usb: chipidea: add vbus interrupt handler
[linux/fpc-iii.git] / kernel / rcutree.c
blob068de3a93606980268351ccaf6b19fc45573b4ea
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
60 #include "rcu.h"
62 /* Data structures. */
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
67 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 .abbr = sabbr, \
82 struct rcu_state rcu_sched_state =
83 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
84 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
86 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
87 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
89 static struct rcu_state *rcu_state;
90 LIST_HEAD(rcu_struct_flavors);
92 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
94 module_param(rcu_fanout_leaf, int, 0444);
95 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
96 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
97 NUM_RCU_LVL_0,
98 NUM_RCU_LVL_1,
99 NUM_RCU_LVL_2,
100 NUM_RCU_LVL_3,
101 NUM_RCU_LVL_4,
103 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
106 * The rcu_scheduler_active variable transitions from zero to one just
107 * before the first task is spawned. So when this variable is zero, RCU
108 * can assume that there is but one task, allowing RCU to (for example)
109 * optimize synchronize_sched() to a simple barrier(). When this variable
110 * is one, RCU must actually do all the hard work required to detect real
111 * grace periods. This variable is also used to suppress boot-time false
112 * positives from lockdep-RCU error checking.
114 int rcu_scheduler_active __read_mostly;
115 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
118 * The rcu_scheduler_fully_active variable transitions from zero to one
119 * during the early_initcall() processing, which is after the scheduler
120 * is capable of creating new tasks. So RCU processing (for example,
121 * creating tasks for RCU priority boosting) must be delayed until after
122 * rcu_scheduler_fully_active transitions from zero to one. We also
123 * currently delay invocation of any RCU callbacks until after this point.
125 * It might later prove better for people registering RCU callbacks during
126 * early boot to take responsibility for these callbacks, but one step at
127 * a time.
129 static int rcu_scheduler_fully_active __read_mostly;
131 #ifdef CONFIG_RCU_BOOST
134 * Control variables for per-CPU and per-rcu_node kthreads. These
135 * handle all flavors of RCU.
137 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
139 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
140 DEFINE_PER_CPU(char, rcu_cpu_has_work);
142 #endif /* #ifdef CONFIG_RCU_BOOST */
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
149 * Track the rcutorture test sequence number and the update version
150 * number within a given test. The rcutorture_testseq is incremented
151 * on every rcutorture module load and unload, so has an odd value
152 * when a test is running. The rcutorture_vernum is set to zero
153 * when rcutorture starts and is incremented on each rcutorture update.
154 * These variables enable correlating rcutorture output with the
155 * RCU tracing information.
157 unsigned long rcutorture_testseq;
158 unsigned long rcutorture_vernum;
161 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
162 * permit this function to be invoked without holding the root rcu_node
163 * structure's ->lock, but of course results can be subject to change.
165 static int rcu_gp_in_progress(struct rcu_state *rsp)
167 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
171 * Note a quiescent state. Because we do not need to know
172 * how many quiescent states passed, just if there was at least
173 * one since the start of the grace period, this just sets a flag.
174 * The caller must have disabled preemption.
176 void rcu_sched_qs(int cpu)
178 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
185 void rcu_bh_qs(int cpu)
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
189 if (rdp->passed_quiesce == 0)
190 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
191 rdp->passed_quiesce = 1;
195 * Note a context switch. This is a quiescent state for RCU-sched,
196 * and requires special handling for preemptible RCU.
197 * The caller must have disabled preemption.
199 void rcu_note_context_switch(int cpu)
201 trace_rcu_utilization("Start context switch");
202 rcu_sched_qs(cpu);
203 rcu_preempt_note_context_switch(cpu);
204 trace_rcu_utilization("End context switch");
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
208 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210 .dynticks = ATOMIC_INIT(1),
213 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
214 static long qhimark = 10000; /* If this many pending, ignore blimit. */
215 static long qlowmark = 100; /* Once only this many pending, use blimit. */
217 module_param(blimit, long, 0444);
218 module_param(qhimark, long, 0444);
219 module_param(qlowmark, long, 0444);
221 static ulong jiffies_till_first_fqs = ULONG_MAX;
222 static ulong jiffies_till_next_fqs = ULONG_MAX;
224 module_param(jiffies_till_first_fqs, ulong, 0644);
225 module_param(jiffies_till_next_fqs, ulong, 0644);
227 static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
228 struct rcu_data *rdp);
229 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
230 static void force_quiescent_state(struct rcu_state *rsp);
231 static int rcu_pending(int cpu);
234 * Return the number of RCU-sched batches processed thus far for debug & stats.
236 long rcu_batches_completed_sched(void)
238 return rcu_sched_state.completed;
240 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
243 * Return the number of RCU BH batches processed thus far for debug & stats.
245 long rcu_batches_completed_bh(void)
247 return rcu_bh_state.completed;
249 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
252 * Force a quiescent state for RCU BH.
254 void rcu_bh_force_quiescent_state(void)
256 force_quiescent_state(&rcu_bh_state);
258 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
261 * Record the number of times rcutorture tests have been initiated and
262 * terminated. This information allows the debugfs tracing stats to be
263 * correlated to the rcutorture messages, even when the rcutorture module
264 * is being repeatedly loaded and unloaded. In other words, we cannot
265 * store this state in rcutorture itself.
267 void rcutorture_record_test_transition(void)
269 rcutorture_testseq++;
270 rcutorture_vernum = 0;
272 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
275 * Record the number of writer passes through the current rcutorture test.
276 * This is also used to correlate debugfs tracing stats with the rcutorture
277 * messages.
279 void rcutorture_record_progress(unsigned long vernum)
281 rcutorture_vernum++;
283 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
286 * Force a quiescent state for RCU-sched.
288 void rcu_sched_force_quiescent_state(void)
290 force_quiescent_state(&rcu_sched_state);
292 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
295 * Does the CPU have callbacks ready to be invoked?
297 static int
298 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
300 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
301 rdp->nxttail[RCU_DONE_TAIL] != NULL;
305 * Does the current CPU require a not-yet-started grace period?
306 * The caller must have disabled interrupts to prevent races with
307 * normal callback registry.
309 static int
310 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
312 int i;
314 if (rcu_gp_in_progress(rsp))
315 return 0; /* No, a grace period is already in progress. */
316 if (rcu_nocb_needs_gp(rsp))
317 return 1; /* Yes, a no-CBs CPU needs one. */
318 if (!rdp->nxttail[RCU_NEXT_TAIL])
319 return 0; /* No, this is a no-CBs (or offline) CPU. */
320 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
321 return 1; /* Yes, this CPU has newly registered callbacks. */
322 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
323 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
324 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
325 rdp->nxtcompleted[i]))
326 return 1; /* Yes, CBs for future grace period. */
327 return 0; /* No grace period needed. */
331 * Return the root node of the specified rcu_state structure.
333 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
335 return &rsp->node[0];
339 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
345 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
346 bool user)
348 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
349 if (!user && !is_idle_task(current)) {
350 struct task_struct *idle = idle_task(smp_processor_id());
352 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
353 ftrace_dump(DUMP_ORIG);
354 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
355 current->pid, current->comm,
356 idle->pid, idle->comm); /* must be idle task! */
358 rcu_prepare_for_idle(smp_processor_id());
359 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 smp_mb__before_atomic_inc(); /* See above. */
361 atomic_inc(&rdtp->dynticks);
362 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
363 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
366 * It is illegal to enter an extended quiescent state while
367 * in an RCU read-side critical section.
369 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
370 "Illegal idle entry in RCU read-side critical section.");
371 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
372 "Illegal idle entry in RCU-bh read-side critical section.");
373 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
374 "Illegal idle entry in RCU-sched read-side critical section.");
378 * Enter an RCU extended quiescent state, which can be either the
379 * idle loop or adaptive-tickless usermode execution.
381 static void rcu_eqs_enter(bool user)
383 long long oldval;
384 struct rcu_dynticks *rdtp;
386 rdtp = &__get_cpu_var(rcu_dynticks);
387 oldval = rdtp->dynticks_nesting;
388 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
389 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
390 rdtp->dynticks_nesting = 0;
391 else
392 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
393 rcu_eqs_enter_common(rdtp, oldval, user);
397 * rcu_idle_enter - inform RCU that current CPU is entering idle
399 * Enter idle mode, in other words, -leave- the mode in which RCU
400 * read-side critical sections can occur. (Though RCU read-side
401 * critical sections can occur in irq handlers in idle, a possibility
402 * handled by irq_enter() and irq_exit().)
404 * We crowbar the ->dynticks_nesting field to zero to allow for
405 * the possibility of usermode upcalls having messed up our count
406 * of interrupt nesting level during the prior busy period.
408 void rcu_idle_enter(void)
410 unsigned long flags;
412 local_irq_save(flags);
413 rcu_eqs_enter(false);
414 local_irq_restore(flags);
416 EXPORT_SYMBOL_GPL(rcu_idle_enter);
418 #ifdef CONFIG_RCU_USER_QS
420 * rcu_user_enter - inform RCU that we are resuming userspace.
422 * Enter RCU idle mode right before resuming userspace. No use of RCU
423 * is permitted between this call and rcu_user_exit(). This way the
424 * CPU doesn't need to maintain the tick for RCU maintenance purposes
425 * when the CPU runs in userspace.
427 void rcu_user_enter(void)
429 rcu_eqs_enter(1);
433 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
434 * after the current irq returns.
436 * This is similar to rcu_user_enter() but in the context of a non-nesting
437 * irq. After this call, RCU enters into idle mode when the interrupt
438 * returns.
440 void rcu_user_enter_after_irq(void)
442 unsigned long flags;
443 struct rcu_dynticks *rdtp;
445 local_irq_save(flags);
446 rdtp = &__get_cpu_var(rcu_dynticks);
447 /* Ensure this irq is interrupting a non-idle RCU state. */
448 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
449 rdtp->dynticks_nesting = 1;
450 local_irq_restore(flags);
452 #endif /* CONFIG_RCU_USER_QS */
455 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
457 * Exit from an interrupt handler, which might possibly result in entering
458 * idle mode, in other words, leaving the mode in which read-side critical
459 * sections can occur.
461 * This code assumes that the idle loop never does anything that might
462 * result in unbalanced calls to irq_enter() and irq_exit(). If your
463 * architecture violates this assumption, RCU will give you what you
464 * deserve, good and hard. But very infrequently and irreproducibly.
466 * Use things like work queues to work around this limitation.
468 * You have been warned.
470 void rcu_irq_exit(void)
472 unsigned long flags;
473 long long oldval;
474 struct rcu_dynticks *rdtp;
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 rdtp->dynticks_nesting--;
480 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
481 if (rdtp->dynticks_nesting)
482 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
483 else
484 rcu_eqs_enter_common(rdtp, oldval, true);
485 local_irq_restore(flags);
489 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
491 * If the new value of the ->dynticks_nesting counter was previously zero,
492 * we really have exited idle, and must do the appropriate accounting.
493 * The caller must have disabled interrupts.
495 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
496 int user)
498 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
499 atomic_inc(&rdtp->dynticks);
500 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
501 smp_mb__after_atomic_inc(); /* See above. */
502 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
503 rcu_cleanup_after_idle(smp_processor_id());
504 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
505 if (!user && !is_idle_task(current)) {
506 struct task_struct *idle = idle_task(smp_processor_id());
508 trace_rcu_dyntick("Error on exit: not idle task",
509 oldval, rdtp->dynticks_nesting);
510 ftrace_dump(DUMP_ORIG);
511 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 current->pid, current->comm,
513 idle->pid, idle->comm); /* must be idle task! */
518 * Exit an RCU extended quiescent state, which can be either the
519 * idle loop or adaptive-tickless usermode execution.
521 static void rcu_eqs_exit(bool user)
523 struct rcu_dynticks *rdtp;
524 long long oldval;
526 rdtp = &__get_cpu_var(rcu_dynticks);
527 oldval = rdtp->dynticks_nesting;
528 WARN_ON_ONCE(oldval < 0);
529 if (oldval & DYNTICK_TASK_NEST_MASK)
530 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
531 else
532 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
533 rcu_eqs_exit_common(rdtp, oldval, user);
537 * rcu_idle_exit - inform RCU that current CPU is leaving idle
539 * Exit idle mode, in other words, -enter- the mode in which RCU
540 * read-side critical sections can occur.
542 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543 * allow for the possibility of usermode upcalls messing up our count
544 * of interrupt nesting level during the busy period that is just
545 * now starting.
547 void rcu_idle_exit(void)
549 unsigned long flags;
551 local_irq_save(flags);
552 rcu_eqs_exit(false);
553 local_irq_restore(flags);
555 EXPORT_SYMBOL_GPL(rcu_idle_exit);
557 #ifdef CONFIG_RCU_USER_QS
559 * rcu_user_exit - inform RCU that we are exiting userspace.
561 * Exit RCU idle mode while entering the kernel because it can
562 * run a RCU read side critical section anytime.
564 void rcu_user_exit(void)
566 rcu_eqs_exit(1);
570 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
571 * idle mode after the current non-nesting irq returns.
573 * This is similar to rcu_user_exit() but in the context of an irq.
574 * This is called when the irq has interrupted a userspace RCU idle mode
575 * context. When the current non-nesting interrupt returns after this call,
576 * the CPU won't restore the RCU idle mode.
578 void rcu_user_exit_after_irq(void)
580 unsigned long flags;
581 struct rcu_dynticks *rdtp;
583 local_irq_save(flags);
584 rdtp = &__get_cpu_var(rcu_dynticks);
585 /* Ensure we are interrupting an RCU idle mode. */
586 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
587 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
588 local_irq_restore(flags);
590 #endif /* CONFIG_RCU_USER_QS */
593 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
595 * Enter an interrupt handler, which might possibly result in exiting
596 * idle mode, in other words, entering the mode in which read-side critical
597 * sections can occur.
599 * Note that the Linux kernel is fully capable of entering an interrupt
600 * handler that it never exits, for example when doing upcalls to
601 * user mode! This code assumes that the idle loop never does upcalls to
602 * user mode. If your architecture does do upcalls from the idle loop (or
603 * does anything else that results in unbalanced calls to the irq_enter()
604 * and irq_exit() functions), RCU will give you what you deserve, good
605 * and hard. But very infrequently and irreproducibly.
607 * Use things like work queues to work around this limitation.
609 * You have been warned.
611 void rcu_irq_enter(void)
613 unsigned long flags;
614 struct rcu_dynticks *rdtp;
615 long long oldval;
617 local_irq_save(flags);
618 rdtp = &__get_cpu_var(rcu_dynticks);
619 oldval = rdtp->dynticks_nesting;
620 rdtp->dynticks_nesting++;
621 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
622 if (oldval)
623 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
624 else
625 rcu_eqs_exit_common(rdtp, oldval, true);
626 local_irq_restore(flags);
630 * rcu_nmi_enter - inform RCU of entry to NMI context
632 * If the CPU was idle with dynamic ticks active, and there is no
633 * irq handler running, this updates rdtp->dynticks_nmi to let the
634 * RCU grace-period handling know that the CPU is active.
636 void rcu_nmi_enter(void)
638 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
640 if (rdtp->dynticks_nmi_nesting == 0 &&
641 (atomic_read(&rdtp->dynticks) & 0x1))
642 return;
643 rdtp->dynticks_nmi_nesting++;
644 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
645 atomic_inc(&rdtp->dynticks);
646 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
647 smp_mb__after_atomic_inc(); /* See above. */
648 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
652 * rcu_nmi_exit - inform RCU of exit from NMI context
654 * If the CPU was idle with dynamic ticks active, and there is no
655 * irq handler running, this updates rdtp->dynticks_nmi to let the
656 * RCU grace-period handling know that the CPU is no longer active.
658 void rcu_nmi_exit(void)
660 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
662 if (rdtp->dynticks_nmi_nesting == 0 ||
663 --rdtp->dynticks_nmi_nesting != 0)
664 return;
665 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666 smp_mb__before_atomic_inc(); /* See above. */
667 atomic_inc(&rdtp->dynticks);
668 smp_mb__after_atomic_inc(); /* Force delay to next write. */
669 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
673 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
675 * If the current CPU is in its idle loop and is neither in an interrupt
676 * or NMI handler, return true.
678 int rcu_is_cpu_idle(void)
680 int ret;
682 preempt_disable();
683 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
684 preempt_enable();
685 return ret;
687 EXPORT_SYMBOL(rcu_is_cpu_idle);
689 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
712 bool rcu_lockdep_current_cpu_online(void)
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
716 bool ret;
718 if (in_nmi())
719 return 1;
720 preempt_disable();
721 rdp = &__get_cpu_var(rcu_sched_data);
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
728 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
730 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
739 static int rcu_is_cpu_rrupt_from_idle(void)
741 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
747 * is in dynticks idle mode, which is an extended quiescent state.
749 static int dyntick_save_progress_counter(struct rcu_data *rdp)
751 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
752 return (rdp->dynticks_snap & 0x1) == 0;
756 * Return true if the specified CPU has passed through a quiescent
757 * state by virtue of being in or having passed through an dynticks
758 * idle state since the last call to dyntick_save_progress_counter()
759 * for this same CPU, or by virtue of having been offline.
761 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
763 unsigned int curr;
764 unsigned int snap;
766 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
767 snap = (unsigned int)rdp->dynticks_snap;
770 * If the CPU passed through or entered a dynticks idle phase with
771 * no active irq/NMI handlers, then we can safely pretend that the CPU
772 * already acknowledged the request to pass through a quiescent
773 * state. Either way, that CPU cannot possibly be in an RCU
774 * read-side critical section that started before the beginning
775 * of the current RCU grace period.
777 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
778 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
779 rdp->dynticks_fqs++;
780 return 1;
784 * Check for the CPU being offline, but only if the grace period
785 * is old enough. We don't need to worry about the CPU changing
786 * state: If we see it offline even once, it has been through a
787 * quiescent state.
789 * The reason for insisting that the grace period be at least
790 * one jiffy old is that CPUs that are not quite online and that
791 * have just gone offline can still execute RCU read-side critical
792 * sections.
794 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
795 return 0; /* Grace period is not old enough. */
796 barrier();
797 if (cpu_is_offline(rdp->cpu)) {
798 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
799 rdp->offline_fqs++;
800 return 1;
804 * There is a possibility that a CPU in adaptive-ticks state
805 * might run in the kernel with the scheduling-clock tick disabled
806 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
807 * force the CPU to restart the scheduling-clock tick in this
808 * CPU is in this state.
810 rcu_kick_nohz_cpu(rdp->cpu);
812 return 0;
815 static void record_gp_stall_check_time(struct rcu_state *rsp)
817 rsp->gp_start = jiffies;
818 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
822 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
823 * for architectures that do not implement trigger_all_cpu_backtrace().
824 * The NMI-triggered stack traces are more accurate because they are
825 * printed by the target CPU.
827 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
829 int cpu;
830 unsigned long flags;
831 struct rcu_node *rnp;
833 rcu_for_each_leaf_node(rsp, rnp) {
834 raw_spin_lock_irqsave(&rnp->lock, flags);
835 if (rnp->qsmask != 0) {
836 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
837 if (rnp->qsmask & (1UL << cpu))
838 dump_cpu_task(rnp->grplo + cpu);
840 raw_spin_unlock_irqrestore(&rnp->lock, flags);
844 static void print_other_cpu_stall(struct rcu_state *rsp)
846 int cpu;
847 long delta;
848 unsigned long flags;
849 int ndetected = 0;
850 struct rcu_node *rnp = rcu_get_root(rsp);
851 long totqlen = 0;
853 /* Only let one CPU complain about others per time interval. */
855 raw_spin_lock_irqsave(&rnp->lock, flags);
856 delta = jiffies - rsp->jiffies_stall;
857 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
858 raw_spin_unlock_irqrestore(&rnp->lock, flags);
859 return;
861 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
862 raw_spin_unlock_irqrestore(&rnp->lock, flags);
865 * OK, time to rat on our buddy...
866 * See Documentation/RCU/stallwarn.txt for info on how to debug
867 * RCU CPU stall warnings.
869 pr_err("INFO: %s detected stalls on CPUs/tasks:",
870 rsp->name);
871 print_cpu_stall_info_begin();
872 rcu_for_each_leaf_node(rsp, rnp) {
873 raw_spin_lock_irqsave(&rnp->lock, flags);
874 ndetected += rcu_print_task_stall(rnp);
875 if (rnp->qsmask != 0) {
876 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
877 if (rnp->qsmask & (1UL << cpu)) {
878 print_cpu_stall_info(rsp,
879 rnp->grplo + cpu);
880 ndetected++;
883 raw_spin_unlock_irqrestore(&rnp->lock, flags);
887 * Now rat on any tasks that got kicked up to the root rcu_node
888 * due to CPU offlining.
890 rnp = rcu_get_root(rsp);
891 raw_spin_lock_irqsave(&rnp->lock, flags);
892 ndetected += rcu_print_task_stall(rnp);
893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
895 print_cpu_stall_info_end();
896 for_each_possible_cpu(cpu)
897 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
898 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
899 smp_processor_id(), (long)(jiffies - rsp->gp_start),
900 rsp->gpnum, rsp->completed, totqlen);
901 if (ndetected == 0)
902 pr_err("INFO: Stall ended before state dump start\n");
903 else if (!trigger_all_cpu_backtrace())
904 rcu_dump_cpu_stacks(rsp);
906 /* Complain about tasks blocking the grace period. */
908 rcu_print_detail_task_stall(rsp);
910 force_quiescent_state(rsp); /* Kick them all. */
913 static void print_cpu_stall(struct rcu_state *rsp)
915 int cpu;
916 unsigned long flags;
917 struct rcu_node *rnp = rcu_get_root(rsp);
918 long totqlen = 0;
921 * OK, time to rat on ourselves...
922 * See Documentation/RCU/stallwarn.txt for info on how to debug
923 * RCU CPU stall warnings.
925 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
926 print_cpu_stall_info_begin();
927 print_cpu_stall_info(rsp, smp_processor_id());
928 print_cpu_stall_info_end();
929 for_each_possible_cpu(cpu)
930 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
931 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
932 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
933 if (!trigger_all_cpu_backtrace())
934 dump_stack();
936 raw_spin_lock_irqsave(&rnp->lock, flags);
937 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
938 rsp->jiffies_stall = jiffies +
939 3 * rcu_jiffies_till_stall_check() + 3;
940 raw_spin_unlock_irqrestore(&rnp->lock, flags);
942 set_need_resched(); /* kick ourselves to get things going. */
945 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
947 unsigned long j;
948 unsigned long js;
949 struct rcu_node *rnp;
951 if (rcu_cpu_stall_suppress)
952 return;
953 j = ACCESS_ONCE(jiffies);
954 js = ACCESS_ONCE(rsp->jiffies_stall);
955 rnp = rdp->mynode;
956 if (rcu_gp_in_progress(rsp) &&
957 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
959 /* We haven't checked in, so go dump stack. */
960 print_cpu_stall(rsp);
962 } else if (rcu_gp_in_progress(rsp) &&
963 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
965 /* They had a few time units to dump stack, so complain. */
966 print_other_cpu_stall(rsp);
971 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
973 * Set the stall-warning timeout way off into the future, thus preventing
974 * any RCU CPU stall-warning messages from appearing in the current set of
975 * RCU grace periods.
977 * The caller must disable hard irqs.
979 void rcu_cpu_stall_reset(void)
981 struct rcu_state *rsp;
983 for_each_rcu_flavor(rsp)
984 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
988 * Initialize the specified rcu_data structure's callback list to empty.
990 static void init_callback_list(struct rcu_data *rdp)
992 int i;
994 if (init_nocb_callback_list(rdp))
995 return;
996 rdp->nxtlist = NULL;
997 for (i = 0; i < RCU_NEXT_SIZE; i++)
998 rdp->nxttail[i] = &rdp->nxtlist;
1002 * Determine the value that ->completed will have at the end of the
1003 * next subsequent grace period. This is used to tag callbacks so that
1004 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1005 * been dyntick-idle for an extended period with callbacks under the
1006 * influence of RCU_FAST_NO_HZ.
1008 * The caller must hold rnp->lock with interrupts disabled.
1010 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1011 struct rcu_node *rnp)
1014 * If RCU is idle, we just wait for the next grace period.
1015 * But we can only be sure that RCU is idle if we are looking
1016 * at the root rcu_node structure -- otherwise, a new grace
1017 * period might have started, but just not yet gotten around
1018 * to initializing the current non-root rcu_node structure.
1020 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1021 return rnp->completed + 1;
1024 * Otherwise, wait for a possible partial grace period and
1025 * then the subsequent full grace period.
1027 return rnp->completed + 2;
1031 * Trace-event helper function for rcu_start_future_gp() and
1032 * rcu_nocb_wait_gp().
1034 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1035 unsigned long c, char *s)
1037 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1038 rnp->completed, c, rnp->level,
1039 rnp->grplo, rnp->grphi, s);
1043 * Start some future grace period, as needed to handle newly arrived
1044 * callbacks. The required future grace periods are recorded in each
1045 * rcu_node structure's ->need_future_gp field.
1047 * The caller must hold the specified rcu_node structure's ->lock.
1049 static unsigned long __maybe_unused
1050 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1052 unsigned long c;
1053 int i;
1054 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1057 * Pick up grace-period number for new callbacks. If this
1058 * grace period is already marked as needed, return to the caller.
1060 c = rcu_cbs_completed(rdp->rsp, rnp);
1061 trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
1062 if (rnp->need_future_gp[c & 0x1]) {
1063 trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
1064 return c;
1068 * If either this rcu_node structure or the root rcu_node structure
1069 * believe that a grace period is in progress, then we must wait
1070 * for the one following, which is in "c". Because our request
1071 * will be noticed at the end of the current grace period, we don't
1072 * need to explicitly start one.
1074 if (rnp->gpnum != rnp->completed ||
1075 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1076 rnp->need_future_gp[c & 0x1]++;
1077 trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
1078 return c;
1082 * There might be no grace period in progress. If we don't already
1083 * hold it, acquire the root rcu_node structure's lock in order to
1084 * start one (if needed).
1086 if (rnp != rnp_root)
1087 raw_spin_lock(&rnp_root->lock);
1090 * Get a new grace-period number. If there really is no grace
1091 * period in progress, it will be smaller than the one we obtained
1092 * earlier. Adjust callbacks as needed. Note that even no-CBs
1093 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1095 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1096 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1097 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1098 rdp->nxtcompleted[i] = c;
1101 * If the needed for the required grace period is already
1102 * recorded, trace and leave.
1104 if (rnp_root->need_future_gp[c & 0x1]) {
1105 trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
1106 goto unlock_out;
1109 /* Record the need for the future grace period. */
1110 rnp_root->need_future_gp[c & 0x1]++;
1112 /* If a grace period is not already in progress, start one. */
1113 if (rnp_root->gpnum != rnp_root->completed) {
1114 trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
1115 } else {
1116 trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
1117 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1119 unlock_out:
1120 if (rnp != rnp_root)
1121 raw_spin_unlock(&rnp_root->lock);
1122 return c;
1126 * Clean up any old requests for the just-ended grace period. Also return
1127 * whether any additional grace periods have been requested. Also invoke
1128 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1129 * waiting for this grace period to complete.
1131 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1133 int c = rnp->completed;
1134 int needmore;
1135 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1137 rcu_nocb_gp_cleanup(rsp, rnp);
1138 rnp->need_future_gp[c & 0x1] = 0;
1139 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1140 trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
1141 return needmore;
1145 * If there is room, assign a ->completed number to any callbacks on
1146 * this CPU that have not already been assigned. Also accelerate any
1147 * callbacks that were previously assigned a ->completed number that has
1148 * since proven to be too conservative, which can happen if callbacks get
1149 * assigned a ->completed number while RCU is idle, but with reference to
1150 * a non-root rcu_node structure. This function is idempotent, so it does
1151 * not hurt to call it repeatedly.
1153 * The caller must hold rnp->lock with interrupts disabled.
1155 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1156 struct rcu_data *rdp)
1158 unsigned long c;
1159 int i;
1161 /* If the CPU has no callbacks, nothing to do. */
1162 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1163 return;
1166 * Starting from the sublist containing the callbacks most
1167 * recently assigned a ->completed number and working down, find the
1168 * first sublist that is not assignable to an upcoming grace period.
1169 * Such a sublist has something in it (first two tests) and has
1170 * a ->completed number assigned that will complete sooner than
1171 * the ->completed number for newly arrived callbacks (last test).
1173 * The key point is that any later sublist can be assigned the
1174 * same ->completed number as the newly arrived callbacks, which
1175 * means that the callbacks in any of these later sublist can be
1176 * grouped into a single sublist, whether or not they have already
1177 * been assigned a ->completed number.
1179 c = rcu_cbs_completed(rsp, rnp);
1180 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1181 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1182 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1183 break;
1186 * If there are no sublist for unassigned callbacks, leave.
1187 * At the same time, advance "i" one sublist, so that "i" will
1188 * index into the sublist where all the remaining callbacks should
1189 * be grouped into.
1191 if (++i >= RCU_NEXT_TAIL)
1192 return;
1195 * Assign all subsequent callbacks' ->completed number to the next
1196 * full grace period and group them all in the sublist initially
1197 * indexed by "i".
1199 for (; i <= RCU_NEXT_TAIL; i++) {
1200 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1201 rdp->nxtcompleted[i] = c;
1203 /* Record any needed additional grace periods. */
1204 rcu_start_future_gp(rnp, rdp);
1206 /* Trace depending on how much we were able to accelerate. */
1207 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1208 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1209 else
1210 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1214 * Move any callbacks whose grace period has completed to the
1215 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1216 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1217 * sublist. This function is idempotent, so it does not hurt to
1218 * invoke it repeatedly. As long as it is not invoked -too- often...
1220 * The caller must hold rnp->lock with interrupts disabled.
1222 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1223 struct rcu_data *rdp)
1225 int i, j;
1227 /* If the CPU has no callbacks, nothing to do. */
1228 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1229 return;
1232 * Find all callbacks whose ->completed numbers indicate that they
1233 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1235 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1236 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1237 break;
1238 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1240 /* Clean up any sublist tail pointers that were misordered above. */
1241 for (j = RCU_WAIT_TAIL; j < i; j++)
1242 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1244 /* Copy down callbacks to fill in empty sublists. */
1245 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1246 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1247 break;
1248 rdp->nxttail[j] = rdp->nxttail[i];
1249 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1252 /* Classify any remaining callbacks. */
1253 rcu_accelerate_cbs(rsp, rnp, rdp);
1257 * Update CPU-local rcu_data state to record the beginnings and ends of
1258 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1259 * structure corresponding to the current CPU, and must have irqs disabled.
1261 static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1263 /* Handle the ends of any preceding grace periods first. */
1264 if (rdp->completed == rnp->completed) {
1266 /* No grace period end, so just accelerate recent callbacks. */
1267 rcu_accelerate_cbs(rsp, rnp, rdp);
1269 } else {
1271 /* Advance callbacks. */
1272 rcu_advance_cbs(rsp, rnp, rdp);
1274 /* Remember that we saw this grace-period completion. */
1275 rdp->completed = rnp->completed;
1276 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1279 if (rdp->gpnum != rnp->gpnum) {
1281 * If the current grace period is waiting for this CPU,
1282 * set up to detect a quiescent state, otherwise don't
1283 * go looking for one.
1285 rdp->gpnum = rnp->gpnum;
1286 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1287 rdp->passed_quiesce = 0;
1288 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1289 zero_cpu_stall_ticks(rdp);
1293 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1295 unsigned long flags;
1296 struct rcu_node *rnp;
1298 local_irq_save(flags);
1299 rnp = rdp->mynode;
1300 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1301 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1302 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1303 local_irq_restore(flags);
1304 return;
1306 __note_gp_changes(rsp, rnp, rdp);
1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1311 * Initialize a new grace period.
1313 static int rcu_gp_init(struct rcu_state *rsp)
1315 struct rcu_data *rdp;
1316 struct rcu_node *rnp = rcu_get_root(rsp);
1318 raw_spin_lock_irq(&rnp->lock);
1319 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1321 if (rcu_gp_in_progress(rsp)) {
1322 /* Grace period already in progress, don't start another. */
1323 raw_spin_unlock_irq(&rnp->lock);
1324 return 0;
1327 /* Advance to a new grace period and initialize state. */
1328 rsp->gpnum++;
1329 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1330 record_gp_stall_check_time(rsp);
1331 raw_spin_unlock_irq(&rnp->lock);
1333 /* Exclude any concurrent CPU-hotplug operations. */
1334 mutex_lock(&rsp->onoff_mutex);
1337 * Set the quiescent-state-needed bits in all the rcu_node
1338 * structures for all currently online CPUs in breadth-first order,
1339 * starting from the root rcu_node structure, relying on the layout
1340 * of the tree within the rsp->node[] array. Note that other CPUs
1341 * will access only the leaves of the hierarchy, thus seeing that no
1342 * grace period is in progress, at least until the corresponding
1343 * leaf node has been initialized. In addition, we have excluded
1344 * CPU-hotplug operations.
1346 * The grace period cannot complete until the initialization
1347 * process finishes, because this kthread handles both.
1349 rcu_for_each_node_breadth_first(rsp, rnp) {
1350 raw_spin_lock_irq(&rnp->lock);
1351 rdp = this_cpu_ptr(rsp->rda);
1352 rcu_preempt_check_blocked_tasks(rnp);
1353 rnp->qsmask = rnp->qsmaskinit;
1354 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1355 WARN_ON_ONCE(rnp->completed != rsp->completed);
1356 ACCESS_ONCE(rnp->completed) = rsp->completed;
1357 if (rnp == rdp->mynode)
1358 __note_gp_changes(rsp, rnp, rdp);
1359 rcu_preempt_boost_start_gp(rnp);
1360 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1361 rnp->level, rnp->grplo,
1362 rnp->grphi, rnp->qsmask);
1363 raw_spin_unlock_irq(&rnp->lock);
1364 #ifdef CONFIG_PROVE_RCU_DELAY
1365 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1366 system_state == SYSTEM_RUNNING)
1367 udelay(200);
1368 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1369 cond_resched();
1372 mutex_unlock(&rsp->onoff_mutex);
1373 return 1;
1377 * Do one round of quiescent-state forcing.
1379 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1381 int fqs_state = fqs_state_in;
1382 struct rcu_node *rnp = rcu_get_root(rsp);
1384 rsp->n_force_qs++;
1385 if (fqs_state == RCU_SAVE_DYNTICK) {
1386 /* Collect dyntick-idle snapshots. */
1387 force_qs_rnp(rsp, dyntick_save_progress_counter);
1388 fqs_state = RCU_FORCE_QS;
1389 } else {
1390 /* Handle dyntick-idle and offline CPUs. */
1391 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1393 /* Clear flag to prevent immediate re-entry. */
1394 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1395 raw_spin_lock_irq(&rnp->lock);
1396 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1397 raw_spin_unlock_irq(&rnp->lock);
1399 return fqs_state;
1403 * Clean up after the old grace period.
1405 static void rcu_gp_cleanup(struct rcu_state *rsp)
1407 unsigned long gp_duration;
1408 int nocb = 0;
1409 struct rcu_data *rdp;
1410 struct rcu_node *rnp = rcu_get_root(rsp);
1412 raw_spin_lock_irq(&rnp->lock);
1413 gp_duration = jiffies - rsp->gp_start;
1414 if (gp_duration > rsp->gp_max)
1415 rsp->gp_max = gp_duration;
1418 * We know the grace period is complete, but to everyone else
1419 * it appears to still be ongoing. But it is also the case
1420 * that to everyone else it looks like there is nothing that
1421 * they can do to advance the grace period. It is therefore
1422 * safe for us to drop the lock in order to mark the grace
1423 * period as completed in all of the rcu_node structures.
1425 raw_spin_unlock_irq(&rnp->lock);
1428 * Propagate new ->completed value to rcu_node structures so
1429 * that other CPUs don't have to wait until the start of the next
1430 * grace period to process their callbacks. This also avoids
1431 * some nasty RCU grace-period initialization races by forcing
1432 * the end of the current grace period to be completely recorded in
1433 * all of the rcu_node structures before the beginning of the next
1434 * grace period is recorded in any of the rcu_node structures.
1436 rcu_for_each_node_breadth_first(rsp, rnp) {
1437 raw_spin_lock_irq(&rnp->lock);
1438 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1439 rdp = this_cpu_ptr(rsp->rda);
1440 if (rnp == rdp->mynode)
1441 __note_gp_changes(rsp, rnp, rdp);
1442 nocb += rcu_future_gp_cleanup(rsp, rnp);
1443 raw_spin_unlock_irq(&rnp->lock);
1444 cond_resched();
1446 rnp = rcu_get_root(rsp);
1447 raw_spin_lock_irq(&rnp->lock);
1448 rcu_nocb_gp_set(rnp, nocb);
1450 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1451 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1452 rsp->fqs_state = RCU_GP_IDLE;
1453 rdp = this_cpu_ptr(rsp->rda);
1454 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1455 if (cpu_needs_another_gp(rsp, rdp))
1456 rsp->gp_flags = 1;
1457 raw_spin_unlock_irq(&rnp->lock);
1461 * Body of kthread that handles grace periods.
1463 static int __noreturn rcu_gp_kthread(void *arg)
1465 int fqs_state;
1466 unsigned long j;
1467 int ret;
1468 struct rcu_state *rsp = arg;
1469 struct rcu_node *rnp = rcu_get_root(rsp);
1471 for (;;) {
1473 /* Handle grace-period start. */
1474 for (;;) {
1475 wait_event_interruptible(rsp->gp_wq,
1476 rsp->gp_flags &
1477 RCU_GP_FLAG_INIT);
1478 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1479 rcu_gp_init(rsp))
1480 break;
1481 cond_resched();
1482 flush_signals(current);
1485 /* Handle quiescent-state forcing. */
1486 fqs_state = RCU_SAVE_DYNTICK;
1487 j = jiffies_till_first_fqs;
1488 if (j > HZ) {
1489 j = HZ;
1490 jiffies_till_first_fqs = HZ;
1492 for (;;) {
1493 rsp->jiffies_force_qs = jiffies + j;
1494 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1495 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1496 (!ACCESS_ONCE(rnp->qsmask) &&
1497 !rcu_preempt_blocked_readers_cgp(rnp)),
1499 /* If grace period done, leave loop. */
1500 if (!ACCESS_ONCE(rnp->qsmask) &&
1501 !rcu_preempt_blocked_readers_cgp(rnp))
1502 break;
1503 /* If time for quiescent-state forcing, do it. */
1504 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1505 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1506 cond_resched();
1507 } else {
1508 /* Deal with stray signal. */
1509 cond_resched();
1510 flush_signals(current);
1512 j = jiffies_till_next_fqs;
1513 if (j > HZ) {
1514 j = HZ;
1515 jiffies_till_next_fqs = HZ;
1516 } else if (j < 1) {
1517 j = 1;
1518 jiffies_till_next_fqs = 1;
1522 /* Handle grace-period end. */
1523 rcu_gp_cleanup(rsp);
1527 static void rsp_wakeup(struct irq_work *work)
1529 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1531 /* Wake up rcu_gp_kthread() to start the grace period. */
1532 wake_up(&rsp->gp_wq);
1536 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1537 * in preparation for detecting the next grace period. The caller must hold
1538 * the root node's ->lock and hard irqs must be disabled.
1540 * Note that it is legal for a dying CPU (which is marked as offline) to
1541 * invoke this function. This can happen when the dying CPU reports its
1542 * quiescent state.
1544 static void
1545 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1546 struct rcu_data *rdp)
1548 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1550 * Either we have not yet spawned the grace-period
1551 * task, this CPU does not need another grace period,
1552 * or a grace period is already in progress.
1553 * Either way, don't start a new grace period.
1555 return;
1557 rsp->gp_flags = RCU_GP_FLAG_INIT;
1560 * We can't do wakeups while holding the rnp->lock, as that
1561 * could cause possible deadlocks with the rq->lock. Deter
1562 * the wakeup to interrupt context.
1564 irq_work_queue(&rsp->wakeup_work);
1568 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1569 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1570 * is invoked indirectly from rcu_advance_cbs(), which would result in
1571 * endless recursion -- or would do so if it wasn't for the self-deadlock
1572 * that is encountered beforehand.
1574 static void
1575 rcu_start_gp(struct rcu_state *rsp)
1577 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1578 struct rcu_node *rnp = rcu_get_root(rsp);
1581 * If there is no grace period in progress right now, any
1582 * callbacks we have up to this point will be satisfied by the
1583 * next grace period. Also, advancing the callbacks reduces the
1584 * probability of false positives from cpu_needs_another_gp()
1585 * resulting in pointless grace periods. So, advance callbacks
1586 * then start the grace period!
1588 rcu_advance_cbs(rsp, rnp, rdp);
1589 rcu_start_gp_advanced(rsp, rnp, rdp);
1593 * Report a full set of quiescent states to the specified rcu_state
1594 * data structure. This involves cleaning up after the prior grace
1595 * period and letting rcu_start_gp() start up the next grace period
1596 * if one is needed. Note that the caller must hold rnp->lock, which
1597 * is released before return.
1599 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1600 __releases(rcu_get_root(rsp)->lock)
1602 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1603 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1604 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1608 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1609 * Allows quiescent states for a group of CPUs to be reported at one go
1610 * to the specified rcu_node structure, though all the CPUs in the group
1611 * must be represented by the same rcu_node structure (which need not be
1612 * a leaf rcu_node structure, though it often will be). That structure's
1613 * lock must be held upon entry, and it is released before return.
1615 static void
1616 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1617 struct rcu_node *rnp, unsigned long flags)
1618 __releases(rnp->lock)
1620 struct rcu_node *rnp_c;
1622 /* Walk up the rcu_node hierarchy. */
1623 for (;;) {
1624 if (!(rnp->qsmask & mask)) {
1626 /* Our bit has already been cleared, so done. */
1627 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1628 return;
1630 rnp->qsmask &= ~mask;
1631 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1632 mask, rnp->qsmask, rnp->level,
1633 rnp->grplo, rnp->grphi,
1634 !!rnp->gp_tasks);
1635 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1637 /* Other bits still set at this level, so done. */
1638 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1639 return;
1641 mask = rnp->grpmask;
1642 if (rnp->parent == NULL) {
1644 /* No more levels. Exit loop holding root lock. */
1646 break;
1648 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1649 rnp_c = rnp;
1650 rnp = rnp->parent;
1651 raw_spin_lock_irqsave(&rnp->lock, flags);
1652 WARN_ON_ONCE(rnp_c->qsmask);
1656 * Get here if we are the last CPU to pass through a quiescent
1657 * state for this grace period. Invoke rcu_report_qs_rsp()
1658 * to clean up and start the next grace period if one is needed.
1660 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1664 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1665 * structure. This must be either called from the specified CPU, or
1666 * called when the specified CPU is known to be offline (and when it is
1667 * also known that no other CPU is concurrently trying to help the offline
1668 * CPU). The lastcomp argument is used to make sure we are still in the
1669 * grace period of interest. We don't want to end the current grace period
1670 * based on quiescent states detected in an earlier grace period!
1672 static void
1673 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1675 unsigned long flags;
1676 unsigned long mask;
1677 struct rcu_node *rnp;
1679 rnp = rdp->mynode;
1680 raw_spin_lock_irqsave(&rnp->lock, flags);
1681 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1682 rnp->completed == rnp->gpnum) {
1685 * The grace period in which this quiescent state was
1686 * recorded has ended, so don't report it upwards.
1687 * We will instead need a new quiescent state that lies
1688 * within the current grace period.
1690 rdp->passed_quiesce = 0; /* need qs for new gp. */
1691 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1692 return;
1694 mask = rdp->grpmask;
1695 if ((rnp->qsmask & mask) == 0) {
1696 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1697 } else {
1698 rdp->qs_pending = 0;
1701 * This GP can't end until cpu checks in, so all of our
1702 * callbacks can be processed during the next GP.
1704 rcu_accelerate_cbs(rsp, rnp, rdp);
1706 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1711 * Check to see if there is a new grace period of which this CPU
1712 * is not yet aware, and if so, set up local rcu_data state for it.
1713 * Otherwise, see if this CPU has just passed through its first
1714 * quiescent state for this grace period, and record that fact if so.
1716 static void
1717 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1719 /* Check for grace-period ends and beginnings. */
1720 note_gp_changes(rsp, rdp);
1723 * Does this CPU still need to do its part for current grace period?
1724 * If no, return and let the other CPUs do their part as well.
1726 if (!rdp->qs_pending)
1727 return;
1730 * Was there a quiescent state since the beginning of the grace
1731 * period? If no, then exit and wait for the next call.
1733 if (!rdp->passed_quiesce)
1734 return;
1737 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1738 * judge of that).
1740 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1743 #ifdef CONFIG_HOTPLUG_CPU
1746 * Send the specified CPU's RCU callbacks to the orphanage. The
1747 * specified CPU must be offline, and the caller must hold the
1748 * ->orphan_lock.
1750 static void
1751 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1752 struct rcu_node *rnp, struct rcu_data *rdp)
1754 /* No-CBs CPUs do not have orphanable callbacks. */
1755 if (rcu_is_nocb_cpu(rdp->cpu))
1756 return;
1759 * Orphan the callbacks. First adjust the counts. This is safe
1760 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1761 * cannot be running now. Thus no memory barrier is required.
1763 if (rdp->nxtlist != NULL) {
1764 rsp->qlen_lazy += rdp->qlen_lazy;
1765 rsp->qlen += rdp->qlen;
1766 rdp->n_cbs_orphaned += rdp->qlen;
1767 rdp->qlen_lazy = 0;
1768 ACCESS_ONCE(rdp->qlen) = 0;
1772 * Next, move those callbacks still needing a grace period to
1773 * the orphanage, where some other CPU will pick them up.
1774 * Some of the callbacks might have gone partway through a grace
1775 * period, but that is too bad. They get to start over because we
1776 * cannot assume that grace periods are synchronized across CPUs.
1777 * We don't bother updating the ->nxttail[] array yet, instead
1778 * we just reset the whole thing later on.
1780 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1781 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1782 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1783 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1787 * Then move the ready-to-invoke callbacks to the orphanage,
1788 * where some other CPU will pick them up. These will not be
1789 * required to pass though another grace period: They are done.
1791 if (rdp->nxtlist != NULL) {
1792 *rsp->orphan_donetail = rdp->nxtlist;
1793 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1796 /* Finally, initialize the rcu_data structure's list to empty. */
1797 init_callback_list(rdp);
1801 * Adopt the RCU callbacks from the specified rcu_state structure's
1802 * orphanage. The caller must hold the ->orphan_lock.
1804 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1806 int i;
1807 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1809 /* No-CBs CPUs are handled specially. */
1810 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1811 return;
1813 /* Do the accounting first. */
1814 rdp->qlen_lazy += rsp->qlen_lazy;
1815 rdp->qlen += rsp->qlen;
1816 rdp->n_cbs_adopted += rsp->qlen;
1817 if (rsp->qlen_lazy != rsp->qlen)
1818 rcu_idle_count_callbacks_posted();
1819 rsp->qlen_lazy = 0;
1820 rsp->qlen = 0;
1823 * We do not need a memory barrier here because the only way we
1824 * can get here if there is an rcu_barrier() in flight is if
1825 * we are the task doing the rcu_barrier().
1828 /* First adopt the ready-to-invoke callbacks. */
1829 if (rsp->orphan_donelist != NULL) {
1830 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1831 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1832 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1833 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1834 rdp->nxttail[i] = rsp->orphan_donetail;
1835 rsp->orphan_donelist = NULL;
1836 rsp->orphan_donetail = &rsp->orphan_donelist;
1839 /* And then adopt the callbacks that still need a grace period. */
1840 if (rsp->orphan_nxtlist != NULL) {
1841 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1842 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1843 rsp->orphan_nxtlist = NULL;
1844 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1849 * Trace the fact that this CPU is going offline.
1851 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1853 RCU_TRACE(unsigned long mask);
1854 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1855 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1857 RCU_TRACE(mask = rdp->grpmask);
1858 trace_rcu_grace_period(rsp->name,
1859 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1860 "cpuofl");
1864 * The CPU has been completely removed, and some other CPU is reporting
1865 * this fact from process context. Do the remainder of the cleanup,
1866 * including orphaning the outgoing CPU's RCU callbacks, and also
1867 * adopting them. There can only be one CPU hotplug operation at a time,
1868 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1870 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1872 unsigned long flags;
1873 unsigned long mask;
1874 int need_report = 0;
1875 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1876 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1878 /* Adjust any no-longer-needed kthreads. */
1879 rcu_boost_kthread_setaffinity(rnp, -1);
1881 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1883 /* Exclude any attempts to start a new grace period. */
1884 mutex_lock(&rsp->onoff_mutex);
1885 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1887 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1888 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1889 rcu_adopt_orphan_cbs(rsp);
1891 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1892 mask = rdp->grpmask; /* rnp->grplo is constant. */
1893 do {
1894 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1895 rnp->qsmaskinit &= ~mask;
1896 if (rnp->qsmaskinit != 0) {
1897 if (rnp != rdp->mynode)
1898 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1899 break;
1901 if (rnp == rdp->mynode)
1902 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1903 else
1904 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1905 mask = rnp->grpmask;
1906 rnp = rnp->parent;
1907 } while (rnp != NULL);
1910 * We still hold the leaf rcu_node structure lock here, and
1911 * irqs are still disabled. The reason for this subterfuge is
1912 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1913 * held leads to deadlock.
1915 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1916 rnp = rdp->mynode;
1917 if (need_report & RCU_OFL_TASKS_NORM_GP)
1918 rcu_report_unblock_qs_rnp(rnp, flags);
1919 else
1920 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1921 if (need_report & RCU_OFL_TASKS_EXP_GP)
1922 rcu_report_exp_rnp(rsp, rnp, true);
1923 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1924 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1925 cpu, rdp->qlen, rdp->nxtlist);
1926 init_callback_list(rdp);
1927 /* Disallow further callbacks on this CPU. */
1928 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1929 mutex_unlock(&rsp->onoff_mutex);
1932 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1934 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1938 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1942 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1945 * Invoke any RCU callbacks that have made it to the end of their grace
1946 * period. Thottle as specified by rdp->blimit.
1948 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1950 unsigned long flags;
1951 struct rcu_head *next, *list, **tail;
1952 long bl, count, count_lazy;
1953 int i;
1955 /* If no callbacks are ready, just return. */
1956 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1957 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1958 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1959 need_resched(), is_idle_task(current),
1960 rcu_is_callbacks_kthread());
1961 return;
1965 * Extract the list of ready callbacks, disabling to prevent
1966 * races with call_rcu() from interrupt handlers.
1968 local_irq_save(flags);
1969 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1970 bl = rdp->blimit;
1971 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1972 list = rdp->nxtlist;
1973 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1974 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1975 tail = rdp->nxttail[RCU_DONE_TAIL];
1976 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1977 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1978 rdp->nxttail[i] = &rdp->nxtlist;
1979 local_irq_restore(flags);
1981 /* Invoke callbacks. */
1982 count = count_lazy = 0;
1983 while (list) {
1984 next = list->next;
1985 prefetch(next);
1986 debug_rcu_head_unqueue(list);
1987 if (__rcu_reclaim(rsp->name, list))
1988 count_lazy++;
1989 list = next;
1990 /* Stop only if limit reached and CPU has something to do. */
1991 if (++count >= bl &&
1992 (need_resched() ||
1993 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1994 break;
1997 local_irq_save(flags);
1998 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1999 is_idle_task(current),
2000 rcu_is_callbacks_kthread());
2002 /* Update count, and requeue any remaining callbacks. */
2003 if (list != NULL) {
2004 *tail = rdp->nxtlist;
2005 rdp->nxtlist = list;
2006 for (i = 0; i < RCU_NEXT_SIZE; i++)
2007 if (&rdp->nxtlist == rdp->nxttail[i])
2008 rdp->nxttail[i] = tail;
2009 else
2010 break;
2012 smp_mb(); /* List handling before counting for rcu_barrier(). */
2013 rdp->qlen_lazy -= count_lazy;
2014 ACCESS_ONCE(rdp->qlen) -= count;
2015 rdp->n_cbs_invoked += count;
2017 /* Reinstate batch limit if we have worked down the excess. */
2018 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2019 rdp->blimit = blimit;
2021 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2022 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2023 rdp->qlen_last_fqs_check = 0;
2024 rdp->n_force_qs_snap = rsp->n_force_qs;
2025 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2026 rdp->qlen_last_fqs_check = rdp->qlen;
2027 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2029 local_irq_restore(flags);
2031 /* Re-invoke RCU core processing if there are callbacks remaining. */
2032 if (cpu_has_callbacks_ready_to_invoke(rdp))
2033 invoke_rcu_core();
2037 * Check to see if this CPU is in a non-context-switch quiescent state
2038 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2039 * Also schedule RCU core processing.
2041 * This function must be called from hardirq context. It is normally
2042 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2043 * false, there is no point in invoking rcu_check_callbacks().
2045 void rcu_check_callbacks(int cpu, int user)
2047 trace_rcu_utilization("Start scheduler-tick");
2048 increment_cpu_stall_ticks();
2049 if (user || rcu_is_cpu_rrupt_from_idle()) {
2052 * Get here if this CPU took its interrupt from user
2053 * mode or from the idle loop, and if this is not a
2054 * nested interrupt. In this case, the CPU is in
2055 * a quiescent state, so note it.
2057 * No memory barrier is required here because both
2058 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2059 * variables that other CPUs neither access nor modify,
2060 * at least not while the corresponding CPU is online.
2063 rcu_sched_qs(cpu);
2064 rcu_bh_qs(cpu);
2066 } else if (!in_softirq()) {
2069 * Get here if this CPU did not take its interrupt from
2070 * softirq, in other words, if it is not interrupting
2071 * a rcu_bh read-side critical section. This is an _bh
2072 * critical section, so note it.
2075 rcu_bh_qs(cpu);
2077 rcu_preempt_check_callbacks(cpu);
2078 if (rcu_pending(cpu))
2079 invoke_rcu_core();
2080 trace_rcu_utilization("End scheduler-tick");
2084 * Scan the leaf rcu_node structures, processing dyntick state for any that
2085 * have not yet encountered a quiescent state, using the function specified.
2086 * Also initiate boosting for any threads blocked on the root rcu_node.
2088 * The caller must have suppressed start of new grace periods.
2090 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2092 unsigned long bit;
2093 int cpu;
2094 unsigned long flags;
2095 unsigned long mask;
2096 struct rcu_node *rnp;
2098 rcu_for_each_leaf_node(rsp, rnp) {
2099 cond_resched();
2100 mask = 0;
2101 raw_spin_lock_irqsave(&rnp->lock, flags);
2102 if (!rcu_gp_in_progress(rsp)) {
2103 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2104 return;
2106 if (rnp->qsmask == 0) {
2107 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2108 continue;
2110 cpu = rnp->grplo;
2111 bit = 1;
2112 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2113 if ((rnp->qsmask & bit) != 0 &&
2114 f(per_cpu_ptr(rsp->rda, cpu)))
2115 mask |= bit;
2117 if (mask != 0) {
2119 /* rcu_report_qs_rnp() releases rnp->lock. */
2120 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2121 continue;
2123 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2125 rnp = rcu_get_root(rsp);
2126 if (rnp->qsmask == 0) {
2127 raw_spin_lock_irqsave(&rnp->lock, flags);
2128 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2133 * Force quiescent states on reluctant CPUs, and also detect which
2134 * CPUs are in dyntick-idle mode.
2136 static void force_quiescent_state(struct rcu_state *rsp)
2138 unsigned long flags;
2139 bool ret;
2140 struct rcu_node *rnp;
2141 struct rcu_node *rnp_old = NULL;
2143 /* Funnel through hierarchy to reduce memory contention. */
2144 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2145 for (; rnp != NULL; rnp = rnp->parent) {
2146 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2147 !raw_spin_trylock(&rnp->fqslock);
2148 if (rnp_old != NULL)
2149 raw_spin_unlock(&rnp_old->fqslock);
2150 if (ret) {
2151 rsp->n_force_qs_lh++;
2152 return;
2154 rnp_old = rnp;
2156 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2158 /* Reached the root of the rcu_node tree, acquire lock. */
2159 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2160 raw_spin_unlock(&rnp_old->fqslock);
2161 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2162 rsp->n_force_qs_lh++;
2163 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2164 return; /* Someone beat us to it. */
2166 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2167 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2168 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2172 * This does the RCU core processing work for the specified rcu_state
2173 * and rcu_data structures. This may be called only from the CPU to
2174 * whom the rdp belongs.
2176 static void
2177 __rcu_process_callbacks(struct rcu_state *rsp)
2179 unsigned long flags;
2180 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2182 WARN_ON_ONCE(rdp->beenonline == 0);
2184 /* Update RCU state based on any recent quiescent states. */
2185 rcu_check_quiescent_state(rsp, rdp);
2187 /* Does this CPU require a not-yet-started grace period? */
2188 local_irq_save(flags);
2189 if (cpu_needs_another_gp(rsp, rdp)) {
2190 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2191 rcu_start_gp(rsp);
2192 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2193 } else {
2194 local_irq_restore(flags);
2197 /* If there are callbacks ready, invoke them. */
2198 if (cpu_has_callbacks_ready_to_invoke(rdp))
2199 invoke_rcu_callbacks(rsp, rdp);
2203 * Do RCU core processing for the current CPU.
2205 static void rcu_process_callbacks(struct softirq_action *unused)
2207 struct rcu_state *rsp;
2209 if (cpu_is_offline(smp_processor_id()))
2210 return;
2211 trace_rcu_utilization("Start RCU core");
2212 for_each_rcu_flavor(rsp)
2213 __rcu_process_callbacks(rsp);
2214 trace_rcu_utilization("End RCU core");
2218 * Schedule RCU callback invocation. If the specified type of RCU
2219 * does not support RCU priority boosting, just do a direct call,
2220 * otherwise wake up the per-CPU kernel kthread. Note that because we
2221 * are running on the current CPU with interrupts disabled, the
2222 * rcu_cpu_kthread_task cannot disappear out from under us.
2224 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2226 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2227 return;
2228 if (likely(!rsp->boost)) {
2229 rcu_do_batch(rsp, rdp);
2230 return;
2232 invoke_rcu_callbacks_kthread();
2235 static void invoke_rcu_core(void)
2237 if (cpu_online(smp_processor_id()))
2238 raise_softirq(RCU_SOFTIRQ);
2242 * Handle any core-RCU processing required by a call_rcu() invocation.
2244 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2245 struct rcu_head *head, unsigned long flags)
2248 * If called from an extended quiescent state, invoke the RCU
2249 * core in order to force a re-evaluation of RCU's idleness.
2251 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2252 invoke_rcu_core();
2254 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2255 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2256 return;
2259 * Force the grace period if too many callbacks or too long waiting.
2260 * Enforce hysteresis, and don't invoke force_quiescent_state()
2261 * if some other CPU has recently done so. Also, don't bother
2262 * invoking force_quiescent_state() if the newly enqueued callback
2263 * is the only one waiting for a grace period to complete.
2265 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2267 /* Are we ignoring a completed grace period? */
2268 note_gp_changes(rsp, rdp);
2270 /* Start a new grace period if one not already started. */
2271 if (!rcu_gp_in_progress(rsp)) {
2272 struct rcu_node *rnp_root = rcu_get_root(rsp);
2274 raw_spin_lock(&rnp_root->lock);
2275 rcu_start_gp(rsp);
2276 raw_spin_unlock(&rnp_root->lock);
2277 } else {
2278 /* Give the grace period a kick. */
2279 rdp->blimit = LONG_MAX;
2280 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2281 *rdp->nxttail[RCU_DONE_TAIL] != head)
2282 force_quiescent_state(rsp);
2283 rdp->n_force_qs_snap = rsp->n_force_qs;
2284 rdp->qlen_last_fqs_check = rdp->qlen;
2290 * Helper function for call_rcu() and friends. The cpu argument will
2291 * normally be -1, indicating "currently running CPU". It may specify
2292 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2293 * is expected to specify a CPU.
2295 static void
2296 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2297 struct rcu_state *rsp, int cpu, bool lazy)
2299 unsigned long flags;
2300 struct rcu_data *rdp;
2302 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2303 debug_rcu_head_queue(head);
2304 head->func = func;
2305 head->next = NULL;
2308 * Opportunistically note grace-period endings and beginnings.
2309 * Note that we might see a beginning right after we see an
2310 * end, but never vice versa, since this CPU has to pass through
2311 * a quiescent state betweentimes.
2313 local_irq_save(flags);
2314 rdp = this_cpu_ptr(rsp->rda);
2316 /* Add the callback to our list. */
2317 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2318 int offline;
2320 if (cpu != -1)
2321 rdp = per_cpu_ptr(rsp->rda, cpu);
2322 offline = !__call_rcu_nocb(rdp, head, lazy);
2323 WARN_ON_ONCE(offline);
2324 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2325 local_irq_restore(flags);
2326 return;
2328 ACCESS_ONCE(rdp->qlen)++;
2329 if (lazy)
2330 rdp->qlen_lazy++;
2331 else
2332 rcu_idle_count_callbacks_posted();
2333 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2334 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2335 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2337 if (__is_kfree_rcu_offset((unsigned long)func))
2338 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2339 rdp->qlen_lazy, rdp->qlen);
2340 else
2341 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2343 /* Go handle any RCU core processing required. */
2344 __call_rcu_core(rsp, rdp, head, flags);
2345 local_irq_restore(flags);
2349 * Queue an RCU-sched callback for invocation after a grace period.
2351 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2353 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2355 EXPORT_SYMBOL_GPL(call_rcu_sched);
2358 * Queue an RCU callback for invocation after a quicker grace period.
2360 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2362 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2364 EXPORT_SYMBOL_GPL(call_rcu_bh);
2367 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2368 * any blocking grace-period wait automatically implies a grace period
2369 * if there is only one CPU online at any point time during execution
2370 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2371 * occasionally incorrectly indicate that there are multiple CPUs online
2372 * when there was in fact only one the whole time, as this just adds
2373 * some overhead: RCU still operates correctly.
2375 static inline int rcu_blocking_is_gp(void)
2377 int ret;
2379 might_sleep(); /* Check for RCU read-side critical section. */
2380 preempt_disable();
2381 ret = num_online_cpus() <= 1;
2382 preempt_enable();
2383 return ret;
2387 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2389 * Control will return to the caller some time after a full rcu-sched
2390 * grace period has elapsed, in other words after all currently executing
2391 * rcu-sched read-side critical sections have completed. These read-side
2392 * critical sections are delimited by rcu_read_lock_sched() and
2393 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2394 * local_irq_disable(), and so on may be used in place of
2395 * rcu_read_lock_sched().
2397 * This means that all preempt_disable code sequences, including NMI and
2398 * non-threaded hardware-interrupt handlers, in progress on entry will
2399 * have completed before this primitive returns. However, this does not
2400 * guarantee that softirq handlers will have completed, since in some
2401 * kernels, these handlers can run in process context, and can block.
2403 * Note that this guarantee implies further memory-ordering guarantees.
2404 * On systems with more than one CPU, when synchronize_sched() returns,
2405 * each CPU is guaranteed to have executed a full memory barrier since the
2406 * end of its last RCU-sched read-side critical section whose beginning
2407 * preceded the call to synchronize_sched(). In addition, each CPU having
2408 * an RCU read-side critical section that extends beyond the return from
2409 * synchronize_sched() is guaranteed to have executed a full memory barrier
2410 * after the beginning of synchronize_sched() and before the beginning of
2411 * that RCU read-side critical section. Note that these guarantees include
2412 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2413 * that are executing in the kernel.
2415 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2416 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2417 * to have executed a full memory barrier during the execution of
2418 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2419 * again only if the system has more than one CPU).
2421 * This primitive provides the guarantees made by the (now removed)
2422 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2423 * guarantees that rcu_read_lock() sections will have completed.
2424 * In "classic RCU", these two guarantees happen to be one and
2425 * the same, but can differ in realtime RCU implementations.
2427 void synchronize_sched(void)
2429 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2430 !lock_is_held(&rcu_lock_map) &&
2431 !lock_is_held(&rcu_sched_lock_map),
2432 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2433 if (rcu_blocking_is_gp())
2434 return;
2435 if (rcu_expedited)
2436 synchronize_sched_expedited();
2437 else
2438 wait_rcu_gp(call_rcu_sched);
2440 EXPORT_SYMBOL_GPL(synchronize_sched);
2443 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2445 * Control will return to the caller some time after a full rcu_bh grace
2446 * period has elapsed, in other words after all currently executing rcu_bh
2447 * read-side critical sections have completed. RCU read-side critical
2448 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2449 * and may be nested.
2451 * See the description of synchronize_sched() for more detailed information
2452 * on memory ordering guarantees.
2454 void synchronize_rcu_bh(void)
2456 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2457 !lock_is_held(&rcu_lock_map) &&
2458 !lock_is_held(&rcu_sched_lock_map),
2459 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2460 if (rcu_blocking_is_gp())
2461 return;
2462 if (rcu_expedited)
2463 synchronize_rcu_bh_expedited();
2464 else
2465 wait_rcu_gp(call_rcu_bh);
2467 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2469 static int synchronize_sched_expedited_cpu_stop(void *data)
2472 * There must be a full memory barrier on each affected CPU
2473 * between the time that try_stop_cpus() is called and the
2474 * time that it returns.
2476 * In the current initial implementation of cpu_stop, the
2477 * above condition is already met when the control reaches
2478 * this point and the following smp_mb() is not strictly
2479 * necessary. Do smp_mb() anyway for documentation and
2480 * robustness against future implementation changes.
2482 smp_mb(); /* See above comment block. */
2483 return 0;
2487 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2489 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2490 * approach to force the grace period to end quickly. This consumes
2491 * significant time on all CPUs and is unfriendly to real-time workloads,
2492 * so is thus not recommended for any sort of common-case code. In fact,
2493 * if you are using synchronize_sched_expedited() in a loop, please
2494 * restructure your code to batch your updates, and then use a single
2495 * synchronize_sched() instead.
2497 * Note that it is illegal to call this function while holding any lock
2498 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2499 * to call this function from a CPU-hotplug notifier. Failing to observe
2500 * these restriction will result in deadlock.
2502 * This implementation can be thought of as an application of ticket
2503 * locking to RCU, with sync_sched_expedited_started and
2504 * sync_sched_expedited_done taking on the roles of the halves
2505 * of the ticket-lock word. Each task atomically increments
2506 * sync_sched_expedited_started upon entry, snapshotting the old value,
2507 * then attempts to stop all the CPUs. If this succeeds, then each
2508 * CPU will have executed a context switch, resulting in an RCU-sched
2509 * grace period. We are then done, so we use atomic_cmpxchg() to
2510 * update sync_sched_expedited_done to match our snapshot -- but
2511 * only if someone else has not already advanced past our snapshot.
2513 * On the other hand, if try_stop_cpus() fails, we check the value
2514 * of sync_sched_expedited_done. If it has advanced past our
2515 * initial snapshot, then someone else must have forced a grace period
2516 * some time after we took our snapshot. In this case, our work is
2517 * done for us, and we can simply return. Otherwise, we try again,
2518 * but keep our initial snapshot for purposes of checking for someone
2519 * doing our work for us.
2521 * If we fail too many times in a row, we fall back to synchronize_sched().
2523 void synchronize_sched_expedited(void)
2525 long firstsnap, s, snap;
2526 int trycount = 0;
2527 struct rcu_state *rsp = &rcu_sched_state;
2530 * If we are in danger of counter wrap, just do synchronize_sched().
2531 * By allowing sync_sched_expedited_started to advance no more than
2532 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2533 * that more than 3.5 billion CPUs would be required to force a
2534 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2535 * course be required on a 64-bit system.
2537 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2538 (ulong)atomic_long_read(&rsp->expedited_done) +
2539 ULONG_MAX / 8)) {
2540 synchronize_sched();
2541 atomic_long_inc(&rsp->expedited_wrap);
2542 return;
2546 * Take a ticket. Note that atomic_inc_return() implies a
2547 * full memory barrier.
2549 snap = atomic_long_inc_return(&rsp->expedited_start);
2550 firstsnap = snap;
2551 get_online_cpus();
2552 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2555 * Each pass through the following loop attempts to force a
2556 * context switch on each CPU.
2558 while (try_stop_cpus(cpu_online_mask,
2559 synchronize_sched_expedited_cpu_stop,
2560 NULL) == -EAGAIN) {
2561 put_online_cpus();
2562 atomic_long_inc(&rsp->expedited_tryfail);
2564 /* Check to see if someone else did our work for us. */
2565 s = atomic_long_read(&rsp->expedited_done);
2566 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2567 /* ensure test happens before caller kfree */
2568 smp_mb__before_atomic_inc(); /* ^^^ */
2569 atomic_long_inc(&rsp->expedited_workdone1);
2570 return;
2573 /* No joy, try again later. Or just synchronize_sched(). */
2574 if (trycount++ < 10) {
2575 udelay(trycount * num_online_cpus());
2576 } else {
2577 wait_rcu_gp(call_rcu_sched);
2578 atomic_long_inc(&rsp->expedited_normal);
2579 return;
2582 /* Recheck to see if someone else did our work for us. */
2583 s = atomic_long_read(&rsp->expedited_done);
2584 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2585 /* ensure test happens before caller kfree */
2586 smp_mb__before_atomic_inc(); /* ^^^ */
2587 atomic_long_inc(&rsp->expedited_workdone2);
2588 return;
2592 * Refetching sync_sched_expedited_started allows later
2593 * callers to piggyback on our grace period. We retry
2594 * after they started, so our grace period works for them,
2595 * and they started after our first try, so their grace
2596 * period works for us.
2598 get_online_cpus();
2599 snap = atomic_long_read(&rsp->expedited_start);
2600 smp_mb(); /* ensure read is before try_stop_cpus(). */
2602 atomic_long_inc(&rsp->expedited_stoppedcpus);
2605 * Everyone up to our most recent fetch is covered by our grace
2606 * period. Update the counter, but only if our work is still
2607 * relevant -- which it won't be if someone who started later
2608 * than we did already did their update.
2610 do {
2611 atomic_long_inc(&rsp->expedited_done_tries);
2612 s = atomic_long_read(&rsp->expedited_done);
2613 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2614 /* ensure test happens before caller kfree */
2615 smp_mb__before_atomic_inc(); /* ^^^ */
2616 atomic_long_inc(&rsp->expedited_done_lost);
2617 break;
2619 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2620 atomic_long_inc(&rsp->expedited_done_exit);
2622 put_online_cpus();
2624 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2627 * Check to see if there is any immediate RCU-related work to be done
2628 * by the current CPU, for the specified type of RCU, returning 1 if so.
2629 * The checks are in order of increasing expense: checks that can be
2630 * carried out against CPU-local state are performed first. However,
2631 * we must check for CPU stalls first, else we might not get a chance.
2633 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2635 struct rcu_node *rnp = rdp->mynode;
2637 rdp->n_rcu_pending++;
2639 /* Check for CPU stalls, if enabled. */
2640 check_cpu_stall(rsp, rdp);
2642 /* Is the RCU core waiting for a quiescent state from this CPU? */
2643 if (rcu_scheduler_fully_active &&
2644 rdp->qs_pending && !rdp->passed_quiesce) {
2645 rdp->n_rp_qs_pending++;
2646 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2647 rdp->n_rp_report_qs++;
2648 return 1;
2651 /* Does this CPU have callbacks ready to invoke? */
2652 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2653 rdp->n_rp_cb_ready++;
2654 return 1;
2657 /* Has RCU gone idle with this CPU needing another grace period? */
2658 if (cpu_needs_another_gp(rsp, rdp)) {
2659 rdp->n_rp_cpu_needs_gp++;
2660 return 1;
2663 /* Has another RCU grace period completed? */
2664 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2665 rdp->n_rp_gp_completed++;
2666 return 1;
2669 /* Has a new RCU grace period started? */
2670 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2671 rdp->n_rp_gp_started++;
2672 return 1;
2675 /* nothing to do */
2676 rdp->n_rp_need_nothing++;
2677 return 0;
2681 * Check to see if there is any immediate RCU-related work to be done
2682 * by the current CPU, returning 1 if so. This function is part of the
2683 * RCU implementation; it is -not- an exported member of the RCU API.
2685 static int rcu_pending(int cpu)
2687 struct rcu_state *rsp;
2689 for_each_rcu_flavor(rsp)
2690 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2691 return 1;
2692 return 0;
2696 * Return true if the specified CPU has any callback. If all_lazy is
2697 * non-NULL, store an indication of whether all callbacks are lazy.
2698 * (If there are no callbacks, all of them are deemed to be lazy.)
2700 static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2702 bool al = true;
2703 bool hc = false;
2704 struct rcu_data *rdp;
2705 struct rcu_state *rsp;
2707 for_each_rcu_flavor(rsp) {
2708 rdp = per_cpu_ptr(rsp->rda, cpu);
2709 if (rdp->qlen != rdp->qlen_lazy)
2710 al = false;
2711 if (rdp->nxtlist)
2712 hc = true;
2714 if (all_lazy)
2715 *all_lazy = al;
2716 return hc;
2720 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2721 * the compiler is expected to optimize this away.
2723 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2724 int cpu, unsigned long done)
2726 trace_rcu_barrier(rsp->name, s, cpu,
2727 atomic_read(&rsp->barrier_cpu_count), done);
2731 * RCU callback function for _rcu_barrier(). If we are last, wake
2732 * up the task executing _rcu_barrier().
2734 static void rcu_barrier_callback(struct rcu_head *rhp)
2736 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2737 struct rcu_state *rsp = rdp->rsp;
2739 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2740 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2741 complete(&rsp->barrier_completion);
2742 } else {
2743 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2748 * Called with preemption disabled, and from cross-cpu IRQ context.
2750 static void rcu_barrier_func(void *type)
2752 struct rcu_state *rsp = type;
2753 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2755 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2756 atomic_inc(&rsp->barrier_cpu_count);
2757 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2761 * Orchestrate the specified type of RCU barrier, waiting for all
2762 * RCU callbacks of the specified type to complete.
2764 static void _rcu_barrier(struct rcu_state *rsp)
2766 int cpu;
2767 struct rcu_data *rdp;
2768 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2769 unsigned long snap_done;
2771 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2773 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2774 mutex_lock(&rsp->barrier_mutex);
2777 * Ensure that all prior references, including to ->n_barrier_done,
2778 * are ordered before the _rcu_barrier() machinery.
2780 smp_mb(); /* See above block comment. */
2783 * Recheck ->n_barrier_done to see if others did our work for us.
2784 * This means checking ->n_barrier_done for an even-to-odd-to-even
2785 * transition. The "if" expression below therefore rounds the old
2786 * value up to the next even number and adds two before comparing.
2788 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2789 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2790 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2791 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2792 smp_mb(); /* caller's subsequent code after above check. */
2793 mutex_unlock(&rsp->barrier_mutex);
2794 return;
2798 * Increment ->n_barrier_done to avoid duplicate work. Use
2799 * ACCESS_ONCE() to prevent the compiler from speculating
2800 * the increment to precede the early-exit check.
2802 ACCESS_ONCE(rsp->n_barrier_done)++;
2803 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2804 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2805 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2808 * Initialize the count to one rather than to zero in order to
2809 * avoid a too-soon return to zero in case of a short grace period
2810 * (or preemption of this task). Exclude CPU-hotplug operations
2811 * to ensure that no offline CPU has callbacks queued.
2813 init_completion(&rsp->barrier_completion);
2814 atomic_set(&rsp->barrier_cpu_count, 1);
2815 get_online_cpus();
2818 * Force each CPU with callbacks to register a new callback.
2819 * When that callback is invoked, we will know that all of the
2820 * corresponding CPU's preceding callbacks have been invoked.
2822 for_each_possible_cpu(cpu) {
2823 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2824 continue;
2825 rdp = per_cpu_ptr(rsp->rda, cpu);
2826 if (rcu_is_nocb_cpu(cpu)) {
2827 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2828 rsp->n_barrier_done);
2829 atomic_inc(&rsp->barrier_cpu_count);
2830 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2831 rsp, cpu, 0);
2832 } else if (ACCESS_ONCE(rdp->qlen)) {
2833 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2834 rsp->n_barrier_done);
2835 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2836 } else {
2837 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2838 rsp->n_barrier_done);
2841 put_online_cpus();
2844 * Now that we have an rcu_barrier_callback() callback on each
2845 * CPU, and thus each counted, remove the initial count.
2847 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2848 complete(&rsp->barrier_completion);
2850 /* Increment ->n_barrier_done to prevent duplicate work. */
2851 smp_mb(); /* Keep increment after above mechanism. */
2852 ACCESS_ONCE(rsp->n_barrier_done)++;
2853 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2854 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2855 smp_mb(); /* Keep increment before caller's subsequent code. */
2857 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2858 wait_for_completion(&rsp->barrier_completion);
2860 /* Other rcu_barrier() invocations can now safely proceed. */
2861 mutex_unlock(&rsp->barrier_mutex);
2865 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2867 void rcu_barrier_bh(void)
2869 _rcu_barrier(&rcu_bh_state);
2871 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2874 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2876 void rcu_barrier_sched(void)
2878 _rcu_barrier(&rcu_sched_state);
2880 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2883 * Do boot-time initialization of a CPU's per-CPU RCU data.
2885 static void __init
2886 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2888 unsigned long flags;
2889 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2890 struct rcu_node *rnp = rcu_get_root(rsp);
2892 /* Set up local state, ensuring consistent view of global state. */
2893 raw_spin_lock_irqsave(&rnp->lock, flags);
2894 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2895 init_callback_list(rdp);
2896 rdp->qlen_lazy = 0;
2897 ACCESS_ONCE(rdp->qlen) = 0;
2898 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2899 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2900 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2901 rdp->cpu = cpu;
2902 rdp->rsp = rsp;
2903 rcu_boot_init_nocb_percpu_data(rdp);
2904 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2908 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2909 * offline event can be happening at a given time. Note also that we
2910 * can accept some slop in the rsp->completed access due to the fact
2911 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2913 static void
2914 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2916 unsigned long flags;
2917 unsigned long mask;
2918 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2919 struct rcu_node *rnp = rcu_get_root(rsp);
2921 /* Exclude new grace periods. */
2922 mutex_lock(&rsp->onoff_mutex);
2924 /* Set up local state, ensuring consistent view of global state. */
2925 raw_spin_lock_irqsave(&rnp->lock, flags);
2926 rdp->beenonline = 1; /* We have now been online. */
2927 rdp->preemptible = preemptible;
2928 rdp->qlen_last_fqs_check = 0;
2929 rdp->n_force_qs_snap = rsp->n_force_qs;
2930 rdp->blimit = blimit;
2931 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2932 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2933 atomic_set(&rdp->dynticks->dynticks,
2934 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2935 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2937 /* Add CPU to rcu_node bitmasks. */
2938 rnp = rdp->mynode;
2939 mask = rdp->grpmask;
2940 do {
2941 /* Exclude any attempts to start a new GP on small systems. */
2942 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2943 rnp->qsmaskinit |= mask;
2944 mask = rnp->grpmask;
2945 if (rnp == rdp->mynode) {
2947 * If there is a grace period in progress, we will
2948 * set up to wait for it next time we run the
2949 * RCU core code.
2951 rdp->gpnum = rnp->completed;
2952 rdp->completed = rnp->completed;
2953 rdp->passed_quiesce = 0;
2954 rdp->qs_pending = 0;
2955 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2957 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2958 rnp = rnp->parent;
2959 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2960 local_irq_restore(flags);
2962 mutex_unlock(&rsp->onoff_mutex);
2965 static void rcu_prepare_cpu(int cpu)
2967 struct rcu_state *rsp;
2969 for_each_rcu_flavor(rsp)
2970 rcu_init_percpu_data(cpu, rsp,
2971 strcmp(rsp->name, "rcu_preempt") == 0);
2975 * Handle CPU online/offline notification events.
2977 static int rcu_cpu_notify(struct notifier_block *self,
2978 unsigned long action, void *hcpu)
2980 long cpu = (long)hcpu;
2981 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2982 struct rcu_node *rnp = rdp->mynode;
2983 struct rcu_state *rsp;
2985 trace_rcu_utilization("Start CPU hotplug");
2986 switch (action) {
2987 case CPU_UP_PREPARE:
2988 case CPU_UP_PREPARE_FROZEN:
2989 rcu_prepare_cpu(cpu);
2990 rcu_prepare_kthreads(cpu);
2991 break;
2992 case CPU_ONLINE:
2993 case CPU_DOWN_FAILED:
2994 rcu_boost_kthread_setaffinity(rnp, -1);
2995 break;
2996 case CPU_DOWN_PREPARE:
2997 rcu_boost_kthread_setaffinity(rnp, cpu);
2998 break;
2999 case CPU_DYING:
3000 case CPU_DYING_FROZEN:
3001 for_each_rcu_flavor(rsp)
3002 rcu_cleanup_dying_cpu(rsp);
3003 break;
3004 case CPU_DEAD:
3005 case CPU_DEAD_FROZEN:
3006 case CPU_UP_CANCELED:
3007 case CPU_UP_CANCELED_FROZEN:
3008 for_each_rcu_flavor(rsp)
3009 rcu_cleanup_dead_cpu(cpu, rsp);
3010 break;
3011 default:
3012 break;
3014 trace_rcu_utilization("End CPU hotplug");
3015 return NOTIFY_OK;
3019 * Spawn the kthread that handles this RCU flavor's grace periods.
3021 static int __init rcu_spawn_gp_kthread(void)
3023 unsigned long flags;
3024 struct rcu_node *rnp;
3025 struct rcu_state *rsp;
3026 struct task_struct *t;
3028 for_each_rcu_flavor(rsp) {
3029 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3030 BUG_ON(IS_ERR(t));
3031 rnp = rcu_get_root(rsp);
3032 raw_spin_lock_irqsave(&rnp->lock, flags);
3033 rsp->gp_kthread = t;
3034 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3035 rcu_spawn_nocb_kthreads(rsp);
3037 return 0;
3039 early_initcall(rcu_spawn_gp_kthread);
3042 * This function is invoked towards the end of the scheduler's initialization
3043 * process. Before this is called, the idle task might contain
3044 * RCU read-side critical sections (during which time, this idle
3045 * task is booting the system). After this function is called, the
3046 * idle tasks are prohibited from containing RCU read-side critical
3047 * sections. This function also enables RCU lockdep checking.
3049 void rcu_scheduler_starting(void)
3051 WARN_ON(num_online_cpus() != 1);
3052 WARN_ON(nr_context_switches() > 0);
3053 rcu_scheduler_active = 1;
3057 * Compute the per-level fanout, either using the exact fanout specified
3058 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3060 #ifdef CONFIG_RCU_FANOUT_EXACT
3061 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3063 int i;
3065 for (i = rcu_num_lvls - 1; i > 0; i--)
3066 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3067 rsp->levelspread[0] = rcu_fanout_leaf;
3069 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3070 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3072 int ccur;
3073 int cprv;
3074 int i;
3076 cprv = nr_cpu_ids;
3077 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3078 ccur = rsp->levelcnt[i];
3079 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3080 cprv = ccur;
3083 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3086 * Helper function for rcu_init() that initializes one rcu_state structure.
3088 static void __init rcu_init_one(struct rcu_state *rsp,
3089 struct rcu_data __percpu *rda)
3091 static char *buf[] = { "rcu_node_0",
3092 "rcu_node_1",
3093 "rcu_node_2",
3094 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3095 static char *fqs[] = { "rcu_node_fqs_0",
3096 "rcu_node_fqs_1",
3097 "rcu_node_fqs_2",
3098 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3099 int cpustride = 1;
3100 int i;
3101 int j;
3102 struct rcu_node *rnp;
3104 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3106 /* Silence gcc 4.8 warning about array index out of range. */
3107 if (rcu_num_lvls > RCU_NUM_LVLS)
3108 panic("rcu_init_one: rcu_num_lvls overflow");
3110 /* Initialize the level-tracking arrays. */
3112 for (i = 0; i < rcu_num_lvls; i++)
3113 rsp->levelcnt[i] = num_rcu_lvl[i];
3114 for (i = 1; i < rcu_num_lvls; i++)
3115 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3116 rcu_init_levelspread(rsp);
3118 /* Initialize the elements themselves, starting from the leaves. */
3120 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3121 cpustride *= rsp->levelspread[i];
3122 rnp = rsp->level[i];
3123 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3124 raw_spin_lock_init(&rnp->lock);
3125 lockdep_set_class_and_name(&rnp->lock,
3126 &rcu_node_class[i], buf[i]);
3127 raw_spin_lock_init(&rnp->fqslock);
3128 lockdep_set_class_and_name(&rnp->fqslock,
3129 &rcu_fqs_class[i], fqs[i]);
3130 rnp->gpnum = rsp->gpnum;
3131 rnp->completed = rsp->completed;
3132 rnp->qsmask = 0;
3133 rnp->qsmaskinit = 0;
3134 rnp->grplo = j * cpustride;
3135 rnp->grphi = (j + 1) * cpustride - 1;
3136 if (rnp->grphi >= NR_CPUS)
3137 rnp->grphi = NR_CPUS - 1;
3138 if (i == 0) {
3139 rnp->grpnum = 0;
3140 rnp->grpmask = 0;
3141 rnp->parent = NULL;
3142 } else {
3143 rnp->grpnum = j % rsp->levelspread[i - 1];
3144 rnp->grpmask = 1UL << rnp->grpnum;
3145 rnp->parent = rsp->level[i - 1] +
3146 j / rsp->levelspread[i - 1];
3148 rnp->level = i;
3149 INIT_LIST_HEAD(&rnp->blkd_tasks);
3150 rcu_init_one_nocb(rnp);
3154 rsp->rda = rda;
3155 init_waitqueue_head(&rsp->gp_wq);
3156 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3157 rnp = rsp->level[rcu_num_lvls - 1];
3158 for_each_possible_cpu(i) {
3159 while (i > rnp->grphi)
3160 rnp++;
3161 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3162 rcu_boot_init_percpu_data(i, rsp);
3164 list_add(&rsp->flavors, &rcu_struct_flavors);
3168 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3169 * replace the definitions in rcutree.h because those are needed to size
3170 * the ->node array in the rcu_state structure.
3172 static void __init rcu_init_geometry(void)
3174 ulong d;
3175 int i;
3176 int j;
3177 int n = nr_cpu_ids;
3178 int rcu_capacity[MAX_RCU_LVLS + 1];
3181 * Initialize any unspecified boot parameters.
3182 * The default values of jiffies_till_first_fqs and
3183 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3184 * value, which is a function of HZ, then adding one for each
3185 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3187 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3188 if (jiffies_till_first_fqs == ULONG_MAX)
3189 jiffies_till_first_fqs = d;
3190 if (jiffies_till_next_fqs == ULONG_MAX)
3191 jiffies_till_next_fqs = d;
3193 /* If the compile-time values are accurate, just leave. */
3194 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3195 nr_cpu_ids == NR_CPUS)
3196 return;
3199 * Compute number of nodes that can be handled an rcu_node tree
3200 * with the given number of levels. Setting rcu_capacity[0] makes
3201 * some of the arithmetic easier.
3203 rcu_capacity[0] = 1;
3204 rcu_capacity[1] = rcu_fanout_leaf;
3205 for (i = 2; i <= MAX_RCU_LVLS; i++)
3206 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3209 * The boot-time rcu_fanout_leaf parameter is only permitted
3210 * to increase the leaf-level fanout, not decrease it. Of course,
3211 * the leaf-level fanout cannot exceed the number of bits in
3212 * the rcu_node masks. Finally, the tree must be able to accommodate
3213 * the configured number of CPUs. Complain and fall back to the
3214 * compile-time values if these limits are exceeded.
3216 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3217 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3218 n > rcu_capacity[MAX_RCU_LVLS]) {
3219 WARN_ON(1);
3220 return;
3223 /* Calculate the number of rcu_nodes at each level of the tree. */
3224 for (i = 1; i <= MAX_RCU_LVLS; i++)
3225 if (n <= rcu_capacity[i]) {
3226 for (j = 0; j <= i; j++)
3227 num_rcu_lvl[j] =
3228 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3229 rcu_num_lvls = i;
3230 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3231 num_rcu_lvl[j] = 0;
3232 break;
3235 /* Calculate the total number of rcu_node structures. */
3236 rcu_num_nodes = 0;
3237 for (i = 0; i <= MAX_RCU_LVLS; i++)
3238 rcu_num_nodes += num_rcu_lvl[i];
3239 rcu_num_nodes -= n;
3242 void __init rcu_init(void)
3244 int cpu;
3246 rcu_bootup_announce();
3247 rcu_init_geometry();
3248 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3249 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3250 __rcu_init_preempt();
3251 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3254 * We don't need protection against CPU-hotplug here because
3255 * this is called early in boot, before either interrupts
3256 * or the scheduler are operational.
3258 cpu_notifier(rcu_cpu_notify, 0);
3259 for_each_online_cpu(cpu)
3260 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3263 #include "rcutree_plugin.h"