1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
169 output
= "[always] madvise never";
170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
171 &transparent_hugepage_flags
))
172 output
= "always [madvise] never";
174 output
= "always madvise [never]";
176 return sysfs_emit(buf
, "%s\n", output
);
179 static ssize_t
enabled_store(struct kobject
*kobj
,
180 struct kobj_attribute
*attr
,
181 const char *buf
, size_t count
)
185 if (sysfs_streq(buf
, "always")) {
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
187 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
188 } else if (sysfs_streq(buf
, "madvise")) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
191 } else if (sysfs_streq(buf
, "never")) {
192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
198 int err
= start_stop_khugepaged();
204 static struct kobj_attribute enabled_attr
=
205 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
207 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
208 struct kobj_attribute
*attr
, char *buf
,
209 enum transparent_hugepage_flag flag
)
211 return sysfs_emit(buf
, "%d\n",
212 !!test_bit(flag
, &transparent_hugepage_flags
));
215 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
216 struct kobj_attribute
*attr
,
217 const char *buf
, size_t count
,
218 enum transparent_hugepage_flag flag
)
223 ret
= kstrtoul(buf
, 10, &value
);
230 set_bit(flag
, &transparent_hugepage_flags
);
232 clear_bit(flag
, &transparent_hugepage_flags
);
237 static ssize_t
defrag_show(struct kobject
*kobj
,
238 struct kobj_attribute
*attr
, char *buf
)
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
243 &transparent_hugepage_flags
))
244 output
= "[always] defer defer+madvise madvise never";
245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
246 &transparent_hugepage_flags
))
247 output
= "always [defer] defer+madvise madvise never";
248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
,
249 &transparent_hugepage_flags
))
250 output
= "always defer [defer+madvise] madvise never";
251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
,
252 &transparent_hugepage_flags
))
253 output
= "always defer defer+madvise [madvise] never";
255 output
= "always defer defer+madvise madvise [never]";
257 return sysfs_emit(buf
, "%s\n", output
);
260 static ssize_t
defrag_store(struct kobject
*kobj
,
261 struct kobj_attribute
*attr
,
262 const char *buf
, size_t count
)
264 if (sysfs_streq(buf
, "always")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
269 } else if (sysfs_streq(buf
, "defer+madvise")) {
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
274 } else if (sysfs_streq(buf
, "defer")) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
279 } else if (sysfs_streq(buf
, "madvise")) {
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
284 } else if (sysfs_streq(buf
, "never")) {
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
294 static struct kobj_attribute defrag_attr
=
295 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
297 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
298 struct kobj_attribute
*attr
, char *buf
)
300 return single_hugepage_flag_show(kobj
, attr
, buf
,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
303 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
304 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
306 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
309 static struct kobj_attribute use_zero_page_attr
=
310 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
312 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
313 struct kobj_attribute
*attr
, char *buf
)
315 return sysfs_emit(buf
, "%lu\n", HPAGE_PMD_SIZE
);
317 static struct kobj_attribute hpage_pmd_size_attr
=
318 __ATTR_RO(hpage_pmd_size
);
320 static struct attribute
*hugepage_attr
[] = {
323 &use_zero_page_attr
.attr
,
324 &hpage_pmd_size_attr
.attr
,
326 &shmem_enabled_attr
.attr
,
331 static const struct attribute_group hugepage_attr_group
= {
332 .attrs
= hugepage_attr
,
335 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
339 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
340 if (unlikely(!*hugepage_kobj
)) {
341 pr_err("failed to create transparent hugepage kobject\n");
345 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
347 pr_err("failed to register transparent hugepage group\n");
351 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group
;
360 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
362 kobject_put(*hugepage_kobj
);
366 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
368 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
369 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
370 kobject_put(hugepage_kobj
);
373 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
378 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
381 #endif /* CONFIG_SYSFS */
383 static int __init
hugepage_init(void)
386 struct kobject
*hugepage_kobj
;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags
= 0;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
403 err
= hugepage_init_sysfs(&hugepage_kobj
);
407 err
= khugepaged_init();
411 err
= register_shrinker(&huge_zero_page_shrinker
);
413 goto err_hzp_shrinker
;
414 err
= register_shrinker(&deferred_split_shrinker
);
416 goto err_split_shrinker
;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
424 transparent_hugepage_flags
= 0;
428 err
= start_stop_khugepaged();
434 unregister_shrinker(&deferred_split_shrinker
);
436 unregister_shrinker(&huge_zero_page_shrinker
);
438 khugepaged_destroy();
440 hugepage_exit_sysfs(hugepage_kobj
);
444 subsys_initcall(hugepage_init
);
446 static int __init
setup_transparent_hugepage(char *str
)
451 if (!strcmp(str
, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
453 &transparent_hugepage_flags
);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
455 &transparent_hugepage_flags
);
457 } else if (!strcmp(str
, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
459 &transparent_hugepage_flags
);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
461 &transparent_hugepage_flags
);
463 } else if (!strcmp(str
, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
465 &transparent_hugepage_flags
);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
467 &transparent_hugepage_flags
);
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
475 __setup("transparent_hugepage=", setup_transparent_hugepage
);
477 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
479 if (likely(vma
->vm_flags
& VM_WRITE
))
480 pmd
= pmd_mkwrite(pmd
);
485 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
487 struct mem_cgroup
*memcg
= page_memcg(compound_head(page
));
488 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
491 return &memcg
->deferred_split_queue
;
493 return &pgdat
->deferred_split_queue
;
496 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
498 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
500 return &pgdat
->deferred_split_queue
;
504 void prep_transhuge_page(struct page
*page
)
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
511 INIT_LIST_HEAD(page_deferred_list(page
));
512 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
515 bool is_transparent_hugepage(struct page
*page
)
517 if (!PageCompound(page
))
520 page
= compound_head(page
);
521 return is_huge_zero_page(page
) ||
522 page
[1].compound_dtor
== TRANSHUGE_PAGE_DTOR
;
524 EXPORT_SYMBOL_GPL(is_transparent_hugepage
);
526 static unsigned long __thp_get_unmapped_area(struct file
*filp
,
527 unsigned long addr
, unsigned long len
,
528 loff_t off
, unsigned long flags
, unsigned long size
)
530 loff_t off_end
= off
+ len
;
531 loff_t off_align
= round_up(off
, size
);
532 unsigned long len_pad
, ret
;
534 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
537 len_pad
= len
+ size
;
538 if (len_pad
< len
|| (off
+ len_pad
) < off
)
541 ret
= current
->mm
->get_unmapped_area(filp
, addr
, len_pad
,
542 off
>> PAGE_SHIFT
, flags
);
545 * The failure might be due to length padding. The caller will retry
546 * without the padding.
548 if (IS_ERR_VALUE(ret
))
552 * Do not try to align to THP boundary if allocation at the address
558 ret
+= (off
- ret
) & (size
- 1);
562 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
563 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
566 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
568 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
571 ret
= __thp_get_unmapped_area(filp
, addr
, len
, off
, flags
, PMD_SIZE
);
575 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
577 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
579 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
580 struct page
*page
, gfp_t gfp
)
582 struct vm_area_struct
*vma
= vmf
->vma
;
584 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
587 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
589 if (mem_cgroup_charge(page
, vma
->vm_mm
, gfp
)) {
591 count_vm_event(THP_FAULT_FALLBACK
);
592 count_vm_event(THP_FAULT_FALLBACK_CHARGE
);
593 return VM_FAULT_FALLBACK
;
595 cgroup_throttle_swaprate(page
, gfp
);
597 pgtable
= pte_alloc_one(vma
->vm_mm
);
598 if (unlikely(!pgtable
)) {
603 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
605 * The memory barrier inside __SetPageUptodate makes sure that
606 * clear_huge_page writes become visible before the set_pmd_at()
609 __SetPageUptodate(page
);
611 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
612 if (unlikely(!pmd_none(*vmf
->pmd
))) {
617 ret
= check_stable_address_space(vma
->vm_mm
);
621 /* Deliver the page fault to userland */
622 if (userfaultfd_missing(vma
)) {
625 spin_unlock(vmf
->ptl
);
627 pte_free(vma
->vm_mm
, pgtable
);
628 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
629 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
633 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
634 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
635 page_add_new_anon_rmap(page
, vma
, haddr
, true);
636 lru_cache_add_inactive_or_unevictable(page
, vma
);
637 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
638 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
639 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
640 mm_inc_nr_ptes(vma
->vm_mm
);
641 spin_unlock(vmf
->ptl
);
642 count_vm_event(THP_FAULT_ALLOC
);
643 count_memcg_event_mm(vma
->vm_mm
, THP_FAULT_ALLOC
);
648 spin_unlock(vmf
->ptl
);
651 pte_free(vma
->vm_mm
, pgtable
);
658 * always: directly stall for all thp allocations
659 * defer: wake kswapd and fail if not immediately available
660 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
661 * fail if not immediately available
662 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
664 * never: never stall for any thp allocation
666 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
668 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
670 /* Always do synchronous compaction */
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
672 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
674 /* Kick kcompactd and fail quickly */
675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
676 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
678 /* Synchronous compaction if madvised, otherwise kick kcompactd */
679 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
680 return GFP_TRANSHUGE_LIGHT
|
681 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
682 __GFP_KSWAPD_RECLAIM
);
684 /* Only do synchronous compaction if madvised */
685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
686 return GFP_TRANSHUGE_LIGHT
|
687 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
689 return GFP_TRANSHUGE_LIGHT
;
692 /* Caller must hold page table lock. */
693 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
694 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
695 struct page
*zero_page
)
700 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
701 entry
= pmd_mkhuge(entry
);
703 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
704 set_pmd_at(mm
, haddr
, pmd
, entry
);
709 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
711 struct vm_area_struct
*vma
= vmf
->vma
;
714 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
716 if (!transhuge_vma_suitable(vma
, haddr
))
717 return VM_FAULT_FALLBACK
;
718 if (unlikely(anon_vma_prepare(vma
)))
720 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
722 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
723 !mm_forbids_zeropage(vma
->vm_mm
) &&
724 transparent_hugepage_use_zero_page()) {
726 struct page
*zero_page
;
728 pgtable
= pte_alloc_one(vma
->vm_mm
);
729 if (unlikely(!pgtable
))
731 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
732 if (unlikely(!zero_page
)) {
733 pte_free(vma
->vm_mm
, pgtable
);
734 count_vm_event(THP_FAULT_FALLBACK
);
735 return VM_FAULT_FALLBACK
;
737 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
739 if (pmd_none(*vmf
->pmd
)) {
740 ret
= check_stable_address_space(vma
->vm_mm
);
742 spin_unlock(vmf
->ptl
);
743 pte_free(vma
->vm_mm
, pgtable
);
744 } else if (userfaultfd_missing(vma
)) {
745 spin_unlock(vmf
->ptl
);
746 pte_free(vma
->vm_mm
, pgtable
);
747 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
748 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
750 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
751 haddr
, vmf
->pmd
, zero_page
);
752 spin_unlock(vmf
->ptl
);
755 spin_unlock(vmf
->ptl
);
756 pte_free(vma
->vm_mm
, pgtable
);
760 gfp
= alloc_hugepage_direct_gfpmask(vma
);
761 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
762 if (unlikely(!page
)) {
763 count_vm_event(THP_FAULT_FALLBACK
);
764 return VM_FAULT_FALLBACK
;
766 prep_transhuge_page(page
);
767 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
770 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
771 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
774 struct mm_struct
*mm
= vma
->vm_mm
;
778 ptl
= pmd_lock(mm
, pmd
);
779 if (!pmd_none(*pmd
)) {
781 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
782 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
785 entry
= pmd_mkyoung(*pmd
);
786 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
787 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
788 update_mmu_cache_pmd(vma
, addr
, pmd
);
794 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
795 if (pfn_t_devmap(pfn
))
796 entry
= pmd_mkdevmap(entry
);
798 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
799 entry
= maybe_pmd_mkwrite(entry
, vma
);
803 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
808 set_pmd_at(mm
, addr
, pmd
, entry
);
809 update_mmu_cache_pmd(vma
, addr
, pmd
);
814 pte_free(mm
, pgtable
);
818 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
819 * @vmf: Structure describing the fault
820 * @pfn: pfn to insert
821 * @pgprot: page protection to use
822 * @write: whether it's a write fault
824 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
825 * also consult the vmf_insert_mixed_prot() documentation when
826 * @pgprot != @vmf->vma->vm_page_prot.
828 * Return: vm_fault_t value.
830 vm_fault_t
vmf_insert_pfn_pmd_prot(struct vm_fault
*vmf
, pfn_t pfn
,
831 pgprot_t pgprot
, bool write
)
833 unsigned long addr
= vmf
->address
& PMD_MASK
;
834 struct vm_area_struct
*vma
= vmf
->vma
;
835 pgtable_t pgtable
= NULL
;
838 * If we had pmd_special, we could avoid all these restrictions,
839 * but we need to be consistent with PTEs and architectures that
840 * can't support a 'special' bit.
842 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
844 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
845 (VM_PFNMAP
|VM_MIXEDMAP
));
846 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
848 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
849 return VM_FAULT_SIGBUS
;
851 if (arch_needs_pgtable_deposit()) {
852 pgtable
= pte_alloc_one(vma
->vm_mm
);
857 track_pfn_insert(vma
, &pgprot
, pfn
);
859 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
860 return VM_FAULT_NOPAGE
;
862 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot
);
864 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
865 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
867 if (likely(vma
->vm_flags
& VM_WRITE
))
868 pud
= pud_mkwrite(pud
);
872 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
873 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
875 struct mm_struct
*mm
= vma
->vm_mm
;
879 ptl
= pud_lock(mm
, pud
);
880 if (!pud_none(*pud
)) {
882 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
883 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
886 entry
= pud_mkyoung(*pud
);
887 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
888 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
889 update_mmu_cache_pud(vma
, addr
, pud
);
894 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
895 if (pfn_t_devmap(pfn
))
896 entry
= pud_mkdevmap(entry
);
898 entry
= pud_mkyoung(pud_mkdirty(entry
));
899 entry
= maybe_pud_mkwrite(entry
, vma
);
901 set_pud_at(mm
, addr
, pud
, entry
);
902 update_mmu_cache_pud(vma
, addr
, pud
);
909 * vmf_insert_pfn_pud_prot - insert a pud size pfn
910 * @vmf: Structure describing the fault
911 * @pfn: pfn to insert
912 * @pgprot: page protection to use
913 * @write: whether it's a write fault
915 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
916 * also consult the vmf_insert_mixed_prot() documentation when
917 * @pgprot != @vmf->vma->vm_page_prot.
919 * Return: vm_fault_t value.
921 vm_fault_t
vmf_insert_pfn_pud_prot(struct vm_fault
*vmf
, pfn_t pfn
,
922 pgprot_t pgprot
, bool write
)
924 unsigned long addr
= vmf
->address
& PUD_MASK
;
925 struct vm_area_struct
*vma
= vmf
->vma
;
928 * If we had pud_special, we could avoid all these restrictions,
929 * but we need to be consistent with PTEs and architectures that
930 * can't support a 'special' bit.
932 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
934 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
935 (VM_PFNMAP
|VM_MIXEDMAP
));
936 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
938 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
939 return VM_FAULT_SIGBUS
;
941 track_pfn_insert(vma
, &pgprot
, pfn
);
943 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
944 return VM_FAULT_NOPAGE
;
946 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot
);
947 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
949 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
950 pmd_t
*pmd
, int flags
)
954 _pmd
= pmd_mkyoung(*pmd
);
955 if (flags
& FOLL_WRITE
)
956 _pmd
= pmd_mkdirty(_pmd
);
957 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
958 pmd
, _pmd
, flags
& FOLL_WRITE
))
959 update_mmu_cache_pmd(vma
, addr
, pmd
);
962 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
963 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
965 unsigned long pfn
= pmd_pfn(*pmd
);
966 struct mm_struct
*mm
= vma
->vm_mm
;
969 assert_spin_locked(pmd_lockptr(mm
, pmd
));
972 * When we COW a devmap PMD entry, we split it into PTEs, so we should
973 * not be in this function with `flags & FOLL_COW` set.
975 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
977 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
978 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
979 (FOLL_PIN
| FOLL_GET
)))
982 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
985 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
990 if (flags
& FOLL_TOUCH
)
991 touch_pmd(vma
, addr
, pmd
, flags
);
994 * device mapped pages can only be returned if the
995 * caller will manage the page reference count.
997 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
998 return ERR_PTR(-EEXIST
);
1000 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
1001 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1003 return ERR_PTR(-EFAULT
);
1004 page
= pfn_to_page(pfn
);
1005 if (!try_grab_page(page
, flags
))
1006 page
= ERR_PTR(-ENOMEM
);
1011 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1012 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
1013 struct vm_area_struct
*vma
)
1015 spinlock_t
*dst_ptl
, *src_ptl
;
1016 struct page
*src_page
;
1018 pgtable_t pgtable
= NULL
;
1021 /* Skip if can be re-fill on fault */
1022 if (!vma_is_anonymous(vma
))
1025 pgtable
= pte_alloc_one(dst_mm
);
1026 if (unlikely(!pgtable
))
1029 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
1030 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
1031 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1037 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1038 * does not have the VM_UFFD_WP, which means that the uffd
1039 * fork event is not enabled.
1041 if (!(vma
->vm_flags
& VM_UFFD_WP
))
1042 pmd
= pmd_clear_uffd_wp(pmd
);
1044 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1045 if (unlikely(is_swap_pmd(pmd
))) {
1046 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1048 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1049 if (is_write_migration_entry(entry
)) {
1050 make_migration_entry_read(&entry
);
1051 pmd
= swp_entry_to_pmd(entry
);
1052 if (pmd_swp_soft_dirty(*src_pmd
))
1053 pmd
= pmd_swp_mksoft_dirty(pmd
);
1054 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1056 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1057 mm_inc_nr_ptes(dst_mm
);
1058 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1059 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1065 if (unlikely(!pmd_trans_huge(pmd
))) {
1066 pte_free(dst_mm
, pgtable
);
1070 * When page table lock is held, the huge zero pmd should not be
1071 * under splitting since we don't split the page itself, only pmd to
1074 if (is_huge_zero_pmd(pmd
)) {
1075 struct page
*zero_page
;
1077 * get_huge_zero_page() will never allocate a new page here,
1078 * since we already have a zero page to copy. It just takes a
1081 zero_page
= mm_get_huge_zero_page(dst_mm
);
1082 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1088 src_page
= pmd_page(pmd
);
1089 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1092 * If this page is a potentially pinned page, split and retry the fault
1093 * with smaller page size. Normally this should not happen because the
1094 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1095 * best effort that the pinned pages won't be replaced by another
1096 * random page during the coming copy-on-write.
1098 if (unlikely(is_cow_mapping(vma
->vm_flags
) &&
1099 atomic_read(&src_mm
->has_pinned
) &&
1100 page_maybe_dma_pinned(src_page
))) {
1101 pte_free(dst_mm
, pgtable
);
1102 spin_unlock(src_ptl
);
1103 spin_unlock(dst_ptl
);
1104 __split_huge_pmd(vma
, src_pmd
, addr
, false, NULL
);
1109 page_dup_rmap(src_page
, true);
1110 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1111 mm_inc_nr_ptes(dst_mm
);
1112 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1114 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1115 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1116 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1120 spin_unlock(src_ptl
);
1121 spin_unlock(dst_ptl
);
1126 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1127 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1128 pud_t
*pud
, int flags
)
1132 _pud
= pud_mkyoung(*pud
);
1133 if (flags
& FOLL_WRITE
)
1134 _pud
= pud_mkdirty(_pud
);
1135 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1136 pud
, _pud
, flags
& FOLL_WRITE
))
1137 update_mmu_cache_pud(vma
, addr
, pud
);
1140 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1141 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1143 unsigned long pfn
= pud_pfn(*pud
);
1144 struct mm_struct
*mm
= vma
->vm_mm
;
1147 assert_spin_locked(pud_lockptr(mm
, pud
));
1149 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1152 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1153 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
1154 (FOLL_PIN
| FOLL_GET
)))
1157 if (pud_present(*pud
) && pud_devmap(*pud
))
1162 if (flags
& FOLL_TOUCH
)
1163 touch_pud(vma
, addr
, pud
, flags
);
1166 * device mapped pages can only be returned if the
1167 * caller will manage the page reference count.
1169 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1171 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
1172 return ERR_PTR(-EEXIST
);
1174 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1175 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1177 return ERR_PTR(-EFAULT
);
1178 page
= pfn_to_page(pfn
);
1179 if (!try_grab_page(page
, flags
))
1180 page
= ERR_PTR(-ENOMEM
);
1185 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1186 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1187 struct vm_area_struct
*vma
)
1189 spinlock_t
*dst_ptl
, *src_ptl
;
1193 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1194 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1195 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1199 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1203 * When page table lock is held, the huge zero pud should not be
1204 * under splitting since we don't split the page itself, only pud to
1207 if (is_huge_zero_pud(pud
)) {
1208 /* No huge zero pud yet */
1211 /* Please refer to comments in copy_huge_pmd() */
1212 if (unlikely(is_cow_mapping(vma
->vm_flags
) &&
1213 atomic_read(&src_mm
->has_pinned
) &&
1214 page_maybe_dma_pinned(pud_page(pud
)))) {
1215 spin_unlock(src_ptl
);
1216 spin_unlock(dst_ptl
);
1217 __split_huge_pud(vma
, src_pud
, addr
);
1221 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1222 pud
= pud_mkold(pud_wrprotect(pud
));
1223 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1227 spin_unlock(src_ptl
);
1228 spin_unlock(dst_ptl
);
1232 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1235 unsigned long haddr
;
1236 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1238 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1239 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1242 entry
= pud_mkyoung(orig_pud
);
1244 entry
= pud_mkdirty(entry
);
1245 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1246 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1247 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1250 spin_unlock(vmf
->ptl
);
1252 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1254 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1257 unsigned long haddr
;
1258 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1260 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1261 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1264 entry
= pmd_mkyoung(orig_pmd
);
1266 entry
= pmd_mkdirty(entry
);
1267 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1268 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1269 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1272 spin_unlock(vmf
->ptl
);
1275 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1277 struct vm_area_struct
*vma
= vmf
->vma
;
1279 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1281 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1282 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1284 if (is_huge_zero_pmd(orig_pmd
))
1287 spin_lock(vmf
->ptl
);
1289 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1290 spin_unlock(vmf
->ptl
);
1294 page
= pmd_page(orig_pmd
);
1295 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1297 /* Lock page for reuse_swap_page() */
1298 if (!trylock_page(page
)) {
1300 spin_unlock(vmf
->ptl
);
1302 spin_lock(vmf
->ptl
);
1303 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1304 spin_unlock(vmf
->ptl
);
1313 * We can only reuse the page if nobody else maps the huge page or it's
1316 if (reuse_swap_page(page
, NULL
)) {
1318 entry
= pmd_mkyoung(orig_pmd
);
1319 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1320 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1321 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1323 spin_unlock(vmf
->ptl
);
1324 return VM_FAULT_WRITE
;
1328 spin_unlock(vmf
->ptl
);
1330 __split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
1331 return VM_FAULT_FALLBACK
;
1335 * FOLL_FORCE can write to even unwritable pmd's, but only
1336 * after we've gone through a COW cycle and they are dirty.
1338 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1340 return pmd_write(pmd
) ||
1341 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1344 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1349 struct mm_struct
*mm
= vma
->vm_mm
;
1350 struct page
*page
= NULL
;
1352 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1354 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1357 /* Avoid dumping huge zero page */
1358 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1359 return ERR_PTR(-EFAULT
);
1361 /* Full NUMA hinting faults to serialise migration in fault paths */
1362 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1365 page
= pmd_page(*pmd
);
1366 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1368 if (!try_grab_page(page
, flags
))
1369 return ERR_PTR(-ENOMEM
);
1371 if (flags
& FOLL_TOUCH
)
1372 touch_pmd(vma
, addr
, pmd
, flags
);
1374 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1376 * We don't mlock() pte-mapped THPs. This way we can avoid
1377 * leaking mlocked pages into non-VM_LOCKED VMAs.
1381 * In most cases the pmd is the only mapping of the page as we
1382 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1383 * writable private mappings in populate_vma_page_range().
1385 * The only scenario when we have the page shared here is if we
1386 * mlocking read-only mapping shared over fork(). We skip
1387 * mlocking such pages.
1391 * We can expect PageDoubleMap() to be stable under page lock:
1392 * for file pages we set it in page_add_file_rmap(), which
1393 * requires page to be locked.
1396 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1398 if (PageDoubleMap(page
) || !page
->mapping
)
1400 if (!trylock_page(page
))
1402 if (page
->mapping
&& !PageDoubleMap(page
))
1403 mlock_vma_page(page
);
1407 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1408 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1414 /* NUMA hinting page fault entry point for trans huge pmds */
1415 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1417 struct vm_area_struct
*vma
= vmf
->vma
;
1418 struct anon_vma
*anon_vma
= NULL
;
1420 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1421 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1422 int target_nid
, last_cpupid
= -1;
1424 bool migrated
= false;
1428 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1429 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1433 * If there are potential migrations, wait for completion and retry
1434 * without disrupting NUMA hinting information. Do not relock and
1435 * check_same as the page may no longer be mapped.
1437 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1438 page
= pmd_page(*vmf
->pmd
);
1439 if (!get_page_unless_zero(page
))
1441 spin_unlock(vmf
->ptl
);
1442 put_and_wait_on_page_locked(page
);
1446 page
= pmd_page(pmd
);
1447 BUG_ON(is_huge_zero_page(page
));
1448 page_nid
= page_to_nid(page
);
1449 last_cpupid
= page_cpupid_last(page
);
1450 count_vm_numa_event(NUMA_HINT_FAULTS
);
1451 if (page_nid
== this_nid
) {
1452 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1453 flags
|= TNF_FAULT_LOCAL
;
1456 /* See similar comment in do_numa_page for explanation */
1457 if (!pmd_savedwrite(pmd
))
1458 flags
|= TNF_NO_GROUP
;
1461 * Acquire the page lock to serialise THP migrations but avoid dropping
1462 * page_table_lock if at all possible
1464 page_locked
= trylock_page(page
);
1465 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1466 if (target_nid
== NUMA_NO_NODE
) {
1467 /* If the page was locked, there are no parallel migrations */
1472 /* Migration could have started since the pmd_trans_migrating check */
1474 page_nid
= NUMA_NO_NODE
;
1475 if (!get_page_unless_zero(page
))
1477 spin_unlock(vmf
->ptl
);
1478 put_and_wait_on_page_locked(page
);
1483 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1484 * to serialises splits
1487 spin_unlock(vmf
->ptl
);
1488 anon_vma
= page_lock_anon_vma_read(page
);
1490 /* Confirm the PMD did not change while page_table_lock was released */
1491 spin_lock(vmf
->ptl
);
1492 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1495 page_nid
= NUMA_NO_NODE
;
1499 /* Bail if we fail to protect against THP splits for any reason */
1500 if (unlikely(!anon_vma
)) {
1502 page_nid
= NUMA_NO_NODE
;
1507 * Since we took the NUMA fault, we must have observed the !accessible
1508 * bit. Make sure all other CPUs agree with that, to avoid them
1509 * modifying the page we're about to migrate.
1511 * Must be done under PTL such that we'll observe the relevant
1512 * inc_tlb_flush_pending().
1514 * We are not sure a pending tlb flush here is for a huge page
1515 * mapping or not. Hence use the tlb range variant
1517 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1518 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1520 * change_huge_pmd() released the pmd lock before
1521 * invalidating the secondary MMUs sharing the primary
1522 * MMU pagetables (with ->invalidate_range()). The
1523 * mmu_notifier_invalidate_range_end() (which
1524 * internally calls ->invalidate_range()) in
1525 * change_pmd_range() will run after us, so we can't
1526 * rely on it here and we need an explicit invalidate.
1528 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1529 haddr
+ HPAGE_PMD_SIZE
);
1533 * Migrate the THP to the requested node, returns with page unlocked
1534 * and access rights restored.
1536 spin_unlock(vmf
->ptl
);
1538 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1539 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1541 flags
|= TNF_MIGRATED
;
1542 page_nid
= target_nid
;
1544 flags
|= TNF_MIGRATE_FAIL
;
1548 BUG_ON(!PageLocked(page
));
1549 was_writable
= pmd_savedwrite(pmd
);
1550 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1551 pmd
= pmd_mkyoung(pmd
);
1553 pmd
= pmd_mkwrite(pmd
);
1554 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1555 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1558 spin_unlock(vmf
->ptl
);
1562 page_unlock_anon_vma_read(anon_vma
);
1564 if (page_nid
!= NUMA_NO_NODE
)
1565 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1572 * Return true if we do MADV_FREE successfully on entire pmd page.
1573 * Otherwise, return false.
1575 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1576 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1581 struct mm_struct
*mm
= tlb
->mm
;
1584 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1586 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1591 if (is_huge_zero_pmd(orig_pmd
))
1594 if (unlikely(!pmd_present(orig_pmd
))) {
1595 VM_BUG_ON(thp_migration_supported() &&
1596 !is_pmd_migration_entry(orig_pmd
));
1600 page
= pmd_page(orig_pmd
);
1602 * If other processes are mapping this page, we couldn't discard
1603 * the page unless they all do MADV_FREE so let's skip the page.
1605 if (page_mapcount(page
) != 1)
1608 if (!trylock_page(page
))
1612 * If user want to discard part-pages of THP, split it so MADV_FREE
1613 * will deactivate only them.
1615 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1618 split_huge_page(page
);
1624 if (PageDirty(page
))
1625 ClearPageDirty(page
);
1628 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1629 pmdp_invalidate(vma
, addr
, pmd
);
1630 orig_pmd
= pmd_mkold(orig_pmd
);
1631 orig_pmd
= pmd_mkclean(orig_pmd
);
1633 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1634 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1637 mark_page_lazyfree(page
);
1645 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1649 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1650 pte_free(mm
, pgtable
);
1654 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1655 pmd_t
*pmd
, unsigned long addr
)
1660 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1662 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1666 * For architectures like ppc64 we look at deposited pgtable
1667 * when calling pmdp_huge_get_and_clear. So do the
1668 * pgtable_trans_huge_withdraw after finishing pmdp related
1671 orig_pmd
= pmdp_huge_get_and_clear_full(vma
, addr
, pmd
,
1673 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1674 if (vma_is_special_huge(vma
)) {
1675 if (arch_needs_pgtable_deposit())
1676 zap_deposited_table(tlb
->mm
, pmd
);
1678 if (is_huge_zero_pmd(orig_pmd
))
1679 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1680 } else if (is_huge_zero_pmd(orig_pmd
)) {
1681 zap_deposited_table(tlb
->mm
, pmd
);
1683 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1685 struct page
*page
= NULL
;
1686 int flush_needed
= 1;
1688 if (pmd_present(orig_pmd
)) {
1689 page
= pmd_page(orig_pmd
);
1690 page_remove_rmap(page
, true);
1691 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1692 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1693 } else if (thp_migration_supported()) {
1696 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1697 entry
= pmd_to_swp_entry(orig_pmd
);
1698 page
= pfn_to_page(swp_offset(entry
));
1701 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1703 if (PageAnon(page
)) {
1704 zap_deposited_table(tlb
->mm
, pmd
);
1705 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1707 if (arch_needs_pgtable_deposit())
1708 zap_deposited_table(tlb
->mm
, pmd
);
1709 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1714 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1719 #ifndef pmd_move_must_withdraw
1720 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1721 spinlock_t
*old_pmd_ptl
,
1722 struct vm_area_struct
*vma
)
1725 * With split pmd lock we also need to move preallocated
1726 * PTE page table if new_pmd is on different PMD page table.
1728 * We also don't deposit and withdraw tables for file pages.
1730 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1734 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1736 #ifdef CONFIG_MEM_SOFT_DIRTY
1737 if (unlikely(is_pmd_migration_entry(pmd
)))
1738 pmd
= pmd_swp_mksoft_dirty(pmd
);
1739 else if (pmd_present(pmd
))
1740 pmd
= pmd_mksoft_dirty(pmd
);
1745 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1746 unsigned long new_addr
, pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1748 spinlock_t
*old_ptl
, *new_ptl
;
1750 struct mm_struct
*mm
= vma
->vm_mm
;
1751 bool force_flush
= false;
1754 * The destination pmd shouldn't be established, free_pgtables()
1755 * should have release it.
1757 if (WARN_ON(!pmd_none(*new_pmd
))) {
1758 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1763 * We don't have to worry about the ordering of src and dst
1764 * ptlocks because exclusive mmap_lock prevents deadlock.
1766 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1768 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1769 if (new_ptl
!= old_ptl
)
1770 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1771 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1772 if (pmd_present(pmd
))
1774 VM_BUG_ON(!pmd_none(*new_pmd
));
1776 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1778 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1779 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1781 pmd
= move_soft_dirty_pmd(pmd
);
1782 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1784 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1785 if (new_ptl
!= old_ptl
)
1786 spin_unlock(new_ptl
);
1787 spin_unlock(old_ptl
);
1795 * - 0 if PMD could not be locked
1796 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1797 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1799 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1800 unsigned long addr
, pgprot_t newprot
, unsigned long cp_flags
)
1802 struct mm_struct
*mm
= vma
->vm_mm
;
1805 bool preserve_write
;
1807 bool prot_numa
= cp_flags
& MM_CP_PROT_NUMA
;
1808 bool uffd_wp
= cp_flags
& MM_CP_UFFD_WP
;
1809 bool uffd_wp_resolve
= cp_flags
& MM_CP_UFFD_WP_RESOLVE
;
1811 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1815 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1818 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1819 if (is_swap_pmd(*pmd
)) {
1820 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1822 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1823 if (is_write_migration_entry(entry
)) {
1826 * A protection check is difficult so
1827 * just be safe and disable write
1829 make_migration_entry_read(&entry
);
1830 newpmd
= swp_entry_to_pmd(entry
);
1831 if (pmd_swp_soft_dirty(*pmd
))
1832 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1833 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1840 * Avoid trapping faults against the zero page. The read-only
1841 * data is likely to be read-cached on the local CPU and
1842 * local/remote hits to the zero page are not interesting.
1844 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1847 if (prot_numa
&& pmd_protnone(*pmd
))
1851 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1852 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1853 * which is also under mmap_read_lock(mm):
1856 * change_huge_pmd(prot_numa=1)
1857 * pmdp_huge_get_and_clear_notify()
1858 * madvise_dontneed()
1860 * pmd_trans_huge(*pmd) == 0 (without ptl)
1863 * // pmd is re-established
1865 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1866 * which may break userspace.
1868 * pmdp_invalidate() is required to make sure we don't miss
1869 * dirty/young flags set by hardware.
1871 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1873 entry
= pmd_modify(entry
, newprot
);
1875 entry
= pmd_mk_savedwrite(entry
);
1877 entry
= pmd_wrprotect(entry
);
1878 entry
= pmd_mkuffd_wp(entry
);
1879 } else if (uffd_wp_resolve
) {
1881 * Leave the write bit to be handled by PF interrupt
1882 * handler, then things like COW could be properly
1885 entry
= pmd_clear_uffd_wp(entry
);
1888 set_pmd_at(mm
, addr
, pmd
, entry
);
1889 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
1896 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1898 * Note that if it returns page table lock pointer, this routine returns without
1899 * unlocking page table lock. So callers must unlock it.
1901 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1904 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1905 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
1913 * Returns true if a given pud maps a thp, false otherwise.
1915 * Note that if it returns true, this routine returns without unlocking page
1916 * table lock. So callers must unlock it.
1918 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
1922 ptl
= pud_lock(vma
->vm_mm
, pud
);
1923 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
1929 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1930 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1931 pud_t
*pud
, unsigned long addr
)
1935 ptl
= __pud_trans_huge_lock(pud
, vma
);
1939 * For architectures like ppc64 we look at deposited pgtable
1940 * when calling pudp_huge_get_and_clear. So do the
1941 * pgtable_trans_huge_withdraw after finishing pudp related
1944 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
1945 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
1946 if (vma_is_special_huge(vma
)) {
1948 /* No zero page support yet */
1950 /* No support for anonymous PUD pages yet */
1956 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
1957 unsigned long haddr
)
1959 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
1960 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
1961 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
1962 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
1964 count_vm_event(THP_SPLIT_PUD
);
1966 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
1969 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
1970 unsigned long address
)
1973 struct mmu_notifier_range range
;
1975 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1976 address
& HPAGE_PUD_MASK
,
1977 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
1978 mmu_notifier_invalidate_range_start(&range
);
1979 ptl
= pud_lock(vma
->vm_mm
, pud
);
1980 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
1982 __split_huge_pud_locked(vma
, pud
, range
.start
);
1987 * No need to double call mmu_notifier->invalidate_range() callback as
1988 * the above pudp_huge_clear_flush_notify() did already call it.
1990 mmu_notifier_invalidate_range_only_end(&range
);
1992 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1994 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
1995 unsigned long haddr
, pmd_t
*pmd
)
1997 struct mm_struct
*mm
= vma
->vm_mm
;
2003 * Leave pmd empty until pte is filled note that it is fine to delay
2004 * notification until mmu_notifier_invalidate_range_end() as we are
2005 * replacing a zero pmd write protected page with a zero pte write
2008 * See Documentation/vm/mmu_notifier.rst
2010 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2012 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2013 pmd_populate(mm
, &_pmd
, pgtable
);
2015 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2017 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2018 entry
= pte_mkspecial(entry
);
2019 pte
= pte_offset_map(&_pmd
, haddr
);
2020 VM_BUG_ON(!pte_none(*pte
));
2021 set_pte_at(mm
, haddr
, pte
, entry
);
2024 smp_wmb(); /* make pte visible before pmd */
2025 pmd_populate(mm
, pmd
, pgtable
);
2028 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2029 unsigned long haddr
, bool freeze
)
2031 struct mm_struct
*mm
= vma
->vm_mm
;
2034 pmd_t old_pmd
, _pmd
;
2035 bool young
, write
, soft_dirty
, pmd_migration
= false, uffd_wp
= false;
2039 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2040 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2041 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2042 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2043 && !pmd_devmap(*pmd
));
2045 count_vm_event(THP_SPLIT_PMD
);
2047 if (!vma_is_anonymous(vma
)) {
2048 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2050 * We are going to unmap this huge page. So
2051 * just go ahead and zap it
2053 if (arch_needs_pgtable_deposit())
2054 zap_deposited_table(mm
, pmd
);
2055 if (vma_is_special_huge(vma
))
2057 page
= pmd_page(_pmd
);
2058 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2059 set_page_dirty(page
);
2060 if (!PageReferenced(page
) && pmd_young(_pmd
))
2061 SetPageReferenced(page
);
2062 page_remove_rmap(page
, true);
2064 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2066 } else if (pmd_trans_huge(*pmd
) && is_huge_zero_pmd(*pmd
)) {
2068 * FIXME: Do we want to invalidate secondary mmu by calling
2069 * mmu_notifier_invalidate_range() see comments below inside
2070 * __split_huge_pmd() ?
2072 * We are going from a zero huge page write protected to zero
2073 * small page also write protected so it does not seems useful
2074 * to invalidate secondary mmu at this time.
2076 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2080 * Up to this point the pmd is present and huge and userland has the
2081 * whole access to the hugepage during the split (which happens in
2082 * place). If we overwrite the pmd with the not-huge version pointing
2083 * to the pte here (which of course we could if all CPUs were bug
2084 * free), userland could trigger a small page size TLB miss on the
2085 * small sized TLB while the hugepage TLB entry is still established in
2086 * the huge TLB. Some CPU doesn't like that.
2087 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2088 * 383 on page 105. Intel should be safe but is also warns that it's
2089 * only safe if the permission and cache attributes of the two entries
2090 * loaded in the two TLB is identical (which should be the case here).
2091 * But it is generally safer to never allow small and huge TLB entries
2092 * for the same virtual address to be loaded simultaneously. So instead
2093 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2094 * current pmd notpresent (atomically because here the pmd_trans_huge
2095 * must remain set at all times on the pmd until the split is complete
2096 * for this pmd), then we flush the SMP TLB and finally we write the
2097 * non-huge version of the pmd entry with pmd_populate.
2099 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2101 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2102 if (unlikely(pmd_migration
)) {
2105 entry
= pmd_to_swp_entry(old_pmd
);
2106 page
= pfn_to_page(swp_offset(entry
));
2107 write
= is_write_migration_entry(entry
);
2109 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2110 uffd_wp
= pmd_swp_uffd_wp(old_pmd
);
2112 page
= pmd_page(old_pmd
);
2113 if (pmd_dirty(old_pmd
))
2115 write
= pmd_write(old_pmd
);
2116 young
= pmd_young(old_pmd
);
2117 soft_dirty
= pmd_soft_dirty(old_pmd
);
2118 uffd_wp
= pmd_uffd_wp(old_pmd
);
2120 VM_BUG_ON_PAGE(!page_count(page
), page
);
2121 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2124 * Withdraw the table only after we mark the pmd entry invalid.
2125 * This's critical for some architectures (Power).
2127 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2128 pmd_populate(mm
, &_pmd
, pgtable
);
2130 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2133 * Note that NUMA hinting access restrictions are not
2134 * transferred to avoid any possibility of altering
2135 * permissions across VMAs.
2137 if (freeze
|| pmd_migration
) {
2138 swp_entry_t swp_entry
;
2139 swp_entry
= make_migration_entry(page
+ i
, write
);
2140 entry
= swp_entry_to_pte(swp_entry
);
2142 entry
= pte_swp_mksoft_dirty(entry
);
2144 entry
= pte_swp_mkuffd_wp(entry
);
2146 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2147 entry
= maybe_mkwrite(entry
, vma
);
2149 entry
= pte_wrprotect(entry
);
2151 entry
= pte_mkold(entry
);
2153 entry
= pte_mksoft_dirty(entry
);
2155 entry
= pte_mkuffd_wp(entry
);
2157 pte
= pte_offset_map(&_pmd
, addr
);
2158 BUG_ON(!pte_none(*pte
));
2159 set_pte_at(mm
, addr
, pte
, entry
);
2161 atomic_inc(&page
[i
]._mapcount
);
2165 if (!pmd_migration
) {
2167 * Set PG_double_map before dropping compound_mapcount to avoid
2168 * false-negative page_mapped().
2170 if (compound_mapcount(page
) > 1 &&
2171 !TestSetPageDoubleMap(page
)) {
2172 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2173 atomic_inc(&page
[i
]._mapcount
);
2176 lock_page_memcg(page
);
2177 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2178 /* Last compound_mapcount is gone. */
2179 __dec_lruvec_page_state(page
, NR_ANON_THPS
);
2180 if (TestClearPageDoubleMap(page
)) {
2181 /* No need in mapcount reference anymore */
2182 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2183 atomic_dec(&page
[i
]._mapcount
);
2186 unlock_page_memcg(page
);
2189 smp_wmb(); /* make pte visible before pmd */
2190 pmd_populate(mm
, pmd
, pgtable
);
2193 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2194 page_remove_rmap(page
+ i
, false);
2200 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2201 unsigned long address
, bool freeze
, struct page
*page
)
2204 struct mmu_notifier_range range
;
2205 bool was_locked
= false;
2208 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2209 address
& HPAGE_PMD_MASK
,
2210 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2211 mmu_notifier_invalidate_range_start(&range
);
2212 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2215 * If caller asks to setup a migration entries, we need a page to check
2216 * pmd against. Otherwise we can end up replacing wrong page.
2218 VM_BUG_ON(freeze
&& !page
);
2220 VM_WARN_ON_ONCE(!PageLocked(page
));
2222 if (page
!= pmd_page(*pmd
))
2227 if (pmd_trans_huge(*pmd
)) {
2229 page
= pmd_page(*pmd
);
2230 if (unlikely(!trylock_page(page
))) {
2236 if (unlikely(!pmd_same(*pmd
, _pmd
))) {
2245 if (PageMlocked(page
))
2246 clear_page_mlock(page
);
2247 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2249 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2252 if (!was_locked
&& page
)
2255 * No need to double call mmu_notifier->invalidate_range() callback.
2256 * They are 3 cases to consider inside __split_huge_pmd_locked():
2257 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2258 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2259 * fault will trigger a flush_notify before pointing to a new page
2260 * (it is fine if the secondary mmu keeps pointing to the old zero
2261 * page in the meantime)
2262 * 3) Split a huge pmd into pte pointing to the same page. No need
2263 * to invalidate secondary tlb entry they are all still valid.
2264 * any further changes to individual pte will notify. So no need
2265 * to call mmu_notifier->invalidate_range()
2267 mmu_notifier_invalidate_range_only_end(&range
);
2270 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2271 bool freeze
, struct page
*page
)
2278 pgd
= pgd_offset(vma
->vm_mm
, address
);
2279 if (!pgd_present(*pgd
))
2282 p4d
= p4d_offset(pgd
, address
);
2283 if (!p4d_present(*p4d
))
2286 pud
= pud_offset(p4d
, address
);
2287 if (!pud_present(*pud
))
2290 pmd
= pmd_offset(pud
, address
);
2292 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2295 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2296 unsigned long start
,
2301 * If the new start address isn't hpage aligned and it could
2302 * previously contain an hugepage: check if we need to split
2305 if (start
& ~HPAGE_PMD_MASK
&&
2306 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2307 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2308 split_huge_pmd_address(vma
, start
, false, NULL
);
2311 * If the new end address isn't hpage aligned and it could
2312 * previously contain an hugepage: check if we need to split
2315 if (end
& ~HPAGE_PMD_MASK
&&
2316 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2317 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2318 split_huge_pmd_address(vma
, end
, false, NULL
);
2321 * If we're also updating the vma->vm_next->vm_start, if the new
2322 * vm_next->vm_start isn't hpage aligned and it could previously
2323 * contain an hugepage: check if we need to split an huge pmd.
2325 if (adjust_next
> 0) {
2326 struct vm_area_struct
*next
= vma
->vm_next
;
2327 unsigned long nstart
= next
->vm_start
;
2328 nstart
+= adjust_next
;
2329 if (nstart
& ~HPAGE_PMD_MASK
&&
2330 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2331 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2332 split_huge_pmd_address(next
, nstart
, false, NULL
);
2336 static void unmap_page(struct page
*page
)
2338 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
|
2339 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2342 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2345 ttu_flags
|= TTU_SPLIT_FREEZE
;
2347 unmap_success
= try_to_unmap(page
, ttu_flags
);
2348 VM_BUG_ON_PAGE(!unmap_success
, page
);
2351 static void remap_page(struct page
*page
, unsigned int nr
)
2354 if (PageTransHuge(page
)) {
2355 remove_migration_ptes(page
, page
, true);
2357 for (i
= 0; i
< nr
; i
++)
2358 remove_migration_ptes(page
+ i
, page
+ i
, true);
2362 static void lru_add_page_tail(struct page
*head
, struct page
*tail
,
2363 struct lruvec
*lruvec
, struct list_head
*list
)
2365 VM_BUG_ON_PAGE(!PageHead(head
), head
);
2366 VM_BUG_ON_PAGE(PageCompound(tail
), head
);
2367 VM_BUG_ON_PAGE(PageLRU(tail
), head
);
2368 lockdep_assert_held(&lruvec
->lru_lock
);
2371 /* page reclaim is reclaiming a huge page */
2372 VM_WARN_ON(PageLRU(head
));
2374 list_add_tail(&tail
->lru
, list
);
2376 /* head is still on lru (and we have it frozen) */
2377 VM_WARN_ON(!PageLRU(head
));
2379 list_add_tail(&tail
->lru
, &head
->lru
);
2383 static void __split_huge_page_tail(struct page
*head
, int tail
,
2384 struct lruvec
*lruvec
, struct list_head
*list
)
2386 struct page
*page_tail
= head
+ tail
;
2388 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2391 * Clone page flags before unfreezing refcount.
2393 * After successful get_page_unless_zero() might follow flags change,
2394 * for example lock_page() which set PG_waiters.
2396 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2397 page_tail
->flags
|= (head
->flags
&
2398 ((1L << PG_referenced
) |
2399 (1L << PG_swapbacked
) |
2400 (1L << PG_swapcache
) |
2401 (1L << PG_mlocked
) |
2402 (1L << PG_uptodate
) |
2404 (1L << PG_workingset
) |
2406 (1L << PG_unevictable
) |
2412 /* ->mapping in first tail page is compound_mapcount */
2413 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2415 page_tail
->mapping
= head
->mapping
;
2416 page_tail
->index
= head
->index
+ tail
;
2418 /* Page flags must be visible before we make the page non-compound. */
2422 * Clear PageTail before unfreezing page refcount.
2424 * After successful get_page_unless_zero() might follow put_page()
2425 * which needs correct compound_head().
2427 clear_compound_head(page_tail
);
2429 /* Finally unfreeze refcount. Additional reference from page cache. */
2430 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2431 PageSwapCache(head
)));
2433 if (page_is_young(head
))
2434 set_page_young(page_tail
);
2435 if (page_is_idle(head
))
2436 set_page_idle(page_tail
);
2438 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2441 * always add to the tail because some iterators expect new
2442 * pages to show after the currently processed elements - e.g.
2445 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2448 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2451 struct page
*head
= compound_head(page
);
2452 struct lruvec
*lruvec
;
2453 struct address_space
*swap_cache
= NULL
;
2454 unsigned long offset
= 0;
2455 unsigned int nr
= thp_nr_pages(head
);
2458 /* complete memcg works before add pages to LRU */
2459 mem_cgroup_split_huge_fixup(head
);
2461 if (PageAnon(head
) && PageSwapCache(head
)) {
2462 swp_entry_t entry
= { .val
= page_private(head
) };
2464 offset
= swp_offset(entry
);
2465 swap_cache
= swap_address_space(entry
);
2466 xa_lock(&swap_cache
->i_pages
);
2469 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2470 lruvec
= lock_page_lruvec(head
);
2472 for (i
= nr
- 1; i
>= 1; i
--) {
2473 __split_huge_page_tail(head
, i
, lruvec
, list
);
2474 /* Some pages can be beyond i_size: drop them from page cache */
2475 if (head
[i
].index
>= end
) {
2476 ClearPageDirty(head
+ i
);
2477 __delete_from_page_cache(head
+ i
, NULL
);
2478 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2479 shmem_uncharge(head
->mapping
->host
, 1);
2481 } else if (!PageAnon(page
)) {
2482 __xa_store(&head
->mapping
->i_pages
, head
[i
].index
,
2484 } else if (swap_cache
) {
2485 __xa_store(&swap_cache
->i_pages
, offset
+ i
,
2490 ClearPageCompound(head
);
2491 unlock_page_lruvec(lruvec
);
2492 /* Caller disabled irqs, so they are still disabled here */
2494 split_page_owner(head
, nr
);
2496 /* See comment in __split_huge_page_tail() */
2497 if (PageAnon(head
)) {
2498 /* Additional pin to swap cache */
2499 if (PageSwapCache(head
)) {
2500 page_ref_add(head
, 2);
2501 xa_unlock(&swap_cache
->i_pages
);
2506 /* Additional pin to page cache */
2507 page_ref_add(head
, 2);
2508 xa_unlock(&head
->mapping
->i_pages
);
2512 remap_page(head
, nr
);
2514 if (PageSwapCache(head
)) {
2515 swp_entry_t entry
= { .val
= page_private(head
) };
2517 split_swap_cluster(entry
);
2520 for (i
= 0; i
< nr
; i
++) {
2521 struct page
*subpage
= head
+ i
;
2522 if (subpage
== page
)
2524 unlock_page(subpage
);
2527 * Subpages may be freed if there wasn't any mapping
2528 * like if add_to_swap() is running on a lru page that
2529 * had its mapping zapped. And freeing these pages
2530 * requires taking the lru_lock so we do the put_page
2531 * of the tail pages after the split is complete.
2537 int total_mapcount(struct page
*page
)
2539 int i
, compound
, nr
, ret
;
2541 VM_BUG_ON_PAGE(PageTail(page
), page
);
2543 if (likely(!PageCompound(page
)))
2544 return atomic_read(&page
->_mapcount
) + 1;
2546 compound
= compound_mapcount(page
);
2547 nr
= compound_nr(page
);
2551 for (i
= 0; i
< nr
; i
++)
2552 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2553 /* File pages has compound_mapcount included in _mapcount */
2554 if (!PageAnon(page
))
2555 return ret
- compound
* nr
;
2556 if (PageDoubleMap(page
))
2562 * This calculates accurately how many mappings a transparent hugepage
2563 * has (unlike page_mapcount() which isn't fully accurate). This full
2564 * accuracy is primarily needed to know if copy-on-write faults can
2565 * reuse the page and change the mapping to read-write instead of
2566 * copying them. At the same time this returns the total_mapcount too.
2568 * The function returns the highest mapcount any one of the subpages
2569 * has. If the return value is one, even if different processes are
2570 * mapping different subpages of the transparent hugepage, they can
2571 * all reuse it, because each process is reusing a different subpage.
2573 * The total_mapcount is instead counting all virtual mappings of the
2574 * subpages. If the total_mapcount is equal to "one", it tells the
2575 * caller all mappings belong to the same "mm" and in turn the
2576 * anon_vma of the transparent hugepage can become the vma->anon_vma
2577 * local one as no other process may be mapping any of the subpages.
2579 * It would be more accurate to replace page_mapcount() with
2580 * page_trans_huge_mapcount(), however we only use
2581 * page_trans_huge_mapcount() in the copy-on-write faults where we
2582 * need full accuracy to avoid breaking page pinning, because
2583 * page_trans_huge_mapcount() is slower than page_mapcount().
2585 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2587 int i
, ret
, _total_mapcount
, mapcount
;
2589 /* hugetlbfs shouldn't call it */
2590 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2592 if (likely(!PageTransCompound(page
))) {
2593 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2595 *total_mapcount
= mapcount
;
2599 page
= compound_head(page
);
2601 _total_mapcount
= ret
= 0;
2602 for (i
= 0; i
< thp_nr_pages(page
); i
++) {
2603 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2604 ret
= max(ret
, mapcount
);
2605 _total_mapcount
+= mapcount
;
2607 if (PageDoubleMap(page
)) {
2609 _total_mapcount
-= thp_nr_pages(page
);
2611 mapcount
= compound_mapcount(page
);
2613 _total_mapcount
+= mapcount
;
2615 *total_mapcount
= _total_mapcount
;
2619 /* Racy check whether the huge page can be split */
2620 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2624 /* Additional pins from page cache */
2626 extra_pins
= PageSwapCache(page
) ? thp_nr_pages(page
) : 0;
2628 extra_pins
= thp_nr_pages(page
);
2630 *pextra_pins
= extra_pins
;
2631 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2635 * This function splits huge page into normal pages. @page can point to any
2636 * subpage of huge page to split. Split doesn't change the position of @page.
2638 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2639 * The huge page must be locked.
2641 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2643 * Both head page and tail pages will inherit mapping, flags, and so on from
2646 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2647 * they are not mapped.
2649 * Returns 0 if the hugepage is split successfully.
2650 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2653 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2655 struct page
*head
= compound_head(page
);
2656 struct deferred_split
*ds_queue
= get_deferred_split_queue(head
);
2657 struct anon_vma
*anon_vma
= NULL
;
2658 struct address_space
*mapping
= NULL
;
2659 int count
, mapcount
, extra_pins
, ret
;
2662 VM_BUG_ON_PAGE(is_huge_zero_page(head
), head
);
2663 VM_BUG_ON_PAGE(!PageLocked(head
), head
);
2664 VM_BUG_ON_PAGE(!PageCompound(head
), head
);
2666 if (PageWriteback(head
))
2669 if (PageAnon(head
)) {
2671 * The caller does not necessarily hold an mmap_lock that would
2672 * prevent the anon_vma disappearing so we first we take a
2673 * reference to it and then lock the anon_vma for write. This
2674 * is similar to page_lock_anon_vma_read except the write lock
2675 * is taken to serialise against parallel split or collapse
2678 anon_vma
= page_get_anon_vma(head
);
2685 anon_vma_lock_write(anon_vma
);
2687 mapping
= head
->mapping
;
2696 i_mmap_lock_read(mapping
);
2699 *__split_huge_page() may need to trim off pages beyond EOF:
2700 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2701 * which cannot be nested inside the page tree lock. So note
2702 * end now: i_size itself may be changed at any moment, but
2703 * head page lock is good enough to serialize the trimming.
2705 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2709 * Racy check if we can split the page, before unmap_page() will
2712 if (!can_split_huge_page(head
, &extra_pins
)) {
2718 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2720 /* block interrupt reentry in xa_lock and spinlock */
2721 local_irq_disable();
2723 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2726 * Check if the head page is present in page cache.
2727 * We assume all tail are present too, if head is there.
2729 xa_lock(&mapping
->i_pages
);
2730 if (xas_load(&xas
) != head
)
2734 /* Prevent deferred_split_scan() touching ->_refcount */
2735 spin_lock(&ds_queue
->split_queue_lock
);
2736 count
= page_count(head
);
2737 mapcount
= total_mapcount(head
);
2738 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2739 if (!list_empty(page_deferred_list(head
))) {
2740 ds_queue
->split_queue_len
--;
2741 list_del(page_deferred_list(head
));
2743 spin_unlock(&ds_queue
->split_queue_lock
);
2745 if (PageSwapBacked(head
))
2746 __dec_lruvec_page_state(head
, NR_SHMEM_THPS
);
2748 __dec_lruvec_page_state(head
, NR_FILE_THPS
);
2751 __split_huge_page(page
, list
, end
);
2754 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2755 pr_alert("total_mapcount: %u, page_count(): %u\n",
2758 dump_page(head
, NULL
);
2759 dump_page(page
, "total_mapcount(head) > 0");
2762 spin_unlock(&ds_queue
->split_queue_lock
);
2764 xa_unlock(&mapping
->i_pages
);
2766 remap_page(head
, thp_nr_pages(head
));
2772 anon_vma_unlock_write(anon_vma
);
2773 put_anon_vma(anon_vma
);
2776 i_mmap_unlock_read(mapping
);
2778 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2782 void free_transhuge_page(struct page
*page
)
2784 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2785 unsigned long flags
;
2787 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2788 if (!list_empty(page_deferred_list(page
))) {
2789 ds_queue
->split_queue_len
--;
2790 list_del(page_deferred_list(page
));
2792 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2793 free_compound_page(page
);
2796 void deferred_split_huge_page(struct page
*page
)
2798 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2800 struct mem_cgroup
*memcg
= page_memcg(compound_head(page
));
2802 unsigned long flags
;
2804 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2807 * The try_to_unmap() in page reclaim path might reach here too,
2808 * this may cause a race condition to corrupt deferred split queue.
2809 * And, if page reclaim is already handling the same page, it is
2810 * unnecessary to handle it again in shrinker.
2812 * Check PageSwapCache to determine if the page is being
2813 * handled by page reclaim since THP swap would add the page into
2814 * swap cache before calling try_to_unmap().
2816 if (PageSwapCache(page
))
2819 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2820 if (list_empty(page_deferred_list(page
))) {
2821 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2822 list_add_tail(page_deferred_list(page
), &ds_queue
->split_queue
);
2823 ds_queue
->split_queue_len
++;
2826 memcg_set_shrinker_bit(memcg
, page_to_nid(page
),
2827 deferred_split_shrinker
.id
);
2830 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2833 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2834 struct shrink_control
*sc
)
2836 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2837 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2841 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2843 return READ_ONCE(ds_queue
->split_queue_len
);
2846 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2847 struct shrink_control
*sc
)
2849 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2850 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2851 unsigned long flags
;
2852 LIST_HEAD(list
), *pos
, *next
;
2858 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2861 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2862 /* Take pin on all head pages to avoid freeing them under us */
2863 list_for_each_safe(pos
, next
, &ds_queue
->split_queue
) {
2864 page
= list_entry((void *)pos
, struct page
, mapping
);
2865 page
= compound_head(page
);
2866 if (get_page_unless_zero(page
)) {
2867 list_move(page_deferred_list(page
), &list
);
2869 /* We lost race with put_compound_page() */
2870 list_del_init(page_deferred_list(page
));
2871 ds_queue
->split_queue_len
--;
2873 if (!--sc
->nr_to_scan
)
2876 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2878 list_for_each_safe(pos
, next
, &list
) {
2879 page
= list_entry((void *)pos
, struct page
, mapping
);
2880 if (!trylock_page(page
))
2882 /* split_huge_page() removes page from list on success */
2883 if (!split_huge_page(page
))
2890 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2891 list_splice_tail(&list
, &ds_queue
->split_queue
);
2892 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2895 * Stop shrinker if we didn't split any page, but the queue is empty.
2896 * This can happen if pages were freed under us.
2898 if (!split
&& list_empty(&ds_queue
->split_queue
))
2903 static struct shrinker deferred_split_shrinker
= {
2904 .count_objects
= deferred_split_count
,
2905 .scan_objects
= deferred_split_scan
,
2906 .seeks
= DEFAULT_SEEKS
,
2907 .flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
|
2911 #ifdef CONFIG_DEBUG_FS
2912 static int split_huge_pages_set(void *data
, u64 val
)
2916 unsigned long pfn
, max_zone_pfn
;
2917 unsigned long total
= 0, split
= 0;
2922 for_each_populated_zone(zone
) {
2923 max_zone_pfn
= zone_end_pfn(zone
);
2924 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2925 if (!pfn_valid(pfn
))
2928 page
= pfn_to_page(pfn
);
2929 if (!get_page_unless_zero(page
))
2932 if (zone
!= page_zone(page
))
2935 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2940 if (!split_huge_page(page
))
2948 pr_info("%lu of %lu THP split\n", split
, total
);
2952 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2955 static int __init
split_huge_pages_debugfs(void)
2957 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2958 &split_huge_pages_fops
);
2961 late_initcall(split_huge_pages_debugfs
);
2964 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2965 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
2968 struct vm_area_struct
*vma
= pvmw
->vma
;
2969 struct mm_struct
*mm
= vma
->vm_mm
;
2970 unsigned long address
= pvmw
->address
;
2975 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2978 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
2979 pmdval
= pmdp_invalidate(vma
, address
, pvmw
->pmd
);
2980 if (pmd_dirty(pmdval
))
2981 set_page_dirty(page
);
2982 entry
= make_migration_entry(page
, pmd_write(pmdval
));
2983 pmdswp
= swp_entry_to_pmd(entry
);
2984 if (pmd_soft_dirty(pmdval
))
2985 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
2986 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
2987 page_remove_rmap(page
, true);
2991 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
2993 struct vm_area_struct
*vma
= pvmw
->vma
;
2994 struct mm_struct
*mm
= vma
->vm_mm
;
2995 unsigned long address
= pvmw
->address
;
2996 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
3000 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3003 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
3005 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
3006 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
3007 pmde
= pmd_mksoft_dirty(pmde
);
3008 if (is_write_migration_entry(entry
))
3009 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
3011 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
3013 page_add_anon_rmap(new, vma
, mmun_start
, true);
3015 page_add_file_rmap(new, true);
3016 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
3017 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
3018 mlock_vma_page(new);
3019 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);