3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
23 * Pavel Emelianov <xemul@openvz.org>
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/init.h>
75 #include <linux/proc_fs.h>
76 #include <linux/time.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/audit.h>
80 #include <linux/capability.h>
81 #include <linux/seq_file.h>
82 #include <linux/rwsem.h>
83 #include <linux/nsproxy.h>
84 #include <linux/ipc_namespace.h>
86 #include <linux/uaccess.h>
89 /* One semaphore structure for each semaphore in the system. */
91 int semval
; /* current value */
93 * PID of the process that last modified the semaphore. For
94 * Linux, specifically these are:
96 * - semctl, via SETVAL and SETALL.
97 * - at task exit when performing undo adjustments (see exit_sem).
100 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
101 struct list_head pending_alter
; /* pending single-sop operations */
102 /* that alter the semaphore */
103 struct list_head pending_const
; /* pending single-sop operations */
104 /* that do not alter the semaphore*/
105 time_t sem_otime
; /* candidate for sem_otime */
106 } ____cacheline_aligned_in_smp
;
108 /* One queue for each sleeping process in the system. */
110 struct list_head list
; /* queue of pending operations */
111 struct task_struct
*sleeper
; /* this process */
112 struct sem_undo
*undo
; /* undo structure */
113 int pid
; /* process id of requesting process */
114 int status
; /* completion status of operation */
115 struct sembuf
*sops
; /* array of pending operations */
116 struct sembuf
*blocking
; /* the operation that blocked */
117 int nsops
; /* number of operations */
118 bool alter
; /* does *sops alter the array? */
119 bool dupsop
; /* sops on more than one sem_num */
122 /* Each task has a list of undo requests. They are executed automatically
123 * when the process exits.
126 struct list_head list_proc
; /* per-process list: *
127 * all undos from one process
129 struct rcu_head rcu
; /* rcu struct for sem_undo */
130 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
131 struct list_head list_id
; /* per semaphore array list:
132 * all undos for one array */
133 int semid
; /* semaphore set identifier */
134 short *semadj
; /* array of adjustments */
135 /* one per semaphore */
138 /* sem_undo_list controls shared access to the list of sem_undo structures
139 * that may be shared among all a CLONE_SYSVSEM task group.
141 struct sem_undo_list
{
144 struct list_head list_proc
;
148 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
150 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
152 static int newary(struct ipc_namespace
*, struct ipc_params
*);
153 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
154 #ifdef CONFIG_PROC_FS
155 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
158 #define SEMMSL_FAST 256 /* 512 bytes on stack */
159 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
163 * a) global sem_lock() for read/write
165 * sem_array.complex_count,
166 * sem_array.complex_mode
167 * sem_array.pending{_alter,_const},
170 * b) global or semaphore sem_lock() for read/write:
171 * sem_array.sem_base[i].pending_{const,alter}:
172 * sem_array.complex_mode (for read)
175 * sem_undo_list.list_proc:
176 * * undo_list->lock for write
180 #define sc_semmsl sem_ctls[0]
181 #define sc_semmns sem_ctls[1]
182 #define sc_semopm sem_ctls[2]
183 #define sc_semmni sem_ctls[3]
185 void sem_init_ns(struct ipc_namespace
*ns
)
187 ns
->sc_semmsl
= SEMMSL
;
188 ns
->sc_semmns
= SEMMNS
;
189 ns
->sc_semopm
= SEMOPM
;
190 ns
->sc_semmni
= SEMMNI
;
192 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
196 void sem_exit_ns(struct ipc_namespace
*ns
)
198 free_ipcs(ns
, &sem_ids(ns
), freeary
);
199 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
203 void __init
sem_init(void)
205 sem_init_ns(&init_ipc_ns
);
206 ipc_init_proc_interface("sysvipc/sem",
207 " key semid perms nsems uid gid cuid cgid otime ctime\n",
208 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
212 * unmerge_queues - unmerge queues, if possible.
213 * @sma: semaphore array
215 * The function unmerges the wait queues if complex_count is 0.
216 * It must be called prior to dropping the global semaphore array lock.
218 static void unmerge_queues(struct sem_array
*sma
)
220 struct sem_queue
*q
, *tq
;
222 /* complex operations still around? */
223 if (sma
->complex_count
)
226 * We will switch back to simple mode.
227 * Move all pending operation back into the per-semaphore
230 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
232 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
234 list_add_tail(&q
->list
, &curr
->pending_alter
);
236 INIT_LIST_HEAD(&sma
->pending_alter
);
240 * merge_queues - merge single semop queues into global queue
241 * @sma: semaphore array
243 * This function merges all per-semaphore queues into the global queue.
244 * It is necessary to achieve FIFO ordering for the pending single-sop
245 * operations when a multi-semop operation must sleep.
246 * Only the alter operations must be moved, the const operations can stay.
248 static void merge_queues(struct sem_array
*sma
)
251 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
252 struct sem
*sem
= sma
->sem_base
+ i
;
254 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
258 static void sem_rcu_free(struct rcu_head
*head
)
260 struct ipc_rcu
*p
= container_of(head
, struct ipc_rcu
, rcu
);
261 struct sem_array
*sma
= ipc_rcu_to_struct(p
);
263 security_sem_free(sma
);
268 * Enter the mode suitable for non-simple operations:
269 * Caller must own sem_perm.lock.
271 static void complexmode_enter(struct sem_array
*sma
)
276 if (sma
->complex_mode
) {
277 /* We are already in complex_mode. Nothing to do */
281 /* We need a full barrier after seting complex_mode:
282 * The write to complex_mode must be visible
283 * before we read the first sem->lock spinlock state.
285 smp_store_mb(sma
->complex_mode
, true);
287 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
288 sem
= sma
->sem_base
+ i
;
289 spin_unlock_wait(&sem
->lock
);
292 * spin_unlock_wait() is not a memory barriers, it is only a
293 * control barrier. The code must pair with spin_unlock(&sem->lock),
294 * thus just the control barrier is insufficient.
296 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
302 * Try to leave the mode that disallows simple operations:
303 * Caller must own sem_perm.lock.
305 static void complexmode_tryleave(struct sem_array
*sma
)
307 if (sma
->complex_count
) {
308 /* Complex ops are sleeping.
309 * We must stay in complex mode
314 * Immediately after setting complex_mode to false,
315 * a simple op can start. Thus: all memory writes
316 * performed by the current operation must be visible
317 * before we set complex_mode to false.
319 smp_store_release(&sma
->complex_mode
, false);
322 #define SEM_GLOBAL_LOCK (-1)
324 * If the request contains only one semaphore operation, and there are
325 * no complex transactions pending, lock only the semaphore involved.
326 * Otherwise, lock the entire semaphore array, since we either have
327 * multiple semaphores in our own semops, or we need to look at
328 * semaphores from other pending complex operations.
330 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
336 /* Complex operation - acquire a full lock */
337 ipc_lock_object(&sma
->sem_perm
);
339 /* Prevent parallel simple ops */
340 complexmode_enter(sma
);
341 return SEM_GLOBAL_LOCK
;
345 * Only one semaphore affected - try to optimize locking.
346 * Optimized locking is possible if no complex operation
347 * is either enqueued or processed right now.
349 * Both facts are tracked by complex_mode.
351 sem
= sma
->sem_base
+ sops
->sem_num
;
354 * Initial check for complex_mode. Just an optimization,
355 * no locking, no memory barrier.
357 if (!sma
->complex_mode
) {
359 * It appears that no complex operation is around.
360 * Acquire the per-semaphore lock.
362 spin_lock(&sem
->lock
);
366 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
367 * A full barrier is required: the write of sem->lock
368 * must be visible before the read is executed
372 if (!smp_load_acquire(&sma
->complex_mode
)) {
373 /* fast path successful! */
374 return sops
->sem_num
;
376 spin_unlock(&sem
->lock
);
379 /* slow path: acquire the full lock */
380 ipc_lock_object(&sma
->sem_perm
);
382 if (sma
->complex_count
== 0) {
384 * There is no complex operation, thus we can switch
385 * back to the fast path.
387 spin_lock(&sem
->lock
);
388 ipc_unlock_object(&sma
->sem_perm
);
389 return sops
->sem_num
;
391 /* Not a false alarm, thus complete the sequence for a
394 complexmode_enter(sma
);
395 return SEM_GLOBAL_LOCK
;
399 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
401 if (locknum
== SEM_GLOBAL_LOCK
) {
403 complexmode_tryleave(sma
);
404 ipc_unlock_object(&sma
->sem_perm
);
406 struct sem
*sem
= sma
->sem_base
+ locknum
;
407 spin_unlock(&sem
->lock
);
412 * sem_lock_(check_) routines are called in the paths where the rwsem
415 * The caller holds the RCU read lock.
417 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
419 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
422 return ERR_CAST(ipcp
);
424 return container_of(ipcp
, struct sem_array
, sem_perm
);
427 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
430 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
433 return ERR_CAST(ipcp
);
435 return container_of(ipcp
, struct sem_array
, sem_perm
);
438 static inline void sem_lock_and_putref(struct sem_array
*sma
)
440 sem_lock(sma
, NULL
, -1);
441 ipc_rcu_putref(sma
, sem_rcu_free
);
444 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
446 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
450 * newary - Create a new semaphore set
452 * @params: ptr to the structure that contains key, semflg and nsems
454 * Called with sem_ids.rwsem held (as a writer)
456 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
460 struct sem_array
*sma
;
462 key_t key
= params
->key
;
463 int nsems
= params
->u
.nsems
;
464 int semflg
= params
->flg
;
469 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
472 size
= sizeof(*sma
) + nsems
* sizeof(struct sem
);
473 sma
= ipc_rcu_alloc(size
);
477 memset(sma
, 0, size
);
479 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
480 sma
->sem_perm
.key
= key
;
482 sma
->sem_perm
.security
= NULL
;
483 retval
= security_sem_alloc(sma
);
485 ipc_rcu_putref(sma
, ipc_rcu_free
);
489 sma
->sem_base
= (struct sem
*) &sma
[1];
491 for (i
= 0; i
< nsems
; i
++) {
492 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
493 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
494 spin_lock_init(&sma
->sem_base
[i
].lock
);
497 sma
->complex_count
= 0;
498 sma
->complex_mode
= true; /* dropped by sem_unlock below */
499 INIT_LIST_HEAD(&sma
->pending_alter
);
500 INIT_LIST_HEAD(&sma
->pending_const
);
501 INIT_LIST_HEAD(&sma
->list_id
);
502 sma
->sem_nsems
= nsems
;
503 sma
->sem_ctime
= get_seconds();
505 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
507 ipc_rcu_putref(sma
, sem_rcu_free
);
510 ns
->used_sems
+= nsems
;
515 return sma
->sem_perm
.id
;
520 * Called with sem_ids.rwsem and ipcp locked.
522 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
524 struct sem_array
*sma
;
526 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
527 return security_sem_associate(sma
, semflg
);
531 * Called with sem_ids.rwsem and ipcp locked.
533 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
534 struct ipc_params
*params
)
536 struct sem_array
*sma
;
538 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
539 if (params
->u
.nsems
> sma
->sem_nsems
)
545 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
547 struct ipc_namespace
*ns
;
548 static const struct ipc_ops sem_ops
= {
550 .associate
= sem_security
,
551 .more_checks
= sem_more_checks
,
553 struct ipc_params sem_params
;
555 ns
= current
->nsproxy
->ipc_ns
;
557 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
560 sem_params
.key
= key
;
561 sem_params
.flg
= semflg
;
562 sem_params
.u
.nsems
= nsems
;
564 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
568 * perform_atomic_semop[_slow] - Attempt to perform semaphore
569 * operations on a given array.
570 * @sma: semaphore array
571 * @q: struct sem_queue that describes the operation
573 * Caller blocking are as follows, based the value
574 * indicated by the semaphore operation (sem_op):
576 * (1) >0 never blocks.
577 * (2) 0 (wait-for-zero operation): semval is non-zero.
578 * (3) <0 attempting to decrement semval to a value smaller than zero.
580 * Returns 0 if the operation was possible.
581 * Returns 1 if the operation is impossible, the caller must sleep.
582 * Returns <0 for error codes.
584 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
586 int result
, sem_op
, nsops
, pid
;
596 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
597 curr
= sma
->sem_base
+ sop
->sem_num
;
598 sem_op
= sop
->sem_op
;
599 result
= curr
->semval
;
601 if (!sem_op
&& result
)
610 if (sop
->sem_flg
& SEM_UNDO
) {
611 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
612 /* Exceeding the undo range is an error. */
613 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
615 un
->semadj
[sop
->sem_num
] = undo
;
618 curr
->semval
= result
;
623 while (sop
>= sops
) {
624 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
637 if (sop
->sem_flg
& IPC_NOWAIT
)
644 while (sop
>= sops
) {
645 sem_op
= sop
->sem_op
;
646 sma
->sem_base
[sop
->sem_num
].semval
-= sem_op
;
647 if (sop
->sem_flg
& SEM_UNDO
)
648 un
->semadj
[sop
->sem_num
] += sem_op
;
655 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
657 int result
, sem_op
, nsops
;
667 if (unlikely(q
->dupsop
))
668 return perform_atomic_semop_slow(sma
, q
);
671 * We scan the semaphore set twice, first to ensure that the entire
672 * operation can succeed, therefore avoiding any pointless writes
673 * to shared memory and having to undo such changes in order to block
674 * until the operations can go through.
676 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
677 curr
= sma
->sem_base
+ sop
->sem_num
;
678 sem_op
= sop
->sem_op
;
679 result
= curr
->semval
;
681 if (!sem_op
&& result
)
682 goto would_block
; /* wait-for-zero */
691 if (sop
->sem_flg
& SEM_UNDO
) {
692 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
694 /* Exceeding the undo range is an error. */
695 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
700 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
701 curr
= sma
->sem_base
+ sop
->sem_num
;
702 sem_op
= sop
->sem_op
;
703 result
= curr
->semval
;
705 if (sop
->sem_flg
& SEM_UNDO
) {
706 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
708 un
->semadj
[sop
->sem_num
] = undo
;
710 curr
->semval
+= sem_op
;
711 curr
->sempid
= q
->pid
;
718 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
721 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
722 struct wake_q_head
*wake_q
)
724 wake_q_add(wake_q
, q
->sleeper
);
726 * Rely on the above implicit barrier, such that we can
727 * ensure that we hold reference to the task before setting
728 * q->status. Otherwise we could race with do_exit if the
729 * task is awoken by an external event before calling
732 WRITE_ONCE(q
->status
, error
);
735 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
739 sma
->complex_count
--;
742 /** check_restart(sma, q)
743 * @sma: semaphore array
744 * @q: the operation that just completed
746 * update_queue is O(N^2) when it restarts scanning the whole queue of
747 * waiting operations. Therefore this function checks if the restart is
748 * really necessary. It is called after a previously waiting operation
749 * modified the array.
750 * Note that wait-for-zero operations are handled without restart.
752 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
754 /* pending complex alter operations are too difficult to analyse */
755 if (!list_empty(&sma
->pending_alter
))
758 /* we were a sleeping complex operation. Too difficult */
762 /* It is impossible that someone waits for the new value:
763 * - complex operations always restart.
764 * - wait-for-zero are handled seperately.
765 * - q is a previously sleeping simple operation that
766 * altered the array. It must be a decrement, because
767 * simple increments never sleep.
768 * - If there are older (higher priority) decrements
769 * in the queue, then they have observed the original
770 * semval value and couldn't proceed. The operation
771 * decremented to value - thus they won't proceed either.
777 * wake_const_ops - wake up non-alter tasks
778 * @sma: semaphore array.
779 * @semnum: semaphore that was modified.
780 * @wake_q: lockless wake-queue head.
782 * wake_const_ops must be called after a semaphore in a semaphore array
783 * was set to 0. If complex const operations are pending, wake_const_ops must
784 * be called with semnum = -1, as well as with the number of each modified
786 * The tasks that must be woken up are added to @wake_q. The return code
787 * is stored in q->pid.
788 * The function returns 1 if at least one operation was completed successfully.
790 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
791 struct wake_q_head
*wake_q
)
793 struct sem_queue
*q
, *tmp
;
794 struct list_head
*pending_list
;
795 int semop_completed
= 0;
798 pending_list
= &sma
->pending_const
;
800 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
802 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
803 int error
= perform_atomic_semop(sma
, q
);
807 /* operation completed, remove from queue & wakeup */
808 unlink_queue(sma
, q
);
810 wake_up_sem_queue_prepare(q
, error
, wake_q
);
815 return semop_completed
;
819 * do_smart_wakeup_zero - wakeup all wait for zero tasks
820 * @sma: semaphore array
821 * @sops: operations that were performed
822 * @nsops: number of operations
823 * @wake_q: lockless wake-queue head
825 * Checks all required queue for wait-for-zero operations, based
826 * on the actual changes that were performed on the semaphore array.
827 * The function returns 1 if at least one operation was completed successfully.
829 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
830 int nsops
, struct wake_q_head
*wake_q
)
833 int semop_completed
= 0;
836 /* first: the per-semaphore queues, if known */
838 for (i
= 0; i
< nsops
; i
++) {
839 int num
= sops
[i
].sem_num
;
841 if (sma
->sem_base
[num
].semval
== 0) {
843 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
848 * No sops means modified semaphores not known.
849 * Assume all were changed.
851 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
852 if (sma
->sem_base
[i
].semval
== 0) {
854 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
859 * If one of the modified semaphores got 0,
860 * then check the global queue, too.
863 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
865 return semop_completed
;
870 * update_queue - look for tasks that can be completed.
871 * @sma: semaphore array.
872 * @semnum: semaphore that was modified.
873 * @wake_q: lockless wake-queue head.
875 * update_queue must be called after a semaphore in a semaphore array
876 * was modified. If multiple semaphores were modified, update_queue must
877 * be called with semnum = -1, as well as with the number of each modified
879 * The tasks that must be woken up are added to @wake_q. The return code
880 * is stored in q->pid.
881 * The function internally checks if const operations can now succeed.
883 * The function return 1 if at least one semop was completed successfully.
885 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
887 struct sem_queue
*q
, *tmp
;
888 struct list_head
*pending_list
;
889 int semop_completed
= 0;
892 pending_list
= &sma
->pending_alter
;
894 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
897 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
900 /* If we are scanning the single sop, per-semaphore list of
901 * one semaphore and that semaphore is 0, then it is not
902 * necessary to scan further: simple increments
903 * that affect only one entry succeed immediately and cannot
904 * be in the per semaphore pending queue, and decrements
905 * cannot be successful if the value is already 0.
907 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
910 error
= perform_atomic_semop(sma
, q
);
912 /* Does q->sleeper still need to sleep? */
916 unlink_queue(sma
, q
);
922 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
923 restart
= check_restart(sma
, q
);
926 wake_up_sem_queue_prepare(q
, error
, wake_q
);
930 return semop_completed
;
934 * set_semotime - set sem_otime
935 * @sma: semaphore array
936 * @sops: operations that modified the array, may be NULL
938 * sem_otime is replicated to avoid cache line trashing.
939 * This function sets one instance to the current time.
941 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
944 sma
->sem_base
[0].sem_otime
= get_seconds();
946 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
952 * do_smart_update - optimized update_queue
953 * @sma: semaphore array
954 * @sops: operations that were performed
955 * @nsops: number of operations
956 * @otime: force setting otime
957 * @wake_q: lockless wake-queue head
959 * do_smart_update() does the required calls to update_queue and wakeup_zero,
960 * based on the actual changes that were performed on the semaphore array.
961 * Note that the function does not do the actual wake-up: the caller is
962 * responsible for calling wake_up_q().
963 * It is safe to perform this call after dropping all locks.
965 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
966 int otime
, struct wake_q_head
*wake_q
)
970 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
972 if (!list_empty(&sma
->pending_alter
)) {
973 /* semaphore array uses the global queue - just process it. */
974 otime
|= update_queue(sma
, -1, wake_q
);
978 * No sops, thus the modified semaphores are not
981 for (i
= 0; i
< sma
->sem_nsems
; i
++)
982 otime
|= update_queue(sma
, i
, wake_q
);
985 * Check the semaphores that were increased:
986 * - No complex ops, thus all sleeping ops are
988 * - if we decreased the value, then any sleeping
989 * semaphore ops wont be able to run: If the
990 * previous value was too small, then the new
991 * value will be too small, too.
993 for (i
= 0; i
< nsops
; i
++) {
994 if (sops
[i
].sem_op
> 0) {
995 otime
|= update_queue(sma
,
996 sops
[i
].sem_num
, wake_q
);
1002 set_semotime(sma
, sops
);
1006 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1008 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1011 struct sembuf
*sop
= q
->blocking
;
1014 * Linux always (since 0.99.10) reported a task as sleeping on all
1015 * semaphores. This violates SUS, therefore it was changed to the
1016 * standard compliant behavior.
1017 * Give the administrators a chance to notice that an application
1018 * might misbehave because it relies on the Linux behavior.
1020 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1021 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1022 current
->comm
, task_pid_nr(current
));
1024 if (sop
->sem_num
!= semnum
)
1027 if (count_zero
&& sop
->sem_op
== 0)
1029 if (!count_zero
&& sop
->sem_op
< 0)
1035 /* The following counts are associated to each semaphore:
1036 * semncnt number of tasks waiting on semval being nonzero
1037 * semzcnt number of tasks waiting on semval being zero
1039 * Per definition, a task waits only on the semaphore of the first semop
1040 * that cannot proceed, even if additional operation would block, too.
1042 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1045 struct list_head
*l
;
1046 struct sem_queue
*q
;
1050 /* First: check the simple operations. They are easy to evaluate */
1052 l
= &sma
->sem_base
[semnum
].pending_const
;
1054 l
= &sma
->sem_base
[semnum
].pending_alter
;
1056 list_for_each_entry(q
, l
, list
) {
1057 /* all task on a per-semaphore list sleep on exactly
1063 /* Then: check the complex operations. */
1064 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1065 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1068 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1069 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1075 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1076 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1077 * remains locked on exit.
1079 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1081 struct sem_undo
*un
, *tu
;
1082 struct sem_queue
*q
, *tq
;
1083 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1085 DEFINE_WAKE_Q(wake_q
);
1087 /* Free the existing undo structures for this semaphore set. */
1088 ipc_assert_locked_object(&sma
->sem_perm
);
1089 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1090 list_del(&un
->list_id
);
1091 spin_lock(&un
->ulp
->lock
);
1093 list_del_rcu(&un
->list_proc
);
1094 spin_unlock(&un
->ulp
->lock
);
1098 /* Wake up all pending processes and let them fail with EIDRM. */
1099 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1100 unlink_queue(sma
, q
);
1101 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1104 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1105 unlink_queue(sma
, q
);
1106 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1108 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1109 struct sem
*sem
= sma
->sem_base
+ i
;
1110 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1111 unlink_queue(sma
, q
);
1112 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1114 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1115 unlink_queue(sma
, q
);
1116 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1120 /* Remove the semaphore set from the IDR */
1122 sem_unlock(sma
, -1);
1126 ns
->used_sems
-= sma
->sem_nsems
;
1127 ipc_rcu_putref(sma
, sem_rcu_free
);
1130 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1134 return copy_to_user(buf
, in
, sizeof(*in
));
1137 struct semid_ds out
;
1139 memset(&out
, 0, sizeof(out
));
1141 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1143 out
.sem_otime
= in
->sem_otime
;
1144 out
.sem_ctime
= in
->sem_ctime
;
1145 out
.sem_nsems
= in
->sem_nsems
;
1147 return copy_to_user(buf
, &out
, sizeof(out
));
1154 static time_t get_semotime(struct sem_array
*sma
)
1159 res
= sma
->sem_base
[0].sem_otime
;
1160 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1161 time_t to
= sma
->sem_base
[i
].sem_otime
;
1169 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1170 int cmd
, int version
, void __user
*p
)
1173 struct sem_array
*sma
;
1179 struct seminfo seminfo
;
1182 err
= security_sem_semctl(NULL
, cmd
);
1186 memset(&seminfo
, 0, sizeof(seminfo
));
1187 seminfo
.semmni
= ns
->sc_semmni
;
1188 seminfo
.semmns
= ns
->sc_semmns
;
1189 seminfo
.semmsl
= ns
->sc_semmsl
;
1190 seminfo
.semopm
= ns
->sc_semopm
;
1191 seminfo
.semvmx
= SEMVMX
;
1192 seminfo
.semmnu
= SEMMNU
;
1193 seminfo
.semmap
= SEMMAP
;
1194 seminfo
.semume
= SEMUME
;
1195 down_read(&sem_ids(ns
).rwsem
);
1196 if (cmd
== SEM_INFO
) {
1197 seminfo
.semusz
= sem_ids(ns
).in_use
;
1198 seminfo
.semaem
= ns
->used_sems
;
1200 seminfo
.semusz
= SEMUSZ
;
1201 seminfo
.semaem
= SEMAEM
;
1203 max_id
= ipc_get_maxid(&sem_ids(ns
));
1204 up_read(&sem_ids(ns
).rwsem
);
1205 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1207 return (max_id
< 0) ? 0 : max_id
;
1212 struct semid64_ds tbuf
;
1215 memset(&tbuf
, 0, sizeof(tbuf
));
1218 if (cmd
== SEM_STAT
) {
1219 sma
= sem_obtain_object(ns
, semid
);
1224 id
= sma
->sem_perm
.id
;
1226 sma
= sem_obtain_object_check(ns
, semid
);
1234 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1237 err
= security_sem_semctl(sma
, cmd
);
1241 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1242 tbuf
.sem_otime
= get_semotime(sma
);
1243 tbuf
.sem_ctime
= sma
->sem_ctime
;
1244 tbuf
.sem_nsems
= sma
->sem_nsems
;
1246 if (copy_semid_to_user(p
, &tbuf
, version
))
1258 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1261 struct sem_undo
*un
;
1262 struct sem_array
*sma
;
1265 DEFINE_WAKE_Q(wake_q
);
1267 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1268 /* big-endian 64bit */
1271 /* 32bit or little-endian 64bit */
1275 if (val
> SEMVMX
|| val
< 0)
1279 sma
= sem_obtain_object_check(ns
, semid
);
1282 return PTR_ERR(sma
);
1285 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1291 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1296 err
= security_sem_semctl(sma
, SETVAL
);
1302 sem_lock(sma
, NULL
, -1);
1304 if (!ipc_valid_object(&sma
->sem_perm
)) {
1305 sem_unlock(sma
, -1);
1310 curr
= &sma
->sem_base
[semnum
];
1312 ipc_assert_locked_object(&sma
->sem_perm
);
1313 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1314 un
->semadj
[semnum
] = 0;
1317 curr
->sempid
= task_tgid_vnr(current
);
1318 sma
->sem_ctime
= get_seconds();
1319 /* maybe some queued-up processes were waiting for this */
1320 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1321 sem_unlock(sma
, -1);
1327 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1328 int cmd
, void __user
*p
)
1330 struct sem_array
*sma
;
1333 ushort fast_sem_io
[SEMMSL_FAST
];
1334 ushort
*sem_io
= fast_sem_io
;
1335 DEFINE_WAKE_Q(wake_q
);
1338 sma
= sem_obtain_object_check(ns
, semid
);
1341 return PTR_ERR(sma
);
1344 nsems
= sma
->sem_nsems
;
1347 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1348 goto out_rcu_wakeup
;
1350 err
= security_sem_semctl(sma
, cmd
);
1352 goto out_rcu_wakeup
;
1358 ushort __user
*array
= p
;
1361 sem_lock(sma
, NULL
, -1);
1362 if (!ipc_valid_object(&sma
->sem_perm
)) {
1366 if (nsems
> SEMMSL_FAST
) {
1367 if (!ipc_rcu_getref(sma
)) {
1371 sem_unlock(sma
, -1);
1373 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1374 if (sem_io
== NULL
) {
1375 ipc_rcu_putref(sma
, sem_rcu_free
);
1380 sem_lock_and_putref(sma
);
1381 if (!ipc_valid_object(&sma
->sem_perm
)) {
1386 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1387 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1388 sem_unlock(sma
, -1);
1391 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1398 struct sem_undo
*un
;
1400 if (!ipc_rcu_getref(sma
)) {
1402 goto out_rcu_wakeup
;
1406 if (nsems
> SEMMSL_FAST
) {
1407 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1408 if (sem_io
== NULL
) {
1409 ipc_rcu_putref(sma
, sem_rcu_free
);
1414 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1415 ipc_rcu_putref(sma
, sem_rcu_free
);
1420 for (i
= 0; i
< nsems
; i
++) {
1421 if (sem_io
[i
] > SEMVMX
) {
1422 ipc_rcu_putref(sma
, sem_rcu_free
);
1428 sem_lock_and_putref(sma
);
1429 if (!ipc_valid_object(&sma
->sem_perm
)) {
1434 for (i
= 0; i
< nsems
; i
++) {
1435 sma
->sem_base
[i
].semval
= sem_io
[i
];
1436 sma
->sem_base
[i
].sempid
= task_tgid_vnr(current
);
1439 ipc_assert_locked_object(&sma
->sem_perm
);
1440 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1441 for (i
= 0; i
< nsems
; i
++)
1444 sma
->sem_ctime
= get_seconds();
1445 /* maybe some queued-up processes were waiting for this */
1446 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1450 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1453 if (semnum
< 0 || semnum
>= nsems
)
1454 goto out_rcu_wakeup
;
1456 sem_lock(sma
, NULL
, -1);
1457 if (!ipc_valid_object(&sma
->sem_perm
)) {
1461 curr
= &sma
->sem_base
[semnum
];
1471 err
= count_semcnt(sma
, semnum
, 0);
1474 err
= count_semcnt(sma
, semnum
, 1);
1479 sem_unlock(sma
, -1);
1484 if (sem_io
!= fast_sem_io
)
1489 static inline unsigned long
1490 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1494 if (copy_from_user(out
, buf
, sizeof(*out
)))
1499 struct semid_ds tbuf_old
;
1501 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1504 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1505 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1506 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1516 * This function handles some semctl commands which require the rwsem
1517 * to be held in write mode.
1518 * NOTE: no locks must be held, the rwsem is taken inside this function.
1520 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1521 int cmd
, int version
, void __user
*p
)
1523 struct sem_array
*sma
;
1525 struct semid64_ds semid64
;
1526 struct kern_ipc_perm
*ipcp
;
1528 if (cmd
== IPC_SET
) {
1529 if (copy_semid_from_user(&semid64
, p
, version
))
1533 down_write(&sem_ids(ns
).rwsem
);
1536 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1537 &semid64
.sem_perm
, 0);
1539 err
= PTR_ERR(ipcp
);
1543 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1545 err
= security_sem_semctl(sma
, cmd
);
1551 sem_lock(sma
, NULL
, -1);
1552 /* freeary unlocks the ipc object and rcu */
1556 sem_lock(sma
, NULL
, -1);
1557 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1560 sma
->sem_ctime
= get_seconds();
1568 sem_unlock(sma
, -1);
1572 up_write(&sem_ids(ns
).rwsem
);
1576 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1579 struct ipc_namespace
*ns
;
1580 void __user
*p
= (void __user
*)arg
;
1585 version
= ipc_parse_version(&cmd
);
1586 ns
= current
->nsproxy
->ipc_ns
;
1593 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1600 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1602 return semctl_setval(ns
, semid
, semnum
, arg
);
1605 return semctl_down(ns
, semid
, cmd
, version
, p
);
1611 /* If the task doesn't already have a undo_list, then allocate one
1612 * here. We guarantee there is only one thread using this undo list,
1613 * and current is THE ONE
1615 * If this allocation and assignment succeeds, but later
1616 * portions of this code fail, there is no need to free the sem_undo_list.
1617 * Just let it stay associated with the task, and it'll be freed later
1620 * This can block, so callers must hold no locks.
1622 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1624 struct sem_undo_list
*undo_list
;
1626 undo_list
= current
->sysvsem
.undo_list
;
1628 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1629 if (undo_list
== NULL
)
1631 spin_lock_init(&undo_list
->lock
);
1632 atomic_set(&undo_list
->refcnt
, 1);
1633 INIT_LIST_HEAD(&undo_list
->list_proc
);
1635 current
->sysvsem
.undo_list
= undo_list
;
1637 *undo_listp
= undo_list
;
1641 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1643 struct sem_undo
*un
;
1645 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1646 if (un
->semid
== semid
)
1652 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1654 struct sem_undo
*un
;
1656 assert_spin_locked(&ulp
->lock
);
1658 un
= __lookup_undo(ulp
, semid
);
1660 list_del_rcu(&un
->list_proc
);
1661 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1667 * find_alloc_undo - lookup (and if not present create) undo array
1669 * @semid: semaphore array id
1671 * The function looks up (and if not present creates) the undo structure.
1672 * The size of the undo structure depends on the size of the semaphore
1673 * array, thus the alloc path is not that straightforward.
1674 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1675 * performs a rcu_read_lock().
1677 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1679 struct sem_array
*sma
;
1680 struct sem_undo_list
*ulp
;
1681 struct sem_undo
*un
, *new;
1684 error
= get_undo_list(&ulp
);
1686 return ERR_PTR(error
);
1689 spin_lock(&ulp
->lock
);
1690 un
= lookup_undo(ulp
, semid
);
1691 spin_unlock(&ulp
->lock
);
1692 if (likely(un
!= NULL
))
1695 /* no undo structure around - allocate one. */
1696 /* step 1: figure out the size of the semaphore array */
1697 sma
= sem_obtain_object_check(ns
, semid
);
1700 return ERR_CAST(sma
);
1703 nsems
= sma
->sem_nsems
;
1704 if (!ipc_rcu_getref(sma
)) {
1706 un
= ERR_PTR(-EIDRM
);
1711 /* step 2: allocate new undo structure */
1712 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1714 ipc_rcu_putref(sma
, sem_rcu_free
);
1715 return ERR_PTR(-ENOMEM
);
1718 /* step 3: Acquire the lock on semaphore array */
1720 sem_lock_and_putref(sma
);
1721 if (!ipc_valid_object(&sma
->sem_perm
)) {
1722 sem_unlock(sma
, -1);
1725 un
= ERR_PTR(-EIDRM
);
1728 spin_lock(&ulp
->lock
);
1731 * step 4: check for races: did someone else allocate the undo struct?
1733 un
= lookup_undo(ulp
, semid
);
1738 /* step 5: initialize & link new undo structure */
1739 new->semadj
= (short *) &new[1];
1742 assert_spin_locked(&ulp
->lock
);
1743 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1744 ipc_assert_locked_object(&sma
->sem_perm
);
1745 list_add(&new->list_id
, &sma
->list_id
);
1749 spin_unlock(&ulp
->lock
);
1750 sem_unlock(sma
, -1);
1755 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1756 unsigned, nsops
, const struct timespec __user
*, timeout
)
1758 int error
= -EINVAL
;
1759 struct sem_array
*sma
;
1760 struct sembuf fast_sops
[SEMOPM_FAST
];
1761 struct sembuf
*sops
= fast_sops
, *sop
;
1762 struct sem_undo
*un
;
1764 bool undos
= false, alter
= false, dupsop
= false;
1765 struct sem_queue queue
;
1766 unsigned long dup
= 0, jiffies_left
= 0;
1767 struct ipc_namespace
*ns
;
1769 ns
= current
->nsproxy
->ipc_ns
;
1771 if (nsops
< 1 || semid
< 0)
1773 if (nsops
> ns
->sc_semopm
)
1775 if (nsops
> SEMOPM_FAST
) {
1776 sops
= kmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1781 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1787 struct timespec _timeout
;
1788 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1792 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1793 _timeout
.tv_nsec
>= 1000000000L) {
1797 jiffies_left
= timespec_to_jiffies(&_timeout
);
1801 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1802 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1804 if (sop
->sem_num
>= max
)
1806 if (sop
->sem_flg
& SEM_UNDO
)
1810 * There was a previous alter access that appears
1811 * to have accessed the same semaphore, thus use
1812 * the dupsop logic. "appears", because the detection
1813 * can only check % BITS_PER_LONG.
1817 if (sop
->sem_op
!= 0) {
1824 /* On success, find_alloc_undo takes the rcu_read_lock */
1825 un
= find_alloc_undo(ns
, semid
);
1827 error
= PTR_ERR(un
);
1835 sma
= sem_obtain_object_check(ns
, semid
);
1838 error
= PTR_ERR(sma
);
1843 if (max
>= sma
->sem_nsems
) {
1849 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
1854 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1861 locknum
= sem_lock(sma
, sops
, nsops
);
1863 * We eventually might perform the following check in a lockless
1864 * fashion, considering ipc_valid_object() locking constraints.
1865 * If nsops == 1 and there is no contention for sem_perm.lock, then
1866 * only a per-semaphore lock is held and it's OK to proceed with the
1867 * check below. More details on the fine grained locking scheme
1868 * entangled here and why it's RMID race safe on comments at sem_lock()
1870 if (!ipc_valid_object(&sma
->sem_perm
))
1871 goto out_unlock_free
;
1873 * semid identifiers are not unique - find_alloc_undo may have
1874 * allocated an undo structure, it was invalidated by an RMID
1875 * and now a new array with received the same id. Check and fail.
1876 * This case can be detected checking un->semid. The existence of
1877 * "un" itself is guaranteed by rcu.
1879 if (un
&& un
->semid
== -1)
1880 goto out_unlock_free
;
1883 queue
.nsops
= nsops
;
1885 queue
.pid
= task_tgid_vnr(current
);
1886 queue
.alter
= alter
;
1887 queue
.dupsop
= dupsop
;
1889 error
= perform_atomic_semop(sma
, &queue
);
1890 if (error
== 0) { /* non-blocking succesfull path */
1891 DEFINE_WAKE_Q(wake_q
);
1894 * If the operation was successful, then do
1895 * the required updates.
1898 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
1900 set_semotime(sma
, sops
);
1902 sem_unlock(sma
, locknum
);
1908 if (error
< 0) /* non-blocking error path */
1909 goto out_unlock_free
;
1912 * We need to sleep on this operation, so we put the current
1913 * task into the pending queue and go to sleep.
1917 curr
= &sma
->sem_base
[sops
->sem_num
];
1920 if (sma
->complex_count
) {
1921 list_add_tail(&queue
.list
,
1922 &sma
->pending_alter
);
1925 list_add_tail(&queue
.list
,
1926 &curr
->pending_alter
);
1929 list_add_tail(&queue
.list
, &curr
->pending_const
);
1932 if (!sma
->complex_count
)
1936 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1938 list_add_tail(&queue
.list
, &sma
->pending_const
);
1940 sma
->complex_count
++;
1944 queue
.status
= -EINTR
;
1945 queue
.sleeper
= current
;
1947 __set_current_state(TASK_INTERRUPTIBLE
);
1948 sem_unlock(sma
, locknum
);
1952 jiffies_left
= schedule_timeout(jiffies_left
);
1957 * fastpath: the semop has completed, either successfully or
1958 * not, from the syscall pov, is quite irrelevant to us at this
1959 * point; we're done.
1961 * We _do_ care, nonetheless, about being awoken by a signal or
1962 * spuriously. The queue.status is checked again in the
1963 * slowpath (aka after taking sem_lock), such that we can detect
1964 * scenarios where we were awakened externally, during the
1965 * window between wake_q_add() and wake_up_q().
1967 error
= READ_ONCE(queue
.status
);
1968 if (error
!= -EINTR
) {
1970 * User space could assume that semop() is a memory
1971 * barrier: Without the mb(), the cpu could
1972 * speculatively read in userspace stale data that was
1973 * overwritten by the previous owner of the semaphore.
1980 sem_lock(sma
, sops
, nsops
);
1982 if (!ipc_valid_object(&sma
->sem_perm
))
1983 goto out_unlock_free
;
1985 error
= READ_ONCE(queue
.status
);
1988 * If queue.status != -EINTR we are woken up by another process.
1989 * Leave without unlink_queue(), but with sem_unlock().
1991 if (error
!= -EINTR
)
1992 goto out_unlock_free
;
1995 * If an interrupt occurred we have to clean up the queue.
1997 if (timeout
&& jiffies_left
== 0)
1999 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2001 unlink_queue(sma
, &queue
);
2004 sem_unlock(sma
, locknum
);
2007 if (sops
!= fast_sops
)
2012 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2015 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2018 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2019 * parent and child tasks.
2022 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2024 struct sem_undo_list
*undo_list
;
2027 if (clone_flags
& CLONE_SYSVSEM
) {
2028 error
= get_undo_list(&undo_list
);
2031 atomic_inc(&undo_list
->refcnt
);
2032 tsk
->sysvsem
.undo_list
= undo_list
;
2034 tsk
->sysvsem
.undo_list
= NULL
;
2040 * add semadj values to semaphores, free undo structures.
2041 * undo structures are not freed when semaphore arrays are destroyed
2042 * so some of them may be out of date.
2043 * IMPLEMENTATION NOTE: There is some confusion over whether the
2044 * set of adjustments that needs to be done should be done in an atomic
2045 * manner or not. That is, if we are attempting to decrement the semval
2046 * should we queue up and wait until we can do so legally?
2047 * The original implementation attempted to do this (queue and wait).
2048 * The current implementation does not do so. The POSIX standard
2049 * and SVID should be consulted to determine what behavior is mandated.
2051 void exit_sem(struct task_struct
*tsk
)
2053 struct sem_undo_list
*ulp
;
2055 ulp
= tsk
->sysvsem
.undo_list
;
2058 tsk
->sysvsem
.undo_list
= NULL
;
2060 if (!atomic_dec_and_test(&ulp
->refcnt
))
2064 struct sem_array
*sma
;
2065 struct sem_undo
*un
;
2067 DEFINE_WAKE_Q(wake_q
);
2072 un
= list_entry_rcu(ulp
->list_proc
.next
,
2073 struct sem_undo
, list_proc
);
2074 if (&un
->list_proc
== &ulp
->list_proc
) {
2076 * We must wait for freeary() before freeing this ulp,
2077 * in case we raced with last sem_undo. There is a small
2078 * possibility where we exit while freeary() didn't
2079 * finish unlocking sem_undo_list.
2081 spin_unlock_wait(&ulp
->lock
);
2085 spin_lock(&ulp
->lock
);
2087 spin_unlock(&ulp
->lock
);
2089 /* exit_sem raced with IPC_RMID, nothing to do */
2095 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2096 /* exit_sem raced with IPC_RMID, nothing to do */
2102 sem_lock(sma
, NULL
, -1);
2103 /* exit_sem raced with IPC_RMID, nothing to do */
2104 if (!ipc_valid_object(&sma
->sem_perm
)) {
2105 sem_unlock(sma
, -1);
2109 un
= __lookup_undo(ulp
, semid
);
2111 /* exit_sem raced with IPC_RMID+semget() that created
2112 * exactly the same semid. Nothing to do.
2114 sem_unlock(sma
, -1);
2119 /* remove un from the linked lists */
2120 ipc_assert_locked_object(&sma
->sem_perm
);
2121 list_del(&un
->list_id
);
2123 /* we are the last process using this ulp, acquiring ulp->lock
2124 * isn't required. Besides that, we are also protected against
2125 * IPC_RMID as we hold sma->sem_perm lock now
2127 list_del_rcu(&un
->list_proc
);
2129 /* perform adjustments registered in un */
2130 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2131 struct sem
*semaphore
= &sma
->sem_base
[i
];
2132 if (un
->semadj
[i
]) {
2133 semaphore
->semval
+= un
->semadj
[i
];
2135 * Range checks of the new semaphore value,
2136 * not defined by sus:
2137 * - Some unices ignore the undo entirely
2138 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2139 * - some cap the value (e.g. FreeBSD caps
2140 * at 0, but doesn't enforce SEMVMX)
2142 * Linux caps the semaphore value, both at 0
2145 * Manfred <manfred@colorfullife.com>
2147 if (semaphore
->semval
< 0)
2148 semaphore
->semval
= 0;
2149 if (semaphore
->semval
> SEMVMX
)
2150 semaphore
->semval
= SEMVMX
;
2151 semaphore
->sempid
= task_tgid_vnr(current
);
2154 /* maybe some queued-up processes were waiting for this */
2155 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2156 sem_unlock(sma
, -1);
2165 #ifdef CONFIG_PROC_FS
2166 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2168 struct user_namespace
*user_ns
= seq_user_ns(s
);
2169 struct sem_array
*sma
= it
;
2173 * The proc interface isn't aware of sem_lock(), it calls
2174 * ipc_lock_object() directly (in sysvipc_find_ipc).
2175 * In order to stay compatible with sem_lock(), we must
2176 * enter / leave complex_mode.
2178 complexmode_enter(sma
);
2180 sem_otime
= get_semotime(sma
);
2183 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2188 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2189 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2190 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2191 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2195 complexmode_tryleave(sma
);