1 /* ec.c - Elliptic Curve functions
2 * Copyright (C) 2007 Free Software Foundation, Inc.
3 * Copyright (C) 2013 g10 Code GmbH
5 * This file is part of Libgcrypt.
7 * Libgcrypt is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as
9 * published by the Free Software Foundation; either version 2.1 of
10 * the License, or (at your option) any later version.
12 * Libgcrypt is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "mpi-internal.h"
24 #define point_init(a) mpi_point_init((a))
25 #define point_free(a) mpi_point_free_parts((a))
27 #define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
28 #define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
30 #define DIM(v) (sizeof(v)/sizeof((v)[0]))
33 /* Create a new point option. NBITS gives the size in bits of one
34 * coordinate; it is only used to pre-allocate some resources and
35 * might also be passed as 0 to use a default value.
37 MPI_POINT
mpi_point_new(unsigned int nbits
)
41 (void)nbits
; /* Currently not used. */
43 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
48 EXPORT_SYMBOL_GPL(mpi_point_new
);
50 /* Release the point object P. P may be NULL. */
51 void mpi_point_release(MPI_POINT p
)
54 mpi_point_free_parts(p
);
58 EXPORT_SYMBOL_GPL(mpi_point_release
);
60 /* Initialize the fields of a point object. gcry_mpi_point_free_parts
61 * may be used to release the fields.
63 void mpi_point_init(MPI_POINT p
)
69 EXPORT_SYMBOL_GPL(mpi_point_init
);
71 /* Release the parts of a point object. */
72 void mpi_point_free_parts(MPI_POINT p
)
74 mpi_free(p
->x
); p
->x
= NULL
;
75 mpi_free(p
->y
); p
->y
= NULL
;
76 mpi_free(p
->z
); p
->z
= NULL
;
78 EXPORT_SYMBOL_GPL(mpi_point_free_parts
);
80 /* Set the value from S into D. */
81 static void point_set(MPI_POINT d
, MPI_POINT s
)
88 static void point_resize(MPI_POINT p
, struct mpi_ec_ctx
*ctx
)
90 size_t nlimbs
= ctx
->p
->nlimbs
;
92 mpi_resize(p
->x
, nlimbs
);
93 p
->x
->nlimbs
= nlimbs
;
94 mpi_resize(p
->z
, nlimbs
);
95 p
->z
->nlimbs
= nlimbs
;
97 if (ctx
->model
!= MPI_EC_MONTGOMERY
) {
98 mpi_resize(p
->y
, nlimbs
);
99 p
->y
->nlimbs
= nlimbs
;
103 static void point_swap_cond(MPI_POINT d
, MPI_POINT s
, unsigned long swap
,
104 struct mpi_ec_ctx
*ctx
)
106 mpi_swap_cond(d
->x
, s
->x
, swap
);
107 if (ctx
->model
!= MPI_EC_MONTGOMERY
)
108 mpi_swap_cond(d
->y
, s
->y
, swap
);
109 mpi_swap_cond(d
->z
, s
->z
, swap
);
114 static void ec_mod(MPI w
, struct mpi_ec_ctx
*ec
)
117 mpi_mod_barrett(w
, w
, ec
->t
.p_barrett
);
119 mpi_mod(w
, w
, ec
->p
);
122 static void ec_addm(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
128 static void ec_subm(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ec
)
132 mpi_add(w
, w
, ec
->p
);
136 static void ec_mulm(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
142 /* W = 2 * U mod P. */
143 static void ec_mul2(MPI w
, MPI u
, struct mpi_ec_ctx
*ctx
)
149 static void ec_powm(MPI w
, const MPI b
, const MPI e
,
150 struct mpi_ec_ctx
*ctx
)
152 mpi_powm(w
, b
, e
, ctx
->p
);
157 * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx);
158 * for easier optimization.
160 static void ec_pow2(MPI w
, const MPI b
, struct mpi_ec_ctx
*ctx
)
162 /* Using mpi_mul is slightly faster (at least on amd64). */
163 /* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */
164 ec_mulm(w
, b
, b
, ctx
);
168 * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx);
169 * for easier optimization.
171 static void ec_pow3(MPI w
, const MPI b
, struct mpi_ec_ctx
*ctx
)
173 mpi_powm(w
, b
, mpi_const(MPI_C_THREE
), ctx
->p
);
176 static void ec_invm(MPI x
, MPI a
, struct mpi_ec_ctx
*ctx
)
178 if (!mpi_invm(x
, a
, ctx
->p
))
179 log_error("ec_invm: inverse does not exist:\n");
182 static void mpih_set_cond(mpi_ptr_t wp
, mpi_ptr_t up
,
183 mpi_size_t usize
, unsigned long set
)
186 mpi_limb_t mask
= ((mpi_limb_t
)0) - set
;
189 for (i
= 0; i
< usize
; i
++) {
190 x
= mask
& (wp
[i
] ^ up
[i
]);
195 /* Routines for 2^255 - 19. */
197 #define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
199 static void ec_addm_25519(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
201 mpi_ptr_t wp
, up
, vp
;
202 mpi_size_t wsize
= LIMB_SIZE_25519
;
203 mpi_limb_t n
[LIMB_SIZE_25519
];
206 if (w
->nlimbs
!= wsize
|| u
->nlimbs
!= wsize
|| v
->nlimbs
!= wsize
)
207 log_bug("addm_25519: different sizes\n");
209 memset(n
, 0, sizeof(n
));
214 mpihelp_add_n(wp
, up
, vp
, wsize
);
215 borrow
= mpihelp_sub_n(wp
, wp
, ctx
->p
->d
, wsize
);
216 mpih_set_cond(n
, ctx
->p
->d
, wsize
, (borrow
!= 0UL));
217 mpihelp_add_n(wp
, wp
, n
, wsize
);
218 wp
[LIMB_SIZE_25519
-1] &= ~((mpi_limb_t
)1 << (255 % BITS_PER_MPI_LIMB
));
221 static void ec_subm_25519(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
223 mpi_ptr_t wp
, up
, vp
;
224 mpi_size_t wsize
= LIMB_SIZE_25519
;
225 mpi_limb_t n
[LIMB_SIZE_25519
];
228 if (w
->nlimbs
!= wsize
|| u
->nlimbs
!= wsize
|| v
->nlimbs
!= wsize
)
229 log_bug("subm_25519: different sizes\n");
231 memset(n
, 0, sizeof(n
));
236 borrow
= mpihelp_sub_n(wp
, up
, vp
, wsize
);
237 mpih_set_cond(n
, ctx
->p
->d
, wsize
, (borrow
!= 0UL));
238 mpihelp_add_n(wp
, wp
, n
, wsize
);
239 wp
[LIMB_SIZE_25519
-1] &= ~((mpi_limb_t
)1 << (255 % BITS_PER_MPI_LIMB
));
242 static void ec_mulm_25519(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
244 mpi_ptr_t wp
, up
, vp
;
245 mpi_size_t wsize
= LIMB_SIZE_25519
;
246 mpi_limb_t n
[LIMB_SIZE_25519
*2];
247 mpi_limb_t m
[LIMB_SIZE_25519
+1];
252 if (w
->nlimbs
!= wsize
|| u
->nlimbs
!= wsize
|| v
->nlimbs
!= wsize
)
253 log_bug("mulm_25519: different sizes\n");
259 mpihelp_mul_n(n
, up
, vp
, wsize
);
260 memcpy(wp
, n
, wsize
* BYTES_PER_MPI_LIMB
);
261 wp
[LIMB_SIZE_25519
-1] &= ~((mpi_limb_t
)1 << (255 % BITS_PER_MPI_LIMB
));
263 memcpy(m
, n
+LIMB_SIZE_25519
-1, (wsize
+1) * BYTES_PER_MPI_LIMB
);
264 mpihelp_rshift(m
, m
, LIMB_SIZE_25519
+1, (255 % BITS_PER_MPI_LIMB
));
266 memcpy(n
, m
, wsize
* BYTES_PER_MPI_LIMB
);
267 cy
= mpihelp_lshift(m
, m
, LIMB_SIZE_25519
, 4);
268 m
[LIMB_SIZE_25519
] = cy
;
269 cy
= mpihelp_add_n(m
, m
, n
, wsize
);
270 m
[LIMB_SIZE_25519
] += cy
;
271 cy
= mpihelp_add_n(m
, m
, n
, wsize
);
272 m
[LIMB_SIZE_25519
] += cy
;
273 cy
= mpihelp_add_n(m
, m
, n
, wsize
);
274 m
[LIMB_SIZE_25519
] += cy
;
276 cy
= mpihelp_add_n(wp
, wp
, m
, wsize
);
277 m
[LIMB_SIZE_25519
] += cy
;
279 memset(m
, 0, wsize
* BYTES_PER_MPI_LIMB
);
280 msb
= (wp
[LIMB_SIZE_25519
-1] >> (255 % BITS_PER_MPI_LIMB
));
281 m
[0] = (m
[LIMB_SIZE_25519
] * 2 + msb
) * 19;
282 wp
[LIMB_SIZE_25519
-1] &= ~((mpi_limb_t
)1 << (255 % BITS_PER_MPI_LIMB
));
283 mpihelp_add_n(wp
, wp
, m
, wsize
);
286 cy
= mpihelp_sub_n(wp
, wp
, ctx
->p
->d
, wsize
);
287 mpih_set_cond(m
, ctx
->p
->d
, wsize
, (cy
!= 0UL));
288 mpihelp_add_n(wp
, wp
, m
, wsize
);
291 static void ec_mul2_25519(MPI w
, MPI u
, struct mpi_ec_ctx
*ctx
)
293 ec_addm_25519(w
, u
, u
, ctx
);
296 static void ec_pow2_25519(MPI w
, const MPI b
, struct mpi_ec_ctx
*ctx
)
298 ec_mulm_25519(w
, b
, b
, ctx
);
301 /* Routines for 2^448 - 2^224 - 1. */
303 #define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
304 #define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2)
306 static void ec_addm_448(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
308 mpi_ptr_t wp
, up
, vp
;
309 mpi_size_t wsize
= LIMB_SIZE_448
;
310 mpi_limb_t n
[LIMB_SIZE_448
];
313 if (w
->nlimbs
!= wsize
|| u
->nlimbs
!= wsize
|| v
->nlimbs
!= wsize
)
314 log_bug("addm_448: different sizes\n");
316 memset(n
, 0, sizeof(n
));
321 cy
= mpihelp_add_n(wp
, up
, vp
, wsize
);
322 mpih_set_cond(n
, ctx
->p
->d
, wsize
, (cy
!= 0UL));
323 mpihelp_sub_n(wp
, wp
, n
, wsize
);
326 static void ec_subm_448(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
328 mpi_ptr_t wp
, up
, vp
;
329 mpi_size_t wsize
= LIMB_SIZE_448
;
330 mpi_limb_t n
[LIMB_SIZE_448
];
333 if (w
->nlimbs
!= wsize
|| u
->nlimbs
!= wsize
|| v
->nlimbs
!= wsize
)
334 log_bug("subm_448: different sizes\n");
336 memset(n
, 0, sizeof(n
));
341 borrow
= mpihelp_sub_n(wp
, up
, vp
, wsize
);
342 mpih_set_cond(n
, ctx
->p
->d
, wsize
, (borrow
!= 0UL));
343 mpihelp_add_n(wp
, wp
, n
, wsize
);
346 static void ec_mulm_448(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
)
348 mpi_ptr_t wp
, up
, vp
;
349 mpi_size_t wsize
= LIMB_SIZE_448
;
350 mpi_limb_t n
[LIMB_SIZE_448
*2];
351 mpi_limb_t a2
[LIMB_SIZE_HALF_448
];
352 mpi_limb_t a3
[LIMB_SIZE_HALF_448
];
353 mpi_limb_t b0
[LIMB_SIZE_HALF_448
];
354 mpi_limb_t b1
[LIMB_SIZE_HALF_448
];
357 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
358 mpi_limb_t b1_rest
, a3_rest
;
361 if (w
->nlimbs
!= wsize
|| u
->nlimbs
!= wsize
|| v
->nlimbs
!= wsize
)
362 log_bug("mulm_448: different sizes\n");
368 mpihelp_mul_n(n
, up
, vp
, wsize
);
370 for (i
= 0; i
< (wsize
+ 1) / 2; i
++) {
372 b1
[i
] = n
[i
+wsize
/2];
374 a3
[i
] = n
[i
+wsize
+wsize
/2];
377 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
378 b0
[LIMB_SIZE_HALF_448
-1] &= ((mpi_limb_t
)1UL << 32)-1;
379 a2
[LIMB_SIZE_HALF_448
-1] &= ((mpi_limb_t
)1UL << 32)-1;
384 for (i
= (wsize
+ 1) / 2 - 1; i
>= 0; i
--) {
388 b1
[i
] = (b1_rest
<< 32) | (b1v
>> 32);
389 a3
[i
] = (a3_rest
<< 32) | (a3v
>> 32);
390 b1_rest
= b1v
& (((mpi_limb_t
)1UL << 32)-1);
391 a3_rest
= a3v
& (((mpi_limb_t
)1UL << 32)-1);
395 cy
= mpihelp_add_n(b0
, b0
, a2
, LIMB_SIZE_HALF_448
);
396 cy
+= mpihelp_add_n(b0
, b0
, a3
, LIMB_SIZE_HALF_448
);
397 for (i
= 0; i
< (wsize
+ 1) / 2; i
++)
399 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
400 wp
[LIMB_SIZE_HALF_448
-1] &= (((mpi_limb_t
)1UL << 32)-1);
403 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
404 cy
= b0
[LIMB_SIZE_HALF_448
-1] >> 32;
407 cy
= mpihelp_add_1(b1
, b1
, LIMB_SIZE_HALF_448
, cy
);
408 cy
+= mpihelp_add_n(b1
, b1
, a2
, LIMB_SIZE_HALF_448
);
409 cy
+= mpihelp_add_n(b1
, b1
, a3
, LIMB_SIZE_HALF_448
);
410 cy
+= mpihelp_add_n(b1
, b1
, a3
, LIMB_SIZE_HALF_448
);
411 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
413 for (i
= (wsize
+ 1) / 2 - 1; i
>= 0; i
--) {
414 mpi_limb_t b1v
= b1
[i
];
415 b1
[i
] = (b1_rest
<< 32) | (b1v
>> 32);
416 b1_rest
= b1v
& (((mpi_limb_t
)1UL << 32)-1);
418 wp
[LIMB_SIZE_HALF_448
-1] |= (b1_rest
<< 32);
420 for (i
= 0; i
< wsize
/ 2; i
++)
421 wp
[i
+(wsize
+ 1) / 2] = b1
[i
];
423 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
424 cy
= b1
[LIMB_SIZE_HALF_448
-1];
427 memset(n
, 0, wsize
* BYTES_PER_MPI_LIMB
);
429 #if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
430 n
[LIMB_SIZE_HALF_448
-1] = cy
<< 32;
432 n
[LIMB_SIZE_HALF_448
] = cy
;
435 mpihelp_add_n(wp
, wp
, n
, wsize
);
437 memset(n
, 0, wsize
* BYTES_PER_MPI_LIMB
);
438 cy
= mpihelp_sub_n(wp
, wp
, ctx
->p
->d
, wsize
);
439 mpih_set_cond(n
, ctx
->p
->d
, wsize
, (cy
!= 0UL));
440 mpihelp_add_n(wp
, wp
, n
, wsize
);
443 static void ec_mul2_448(MPI w
, MPI u
, struct mpi_ec_ctx
*ctx
)
445 ec_addm_448(w
, u
, u
, ctx
);
448 static void ec_pow2_448(MPI w
, const MPI b
, struct mpi_ec_ctx
*ctx
)
450 ec_mulm_448(w
, b
, b
, ctx
);
456 /* computation routines for the field. */
457 void (*addm
)(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
);
458 void (*subm
)(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
);
459 void (*mulm
)(MPI w
, MPI u
, MPI v
, struct mpi_ec_ctx
*ctx
);
460 void (*mul2
)(MPI w
, MPI u
, struct mpi_ec_ctx
*ctx
);
461 void (*pow2
)(MPI w
, const MPI b
, struct mpi_ec_ctx
*ctx
);
464 static const struct field_table field_table
[] = {
466 "0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED",
474 "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
475 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
482 { NULL
, NULL
, NULL
, NULL
, NULL
, NULL
},
485 /* Force recomputation of all helper variables. */
486 static void mpi_ec_get_reset(struct mpi_ec_ctx
*ec
)
488 ec
->t
.valid
.a_is_pminus3
= 0;
489 ec
->t
.valid
.two_inv_p
= 0;
492 /* Accessor for helper variable. */
493 static int ec_get_a_is_pminus3(struct mpi_ec_ctx
*ec
)
497 if (!ec
->t
.valid
.a_is_pminus3
) {
498 ec
->t
.valid
.a_is_pminus3
= 1;
499 tmp
= mpi_alloc_like(ec
->p
);
500 mpi_sub_ui(tmp
, ec
->p
, 3);
501 ec
->t
.a_is_pminus3
= !mpi_cmp(ec
->a
, tmp
);
505 return ec
->t
.a_is_pminus3
;
508 /* Accessor for helper variable. */
509 static MPI
ec_get_two_inv_p(struct mpi_ec_ctx
*ec
)
511 if (!ec
->t
.valid
.two_inv_p
) {
512 ec
->t
.valid
.two_inv_p
= 1;
513 if (!ec
->t
.two_inv_p
)
514 ec
->t
.two_inv_p
= mpi_alloc(0);
515 ec_invm(ec
->t
.two_inv_p
, mpi_const(MPI_C_TWO
), ec
);
517 return ec
->t
.two_inv_p
;
520 static const char *const curve25519_bad_points
[] = {
521 "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
522 "0x0000000000000000000000000000000000000000000000000000000000000000",
523 "0x0000000000000000000000000000000000000000000000000000000000000001",
524 "0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0",
525 "0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f",
526 "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec",
527 "0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee",
531 static const char *const curve448_bad_points
[] = {
532 "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
533 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
534 "0x00000000000000000000000000000000000000000000000000000000"
535 "00000000000000000000000000000000000000000000000000000000",
536 "0x00000000000000000000000000000000000000000000000000000000"
537 "00000000000000000000000000000000000000000000000000000001",
538 "0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
539 "fffffffffffffffffffffffffffffffffffffffffffffffffffffffe",
540 "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
541 "00000000000000000000000000000000000000000000000000000000",
545 static const char *const *bad_points_table
[] = {
546 curve25519_bad_points
,
550 static void mpi_ec_coefficient_normalize(MPI a
, MPI p
)
553 mpi_resize(a
, p
->nlimbs
);
554 mpihelp_sub_n(a
->d
, p
->d
, a
->d
, p
->nlimbs
);
555 a
->nlimbs
= p
->nlimbs
;
560 /* This function initialized a context for elliptic curve based on the
561 * field GF(p). P is the prime specifying this field, A is the first
562 * coefficient. CTX is expected to be zeroized.
564 void mpi_ec_init(struct mpi_ec_ctx
*ctx
, enum gcry_mpi_ec_models model
,
565 enum ecc_dialects dialect
,
566 int flags
, MPI p
, MPI a
, MPI b
)
569 static int use_barrett
= -1 /* TODO: 1 or -1 */;
571 mpi_ec_coefficient_normalize(a
, p
);
572 mpi_ec_coefficient_normalize(b
, p
);
574 /* Fixme: Do we want to check some constraints? e.g. a < p */
577 ctx
->dialect
= dialect
;
579 if (dialect
== ECC_DIALECT_ED25519
)
582 ctx
->nbits
= mpi_get_nbits(p
);
583 ctx
->p
= mpi_copy(p
);
584 ctx
->a
= mpi_copy(a
);
585 ctx
->b
= mpi_copy(b
);
587 ctx
->t
.p_barrett
= use_barrett
> 0 ? mpi_barrett_init(ctx
->p
, 0) : NULL
;
589 mpi_ec_get_reset(ctx
);
591 if (model
== MPI_EC_MONTGOMERY
) {
592 for (i
= 0; i
< DIM(bad_points_table
); i
++) {
593 MPI p_candidate
= mpi_scanval(bad_points_table
[i
][0]);
594 int match_p
= !mpi_cmp(ctx
->p
, p_candidate
);
597 mpi_free(p_candidate
);
601 for (j
= 0; i
< DIM(ctx
->t
.scratch
) && bad_points_table
[i
][j
]; j
++)
602 ctx
->t
.scratch
[j
] = mpi_scanval(bad_points_table
[i
][j
]);
605 /* Allocate scratch variables. */
606 for (i
= 0; i
< DIM(ctx
->t
.scratch
); i
++)
607 ctx
->t
.scratch
[i
] = mpi_alloc_like(ctx
->p
);
616 for (i
= 0; field_table
[i
].p
; i
++) {
619 f_p
= mpi_scanval(field_table
[i
].p
);
623 if (!mpi_cmp(p
, f_p
)) {
624 ctx
->addm
= field_table
[i
].addm
;
625 ctx
->subm
= field_table
[i
].subm
;
626 ctx
->mulm
= field_table
[i
].mulm
;
627 ctx
->mul2
= field_table
[i
].mul2
;
628 ctx
->pow2
= field_table
[i
].pow2
;
631 mpi_resize(ctx
->a
, ctx
->p
->nlimbs
);
632 ctx
->a
->nlimbs
= ctx
->p
->nlimbs
;
634 mpi_resize(ctx
->b
, ctx
->p
->nlimbs
);
635 ctx
->b
->nlimbs
= ctx
->p
->nlimbs
;
637 for (i
= 0; i
< DIM(ctx
->t
.scratch
) && ctx
->t
.scratch
[i
]; i
++)
638 ctx
->t
.scratch
[i
]->nlimbs
= ctx
->p
->nlimbs
;
646 EXPORT_SYMBOL_GPL(mpi_ec_init
);
648 void mpi_ec_deinit(struct mpi_ec_ctx
*ctx
)
652 mpi_barrett_free(ctx
->t
.p_barrett
);
654 /* Domain parameter. */
658 mpi_point_release(ctx
->G
);
662 mpi_point_release(ctx
->Q
);
665 /* Private data of ec.c. */
666 mpi_free(ctx
->t
.two_inv_p
);
668 for (i
= 0; i
< DIM(ctx
->t
.scratch
); i
++)
669 mpi_free(ctx
->t
.scratch
[i
]);
671 EXPORT_SYMBOL_GPL(mpi_ec_deinit
);
673 /* Compute the affine coordinates from the projective coordinates in
674 * POINT. Set them into X and Y. If one coordinate is not required,
675 * X or Y may be passed as NULL. CTX is the usual context. Returns: 0
676 * on success or !0 if POINT is at infinity.
678 int mpi_ec_get_affine(MPI x
, MPI y
, MPI_POINT point
, struct mpi_ec_ctx
*ctx
)
680 if (!mpi_cmp_ui(point
->z
, 0))
683 switch (ctx
->model
) {
684 case MPI_EC_WEIERSTRASS
: /* Using Jacobian coordinates. */
690 ec_invm(z1
, point
->z
, ctx
); /* z1 = z^(-1) mod p */
691 ec_mulm(z2
, z1
, z1
, ctx
); /* z2 = z^(-2) mod p */
694 ec_mulm(x
, point
->x
, z2
, ctx
);
698 ec_mulm(z3
, z2
, z1
, ctx
); /* z3 = z^(-3) mod p */
699 ec_mulm(y
, point
->y
, z3
, ctx
);
708 case MPI_EC_MONTGOMERY
:
711 mpi_set(x
, point
->x
);
714 log_fatal("%s: Getting Y-coordinate on %s is not supported\n",
715 "mpi_ec_get_affine", "Montgomery");
726 ec_invm(z
, point
->z
, ctx
);
728 mpi_resize(z
, ctx
->p
->nlimbs
);
729 z
->nlimbs
= ctx
->p
->nlimbs
;
732 mpi_resize(x
, ctx
->p
->nlimbs
);
733 x
->nlimbs
= ctx
->p
->nlimbs
;
734 ctx
->mulm(x
, point
->x
, z
, ctx
);
737 mpi_resize(y
, ctx
->p
->nlimbs
);
738 y
->nlimbs
= ctx
->p
->nlimbs
;
739 ctx
->mulm(y
, point
->y
, z
, ctx
);
750 EXPORT_SYMBOL_GPL(mpi_ec_get_affine
);
752 /* RESULT = 2 * POINT (Weierstrass version). */
753 static void dup_point_weierstrass(MPI_POINT result
,
754 MPI_POINT point
, struct mpi_ec_ctx
*ctx
)
756 #define x3 (result->x)
757 #define y3 (result->y)
758 #define z3 (result->z)
759 #define t1 (ctx->t.scratch[0])
760 #define t2 (ctx->t.scratch[1])
761 #define t3 (ctx->t.scratch[2])
762 #define l1 (ctx->t.scratch[3])
763 #define l2 (ctx->t.scratch[4])
764 #define l3 (ctx->t.scratch[5])
766 if (!mpi_cmp_ui(point
->y
, 0) || !mpi_cmp_ui(point
->z
, 0)) {
767 /* P_y == 0 || P_z == 0 => [1:1:0] */
772 if (ec_get_a_is_pminus3(ctx
)) {
773 /* Use the faster case. */
774 /* L1 = 3(X - Z^2)(X + Z^2) */
775 /* T1: used for Z^2. */
776 /* T2: used for the right term. */
777 ec_pow2(t1
, point
->z
, ctx
);
778 ec_subm(l1
, point
->x
, t1
, ctx
);
779 ec_mulm(l1
, l1
, mpi_const(MPI_C_THREE
), ctx
);
780 ec_addm(t2
, point
->x
, t1
, ctx
);
781 ec_mulm(l1
, l1
, t2
, ctx
);
784 /* L1 = 3X^2 + aZ^4 */
785 /* T1: used for aZ^4. */
786 ec_pow2(l1
, point
->x
, ctx
);
787 ec_mulm(l1
, l1
, mpi_const(MPI_C_THREE
), ctx
);
788 ec_powm(t1
, point
->z
, mpi_const(MPI_C_FOUR
), ctx
);
789 ec_mulm(t1
, t1
, ctx
->a
, ctx
);
790 ec_addm(l1
, l1
, t1
, ctx
);
793 ec_mulm(z3
, point
->y
, point
->z
, ctx
);
794 ec_mul2(z3
, z3
, ctx
);
797 /* T2: used for Y2; required later. */
798 ec_pow2(t2
, point
->y
, ctx
);
799 ec_mulm(l2
, t2
, point
->x
, ctx
);
800 ec_mulm(l2
, l2
, mpi_const(MPI_C_FOUR
), ctx
);
802 /* X3 = L1^2 - 2L2 */
803 /* T1: used for L2^2. */
804 ec_pow2(x3
, l1
, ctx
);
805 ec_mul2(t1
, l2
, ctx
);
806 ec_subm(x3
, x3
, t1
, ctx
);
809 /* T2: taken from above. */
810 ec_pow2(t2
, t2
, ctx
);
811 ec_mulm(l3
, t2
, mpi_const(MPI_C_EIGHT
), ctx
);
813 /* Y3 = L1(L2 - X3) - L3 */
814 ec_subm(y3
, l2
, x3
, ctx
);
815 ec_mulm(y3
, y3
, l1
, ctx
);
816 ec_subm(y3
, y3
, l3
, ctx
);
830 /* RESULT = 2 * POINT (Montgomery version). */
831 static void dup_point_montgomery(MPI_POINT result
,
832 MPI_POINT point
, struct mpi_ec_ctx
*ctx
)
837 log_fatal("%s: %s not yet supported\n",
838 "mpi_ec_dup_point", "Montgomery");
841 /* RESULT = 2 * POINT (Twisted Edwards version). */
842 static void dup_point_edwards(MPI_POINT result
,
843 MPI_POINT point
, struct mpi_ec_ctx
*ctx
)
845 #define X1 (point->x)
846 #define Y1 (point->y)
847 #define Z1 (point->z)
848 #define X3 (result->x)
849 #define Y3 (result->y)
850 #define Z3 (result->z)
851 #define B (ctx->t.scratch[0])
852 #define C (ctx->t.scratch[1])
853 #define D (ctx->t.scratch[2])
854 #define E (ctx->t.scratch[3])
855 #define F (ctx->t.scratch[4])
856 #define H (ctx->t.scratch[5])
857 #define J (ctx->t.scratch[6])
859 /* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */
861 /* B = (X_1 + Y_1)^2 */
862 ctx
->addm(B
, X1
, Y1
, ctx
);
863 ctx
->pow2(B
, B
, ctx
);
867 ctx
->pow2(C
, X1
, ctx
);
868 ctx
->pow2(D
, Y1
, ctx
);
871 if (ctx
->dialect
== ECC_DIALECT_ED25519
)
872 ctx
->subm(E
, ctx
->p
, C
, ctx
);
874 ctx
->mulm(E
, ctx
->a
, C
, ctx
);
877 ctx
->addm(F
, E
, D
, ctx
);
880 ctx
->pow2(H
, Z1
, ctx
);
883 ctx
->mul2(J
, H
, ctx
);
884 ctx
->subm(J
, F
, J
, ctx
);
886 /* X_3 = (B - C - D) · J */
887 ctx
->subm(X3
, B
, C
, ctx
);
888 ctx
->subm(X3
, X3
, D
, ctx
);
889 ctx
->mulm(X3
, X3
, J
, ctx
);
891 /* Y_3 = F · (E - D) */
892 ctx
->subm(Y3
, E
, D
, ctx
);
893 ctx
->mulm(Y3
, Y3
, F
, ctx
);
896 ctx
->mulm(Z3
, F
, J
, ctx
);
913 /* RESULT = 2 * POINT */
915 mpi_ec_dup_point(MPI_POINT result
, MPI_POINT point
, struct mpi_ec_ctx
*ctx
)
917 switch (ctx
->model
) {
918 case MPI_EC_WEIERSTRASS
:
919 dup_point_weierstrass(result
, point
, ctx
);
921 case MPI_EC_MONTGOMERY
:
922 dup_point_montgomery(result
, point
, ctx
);
925 dup_point_edwards(result
, point
, ctx
);
930 /* RESULT = P1 + P2 (Weierstrass version).*/
931 static void add_points_weierstrass(MPI_POINT result
,
932 MPI_POINT p1
, MPI_POINT p2
,
933 struct mpi_ec_ctx
*ctx
)
941 #define x3 (result->x)
942 #define y3 (result->y)
943 #define z3 (result->z)
944 #define l1 (ctx->t.scratch[0])
945 #define l2 (ctx->t.scratch[1])
946 #define l3 (ctx->t.scratch[2])
947 #define l4 (ctx->t.scratch[3])
948 #define l5 (ctx->t.scratch[4])
949 #define l6 (ctx->t.scratch[5])
950 #define l7 (ctx->t.scratch[6])
951 #define l8 (ctx->t.scratch[7])
952 #define l9 (ctx->t.scratch[8])
953 #define t1 (ctx->t.scratch[9])
954 #define t2 (ctx->t.scratch[10])
956 if ((!mpi_cmp(x1
, x2
)) && (!mpi_cmp(y1
, y2
)) && (!mpi_cmp(z1
, z2
))) {
957 /* Same point; need to call the duplicate function. */
958 mpi_ec_dup_point(result
, p1
, ctx
);
959 } else if (!mpi_cmp_ui(z1
, 0)) {
960 /* P1 is at infinity. */
964 } else if (!mpi_cmp_ui(z2
, 0)) {
965 /* P2 is at infinity. */
970 int z1_is_one
= !mpi_cmp_ui(z1
, 1);
971 int z2_is_one
= !mpi_cmp_ui(z2
, 1);
978 ec_pow2(l1
, z2
, ctx
);
979 ec_mulm(l1
, l1
, x1
, ctx
);
984 ec_pow2(l2
, z1
, ctx
);
985 ec_mulm(l2
, l2
, x2
, ctx
);
988 ec_subm(l3
, l1
, l2
, ctx
);
990 ec_powm(l4
, z2
, mpi_const(MPI_C_THREE
), ctx
);
991 ec_mulm(l4
, l4
, y1
, ctx
);
993 ec_powm(l5
, z1
, mpi_const(MPI_C_THREE
), ctx
);
994 ec_mulm(l5
, l5
, y2
, ctx
);
996 ec_subm(l6
, l4
, l5
, ctx
);
998 if (!mpi_cmp_ui(l3
, 0)) {
999 if (!mpi_cmp_ui(l6
, 0)) {
1000 /* P1 and P2 are the same - use duplicate function. */
1001 mpi_ec_dup_point(result
, p1
, ctx
);
1003 /* P1 is the inverse of P2. */
1010 ec_addm(l7
, l1
, l2
, ctx
);
1012 ec_addm(l8
, l4
, l5
, ctx
);
1014 ec_mulm(z3
, z1
, z2
, ctx
);
1015 ec_mulm(z3
, z3
, l3
, ctx
);
1016 /* x3 = l6^2 - l7 l3^2 */
1017 ec_pow2(t1
, l6
, ctx
);
1018 ec_pow2(t2
, l3
, ctx
);
1019 ec_mulm(t2
, t2
, l7
, ctx
);
1020 ec_subm(x3
, t1
, t2
, ctx
);
1021 /* l9 = l7 l3^2 - 2 x3 */
1022 ec_mul2(t1
, x3
, ctx
);
1023 ec_subm(l9
, t2
, t1
, ctx
);
1024 /* y3 = (l9 l6 - l8 l3^3)/2 */
1025 ec_mulm(l9
, l9
, l6
, ctx
);
1026 ec_powm(t1
, l3
, mpi_const(MPI_C_THREE
), ctx
); /* fixme: Use saved value*/
1027 ec_mulm(t1
, t1
, l8
, ctx
);
1028 ec_subm(y3
, l9
, t1
, ctx
);
1029 ec_mulm(y3
, y3
, ec_get_two_inv_p(ctx
), ctx
);
1055 /* RESULT = P1 + P2 (Montgomery version).*/
1056 static void add_points_montgomery(MPI_POINT result
,
1057 MPI_POINT p1
, MPI_POINT p2
,
1058 struct mpi_ec_ctx
*ctx
)
1064 log_fatal("%s: %s not yet supported\n",
1065 "mpi_ec_add_points", "Montgomery");
1068 /* RESULT = P1 + P2 (Twisted Edwards version).*/
1069 static void add_points_edwards(MPI_POINT result
,
1070 MPI_POINT p1
, MPI_POINT p2
,
1071 struct mpi_ec_ctx
*ctx
)
1079 #define X3 (result->x)
1080 #define Y3 (result->y)
1081 #define Z3 (result->z)
1082 #define A (ctx->t.scratch[0])
1083 #define B (ctx->t.scratch[1])
1084 #define C (ctx->t.scratch[2])
1085 #define D (ctx->t.scratch[3])
1086 #define E (ctx->t.scratch[4])
1087 #define F (ctx->t.scratch[5])
1088 #define G (ctx->t.scratch[6])
1089 #define tmp (ctx->t.scratch[7])
1091 point_resize(result
, ctx
);
1093 /* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */
1096 ctx
->mulm(A
, Z1
, Z2
, ctx
);
1099 ctx
->pow2(B
, A
, ctx
);
1102 ctx
->mulm(C
, X1
, X2
, ctx
);
1105 ctx
->mulm(D
, Y1
, Y2
, ctx
);
1108 ctx
->mulm(E
, ctx
->b
, C
, ctx
);
1109 ctx
->mulm(E
, E
, D
, ctx
);
1112 ctx
->subm(F
, B
, E
, ctx
);
1115 ctx
->addm(G
, B
, E
, ctx
);
1117 /* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */
1118 ctx
->addm(tmp
, X1
, Y1
, ctx
);
1119 ctx
->addm(X3
, X2
, Y2
, ctx
);
1120 ctx
->mulm(X3
, X3
, tmp
, ctx
);
1121 ctx
->subm(X3
, X3
, C
, ctx
);
1122 ctx
->subm(X3
, X3
, D
, ctx
);
1123 ctx
->mulm(X3
, X3
, F
, ctx
);
1124 ctx
->mulm(X3
, X3
, A
, ctx
);
1126 /* Y_3 = A · G · (D - aC) */
1127 if (ctx
->dialect
== ECC_DIALECT_ED25519
) {
1128 ctx
->addm(Y3
, D
, C
, ctx
);
1130 ctx
->mulm(Y3
, ctx
->a
, C
, ctx
);
1131 ctx
->subm(Y3
, D
, Y3
, ctx
);
1133 ctx
->mulm(Y3
, Y3
, G
, ctx
);
1134 ctx
->mulm(Y3
, Y3
, A
, ctx
);
1137 ctx
->mulm(Z3
, F
, G
, ctx
);
1159 /* Compute a step of Montgomery Ladder (only use X and Z in the point).
1160 * Inputs: P1, P2, and x-coordinate of DIF = P1 - P1.
1161 * Outputs: PRD = 2 * P1 and SUM = P1 + P2.
1163 static void montgomery_ladder(MPI_POINT prd
, MPI_POINT sum
,
1164 MPI_POINT p1
, MPI_POINT p2
, MPI dif_x
,
1165 struct mpi_ec_ctx
*ctx
)
1167 ctx
->addm(sum
->x
, p2
->x
, p2
->z
, ctx
);
1168 ctx
->subm(p2
->z
, p2
->x
, p2
->z
, ctx
);
1169 ctx
->addm(prd
->x
, p1
->x
, p1
->z
, ctx
);
1170 ctx
->subm(p1
->z
, p1
->x
, p1
->z
, ctx
);
1171 ctx
->mulm(p2
->x
, p1
->z
, sum
->x
, ctx
);
1172 ctx
->mulm(p2
->z
, prd
->x
, p2
->z
, ctx
);
1173 ctx
->pow2(p1
->x
, prd
->x
, ctx
);
1174 ctx
->pow2(p1
->z
, p1
->z
, ctx
);
1175 ctx
->addm(sum
->x
, p2
->x
, p2
->z
, ctx
);
1176 ctx
->subm(p2
->z
, p2
->x
, p2
->z
, ctx
);
1177 ctx
->mulm(prd
->x
, p1
->x
, p1
->z
, ctx
);
1178 ctx
->subm(p1
->z
, p1
->x
, p1
->z
, ctx
);
1179 ctx
->pow2(sum
->x
, sum
->x
, ctx
);
1180 ctx
->pow2(sum
->z
, p2
->z
, ctx
);
1181 ctx
->mulm(prd
->z
, p1
->z
, ctx
->a
, ctx
); /* CTX->A: (a-2)/4 */
1182 ctx
->mulm(sum
->z
, sum
->z
, dif_x
, ctx
);
1183 ctx
->addm(prd
->z
, p1
->x
, prd
->z
, ctx
);
1184 ctx
->mulm(prd
->z
, prd
->z
, p1
->z
, ctx
);
1187 /* RESULT = P1 + P2 */
1188 void mpi_ec_add_points(MPI_POINT result
,
1189 MPI_POINT p1
, MPI_POINT p2
,
1190 struct mpi_ec_ctx
*ctx
)
1192 switch (ctx
->model
) {
1193 case MPI_EC_WEIERSTRASS
:
1194 add_points_weierstrass(result
, p1
, p2
, ctx
);
1196 case MPI_EC_MONTGOMERY
:
1197 add_points_montgomery(result
, p1
, p2
, ctx
);
1199 case MPI_EC_EDWARDS
:
1200 add_points_edwards(result
, p1
, p2
, ctx
);
1204 EXPORT_SYMBOL_GPL(mpi_ec_add_points
);
1206 /* Scalar point multiplication - the main function for ECC. If takes
1207 * an integer SCALAR and a POINT as well as the usual context CTX.
1208 * RESULT will be set to the resulting point.
1210 void mpi_ec_mul_point(MPI_POINT result
,
1211 MPI scalar
, MPI_POINT point
,
1212 struct mpi_ec_ctx
*ctx
)
1214 MPI x1
, y1
, z1
, k
, h
, yy
;
1215 unsigned int i
, loops
;
1216 struct gcry_mpi_point p1
, p2
, p1inv
;
1218 if (ctx
->model
== MPI_EC_EDWARDS
) {
1219 /* Simple left to right binary method. Algorithm 3.27 from
1220 * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott},
1221 * title = {Guide to Elliptic Curve Cryptography},
1222 * year = {2003}, isbn = {038795273X},
1223 * url = {http://www.cacr.math.uwaterloo.ca/ecc/},
1224 * publisher = {Springer-Verlag New York, Inc.}}
1229 if (mpi_cmp(scalar
, ctx
->p
) >= 0)
1230 nbits
= mpi_get_nbits(scalar
);
1232 nbits
= mpi_get_nbits(ctx
->p
);
1234 mpi_set_ui(result
->x
, 0);
1235 mpi_set_ui(result
->y
, 1);
1236 mpi_set_ui(result
->z
, 1);
1237 point_resize(point
, ctx
);
1239 point_resize(result
, ctx
);
1240 point_resize(point
, ctx
);
1242 for (j
= nbits
-1; j
>= 0; j
--) {
1243 mpi_ec_dup_point(result
, result
, ctx
);
1244 if (mpi_test_bit(scalar
, j
))
1245 mpi_ec_add_points(result
, result
, point
, ctx
);
1248 } else if (ctx
->model
== MPI_EC_MONTGOMERY
) {
1251 struct gcry_mpi_point p1_
, p2_
;
1252 MPI_POINT q1
, q2
, prd
, sum
;
1256 /* Compute scalar point multiplication with Montgomery Ladder.
1257 * Note that we don't use Y-coordinate in the points at all.
1258 * RESULT->Y will be filled by zero.
1261 nbits
= mpi_get_nbits(scalar
);
1266 mpi_set_ui(p1
.x
, 1);
1268 p2
.x
= mpi_copy(point
->x
);
1269 mpi_set_ui(p2
.z
, 1);
1271 point_resize(&p1
, ctx
);
1272 point_resize(&p2
, ctx
);
1273 point_resize(&p1_
, ctx
);
1274 point_resize(&p2_
, ctx
);
1276 mpi_resize(point
->x
, ctx
->p
->nlimbs
);
1277 point
->x
->nlimbs
= ctx
->p
->nlimbs
;
1284 for (j
= nbits
-1; j
>= 0; j
--) {
1287 sw
= mpi_test_bit(scalar
, j
);
1288 point_swap_cond(q1
, q2
, sw
, ctx
);
1289 montgomery_ladder(prd
, sum
, q1
, q2
, point
->x
, ctx
);
1290 point_swap_cond(prd
, sum
, sw
, ctx
);
1291 t
= q1
; q1
= prd
; prd
= t
;
1292 t
= q2
; q2
= sum
; sum
= t
;
1295 mpi_clear(result
->y
);
1297 point_swap_cond(&p1
, &p1_
, sw
, ctx
);
1299 rsize
= p1
.z
->nlimbs
;
1300 MPN_NORMALIZE(p1
.z
->d
, rsize
);
1302 mpi_set_ui(result
->x
, 1);
1303 mpi_set_ui(result
->z
, 0);
1306 ec_invm(z1
, p1
.z
, ctx
);
1307 ec_mulm(result
->x
, p1
.x
, z1
, ctx
);
1308 mpi_set_ui(result
->z
, 1);
1319 x1
= mpi_alloc_like(ctx
->p
);
1320 y1
= mpi_alloc_like(ctx
->p
);
1321 h
= mpi_alloc_like(ctx
->p
);
1322 k
= mpi_copy(scalar
);
1323 yy
= mpi_copy(point
->y
);
1325 if (mpi_has_sign(k
)) {
1327 ec_invm(yy
, yy
, ctx
);
1330 if (!mpi_cmp_ui(point
->z
, 1)) {
1331 mpi_set(x1
, point
->x
);
1336 z2
= mpi_alloc_like(ctx
->p
);
1337 z3
= mpi_alloc_like(ctx
->p
);
1338 ec_mulm(z2
, point
->z
, point
->z
, ctx
);
1339 ec_mulm(z3
, point
->z
, z2
, ctx
);
1340 ec_invm(z2
, z2
, ctx
);
1341 ec_mulm(x1
, point
->x
, z2
, ctx
);
1342 ec_invm(z3
, z3
, ctx
);
1343 ec_mulm(y1
, yy
, z3
, ctx
);
1347 z1
= mpi_copy(mpi_const(MPI_C_ONE
));
1349 mpi_mul(h
, k
, mpi_const(MPI_C_THREE
)); /* h = 3k */
1350 loops
= mpi_get_nbits(h
);
1352 /* If SCALAR is zero, the above mpi_mul sets H to zero and thus
1353 * LOOPs will be zero. To avoid an underflow of I in the main
1354 * loop we set LOOP to 2 and the result to (0,0,0).
1357 mpi_clear(result
->x
);
1358 mpi_clear(result
->y
);
1359 mpi_clear(result
->z
);
1361 mpi_set(result
->x
, point
->x
);
1362 mpi_set(result
->y
, yy
);
1363 mpi_set(result
->z
, point
->z
);
1365 mpi_free(yy
); yy
= NULL
;
1367 p1
.x
= x1
; x1
= NULL
;
1368 p1
.y
= y1
; y1
= NULL
;
1369 p1
.z
= z1
; z1
= NULL
;
1373 /* Invert point: y = p - y mod p */
1374 point_set(&p1inv
, &p1
);
1375 ec_subm(p1inv
.y
, ctx
->p
, p1inv
.y
, ctx
);
1377 for (i
= loops
-2; i
> 0; i
--) {
1378 mpi_ec_dup_point(result
, result
, ctx
);
1379 if (mpi_test_bit(h
, i
) == 1 && mpi_test_bit(k
, i
) == 0) {
1380 point_set(&p2
, result
);
1381 mpi_ec_add_points(result
, &p2
, &p1
, ctx
);
1383 if (mpi_test_bit(h
, i
) == 0 && mpi_test_bit(k
, i
) == 1) {
1384 point_set(&p2
, result
);
1385 mpi_ec_add_points(result
, &p2
, &p1inv
, ctx
);
1395 EXPORT_SYMBOL_GPL(mpi_ec_mul_point
);
1397 /* Return true if POINT is on the curve described by CTX. */
1398 int mpi_ec_curve_point(MPI_POINT point
, struct mpi_ec_ctx
*ctx
)
1407 /* Check that the point is in range. This needs to be done here and
1408 * not after conversion to affine coordinates.
1410 if (mpi_cmpabs(point
->x
, ctx
->p
) >= 0)
1412 if (mpi_cmpabs(point
->y
, ctx
->p
) >= 0)
1414 if (mpi_cmpabs(point
->z
, ctx
->p
) >= 0)
1417 switch (ctx
->model
) {
1418 case MPI_EC_WEIERSTRASS
:
1422 if (mpi_ec_get_affine(x
, y
, point
, ctx
))
1427 /* y^2 == x^3 + a·x + b */
1430 ec_pow3(xxx
, x
, ctx
);
1431 ec_mulm(w
, ctx
->a
, x
, ctx
);
1432 ec_addm(w
, w
, ctx
->b
, ctx
);
1433 ec_addm(w
, w
, xxx
, ctx
);
1442 case MPI_EC_MONTGOMERY
:
1445 /* With Montgomery curve, only X-coordinate is valid. */
1446 if (mpi_ec_get_affine(x
, NULL
, point
, ctx
))
1449 /* The equation is: b * y^2 == x^3 + a · x^2 + x */
1450 /* We check if right hand is quadratic residue or not by
1451 * Euler's criterion.
1453 /* CTX->A has (a-2)/4 and CTX->B has b^-1 */
1454 ec_mulm(w
, ctx
->a
, mpi_const(MPI_C_FOUR
), ctx
);
1455 ec_addm(w
, w
, mpi_const(MPI_C_TWO
), ctx
);
1456 ec_mulm(w
, w
, x
, ctx
);
1457 ec_pow2(xx
, x
, ctx
);
1458 ec_addm(w
, w
, xx
, ctx
);
1459 ec_addm(w
, w
, mpi_const(MPI_C_ONE
), ctx
);
1460 ec_mulm(w
, w
, x
, ctx
);
1461 ec_mulm(w
, w
, ctx
->b
, ctx
);
1463 /* Compute Euler's criterion: w^(p-1)/2 */
1465 ec_subm(p_minus1
, ctx
->p
, mpi_const(MPI_C_ONE
), ctx
);
1466 mpi_rshift(p_minus1
, p_minus1
, 1);
1467 ec_powm(w
, w
, p_minus1
, ctx
);
1469 res
= !mpi_cmp_ui(w
, 1);
1474 case MPI_EC_EDWARDS
:
1476 if (mpi_ec_get_affine(x
, y
, point
, ctx
))
1479 mpi_resize(w
, ctx
->p
->nlimbs
);
1480 w
->nlimbs
= ctx
->p
->nlimbs
;
1482 /* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */
1483 ctx
->pow2(x
, x
, ctx
);
1484 ctx
->pow2(y
, y
, ctx
);
1485 if (ctx
->dialect
== ECC_DIALECT_ED25519
)
1486 ctx
->subm(w
, ctx
->p
, x
, ctx
);
1488 ctx
->mulm(w
, ctx
->a
, x
, ctx
);
1489 ctx
->addm(w
, w
, y
, ctx
);
1490 ctx
->mulm(x
, x
, y
, ctx
);
1491 ctx
->mulm(x
, x
, ctx
->b
, ctx
);
1492 ctx
->subm(w
, w
, x
, ctx
);
1493 if (!mpi_cmp_ui(w
, 1))
1506 EXPORT_SYMBOL_GPL(mpi_ec_curve_point
);