Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux/fpc-iii.git] / lib / math / rational.c
blob9781d521963d145261a9b3d7e1cacfb5c3cbe5e6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * rational fractions
5 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
6 * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
8 * helper functions when coping with rational numbers
9 */
11 #include <linux/rational.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/minmax.h>
17 * calculate best rational approximation for a given fraction
18 * taking into account restricted register size, e.g. to find
19 * appropriate values for a pll with 5 bit denominator and
20 * 8 bit numerator register fields, trying to set up with a
21 * frequency ratio of 3.1415, one would say:
23 * rational_best_approximation(31415, 10000,
24 * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
26 * you may look at given_numerator as a fixed point number,
27 * with the fractional part size described in given_denominator.
29 * for theoretical background, see:
30 * https://en.wikipedia.org/wiki/Continued_fraction
33 void rational_best_approximation(
34 unsigned long given_numerator, unsigned long given_denominator,
35 unsigned long max_numerator, unsigned long max_denominator,
36 unsigned long *best_numerator, unsigned long *best_denominator)
38 /* n/d is the starting rational, which is continually
39 * decreased each iteration using the Euclidean algorithm.
41 * dp is the value of d from the prior iteration.
43 * n2/d2, n1/d1, and n0/d0 are our successively more accurate
44 * approximations of the rational. They are, respectively,
45 * the current, previous, and two prior iterations of it.
47 * a is current term of the continued fraction.
49 unsigned long n, d, n0, d0, n1, d1, n2, d2;
50 n = given_numerator;
51 d = given_denominator;
52 n0 = d1 = 0;
53 n1 = d0 = 1;
55 for (;;) {
56 unsigned long dp, a;
58 if (d == 0)
59 break;
60 /* Find next term in continued fraction, 'a', via
61 * Euclidean algorithm.
63 dp = d;
64 a = n / d;
65 d = n % d;
66 n = dp;
68 /* Calculate the current rational approximation (aka
69 * convergent), n2/d2, using the term just found and
70 * the two prior approximations.
72 n2 = n0 + a * n1;
73 d2 = d0 + a * d1;
75 /* If the current convergent exceeds the maxes, then
76 * return either the previous convergent or the
77 * largest semi-convergent, the final term of which is
78 * found below as 't'.
80 if ((n2 > max_numerator) || (d2 > max_denominator)) {
81 unsigned long t = min((max_numerator - n0) / n1,
82 (max_denominator - d0) / d1);
84 /* This tests if the semi-convergent is closer
85 * than the previous convergent.
87 if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
88 n1 = n0 + t * n1;
89 d1 = d0 + t * d1;
91 break;
93 n0 = n1;
94 n1 = n2;
95 d0 = d1;
96 d1 = d2;
98 *best_numerator = n1;
99 *best_denominator = d1;
102 EXPORT_SYMBOL(rational_best_approximation);