Linux 4.10-rc3
[linux/fpc-iii.git] / drivers / watchdog / octeon-wdt-main.c
blobb5cdceb36cff785fa93d87390fea1aa8ae9cfb49
1 /*
2 * Octeon Watchdog driver
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
6 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8 * Some parts derived from wdt.c
10 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11 * All Rights Reserved.
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19 * warranty for any of this software. This material is provided
20 * "AS-IS" and at no charge.
22 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file "COPYING" in the main directory of this archive
26 * for more details.
29 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30 * For most systems this is less than 10 seconds, so to allow for
31 * software to request longer watchdog heartbeats, we maintain software
32 * counters to count multiples of the base rate. If the system locks
33 * up in such a manner that we can not run the software counters, the
34 * only result is a watchdog reset sooner than was requested. But
35 * that is OK, because in this case userspace would likely not be able
36 * to do anything anyhow.
38 * The hardware watchdog interval we call the period. The OCTEON
39 * watchdog goes through several stages, after the first period an
40 * irq is asserted, then if it is not reset, after the next period NMI
41 * is asserted, then after an additional period a chip wide soft reset.
42 * So for the software counters, we reset watchdog after each period
43 * and decrement the counter. But for the last two periods we need to
44 * let the watchdog progress to the NMI stage so we disable the irq
45 * and let it proceed. Once in the NMI, we print the register state
46 * to the serial port and then wait for the reset.
48 * A watchdog is maintained for each CPU in the system, that way if
49 * one CPU suffers a lockup, we also get a register dump and reset.
50 * The userspace ping resets the watchdog on all CPUs.
52 * Before userspace opens the watchdog device, we still run the
53 * watchdogs to catch any lockups that may be kernel related.
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/interrupt.h>
60 #include <linux/watchdog.h>
61 #include <linux/cpumask.h>
62 #include <linux/bitops.h>
63 #include <linux/kernel.h>
64 #include <linux/module.h>
65 #include <linux/string.h>
66 #include <linux/delay.h>
67 #include <linux/cpu.h>
68 #include <linux/smp.h>
69 #include <linux/fs.h>
70 #include <linux/irq.h>
72 #include <asm/mipsregs.h>
73 #include <asm/uasm.h>
75 #include <asm/octeon/octeon.h>
77 /* The count needed to achieve timeout_sec. */
78 static unsigned int timeout_cnt;
80 /* The maximum period supported. */
81 static unsigned int max_timeout_sec;
83 /* The current period. */
84 static unsigned int timeout_sec;
86 /* Set to non-zero when userspace countdown mode active */
87 static int do_coundown;
88 static unsigned int countdown_reset;
89 static unsigned int per_cpu_countdown[NR_CPUS];
91 static cpumask_t irq_enabled_cpus;
93 #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
95 static int heartbeat = WD_TIMO;
96 module_param(heartbeat, int, S_IRUGO);
97 MODULE_PARM_DESC(heartbeat,
98 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
99 __MODULE_STRING(WD_TIMO) ")");
101 static bool nowayout = WATCHDOG_NOWAYOUT;
102 module_param(nowayout, bool, S_IRUGO);
103 MODULE_PARM_DESC(nowayout,
104 "Watchdog cannot be stopped once started (default="
105 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
107 static u32 nmi_stage1_insns[64] __initdata;
108 /* We need one branch and therefore one relocation per target label. */
109 static struct uasm_label labels[5] __initdata;
110 static struct uasm_reloc relocs[5] __initdata;
112 enum lable_id {
113 label_enter_bootloader = 1
116 /* Some CP0 registers */
117 #define K0 26
118 #define C0_CVMMEMCTL 11, 7
119 #define C0_STATUS 12, 0
120 #define C0_EBASE 15, 1
121 #define C0_DESAVE 31, 0
123 void octeon_wdt_nmi_stage2(void);
125 static void __init octeon_wdt_build_stage1(void)
127 int i;
128 int len;
129 u32 *p = nmi_stage1_insns;
130 #ifdef CONFIG_HOTPLUG_CPU
131 struct uasm_label *l = labels;
132 struct uasm_reloc *r = relocs;
133 #endif
136 * For the next few instructions running the debugger may
137 * cause corruption of k0 in the saved registers. Since we're
138 * about to crash, nobody probably cares.
140 * Save K0 into the debug scratch register
142 uasm_i_dmtc0(&p, K0, C0_DESAVE);
144 uasm_i_mfc0(&p, K0, C0_STATUS);
145 #ifdef CONFIG_HOTPLUG_CPU
146 if (octeon_bootloader_entry_addr)
147 uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
148 label_enter_bootloader);
149 #endif
150 /* Force 64-bit addressing enabled */
151 uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
152 uasm_i_mtc0(&p, K0, C0_STATUS);
154 #ifdef CONFIG_HOTPLUG_CPU
155 if (octeon_bootloader_entry_addr) {
156 uasm_i_mfc0(&p, K0, C0_EBASE);
157 /* Coreid number in K0 */
158 uasm_i_andi(&p, K0, K0, 0xf);
159 /* 8 * coreid in bits 16-31 */
160 uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
161 uasm_i_ori(&p, K0, K0, 0x8001);
162 uasm_i_dsll_safe(&p, K0, K0, 16);
163 uasm_i_ori(&p, K0, K0, 0x0700);
164 uasm_i_drotr_safe(&p, K0, K0, 32);
166 * Should result in: 0x8001,0700,0000,8*coreid which is
167 * CVMX_CIU_WDOGX(coreid) - 0x0500
169 * Now ld K0, CVMX_CIU_WDOGX(coreid)
171 uasm_i_ld(&p, K0, 0x500, K0);
173 * If bit one set handle the NMI as a watchdog event.
174 * otherwise transfer control to bootloader.
176 uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
177 uasm_i_nop(&p);
179 #endif
181 /* Clear Dcache so cvmseg works right. */
182 uasm_i_cache(&p, 1, 0, 0);
184 /* Use K0 to do a read/modify/write of CVMMEMCTL */
185 uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
186 /* Clear out the size of CVMSEG */
187 uasm_i_dins(&p, K0, 0, 0, 6);
188 /* Set CVMSEG to its largest value */
189 uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
190 /* Store the CVMMEMCTL value */
191 uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
193 /* Load the address of the second stage handler */
194 UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
195 uasm_i_jr(&p, K0);
196 uasm_i_dmfc0(&p, K0, C0_DESAVE);
198 #ifdef CONFIG_HOTPLUG_CPU
199 if (octeon_bootloader_entry_addr) {
200 uasm_build_label(&l, p, label_enter_bootloader);
201 /* Jump to the bootloader and restore K0 */
202 UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
203 uasm_i_jr(&p, K0);
204 uasm_i_dmfc0(&p, K0, C0_DESAVE);
206 #endif
207 uasm_resolve_relocs(relocs, labels);
209 len = (int)(p - nmi_stage1_insns);
210 pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
212 pr_debug("\t.set push\n");
213 pr_debug("\t.set noreorder\n");
214 for (i = 0; i < len; i++)
215 pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
216 pr_debug("\t.set pop\n");
218 if (len > 32)
219 panic("NMI stage 1 handler exceeds 32 instructions, was %d\n",
220 len);
223 static int cpu2core(int cpu)
225 #ifdef CONFIG_SMP
226 return cpu_logical_map(cpu);
227 #else
228 return cvmx_get_core_num();
229 #endif
232 static int core2cpu(int coreid)
234 #ifdef CONFIG_SMP
235 return cpu_number_map(coreid);
236 #else
237 return 0;
238 #endif
242 * Poke the watchdog when an interrupt is received
244 * @cpl:
245 * @dev_id:
247 * Returns
249 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
251 unsigned int core = cvmx_get_core_num();
252 int cpu = core2cpu(core);
254 if (do_coundown) {
255 if (per_cpu_countdown[cpu] > 0) {
256 /* We're alive, poke the watchdog */
257 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
258 per_cpu_countdown[cpu]--;
259 } else {
260 /* Bad news, you are about to reboot. */
261 disable_irq_nosync(cpl);
262 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
264 } else {
265 /* Not open, just ping away... */
266 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
268 return IRQ_HANDLED;
271 /* From setup.c */
272 extern int prom_putchar(char c);
275 * Write a string to the uart
277 * @str: String to write
279 static void octeon_wdt_write_string(const char *str)
281 /* Just loop writing one byte at a time */
282 while (*str)
283 prom_putchar(*str++);
287 * Write a hex number out of the uart
289 * @value: Number to display
290 * @digits: Number of digits to print (1 to 16)
292 static void octeon_wdt_write_hex(u64 value, int digits)
294 int d;
295 int v;
297 for (d = 0; d < digits; d++) {
298 v = (value >> ((digits - d - 1) * 4)) & 0xf;
299 if (v >= 10)
300 prom_putchar('a' + v - 10);
301 else
302 prom_putchar('0' + v);
306 static const char reg_name[][3] = {
307 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
308 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
309 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
310 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
314 * NMI stage 3 handler. NMIs are handled in the following manner:
315 * 1) The first NMI handler enables CVMSEG and transfers from
316 * the bootbus region into normal memory. It is careful to not
317 * destroy any registers.
318 * 2) The second stage handler uses CVMSEG to save the registers
319 * and create a stack for C code. It then calls the third level
320 * handler with one argument, a pointer to the register values.
321 * 3) The third, and final, level handler is the following C
322 * function that prints out some useful infomration.
324 * @reg: Pointer to register state before the NMI
326 void octeon_wdt_nmi_stage3(u64 reg[32])
328 u64 i;
330 unsigned int coreid = cvmx_get_core_num();
332 * Save status and cause early to get them before any changes
333 * might happen.
335 u64 cp0_cause = read_c0_cause();
336 u64 cp0_status = read_c0_status();
337 u64 cp0_error_epc = read_c0_errorepc();
338 u64 cp0_epc = read_c0_epc();
340 /* Delay so output from all cores output is not jumbled together. */
341 __delay(100000000ull * coreid);
343 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
344 octeon_wdt_write_hex(coreid, 1);
345 octeon_wdt_write_string(" ***\r\n");
346 for (i = 0; i < 32; i++) {
347 octeon_wdt_write_string("\t");
348 octeon_wdt_write_string(reg_name[i]);
349 octeon_wdt_write_string("\t0x");
350 octeon_wdt_write_hex(reg[i], 16);
351 if (i & 1)
352 octeon_wdt_write_string("\r\n");
354 octeon_wdt_write_string("\terr_epc\t0x");
355 octeon_wdt_write_hex(cp0_error_epc, 16);
357 octeon_wdt_write_string("\tepc\t0x");
358 octeon_wdt_write_hex(cp0_epc, 16);
359 octeon_wdt_write_string("\r\n");
361 octeon_wdt_write_string("\tstatus\t0x");
362 octeon_wdt_write_hex(cp0_status, 16);
363 octeon_wdt_write_string("\tcause\t0x");
364 octeon_wdt_write_hex(cp0_cause, 16);
365 octeon_wdt_write_string("\r\n");
367 octeon_wdt_write_string("\tsum0\t0x");
368 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
369 octeon_wdt_write_string("\ten0\t0x");
370 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
371 octeon_wdt_write_string("\r\n");
373 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
376 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
378 unsigned int core;
379 unsigned int irq;
380 union cvmx_ciu_wdogx ciu_wdog;
382 core = cpu2core(cpu);
384 irq = OCTEON_IRQ_WDOG0 + core;
386 /* Poke the watchdog to clear out its state */
387 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
389 /* Disable the hardware. */
390 ciu_wdog.u64 = 0;
391 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
393 free_irq(irq, octeon_wdt_poke_irq);
394 return 0;
397 static int octeon_wdt_cpu_online(unsigned int cpu)
399 unsigned int core;
400 unsigned int irq;
401 union cvmx_ciu_wdogx ciu_wdog;
403 core = cpu2core(cpu);
405 /* Disable it before doing anything with the interrupts. */
406 ciu_wdog.u64 = 0;
407 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
409 per_cpu_countdown[cpu] = countdown_reset;
411 irq = OCTEON_IRQ_WDOG0 + core;
413 if (request_irq(irq, octeon_wdt_poke_irq,
414 IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
415 panic("octeon_wdt: Couldn't obtain irq %d", irq);
417 cpumask_set_cpu(cpu, &irq_enabled_cpus);
419 /* Poke the watchdog to clear out its state */
420 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
422 /* Finally enable the watchdog now that all handlers are installed */
423 ciu_wdog.u64 = 0;
424 ciu_wdog.s.len = timeout_cnt;
425 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
426 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
428 return 0;
431 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
433 int cpu;
434 int coreid;
436 for_each_online_cpu(cpu) {
437 coreid = cpu2core(cpu);
438 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
439 per_cpu_countdown[cpu] = countdown_reset;
440 if ((countdown_reset || !do_coundown) &&
441 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
442 /* We have to enable the irq */
443 int irq = OCTEON_IRQ_WDOG0 + coreid;
445 enable_irq(irq);
446 cpumask_set_cpu(cpu, &irq_enabled_cpus);
449 return 0;
452 static void octeon_wdt_calc_parameters(int t)
454 unsigned int periods;
456 timeout_sec = max_timeout_sec;
460 * Find the largest interrupt period, that can evenly divide
461 * the requested heartbeat time.
463 while ((t % timeout_sec) != 0)
464 timeout_sec--;
466 periods = t / timeout_sec;
469 * The last two periods are after the irq is disabled, and
470 * then to the nmi, so we subtract them off.
473 countdown_reset = periods > 2 ? periods - 2 : 0;
474 heartbeat = t;
475 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
478 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
479 unsigned int t)
481 int cpu;
482 int coreid;
483 union cvmx_ciu_wdogx ciu_wdog;
485 if (t <= 0)
486 return -1;
488 octeon_wdt_calc_parameters(t);
490 for_each_online_cpu(cpu) {
491 coreid = cpu2core(cpu);
492 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
493 ciu_wdog.u64 = 0;
494 ciu_wdog.s.len = timeout_cnt;
495 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
496 cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
497 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
499 octeon_wdt_ping(wdog); /* Get the irqs back on. */
500 return 0;
503 static int octeon_wdt_start(struct watchdog_device *wdog)
505 octeon_wdt_ping(wdog);
506 do_coundown = 1;
507 return 0;
510 static int octeon_wdt_stop(struct watchdog_device *wdog)
512 do_coundown = 0;
513 octeon_wdt_ping(wdog);
514 return 0;
517 static const struct watchdog_info octeon_wdt_info = {
518 .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
519 .identity = "OCTEON",
522 static const struct watchdog_ops octeon_wdt_ops = {
523 .owner = THIS_MODULE,
524 .start = octeon_wdt_start,
525 .stop = octeon_wdt_stop,
526 .ping = octeon_wdt_ping,
527 .set_timeout = octeon_wdt_set_timeout,
530 static struct watchdog_device octeon_wdt = {
531 .info = &octeon_wdt_info,
532 .ops = &octeon_wdt_ops,
535 static enum cpuhp_state octeon_wdt_online;
537 * Module/ driver initialization.
539 * Returns Zero on success
541 static int __init octeon_wdt_init(void)
543 int i;
544 int ret;
545 u64 *ptr;
548 * Watchdog time expiration length = The 16 bits of LEN
549 * represent the most significant bits of a 24 bit decrementer
550 * that decrements every 256 cycles.
552 * Try for a timeout of 5 sec, if that fails a smaller number
553 * of even seconds,
555 max_timeout_sec = 6;
556 do {
557 max_timeout_sec--;
558 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) *
559 max_timeout_sec) >> 8;
560 } while (timeout_cnt > 65535);
562 BUG_ON(timeout_cnt == 0);
564 octeon_wdt_calc_parameters(heartbeat);
566 pr_info("Initial granularity %d Sec\n", timeout_sec);
568 octeon_wdt.timeout = timeout_sec;
569 octeon_wdt.max_timeout = UINT_MAX;
571 watchdog_set_nowayout(&octeon_wdt, nowayout);
573 ret = watchdog_register_device(&octeon_wdt);
574 if (ret) {
575 pr_err("watchdog_register_device() failed: %d\n", ret);
576 return ret;
579 /* Build the NMI handler ... */
580 octeon_wdt_build_stage1();
582 /* ... and install it. */
583 ptr = (u64 *) nmi_stage1_insns;
584 for (i = 0; i < 16; i++) {
585 cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
586 cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
588 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
590 cpumask_clear(&irq_enabled_cpus);
592 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
593 octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
594 if (ret < 0)
595 goto err;
596 octeon_wdt_online = ret;
597 return 0;
598 err:
599 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
600 watchdog_unregister_device(&octeon_wdt);
601 return ret;
605 * Module / driver shutdown
607 static void __exit octeon_wdt_cleanup(void)
609 watchdog_unregister_device(&octeon_wdt);
610 cpuhp_remove_state(octeon_wdt_online);
613 * Disable the boot-bus memory, the code it points to is soon
614 * to go missing.
616 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
619 MODULE_LICENSE("GPL");
620 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
621 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
622 module_init(octeon_wdt_init);
623 module_exit(octeon_wdt_cleanup);