1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* mpihelp-div.c - MPI helper functions
3 * Copyright (C) 1994, 1996 Free Software Foundation, Inc.
4 * Copyright (C) 1998, 1999 Free Software Foundation, Inc.
6 * This file is part of GnuPG.
8 * Note: This code is heavily based on the GNU MP Library.
9 * Actually it's the same code with only minor changes in the
10 * way the data is stored; this is to support the abstraction
11 * of an optional secure memory allocation which may be used
12 * to avoid revealing of sensitive data due to paging etc.
13 * The GNU MP Library itself is published under the LGPL;
14 * however I decided to publish this code under the plain GPL.
17 #include "mpi-internal.h"
24 #define UDIV_TIME UMUL_TIME
29 mpihelp_mod_1(mpi_ptr_t dividend_ptr
, mpi_size_t dividend_size
,
30 mpi_limb_t divisor_limb
)
34 mpi_limb_t dummy __maybe_unused
;
36 /* Botch: Should this be handled at all? Rely on callers? */
40 /* If multiplication is much faster than division, and the
41 * dividend is large, pre-invert the divisor, and use
42 * only multiplications in the inner loop.
44 * This test should be read:
45 * Does it ever help to use udiv_qrnnd_preinv?
46 * && Does what we save compensate for the inversion overhead?
48 if (UDIV_TIME
> (2 * UMUL_TIME
+ 6)
49 && (UDIV_TIME
- (2 * UMUL_TIME
+ 6)) * dividend_size
> UDIV_TIME
) {
50 int normalization_steps
;
52 normalization_steps
= count_leading_zeros(divisor_limb
);
53 if (normalization_steps
) {
54 mpi_limb_t divisor_limb_inverted
;
56 divisor_limb
<<= normalization_steps
;
58 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
59 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
60 * most significant bit (with weight 2**N) implicit.
62 * Special case for DIVISOR_LIMB == 100...000.
64 if (!(divisor_limb
<< 1))
65 divisor_limb_inverted
= ~(mpi_limb_t
)0;
67 udiv_qrnnd(divisor_limb_inverted
, dummy
,
68 -divisor_limb
, 0, divisor_limb
);
70 n1
= dividend_ptr
[dividend_size
- 1];
71 r
= n1
>> (BITS_PER_MPI_LIMB
- normalization_steps
);
73 /* Possible optimization:
75 * && divisor_limb > ((n1 << normalization_steps)
76 * | (dividend_ptr[dividend_size - 2] >> ...)))
77 * ...one division less...
79 for (i
= dividend_size
- 2; i
>= 0; i
--) {
81 UDIV_QRNND_PREINV(dummy
, r
, r
,
82 ((n1
<< normalization_steps
)
83 | (n0
>> (BITS_PER_MPI_LIMB
- normalization_steps
))),
84 divisor_limb
, divisor_limb_inverted
);
87 UDIV_QRNND_PREINV(dummy
, r
, r
,
88 n1
<< normalization_steps
,
89 divisor_limb
, divisor_limb_inverted
);
90 return r
>> normalization_steps
;
92 mpi_limb_t divisor_limb_inverted
;
94 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
95 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
96 * most significant bit (with weight 2**N) implicit.
98 * Special case for DIVISOR_LIMB == 100...000.
100 if (!(divisor_limb
<< 1))
101 divisor_limb_inverted
= ~(mpi_limb_t
)0;
103 udiv_qrnnd(divisor_limb_inverted
, dummy
,
104 -divisor_limb
, 0, divisor_limb
);
106 i
= dividend_size
- 1;
109 if (r
>= divisor_limb
)
114 for ( ; i
>= 0; i
--) {
115 n0
= dividend_ptr
[i
];
116 UDIV_QRNND_PREINV(dummy
, r
, r
,
117 n0
, divisor_limb
, divisor_limb_inverted
);
122 if (UDIV_NEEDS_NORMALIZATION
) {
123 int normalization_steps
;
125 normalization_steps
= count_leading_zeros(divisor_limb
);
126 if (normalization_steps
) {
127 divisor_limb
<<= normalization_steps
;
129 n1
= dividend_ptr
[dividend_size
- 1];
130 r
= n1
>> (BITS_PER_MPI_LIMB
- normalization_steps
);
132 /* Possible optimization:
134 * && divisor_limb > ((n1 << normalization_steps)
135 * | (dividend_ptr[dividend_size - 2] >> ...)))
136 * ...one division less...
138 for (i
= dividend_size
- 2; i
>= 0; i
--) {
139 n0
= dividend_ptr
[i
];
140 udiv_qrnnd(dummy
, r
, r
,
141 ((n1
<< normalization_steps
)
142 | (n0
>> (BITS_PER_MPI_LIMB
- normalization_steps
))),
146 udiv_qrnnd(dummy
, r
, r
,
147 n1
<< normalization_steps
,
149 return r
>> normalization_steps
;
152 /* No normalization needed, either because udiv_qrnnd doesn't require
153 * it, or because DIVISOR_LIMB is already normalized.
155 i
= dividend_size
- 1;
158 if (r
>= divisor_limb
)
163 for (; i
>= 0; i
--) {
164 n0
= dividend_ptr
[i
];
165 udiv_qrnnd(dummy
, r
, r
, n0
, divisor_limb
);
171 /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
172 * the NSIZE-DSIZE least significant quotient limbs at QP
173 * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
174 * non-zero, generate that many fraction bits and append them after the
175 * other quotient limbs.
176 * Return the most significant limb of the quotient, this is always 0 or 1.
180 * 1. The most significant bit of the divisor must be set.
181 * 2. QP must either not overlap with the input operands at all, or
182 * QP + DSIZE >= NP must hold true. (This means that it's
183 * possible to put the quotient in the high part of NUM, right after the
185 * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
189 mpihelp_divrem(mpi_ptr_t qp
, mpi_size_t qextra_limbs
,
190 mpi_ptr_t np
, mpi_size_t nsize
, mpi_ptr_t dp
, mpi_size_t dsize
)
192 mpi_limb_t most_significant_q_limb
= 0;
196 /* We are asked to divide by zero, so go ahead and do it! (To make
197 the compiler not remove this statement, return the value.) */
199 * existing clients of this function have been modified
200 * not to call it with dsize == 0, so this should not happen
215 most_significant_q_limb
= 1;
219 for (i
= nsize
- 2; i
>= 0; i
--)
220 udiv_qrnnd(qp
[i
], n1
, n1
, np
[i
], d
);
223 for (i
= qextra_limbs
- 1; i
>= 0; i
--)
224 udiv_qrnnd(qp
[i
], n1
, n1
, 0, d
);
233 mpi_limb_t n1
, n0
, n2
;
242 if (n1
>= d1
&& (n1
> d1
|| n0
>= d0
)) {
243 sub_ddmmss(n1
, n0
, n1
, n0
, d1
, d0
);
244 most_significant_q_limb
= 1;
247 for (i
= qextra_limbs
+ nsize
- 2 - 1; i
>= 0; i
--) {
251 if (i
>= qextra_limbs
)
257 /* Q should be either 111..111 or 111..110. Need special
258 * treatment of this rare case as normal division would
263 if (r
< d1
) { /* Carry in the addition? */
264 add_ssaaaa(n1
, n0
, r
- d0
,
269 n1
= d0
- (d0
!= 0 ? 1 : 0);
272 udiv_qrnnd(q
, r
, n1
, n0
, d1
);
273 umul_ppmm(n1
, n0
, d0
, q
);
278 if (n1
> r
|| (n1
== r
&& n0
> n2
)) {
279 /* The estimated Q was too large. */
281 sub_ddmmss(n1
, n0
, n1
, n0
, 0, d0
);
283 if (r
>= d1
) /* If not carry, test Q again. */
288 sub_ddmmss(n1
, n0
, r
, n2
, n1
, n0
);
298 mpi_limb_t dX
, d1
, n0
;
307 || mpihelp_cmp(np
, dp
, dsize
- 1) >= 0) {
308 mpihelp_sub_n(np
, np
, dp
, dsize
);
310 most_significant_q_limb
= 1;
314 for (i
= qextra_limbs
+ nsize
- dsize
- 1; i
>= 0; i
--) {
319 if (i
>= qextra_limbs
) {
324 MPN_COPY_DECR(np
+ 1, np
, dsize
- 1);
329 /* This might over-estimate q, but it's probably not worth
330 * the extra code here to find out. */
335 udiv_qrnnd(q
, r
, n0
, np
[dsize
- 1], dX
);
336 umul_ppmm(n1
, n0
, d1
, q
);
340 && n0
> np
[dsize
- 2])) {
343 if (r
< dX
) /* I.e. "carry in previous addition?" */
350 /* Possible optimization: We already have (q * n0) and (1 * n1)
351 * after the calculation of q. Taking advantage of that, we
352 * could make this loop make two iterations less. */
353 cy_limb
= mpihelp_submul_1(np
, dp
, dsize
, q
);
356 mpihelp_add_n(np
, np
, dp
, dsize
);
366 return most_significant_q_limb
;
370 * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
371 * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
372 * Return the single-limb remainder.
373 * There are no constraints on the value of the divisor.
375 * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
379 mpihelp_divmod_1(mpi_ptr_t quot_ptr
,
380 mpi_ptr_t dividend_ptr
, mpi_size_t dividend_size
,
381 mpi_limb_t divisor_limb
)
384 mpi_limb_t n1
, n0
, r
;
385 mpi_limb_t dummy __maybe_unused
;
390 /* If multiplication is much faster than division, and the
391 * dividend is large, pre-invert the divisor, and use
392 * only multiplications in the inner loop.
394 * This test should be read:
395 * Does it ever help to use udiv_qrnnd_preinv?
396 * && Does what we save compensate for the inversion overhead?
398 if (UDIV_TIME
> (2 * UMUL_TIME
+ 6)
399 && (UDIV_TIME
- (2 * UMUL_TIME
+ 6)) * dividend_size
> UDIV_TIME
) {
400 int normalization_steps
;
402 normalization_steps
= count_leading_zeros(divisor_limb
);
403 if (normalization_steps
) {
404 mpi_limb_t divisor_limb_inverted
;
406 divisor_limb
<<= normalization_steps
;
408 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
409 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
410 * most significant bit (with weight 2**N) implicit.
412 /* Special case for DIVISOR_LIMB == 100...000. */
413 if (!(divisor_limb
<< 1))
414 divisor_limb_inverted
= ~(mpi_limb_t
)0;
416 udiv_qrnnd(divisor_limb_inverted
, dummy
,
417 -divisor_limb
, 0, divisor_limb
);
419 n1
= dividend_ptr
[dividend_size
- 1];
420 r
= n1
>> (BITS_PER_MPI_LIMB
- normalization_steps
);
422 /* Possible optimization:
424 * && divisor_limb > ((n1 << normalization_steps)
425 * | (dividend_ptr[dividend_size - 2] >> ...)))
426 * ...one division less...
428 for (i
= dividend_size
- 2; i
>= 0; i
--) {
429 n0
= dividend_ptr
[i
];
430 UDIV_QRNND_PREINV(quot_ptr
[i
+ 1], r
, r
,
431 ((n1
<< normalization_steps
)
432 | (n0
>> (BITS_PER_MPI_LIMB
- normalization_steps
))),
433 divisor_limb
, divisor_limb_inverted
);
436 UDIV_QRNND_PREINV(quot_ptr
[0], r
, r
,
437 n1
<< normalization_steps
,
438 divisor_limb
, divisor_limb_inverted
);
439 return r
>> normalization_steps
;
441 mpi_limb_t divisor_limb_inverted
;
443 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
444 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
445 * most significant bit (with weight 2**N) implicit.
447 /* Special case for DIVISOR_LIMB == 100...000. */
448 if (!(divisor_limb
<< 1))
449 divisor_limb_inverted
= ~(mpi_limb_t
) 0;
451 udiv_qrnnd(divisor_limb_inverted
, dummy
,
452 -divisor_limb
, 0, divisor_limb
);
454 i
= dividend_size
- 1;
457 if (r
>= divisor_limb
)
462 for ( ; i
>= 0; i
--) {
463 n0
= dividend_ptr
[i
];
464 UDIV_QRNND_PREINV(quot_ptr
[i
], r
, r
,
465 n0
, divisor_limb
, divisor_limb_inverted
);
470 if (UDIV_NEEDS_NORMALIZATION
) {
471 int normalization_steps
;
473 normalization_steps
= count_leading_zeros(divisor_limb
);
474 if (normalization_steps
) {
475 divisor_limb
<<= normalization_steps
;
477 n1
= dividend_ptr
[dividend_size
- 1];
478 r
= n1
>> (BITS_PER_MPI_LIMB
- normalization_steps
);
480 /* Possible optimization:
482 * && divisor_limb > ((n1 << normalization_steps)
483 * | (dividend_ptr[dividend_size - 2] >> ...)))
484 * ...one division less...
486 for (i
= dividend_size
- 2; i
>= 0; i
--) {
487 n0
= dividend_ptr
[i
];
488 udiv_qrnnd(quot_ptr
[i
+ 1], r
, r
,
489 ((n1
<< normalization_steps
)
490 | (n0
>> (BITS_PER_MPI_LIMB
- normalization_steps
))),
494 udiv_qrnnd(quot_ptr
[0], r
, r
,
495 n1
<< normalization_steps
,
497 return r
>> normalization_steps
;
500 /* No normalization needed, either because udiv_qrnnd doesn't require
501 * it, or because DIVISOR_LIMB is already normalized.
503 i
= dividend_size
- 1;
506 if (r
>= divisor_limb
)
511 for (; i
>= 0; i
--) {
512 n0
= dividend_ptr
[i
];
513 udiv_qrnnd(quot_ptr
[i
], r
, r
, n0
, divisor_limb
);