calls driver completion functions, after dropping oxu->lock.
2800 static void ehci_work(struct oxu_hcd
*oxu
)
2802 timer_action_done(oxu
, TIMER_IO_WATCHDOG
);
2803 if (oxu
->reclaim_ready
)
2804 end_unlink_async(oxu
);
2806 /* another CPU may drop oxu->lock during a schedule scan while
2807 * it reports urb completions. this flag guards against bogus
2808 * attempts at re-entrant schedule scanning.
2814 if (oxu
->next_uframe
!= -1)
2818 /* the IO watchdog guards against hardware or driver bugs that
2819 * misplace IRQs, and should let us run completely without IRQs.
2820 * such lossage has been observed on both VT6202 and VT8235.
2822 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) &&
2823 (oxu
->async
->qh_next
.ptr
!= NULL
||
2824 oxu
->periodic_sched
!= 0))
2825 timer_action(oxu
, TIMER_IO_WATCHDOG
);
2828 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2830 /* if we need to use IAA and it's busy, defer */
2831 if (qh
->qh_state
== QH_STATE_LINKED
2833 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)) {
2834 struct ehci_qh
*last
;
2836 for (last
= oxu
->reclaim
;
2838 last
= last
->reclaim
)
2840 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
2843 /* bypass IAA if the hc can't care */
2844 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) && oxu
->reclaim
)
2845 end_unlink_async(oxu
);
2847 /* something else might have unlinked the qh by now */
2848 if (qh
->qh_state
== QH_STATE_LINKED
)
2849 start_unlink_async(oxu
, qh
);
2853 * USB host controller methods
2856 static irqreturn_t
oxu210_hcd_irq(struct usb_hcd
*hcd
)
2858 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2859 u32 status
, pcd_status
= 0;
2862 spin_lock(&oxu
->lock
);
2864 status
= readl(&oxu
->regs
->status
);
2866 /* e.g. cardbus physical eject */
2867 if (status
== ~(u32
) 0) {
2868 oxu_dbg(oxu
, "device removed\n");
2873 status
&= INTR_MASK
;
2874 if (!status
|| unlikely(hcd
->state
== HC_STATE_HALT
)) {
2875 spin_unlock(&oxu
->lock
);
2879 /* clear (just) interrupts */
2880 writel(status
, &oxu
->regs
->status
);
2881 readl(&oxu
->regs
->command
); /* unblock posted write */
2884 #ifdef OXU_VERBOSE_DEBUG
2885 /* unrequested/ignored: Frame List Rollover */
2886 dbg_status(oxu
, "irq", status
);
2889 /* INT, ERR, and IAA interrupt rates can be throttled */
2891 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2892 if (likely((status
& (STS_INT
|STS_ERR
)) != 0))
2895 /* complete the unlinking of some qh [4.15.2.3] */
2896 if (status
& STS_IAA
) {
2897 oxu
->reclaim_ready
= 1;
2901 /* remote wakeup [4.3.1] */
2902 if (status
& STS_PCD
) {
2903 unsigned i
= HCS_N_PORTS(oxu
->hcs_params
);
2904 pcd_status
= status
;
2906 /* resume root hub? */
2907 if (!(readl(&oxu
->regs
->command
) & CMD_RUN
))
2908 usb_hcd_resume_root_hub(hcd
);
2911 int pstatus
= readl(&oxu
->regs
->port_status
[i
]);
2913 if (pstatus
& PORT_OWNER
)
2915 if (!(pstatus
& PORT_RESUME
)
2916 || oxu
->reset_done
[i
] != 0)
2919 /* start USB_RESUME_TIMEOUT resume signaling from this
2920 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921 * stop that signaling.
2923 oxu
->reset_done
[i
] = jiffies
+
2924 msecs_to_jiffies(USB_RESUME_TIMEOUT
);
2925 oxu_dbg(oxu
, "port %d remote wakeup\n", i
+ 1);
2926 mod_timer(&hcd
->rh_timer
, oxu
->reset_done
[i
]);
2930 /* PCI errors [4.15.2.4] */
2931 if (unlikely((status
& STS_FATAL
) != 0)) {
2932 /* bogus "fatal" IRQs appear on some chips... why? */
2933 status
= readl(&oxu
->regs
->status
);
2934 dbg_cmd(oxu
, "fatal", readl(&oxu
->regs
->command
));
2935 dbg_status(oxu
, "fatal", status
);
2936 if (status
& STS_HALT
) {
2937 oxu_err(oxu
, "fatal error\n");
2940 writel(0, &oxu
->regs
->configured_flag
);
2942 /* generic layer kills/unlinks all urbs, then
2943 * uses oxu_stop to clean up the rest
2951 spin_unlock(&oxu
->lock
);
2952 if (pcd_status
& STS_PCD
)
2953 usb_hcd_poll_rh_status(hcd
);
2957 static irqreturn_t
oxu_irq(struct usb_hcd
*hcd
)
2959 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2960 int ret
= IRQ_HANDLED
;
2962 u32 status
= oxu_readl(hcd
->regs
, OXU_CHIPIRQSTATUS
);
2963 u32 enable
= oxu_readl(hcd
->regs
, OXU_CHIPIRQEN_SET
);
2965 /* Disable all interrupt */
2966 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_CLR
, enable
);
2968 if ((oxu
->is_otg
&& (status
& OXU_USBOTGI
)) ||
2969 (!oxu
->is_otg
&& (status
& OXU_USBSPHI
)))
2970 oxu210_hcd_irq(hcd
);
2974 /* Enable all interrupt back */
2975 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_SET
, enable
);
2980 static void oxu_watchdog(struct timer_list
*t
)
2982 struct oxu_hcd
*oxu
= from_timer(oxu
, t
, watchdog
);
2983 unsigned long flags
;
2985 spin_lock_irqsave(&oxu
->lock
, flags
);
2987 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2989 u32 status
= readl(&oxu
->regs
->status
);
2990 if (status
& STS_IAA
) {
2991 oxu_vdbg(oxu
, "lost IAA\n");
2992 writel(STS_IAA
, &oxu
->regs
->status
);
2993 oxu
->reclaim_ready
= 1;
2997 /* stop async processing after it's idled a bit */
2998 if (test_bit(TIMER_ASYNC_OFF
, &oxu
->actions
))
2999 start_unlink_async(oxu
, oxu
->async
);
3001 /* oxu could run by timer, without IRQs ... */
3004 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3007 /* One-time init, only for memory state.
3009 static int oxu_hcd_init(struct usb_hcd
*hcd
)
3011 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3016 spin_lock_init(&oxu
->lock
);
3018 timer_setup(&oxu
->watchdog
, oxu_watchdog
, 0);
3021 * hw default: 1K periodic list heads, one per frame.
3022 * periodic_size can shrink by USBCMD update if hcc_params allows.
3024 oxu
->periodic_size
= DEFAULT_I_TDPS
;
3025 retval
= ehci_mem_init(oxu
, GFP_KERNEL
);
3029 /* controllers may cache some of the periodic schedule ... */
3030 hcc_params
= readl(&oxu
->caps
->hcc_params
);
3031 if (HCC_ISOC_CACHE(hcc_params
)) /* full frame cache */
3033 else /* N microframes cached */
3034 oxu
->i_thresh
= 2 + HCC_ISOC_THRES(hcc_params
);
3036 oxu
->reclaim
= NULL
;
3037 oxu
->reclaim_ready
= 0;
3038 oxu
->next_uframe
= -1;
3041 * dedicate a qh for the async ring head, since we couldn't unlink
3042 * a 'real' qh without stopping the async schedule [4.8]. use it
3043 * as the 'reclamation list head' too.
3044 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045 * from automatically advancing to the next td after short reads.
3047 oxu
->async
->qh_next
.qh
= NULL
;
3048 oxu
->async
->hw_next
= QH_NEXT(oxu
->async
->qh_dma
);
3049 oxu
->async
->hw_info1
= cpu_to_le32(QH_HEAD
);
3050 oxu
->async
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
3051 oxu
->async
->hw_qtd_next
= EHCI_LIST_END
;
3052 oxu
->async
->qh_state
= QH_STATE_LINKED
;
3053 oxu
->async
->hw_alt_next
= QTD_NEXT(oxu
->async
->dummy
->qtd_dma
);
3055 /* clear interrupt enables, set irq latency */
3056 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
3057 log2_irq_thresh
= 0;
3058 temp
= 1 << (16 + log2_irq_thresh
);
3059 if (HCC_CANPARK(hcc_params
)) {
3060 /* HW default park == 3, on hardware that supports it (like
3061 * NVidia and ALI silicon), maximizes throughput on the async
3062 * schedule by avoiding QH fetches between transfers.
3064 * With fast usb storage devices and NForce2, "park" seems to
3065 * make problems: throughput reduction (!), data errors...
3068 park
= min(park
, (unsigned) 3);
3072 oxu_dbg(oxu
, "park %d\n", park
);
3074 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
3075 /* periodic schedule size can be smaller than default */
3077 temp
|= (EHCI_TUNE_FLS
<< 2);
3079 oxu
->command
= temp
;
3084 /* Called during probe() after chip reset completes.
3086 static int oxu_reset(struct usb_hcd
*hcd
)
3088 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3090 spin_lock_init(&oxu
->mem_lock
);
3091 INIT_LIST_HEAD(&oxu
->urb_list
);
3095 oxu
->caps
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
;
3096 oxu
->regs
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
+ \
3097 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
3099 oxu
->mem
= hcd
->regs
+ OXU_SPH_MEM
;
3101 oxu
->caps
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
;
3102 oxu
->regs
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
+ \
3103 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
3105 oxu
->mem
= hcd
->regs
+ OXU_OTG_MEM
;
3108 oxu
->hcs_params
= readl(&oxu
->caps
->hcs_params
);
3111 return oxu_hcd_init(hcd
);
3114 static int oxu_run(struct usb_hcd
*hcd
)
3116 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3118 u32 temp
, hcc_params
;
3120 hcd
->uses_new_polling
= 1;
3122 /* EHCI spec section 4.1 */
3123 retval
= ehci_reset(oxu
);
3125 ehci_mem_cleanup(oxu
);
3128 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
3129 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
3131 /* hcc_params controls whether oxu->regs->segment must (!!!)
3132 * be used; it constrains QH/ITD/SITD and QTD locations.
3133 * dma_pool consistent memory always uses segment zero.
3134 * streaming mappings for I/O buffers, like pci_map_single(),
3135 * can return segments above 4GB, if the device allows.
3137 * NOTE: the dma mask is visible through dev->dma_mask, so
3138 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3140 * host side drivers though.
3142 hcc_params
= readl(&oxu
->caps
->hcc_params
);
3143 if (HCC_64BIT_ADDR(hcc_params
))
3144 writel(0, &oxu
->regs
->segment
);
3146 oxu
->command
&= ~(CMD_LRESET
| CMD_IAAD
| CMD_PSE
|
3147 CMD_ASE
| CMD_RESET
);
3148 oxu
->command
|= CMD_RUN
;
3149 writel(oxu
->command
, &oxu
->regs
->command
);
3150 dbg_cmd(oxu
, "init", oxu
->command
);
3153 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154 * are explicitly handed to companion controller(s), so no TT is
3155 * involved with the root hub. (Except where one is integrated,
3156 * and there's no companion controller unless maybe for USB OTG.)
3158 hcd
->state
= HC_STATE_RUNNING
;
3159 writel(FLAG_CF
, &oxu
->regs
->configured_flag
);
3160 readl(&oxu
->regs
->command
); /* unblock posted writes */
3162 temp
= HC_VERSION(readl(&oxu
->caps
->hc_capbase
));
3163 oxu_info(oxu
, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164 ((oxu
->sbrn
& 0xf0)>>4), (oxu
->sbrn
& 0x0f),
3165 temp
>> 8, temp
& 0xff, DRIVER_VERSION
,
3166 ignore_oc
? ", overcurrent ignored" : "");
3168 writel(INTR_MASK
, &oxu
->regs
->intr_enable
); /* Turn On Interrupts */
3173 static void oxu_stop(struct usb_hcd
*hcd
)
3175 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3177 /* Turn off port power on all root hub ports. */
3178 ehci_port_power(oxu
, 0);
3180 /* no more interrupts ... */
3181 del_timer_sync(&oxu
->watchdog
);
3183 spin_lock_irq(&oxu
->lock
);
3184 if (HC_IS_RUNNING(hcd
->state
))
3188 writel(0, &oxu
->regs
->intr_enable
);
3189 spin_unlock_irq(&oxu
->lock
);
3191 /* let companion controllers work when we aren't */
3192 writel(0, &oxu
->regs
->configured_flag
);
3194 /* root hub is shut down separately (first, when possible) */
3195 spin_lock_irq(&oxu
->lock
);
3198 spin_unlock_irq(&oxu
->lock
);
3199 ehci_mem_cleanup(oxu
);
3201 dbg_status(oxu
, "oxu_stop completed", readl(&oxu
->regs
->status
));
3204 /* Kick in for silicon on any bus (not just pci, etc).
3205 * This forcibly disables dma and IRQs, helping kexec and other cases
3206 * where the next system software may expect clean state.
3208 static void oxu_shutdown(struct usb_hcd
*hcd
)
3210 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3212 (void) ehci_halt(oxu
);
3213 ehci_turn_off_all_ports(oxu
);
3215 /* make BIOS/etc use companion controller during reboot */
3216 writel(0, &oxu
->regs
->configured_flag
);
3218 /* unblock posted writes */
3219 readl(&oxu
->regs
->configured_flag
);
3222 /* Non-error returns are a promise to giveback() the urb later
3223 * we drop ownership so next owner (or urb unlink) can get it
3225 * urb + dev is in hcd.self.controller.urb_list
3226 * we're queueing TDs onto software and hardware lists
3228 * hcd-specific init for hcpriv hasn't been done yet
3230 * NOTE: control, bulk, and interrupt share the same code to append TDs
3231 * to a (possibly active) QH, and the same QH scanning code.
3233 static int __oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
3236 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3237 struct list_head qtd_list
;
3239 INIT_LIST_HEAD(&qtd_list
);
3241 switch (usb_pipetype(urb
->pipe
)) {
3245 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
3247 return submit_async(oxu
, urb
, &qtd_list
, mem_flags
);
3249 case PIPE_INTERRUPT
:
3250 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
3252 return intr_submit(oxu
, urb
, &qtd_list
, mem_flags
);
3254 case PIPE_ISOCHRONOUS
:
3255 if (urb
->dev
->speed
== USB_SPEED_HIGH
)
3256 return itd_submit(oxu
, urb
, mem_flags
);
3258 return sitd_submit(oxu
, urb
, mem_flags
);
3262 /* This function is responsible for breaking URBs with big data size
3263 * into smaller size and processing small urbs in sequence.
3265 static int oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
3268 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3270 void *transfer_buffer
;
3274 /* If not bulk pipe just enqueue the URB */
3275 if (!usb_pipebulk(urb
->pipe
))
3276 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
3278 /* Otherwise we should verify the USB transfer buffer size! */
3279 transfer_buffer
= urb
->transfer_buffer
;
3281 num
= urb
->transfer_buffer_length
/ 4096;
3282 rem
= urb
->transfer_buffer_length
% 4096;
3286 /* If URB is smaller than 4096 bytes just enqueue it! */
3288 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
3290 /* Ok, we have more job to do! :) */
3292 for (i
= 0; i
< num
- 1; i
++) {
3293 /* Get free micro URB poll till a free urb is received */
3296 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
3301 /* Coping the urb */
3302 memcpy(murb
, urb
, sizeof(struct urb
));
3304 murb
->transfer_buffer_length
= 4096;
3305 murb
->transfer_buffer
= transfer_buffer
+ i
* 4096;
3307 /* Null pointer for the encodes that this is a micro urb */
3308 murb
->complete
= NULL
;
3310 ((struct oxu_murb
*) murb
)->main
= urb
;
3311 ((struct oxu_murb
*) murb
)->last
= 0;
3313 /* This loop is to guarantee urb to be processed when there's
3314 * not enough resources at a particular time by retrying.
3317 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
3323 /* Last urb requires special handling */
3325 /* Get free micro URB poll till a free urb is received */
3327 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
3332 /* Coping the urb */
3333 memcpy(murb
, urb
, sizeof(struct urb
));
3335 murb
->transfer_buffer_length
= rem
> 0 ? rem
: 4096;
3336 murb
->transfer_buffer
= transfer_buffer
+ (num
- 1) * 4096;
3338 /* Null pointer for the encodes that this is a micro urb */
3339 murb
->complete
= NULL
;
3341 ((struct oxu_murb
*) murb
)->main
= urb
;
3342 ((struct oxu_murb
*) murb
)->last
= 1;
3345 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
3353 /* Remove from hardware lists.
3354 * Completions normally happen asynchronously
3356 static int oxu_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
3358 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3360 unsigned long flags
;
3362 spin_lock_irqsave(&oxu
->lock
, flags
);
3363 switch (usb_pipetype(urb
->pipe
)) {
3367 qh
= (struct ehci_qh
*) urb
->hcpriv
;
3370 unlink_async(oxu
, qh
);
3373 case PIPE_INTERRUPT
:
3374 qh
= (struct ehci_qh
*) urb
->hcpriv
;
3377 switch (qh
->qh_state
) {
3378 case QH_STATE_LINKED
:
3379 intr_deschedule(oxu
, qh
);
3382 qh_completions(oxu
, qh
);
3385 oxu_dbg(oxu
, "bogus qh %p state %d\n",
3390 /* reschedule QH iff another request is queued */
3391 if (!list_empty(&qh
->qtd_list
)
3392 && HC_IS_RUNNING(hcd
->state
)) {
3395 status
= qh_schedule(oxu
, qh
);
3396 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3399 /* shouldn't happen often, but ...
3400 * FIXME kill those tds' urbs
3402 dev_err(hcd
->self
.controller
,
3403 "can't reschedule qh %p, err %d\n", qh
,
3411 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3415 /* Bulk qh holds the data toggle */
3416 static void oxu_endpoint_disable(struct usb_hcd
*hcd
,
3417 struct usb_host_endpoint
*ep
)
3419 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3420 unsigned long flags
;
3421 struct ehci_qh
*qh
, *tmp
;
3423 /* ASSERT: any requests/urbs are being unlinked */
3424 /* ASSERT: nobody can be submitting urbs for this any more */
3427 spin_lock_irqsave(&oxu
->lock
, flags
);
3432 /* endpoints can be iso streams. for now, we don't
3433 * accelerate iso completions ... so spin a while.
3435 if (qh
->hw_info1
== 0) {
3436 oxu_vdbg(oxu
, "iso delay\n");
3440 if (!HC_IS_RUNNING(hcd
->state
))
3441 qh
->qh_state
= QH_STATE_IDLE
;
3442 switch (qh
->qh_state
) {
3443 case QH_STATE_LINKED
:
3444 for (tmp
= oxu
->async
->qh_next
.qh
;
3446 tmp
= tmp
->qh_next
.qh
)
3448 /* periodic qh self-unlinks on empty */
3451 unlink_async(oxu
, qh
);
3453 case QH_STATE_UNLINK
: /* wait for hw to finish? */
3455 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3456 schedule_timeout_uninterruptible(1);
3458 case QH_STATE_IDLE
: /* fully unlinked */
3459 if (list_empty(&qh
->qtd_list
)) {
3466 /* caller was supposed to have unlinked any requests;
3467 * that's not our job. just leak this memory.
3469 oxu_err(oxu
, "qh %p (#%02x) state %d%s\n",
3470 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
3471 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
3476 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3479 static int oxu_get_frame(struct usb_hcd
*hcd
)
3481 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3483 return (readl(&oxu
->regs
->frame_index
) >> 3) %
3487 /* Build "status change" packet (one or two bytes) from HC registers */
3488 static int oxu_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3490 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3491 u32 temp
, mask
, status
= 0;
3492 int ports
, i
, retval
= 1;
3493 unsigned long flags
;
3495 /* if !PM, root hub timers won't get shut down ... */
3496 if (!HC_IS_RUNNING(hcd
->state
))
3499 /* init status to no-changes */
3501 ports
= HCS_N_PORTS(oxu
->hcs_params
);
3507 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3508 * causing massive log spam unless we completely ignore them. It
3509 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511 * PORT_POWER; that's surprising, but maybe within-spec.
3514 mask
= PORT_CSC
| PORT_PEC
| PORT_OCC
;
3516 mask
= PORT_CSC
| PORT_PEC
;
3518 /* no hub change reports (bit 0) for now (power, ...) */
3520 /* port N changes (bit N)? */
3521 spin_lock_irqsave(&oxu
->lock
, flags
);
3522 for (i
= 0; i
< ports
; i
++) {
3523 temp
= readl(&oxu
->regs
->port_status
[i
]);
3526 * Return status information even for ports with OWNER set.
3527 * Otherwise hub_wq wouldn't see the disconnect event when a
3528 * high-speed device is switched over to the companion
3529 * controller by the user.
3532 if (!(temp
& PORT_CONNECT
))
3533 oxu
->reset_done
[i
] = 0;
3534 if ((temp
& mask
) != 0 || ((temp
& PORT_RESUME
) != 0 &&
3535 time_after_eq(jiffies
, oxu
->reset_done
[i
]))) {
3537 buf
[0] |= 1 << (i
+ 1);
3539 buf
[1] |= 1 << (i
- 7);
3543 /* FIXME autosuspend idle root hubs */
3544 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3545 return status
? retval
: 0;
3548 /* Returns the speed of a device attached to a port on the root hub. */
3549 static inline unsigned int oxu_port_speed(struct oxu_hcd
*oxu
,
3550 unsigned int portsc
)
3552 switch ((portsc
>> 26) & 3) {
3556 return USB_PORT_STAT_LOW_SPEED
;
3559 return USB_PORT_STAT_HIGH_SPEED
;
3563 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3564 static int oxu_hub_control(struct usb_hcd
*hcd
, u16 typeReq
,
3565 u16 wValue
, u16 wIndex
, char *buf
, u16 wLength
)
3567 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3568 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
3569 u32 __iomem
*status_reg
= &oxu
->regs
->port_status
[wIndex
- 1];
3571 unsigned long flags
;
3576 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578 * (track current state ourselves) ... blink for diagnostics,
3579 * power, "this is the one", etc. EHCI spec supports this.
3582 spin_lock_irqsave(&oxu
->lock
, flags
);
3584 case ClearHubFeature
:
3586 case C_HUB_LOCAL_POWER
:
3587 case C_HUB_OVER_CURRENT
:
3588 /* no hub-wide feature/status flags */
3594 case ClearPortFeature
:
3595 if (!wIndex
|| wIndex
> ports
)
3598 temp
= readl(status_reg
);
3601 * Even if OWNER is set, so the port is owned by the
3602 * companion controller, hub_wq needs to be able to clear
3603 * the port-change status bits (especially
3604 * USB_PORT_STAT_C_CONNECTION).
3608 case USB_PORT_FEAT_ENABLE
:
3609 writel(temp
& ~PORT_PE
, status_reg
);
3611 case USB_PORT_FEAT_C_ENABLE
:
3612 writel((temp
& ~PORT_RWC_BITS
) | PORT_PEC
, status_reg
);
3614 case USB_PORT_FEAT_SUSPEND
:
3615 if (temp
& PORT_RESET
)
3617 if (temp
& PORT_SUSPEND
) {
3618 if ((temp
& PORT_PE
) == 0)
3620 /* resume signaling for 20 msec */
3621 temp
&= ~(PORT_RWC_BITS
| PORT_WAKE_BITS
);
3622 writel(temp
| PORT_RESUME
, status_reg
);
3623 oxu
->reset_done
[wIndex
] = jiffies
3624 + msecs_to_jiffies(20);
3627 case USB_PORT_FEAT_C_SUSPEND
:
3628 /* we auto-clear this feature */
3630 case USB_PORT_FEAT_POWER
:
3631 if (HCS_PPC(oxu
->hcs_params
))
3632 writel(temp
& ~(PORT_RWC_BITS
| PORT_POWER
),
3635 case USB_PORT_FEAT_C_CONNECTION
:
3636 writel((temp
& ~PORT_RWC_BITS
) | PORT_CSC
, status_reg
);
3638 case USB_PORT_FEAT_C_OVER_CURRENT
:
3639 writel((temp
& ~PORT_RWC_BITS
) | PORT_OCC
, status_reg
);
3641 case USB_PORT_FEAT_C_RESET
:
3642 /* GetPortStatus clears reset */
3647 readl(&oxu
->regs
->command
); /* unblock posted write */
3649 case GetHubDescriptor
:
3650 ehci_hub_descriptor(oxu
, (struct usb_hub_descriptor
*)
3654 /* no hub-wide feature/status flags */
3658 if (!wIndex
|| wIndex
> ports
)
3662 temp
= readl(status_reg
);
3664 /* wPortChange bits */
3665 if (temp
& PORT_CSC
)
3666 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3667 if (temp
& PORT_PEC
)
3668 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3669 if ((temp
& PORT_OCC
) && !ignore_oc
)
3670 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3672 /* whoever resumes must GetPortStatus to complete it!! */
3673 if (temp
& PORT_RESUME
) {
3675 /* Remote Wakeup received? */
3676 if (!oxu
->reset_done
[wIndex
]) {
3677 /* resume signaling for 20 msec */
3678 oxu
->reset_done
[wIndex
] = jiffies
3679 + msecs_to_jiffies(20);
3680 /* check the port again */
3681 mod_timer(&oxu_to_hcd(oxu
)->rh_timer
,
3682 oxu
->reset_done
[wIndex
]);
3685 /* resume completed? */
3686 else if (time_after_eq(jiffies
,
3687 oxu
->reset_done
[wIndex
])) {
3688 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3689 oxu
->reset_done
[wIndex
] = 0;
3691 /* stop resume signaling */
3692 temp
= readl(status_reg
);
3693 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESUME
),
3695 retval
= handshake(oxu
, status_reg
,
3696 PORT_RESUME
, 0, 2000 /* 2msec */);
3699 "port %d resume error %d\n",
3700 wIndex
+ 1, retval
);
3703 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
3707 /* whoever resets must GetPortStatus to complete it!! */
3708 if ((temp
& PORT_RESET
)
3709 && time_after_eq(jiffies
,
3710 oxu
->reset_done
[wIndex
])) {
3711 status
|= USB_PORT_STAT_C_RESET
<< 16;
3712 oxu
->reset_done
[wIndex
] = 0;
3714 /* force reset to complete */
3715 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
3717 /* REVISIT: some hardware needs 550+ usec to clear
3718 * this bit; seems too long to spin routinely...
3720 retval
= handshake(oxu
, status_reg
,
3721 PORT_RESET
, 0, 750);
3723 oxu_err(oxu
, "port %d reset error %d\n",
3724 wIndex
+ 1, retval
);
3728 /* see what we found out */
3729 temp
= check_reset_complete(oxu
, wIndex
, status_reg
,
3733 /* transfer dedicated ports to the companion hc */
3734 if ((temp
& PORT_CONNECT
) &&
3735 test_bit(wIndex
, &oxu
->companion_ports
)) {
3736 temp
&= ~PORT_RWC_BITS
;
3738 writel(temp
, status_reg
);
3739 oxu_dbg(oxu
, "port %d --> companion\n", wIndex
+ 1);
3740 temp
= readl(status_reg
);
3744 * Even if OWNER is set, there's no harm letting hub_wq
3745 * see the wPortStatus values (they should all be 0 except
3746 * for PORT_POWER anyway).
3749 if (temp
& PORT_CONNECT
) {
3750 status
|= USB_PORT_STAT_CONNECTION
;
3751 /* status may be from integrated TT */
3752 status
|= oxu_port_speed(oxu
, temp
);
3755 status
|= USB_PORT_STAT_ENABLE
;
3756 if (temp
& (PORT_SUSPEND
|PORT_RESUME
))
3757 status
|= USB_PORT_STAT_SUSPEND
;
3759 status
|= USB_PORT_STAT_OVERCURRENT
;
3760 if (temp
& PORT_RESET
)
3761 status
|= USB_PORT_STAT_RESET
;
3762 if (temp
& PORT_POWER
)
3763 status
|= USB_PORT_STAT_POWER
;
3765 #ifndef OXU_VERBOSE_DEBUG
3766 if (status
& ~0xffff) /* only if wPortChange is interesting */
3768 dbg_port(oxu
, "GetStatus", wIndex
+ 1, temp
);
3769 put_unaligned(cpu_to_le32(status
), (__le32
*) buf
);
3773 case C_HUB_LOCAL_POWER
:
3774 case C_HUB_OVER_CURRENT
:
3775 /* no hub-wide feature/status flags */
3781 case SetPortFeature
:
3782 selector
= wIndex
>> 8;
3784 if (!wIndex
|| wIndex
> ports
)
3787 temp
= readl(status_reg
);
3788 if (temp
& PORT_OWNER
)
3791 temp
&= ~PORT_RWC_BITS
;
3793 case USB_PORT_FEAT_SUSPEND
:
3794 if ((temp
& PORT_PE
) == 0
3795 || (temp
& PORT_RESET
) != 0)
3797 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3798 temp
|= PORT_WAKE_BITS
;
3799 writel(temp
| PORT_SUSPEND
, status_reg
);
3801 case USB_PORT_FEAT_POWER
:
3802 if (HCS_PPC(oxu
->hcs_params
))
3803 writel(temp
| PORT_POWER
, status_reg
);
3805 case USB_PORT_FEAT_RESET
:
3806 if (temp
& PORT_RESUME
)
3808 /* line status bits may report this as low speed,
3809 * which can be fine if this root hub has a
3810 * transaction translator built in.
3812 oxu_vdbg(oxu
, "port %d reset\n", wIndex
+ 1);
3817 * caller must wait, then call GetPortStatus
3818 * usb 2.0 spec says 50 ms resets on root
3820 oxu
->reset_done
[wIndex
] = jiffies
3821 + msecs_to_jiffies(50);
3822 writel(temp
, status_reg
);
3825 /* For downstream facing ports (these): one hub port is put
3826 * into test mode according to USB2 11.24.2.13, then the hub
3827 * must be reset (which for root hub now means rmmod+modprobe,
3828 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3829 * about the EHCI-specific stuff.
3831 case USB_PORT_FEAT_TEST
:
3832 if (!selector
|| selector
> 5)
3836 temp
|= selector
<< 16;
3837 writel(temp
, status_reg
);
3843 readl(&oxu
->regs
->command
); /* unblock posted writes */
3848 /* "stall" on error */
3851 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3857 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
3859 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3863 oxu_dbg(oxu
, "suspend root hub\n");
3865 if (time_before(jiffies
, oxu
->next_statechange
))
3868 port
= HCS_N_PORTS(oxu
->hcs_params
);
3869 spin_lock_irq(&oxu
->lock
);
3871 /* stop schedules, clean any completed work */
3872 if (HC_IS_RUNNING(hcd
->state
)) {
3874 hcd
->state
= HC_STATE_QUIESCING
;
3876 oxu
->command
= readl(&oxu
->regs
->command
);
3878 oxu
->reclaim_ready
= 1;
3881 /* Unlike other USB host controller types, EHCI doesn't have
3882 * any notion of "global" or bus-wide suspend. The driver has
3883 * to manually suspend all the active unsuspended ports, and
3884 * then manually resume them in the bus_resume() routine.
3886 oxu
->bus_suspended
= 0;
3888 u32 __iomem
*reg
= &oxu
->regs
->port_status
[port
];
3889 u32 t1
= readl(reg
) & ~PORT_RWC_BITS
;
3892 /* keep track of which ports we suspend */
3893 if ((t1
& PORT_PE
) && !(t1
& PORT_OWNER
) &&
3894 !(t1
& PORT_SUSPEND
)) {
3896 set_bit(port
, &oxu
->bus_suspended
);
3899 /* enable remote wakeup on all ports */
3900 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3901 t2
|= PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
;
3903 t2
&= ~(PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
);
3906 oxu_vdbg(oxu
, "port %d, %08x -> %08x\n",
3912 /* turn off now-idle HC */
3913 del_timer_sync(&oxu
->watchdog
);
3915 hcd
->state
= HC_STATE_SUSPENDED
;
3917 /* allow remote wakeup */
3919 if (!device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3921 writel(mask
, &oxu
->regs
->intr_enable
);
3922 readl(&oxu
->regs
->intr_enable
);
3924 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(10);
3925 spin_unlock_irq(&oxu
->lock
);
3929 /* Caller has locked the root hub, and should reset/reinit on error */
3930 static int oxu_bus_resume(struct usb_hcd
*hcd
)
3932 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3936 if (time_before(jiffies
, oxu
->next_statechange
))
3938 spin_lock_irq(&oxu
->lock
);
3940 /* Ideally and we've got a real resume here, and no port's power
3941 * was lost. (For PCI, that means Vaux was maintained.) But we
3942 * could instead be restoring a swsusp snapshot -- so that BIOS was
3943 * the last user of the controller, not reset/pm hardware keeping
3944 * state we gave to it.
3946 temp
= readl(&oxu
->regs
->intr_enable
);
3947 oxu_dbg(oxu
, "resume root hub%s\n", temp
? "" : " after power loss");
3949 /* at least some APM implementations will try to deliver
3950 * IRQs right away, so delay them until we're ready.
3952 writel(0, &oxu
->regs
->intr_enable
);
3954 /* re-init operational registers */
3955 writel(0, &oxu
->regs
->segment
);
3956 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
3957 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
3959 /* restore CMD_RUN, framelist size, and irq threshold */
3960 writel(oxu
->command
, &oxu
->regs
->command
);
3962 /* Some controller/firmware combinations need a delay during which
3963 * they set up the port statuses. See Bugzilla #8190. */
3966 /* manually resume the ports we suspended during bus_suspend() */
3967 i
= HCS_N_PORTS(oxu
->hcs_params
);
3969 temp
= readl(&oxu
->regs
->port_status
[i
]);
3970 temp
&= ~(PORT_RWC_BITS
3971 | PORT_WKOC_E
| PORT_WKDISC_E
| PORT_WKCONN_E
);
3972 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3973 oxu
->reset_done
[i
] = jiffies
+ msecs_to_jiffies(20);
3974 temp
|= PORT_RESUME
;
3976 writel(temp
, &oxu
->regs
->port_status
[i
]);
3978 i
= HCS_N_PORTS(oxu
->hcs_params
);
3981 temp
= readl(&oxu
->regs
->port_status
[i
]);
3982 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3983 temp
&= ~(PORT_RWC_BITS
| PORT_RESUME
);
3984 writel(temp
, &oxu
->regs
->port_status
[i
]);
3985 oxu_vdbg(oxu
, "resumed port %d\n", i
+ 1);
3988 (void) readl(&oxu
->regs
->command
);
3990 /* maybe re-activate the schedule(s) */
3992 if (oxu
->async
->qh_next
.qh
)
3994 if (oxu
->periodic_sched
)
3997 oxu
->command
|= temp
;
3998 writel(oxu
->command
, &oxu
->regs
->command
);
4001 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(5);
4002 hcd
->state
= HC_STATE_RUNNING
;
4004 /* Now we can safely re-enable irqs */
4005 writel(INTR_MASK
, &oxu
->regs
->intr_enable
);
4007 spin_unlock_irq(&oxu
->lock
);
4013 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
4018 static int oxu_bus_resume(struct usb_hcd
*hcd
)
4023 #endif /* CONFIG_PM */
4025 static const struct hc_driver oxu_hc_driver
= {
4026 .description
= "oxu210hp_hcd",
4027 .product_desc
= "oxu210hp HCD",
4028 .hcd_priv_size
= sizeof(struct oxu_hcd
),
4031 * Generic hardware linkage
4034 .flags
= HCD_MEMORY
| HCD_USB2
,
4037 * Basic lifecycle operations
4042 .shutdown
= oxu_shutdown
,
4045 * Managing i/o requests and associated device resources
4047 .urb_enqueue
= oxu_urb_enqueue
,
4048 .urb_dequeue
= oxu_urb_dequeue
,
4049 .endpoint_disable
= oxu_endpoint_disable
,
4052 * Scheduling support
4054 .get_frame_number
= oxu_get_frame
,
4059 .hub_status_data
= oxu_hub_status_data
,
4060 .hub_control
= oxu_hub_control
,
4061 .bus_suspend
= oxu_bus_suspend
,
4062 .bus_resume
= oxu_bus_resume
,
4069 static void oxu_configuration(struct platform_device
*pdev
, void __iomem
*base
)
4073 /* Initialize top level registers.
4076 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
4077 oxu_writel(base
, OXU_SOFTRESET
, OXU_SRESET
);
4078 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
4080 tmp
= oxu_readl(base
, OXU_PIOBURSTREADCTRL
);
4081 oxu_writel(base
, OXU_PIOBURSTREADCTRL
, tmp
| 0x0040);
4083 oxu_writel(base
, OXU_ASO
, OXU_SPHPOEN
| OXU_OVRCCURPUPDEN
|
4084 OXU_COMPARATOR
| OXU_ASO_OP
);
4086 tmp
= oxu_readl(base
, OXU_CLKCTRL_SET
);
4087 oxu_writel(base
, OXU_CLKCTRL_SET
, tmp
| OXU_SYSCLKEN
| OXU_USBOTGCLKEN
);
4089 /* Clear all top interrupt enable */
4090 oxu_writel(base
, OXU_CHIPIRQEN_CLR
, 0xff);
4092 /* Clear all top interrupt status */
4093 oxu_writel(base
, OXU_CHIPIRQSTATUS
, 0xff);
4095 /* Enable all needed top interrupt except OTG SPH core */
4096 oxu_writel(base
, OXU_CHIPIRQEN_SET
, OXU_USBSPHLPWUI
| OXU_USBOTGLPWUI
);
4099 static int oxu_verify_id(struct platform_device
*pdev
, void __iomem
*base
)
4102 static const char * const bo
[] = {
4109 /* Read controller signature register to find a match */
4110 id
= oxu_readl(base
, OXU_DEVICEID
);
4111 dev_info(&pdev
->dev
, "device ID %x\n", id
);
4112 if ((id
& OXU_REV_MASK
) != (OXU_REV_2100
<< OXU_REV_SHIFT
))
4115 dev_info(&pdev
->dev
, "found device %x %s (%04x:%04x)\n",
4116 id
>> OXU_REV_SHIFT
,
4117 bo
[(id
& OXU_BO_MASK
) >> OXU_BO_SHIFT
],
4118 (id
& OXU_MAJ_REV_MASK
) >> OXU_MAJ_REV_SHIFT
,
4119 (id
& OXU_MIN_REV_MASK
) >> OXU_MIN_REV_SHIFT
);
4124 static const struct hc_driver oxu_hc_driver
;
4125 static struct usb_hcd
*oxu_create(struct platform_device
*pdev
,
4126 unsigned long memstart
, unsigned long memlen
,
4127 void __iomem
*base
, int irq
, int otg
)
4129 struct device
*dev
= &pdev
->dev
;
4131 struct usb_hcd
*hcd
;
4132 struct oxu_hcd
*oxu
;
4135 /* Set endian mode and host mode */
4136 oxu_writel(base
+ (otg
? OXU_OTG_CORE_OFFSET
: OXU_SPH_CORE_OFFSET
),
4138 OXU_CM_HOST_ONLY
| OXU_ES_LITTLE
| OXU_VBPS
);
4140 hcd
= usb_create_hcd(&oxu_hc_driver
, dev
,
4141 otg
? "oxu210hp_otg" : "oxu210hp_sph");
4143 return ERR_PTR(-ENOMEM
);
4145 hcd
->rsrc_start
= memstart
;
4146 hcd
->rsrc_len
= memlen
;
4149 hcd
->state
= HC_STATE_HALT
;
4151 oxu
= hcd_to_oxu(hcd
);
4154 ret
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
4157 return ERR_PTR(ret
);
4160 device_wakeup_enable(hcd
->self
.controller
);
4164 static int oxu_init(struct platform_device
*pdev
,
4165 unsigned long memstart
, unsigned long memlen
,
4166 void __iomem
*base
, int irq
)
4168 struct oxu_info
*info
= platform_get_drvdata(pdev
);
4169 struct usb_hcd
*hcd
;
4172 /* First time configuration at start up */
4173 oxu_configuration(pdev
, base
);
4175 ret
= oxu_verify_id(pdev
, base
);
4177 dev_err(&pdev
->dev
, "no devices found!\n");
4181 /* Create the OTG controller */
4182 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 1);
4184 dev_err(&pdev
->dev
, "cannot create OTG controller!\n");
4186 goto error_create_otg
;
4190 /* Create the SPH host controller */
4191 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 0);
4193 dev_err(&pdev
->dev
, "cannot create SPH controller!\n");
4195 goto error_create_sph
;
4199 oxu_writel(base
, OXU_CHIPIRQEN_SET
,
4200 oxu_readl(base
, OXU_CHIPIRQEN_SET
) | 3);
4205 usb_remove_hcd(info
->hcd
[0]);
4206 usb_put_hcd(info
->hcd
[0]);
4212 static int oxu_drv_probe(struct platform_device
*pdev
)
4214 struct resource
*res
;
4216 unsigned long memstart
, memlen
;
4218 struct oxu_info
*info
;
4224 * Get the platform resources
4226 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
4229 "no IRQ! Check %s setup!\n", dev_name(&pdev
->dev
));
4233 dev_dbg(&pdev
->dev
, "IRQ resource %d\n", irq
);
4235 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4236 base
= devm_ioremap_resource(&pdev
->dev
, res
);
4238 ret
= PTR_ERR(base
);
4241 memstart
= res
->start
;
4242 memlen
= resource_size(res
);
4244 ret
= irq_set_irq_type(irq
, IRQF_TRIGGER_FALLING
);
4246 dev_err(&pdev
->dev
, "error setting irq type\n");
4251 /* Allocate a driver data struct to hold useful info for both
4254 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct oxu_info
), GFP_KERNEL
);
4259 platform_set_drvdata(pdev
, info
);
4261 ret
= oxu_init(pdev
, memstart
, memlen
, base
, irq
);
4263 dev_dbg(&pdev
->dev
, "cannot init USB devices\n");
4267 dev_info(&pdev
->dev
, "devices enabled and running\n");
4268 platform_set_drvdata(pdev
, info
);
4273 dev_err(&pdev
->dev
, "init %s fail, %d\n", dev_name(&pdev
->dev
), ret
);
4277 static void oxu_remove(struct platform_device
*pdev
, struct usb_hcd
*hcd
)
4279 usb_remove_hcd(hcd
);
4283 static int oxu_drv_remove(struct platform_device
*pdev
)
4285 struct oxu_info
*info
= platform_get_drvdata(pdev
);
4287 oxu_remove(pdev
, info
->hcd
[0]);
4288 oxu_remove(pdev
, info
->hcd
[1]);
4293 static void oxu_drv_shutdown(struct platform_device
*pdev
)
4295 oxu_drv_remove(pdev
);
4300 static int oxu_drv_suspend(struct device
*dev
)
4302 struct platform_device
*pdev
= to_platform_device(dev
);
4303 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
4308 static int oxu_drv_resume(struct device
*dev
)
4310 struct platform_device
*pdev
= to_platform_device(dev
);
4311 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
4316 #define oxu_drv_suspend NULL
4317 #define oxu_drv_resume NULL
4320 static struct platform_driver oxu_driver
= {
4321 .probe
= oxu_drv_probe
,
4322 .remove
= oxu_drv_remove
,
4323 .shutdown
= oxu_drv_shutdown
,
4324 .suspend
= oxu_drv_suspend
,
4325 .resume
= oxu_drv_resume
,
4327 .name
= "oxu210hp-hcd",
4328 .bus
= &platform_bus_type
4332 module_platform_driver(oxu_driver
);
4334 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION
);
4335 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4336 MODULE_LICENSE("GPL");