2 * libata-core.c - helper library for ATA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
73 #include "libata-transport.h"
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
80 const struct ata_port_operations ata_base_port_ops
= {
81 .prereset
= ata_std_prereset
,
82 .postreset
= ata_std_postreset
,
83 .error_handler
= ata_std_error_handler
,
84 .sched_eh
= ata_std_sched_eh
,
85 .end_eh
= ata_std_end_eh
,
88 const struct ata_port_operations sata_port_ops
= {
89 .inherits
= &ata_base_port_ops
,
91 .qc_defer
= ata_std_qc_defer
,
92 .hardreset
= sata_std_hardreset
,
95 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
96 u16 heads
, u16 sectors
);
97 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
98 static void ata_dev_xfermask(struct ata_device
*dev
);
99 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
101 atomic_t ata_print_id
= ATOMIC_INIT(0);
103 struct ata_force_param
{
107 unsigned long xfer_mask
;
108 unsigned int horkage_on
;
109 unsigned int horkage_off
;
113 struct ata_force_ent
{
116 struct ata_force_param param
;
119 static struct ata_force_ent
*ata_force_tbl
;
120 static int ata_force_tbl_size
;
122 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
125 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 static int atapi_enabled
= 1;
128 module_param(atapi_enabled
, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 static int atapi_dmadir
= 0;
132 module_param(atapi_dmadir
, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 int atapi_passthru16
= 1;
136 module_param(atapi_passthru16
, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
140 module_param_named(fua
, libata_fua
, int, 0444);
141 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
143 static int ata_ignore_hpa
;
144 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
148 module_param_named(dma
, libata_dma_mask
, int, 0444);
149 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 static int ata_probe_timeout
;
152 module_param(ata_probe_timeout
, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
155 int libata_noacpi
= 0;
156 module_param_named(noacpi
, libata_noacpi
, int, 0444);
157 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 int libata_allow_tpm
= 0;
160 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
161 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
164 module_param(atapi_an
, int, 0444);
165 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION
);
173 static bool ata_sstatus_online(u32 sstatus
)
175 return (sstatus
& 0xf) == 0x3;
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
185 * Host lock or EH context.
188 * Pointer to the next link.
190 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
191 enum ata_link_iter_mode mode
)
193 BUG_ON(mode
!= ATA_LITER_EDGE
&&
194 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
196 /* NULL link indicates start of iteration */
200 case ATA_LITER_PMP_FIRST
:
201 if (sata_pmp_attached(ap
))
204 case ATA_LITER_HOST_FIRST
:
208 /* we just iterated over the host link, what's next? */
209 if (link
== &ap
->link
)
211 case ATA_LITER_HOST_FIRST
:
212 if (sata_pmp_attached(ap
))
215 case ATA_LITER_PMP_FIRST
:
216 if (unlikely(ap
->slave_link
))
217 return ap
->slave_link
;
223 /* slave_link excludes PMP */
224 if (unlikely(link
== ap
->slave_link
))
227 /* we were over a PMP link */
228 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
231 if (mode
== ATA_LITER_PMP_FIRST
)
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
244 * Host lock or EH context.
247 * Pointer to the next device.
249 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
250 enum ata_dev_iter_mode mode
)
252 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
253 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
255 /* NULL dev indicates start of iteration */
258 case ATA_DITER_ENABLED
:
262 case ATA_DITER_ENABLED_REVERSE
:
263 case ATA_DITER_ALL_REVERSE
:
264 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
269 /* move to the next one */
271 case ATA_DITER_ENABLED
:
273 if (++dev
< link
->device
+ ata_link_max_devices(link
))
276 case ATA_DITER_ENABLED_REVERSE
:
277 case ATA_DITER_ALL_REVERSE
:
278 if (--dev
>= link
->device
)
284 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
285 !ata_dev_enabled(dev
))
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
302 * Pointer to the found physical link.
304 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
306 struct ata_port
*ap
= dev
->link
->ap
;
312 return ap
->slave_link
;
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
328 void ata_force_cbl(struct ata_port
*ap
)
332 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
333 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
335 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
338 if (fe
->param
.cbl
== ATA_CBL_NONE
)
341 ap
->cbl
= fe
->param
.cbl
;
342 ata_port_notice(ap
, "FORCE: cable set to %s\n", fe
->param
.name
);
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
363 static void ata_force_link_limits(struct ata_link
*link
)
365 bool did_spd
= false;
366 int linkno
= link
->pmp
;
369 if (ata_is_host_link(link
))
372 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
373 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
375 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
378 if (fe
->device
!= -1 && fe
->device
!= linkno
)
381 /* only honor the first spd limit */
382 if (!did_spd
&& fe
->param
.spd_limit
) {
383 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
384 ata_link_notice(link
, "FORCE: PHY spd limit set to %s\n",
389 /* let lflags stack */
390 if (fe
->param
.lflags
) {
391 link
->flags
|= fe
->param
.lflags
;
392 ata_link_notice(link
,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe
->param
.lflags
, link
->flags
);
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
410 static void ata_force_xfermask(struct ata_device
*dev
)
412 int devno
= dev
->link
->pmp
+ dev
->devno
;
413 int alt_devno
= devno
;
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev
->link
))
420 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
421 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
422 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
424 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
427 if (fe
->device
!= -1 && fe
->device
!= devno
&&
428 fe
->device
!= alt_devno
)
431 if (!fe
->param
.xfer_mask
)
434 ata_unpack_xfermask(fe
->param
.xfer_mask
,
435 &pio_mask
, &mwdma_mask
, &udma_mask
);
437 dev
->udma_mask
= udma_mask
;
438 else if (mwdma_mask
) {
440 dev
->mwdma_mask
= mwdma_mask
;
444 dev
->pio_mask
= pio_mask
;
447 ata_dev_notice(dev
, "FORCE: xfer_mask set to %s\n",
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
464 static void ata_force_horkage(struct ata_device
*dev
)
466 int devno
= dev
->link
->pmp
+ dev
->devno
;
467 int alt_devno
= devno
;
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev
->link
))
474 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
475 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
477 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
480 if (fe
->device
!= -1 && fe
->device
!= devno
&&
481 fe
->device
!= alt_devno
)
484 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
485 !(dev
->horkage
& fe
->param
.horkage_off
))
488 dev
->horkage
|= fe
->param
.horkage_on
;
489 dev
->horkage
&= ~fe
->param
.horkage_off
;
491 ata_dev_notice(dev
, "FORCE: horkage modified (%s)\n",
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
500 * Determine ATAPI command type from @opcode.
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508 int atapi_cmd_type(u8 opcode
)
517 case GPCMD_WRITE_AND_VERIFY_10
:
521 case GPCMD_READ_CD_MSF
:
522 return ATAPI_READ_CD
;
526 if (atapi_passthru16
)
527 return ATAPI_PASS_THRU
;
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
545 * Inherited from caller.
547 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
549 fis
[0] = 0x27; /* Register - Host to Device FIS */
550 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
552 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
554 fis
[2] = tf
->command
;
555 fis
[3] = tf
->feature
;
562 fis
[8] = tf
->hob_lbal
;
563 fis
[9] = tf
->hob_lbam
;
564 fis
[10] = tf
->hob_lbah
;
565 fis
[11] = tf
->hob_feature
;
568 fis
[13] = tf
->hob_nsect
;
572 fis
[16] = tf
->auxiliary
& 0xff;
573 fis
[17] = (tf
->auxiliary
>> 8) & 0xff;
574 fis
[18] = (tf
->auxiliary
>> 16) & 0xff;
575 fis
[19] = (tf
->auxiliary
>> 24) & 0xff;
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
586 * Inherited from caller.
589 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
591 tf
->command
= fis
[2]; /* status */
592 tf
->feature
= fis
[3]; /* error */
599 tf
->hob_lbal
= fis
[8];
600 tf
->hob_lbam
= fis
[9];
601 tf
->hob_lbah
= fis
[10];
604 tf
->hob_nsect
= fis
[13];
607 static const u8 ata_rw_cmds
[] = {
611 ATA_CMD_READ_MULTI_EXT
,
612 ATA_CMD_WRITE_MULTI_EXT
,
616 ATA_CMD_WRITE_MULTI_FUA_EXT
,
620 ATA_CMD_PIO_READ_EXT
,
621 ATA_CMD_PIO_WRITE_EXT
,
634 ATA_CMD_WRITE_FUA_EXT
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
648 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
652 int index
, fua
, lba48
, write
;
654 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
655 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
656 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
658 if (dev
->flags
& ATA_DFLAG_PIO
) {
659 tf
->protocol
= ATA_PROT_PIO
;
660 index
= dev
->multi_count
? 0 : 8;
661 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
662 /* Unable to use DMA due to host limitation */
663 tf
->protocol
= ATA_PROT_PIO
;
664 index
= dev
->multi_count
? 0 : 8;
666 tf
->protocol
= ATA_PROT_DMA
;
670 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
691 * Block address read from @tf.
693 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
697 if (tf
->flags
& ATA_TFLAG_LBA
) {
698 if (tf
->flags
& ATA_TFLAG_LBA48
) {
699 block
|= (u64
)tf
->hob_lbah
<< 40;
700 block
|= (u64
)tf
->hob_lbam
<< 32;
701 block
|= (u64
)tf
->hob_lbal
<< 24;
703 block
|= (tf
->device
& 0xf) << 24;
705 block
|= tf
->lbah
<< 16;
706 block
|= tf
->lbam
<< 8;
711 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
712 head
= tf
->device
& 0xf;
717 "device reported invalid CHS sector 0\n");
718 sect
= 1; /* oh well */
721 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
747 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
748 u64 block
, u32 n_block
, unsigned int tf_flags
,
751 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
752 tf
->flags
|= tf_flags
;
754 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
756 if (!lba_48_ok(block
, n_block
))
759 tf
->protocol
= ATA_PROT_NCQ
;
760 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
762 if (tf
->flags
& ATA_TFLAG_WRITE
)
763 tf
->command
= ATA_CMD_FPDMA_WRITE
;
765 tf
->command
= ATA_CMD_FPDMA_READ
;
767 tf
->nsect
= tag
<< 3;
768 tf
->hob_feature
= (n_block
>> 8) & 0xff;
769 tf
->feature
= n_block
& 0xff;
771 tf
->hob_lbah
= (block
>> 40) & 0xff;
772 tf
->hob_lbam
= (block
>> 32) & 0xff;
773 tf
->hob_lbal
= (block
>> 24) & 0xff;
774 tf
->lbah
= (block
>> 16) & 0xff;
775 tf
->lbam
= (block
>> 8) & 0xff;
776 tf
->lbal
= block
& 0xff;
778 tf
->device
= ATA_LBA
;
779 if (tf
->flags
& ATA_TFLAG_FUA
)
780 tf
->device
|= 1 << 7;
781 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
782 tf
->flags
|= ATA_TFLAG_LBA
;
784 if (lba_28_ok(block
, n_block
)) {
786 tf
->device
|= (block
>> 24) & 0xf;
787 } else if (lba_48_ok(block
, n_block
)) {
788 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
792 tf
->flags
|= ATA_TFLAG_LBA48
;
794 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
796 tf
->hob_lbah
= (block
>> 40) & 0xff;
797 tf
->hob_lbam
= (block
>> 32) & 0xff;
798 tf
->hob_lbal
= (block
>> 24) & 0xff;
800 /* request too large even for LBA48 */
803 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
806 tf
->nsect
= n_block
& 0xff;
808 tf
->lbah
= (block
>> 16) & 0xff;
809 tf
->lbam
= (block
>> 8) & 0xff;
810 tf
->lbal
= block
& 0xff;
812 tf
->device
|= ATA_LBA
;
815 u32 sect
, head
, cyl
, track
;
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block
, n_block
))
821 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
824 /* Convert LBA to CHS */
825 track
= (u32
)block
/ dev
->sectors
;
826 cyl
= track
/ dev
->heads
;
827 head
= track
% dev
->heads
;
828 sect
= (u32
)block
% dev
->sectors
+ 1;
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32
)block
, track
, cyl
, head
, sect
);
833 /* Check whether the converted CHS can fit.
837 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
840 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
865 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
866 unsigned long mwdma_mask
,
867 unsigned long udma_mask
)
869 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
870 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
871 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
884 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
885 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
888 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
890 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
892 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
895 static const struct ata_xfer_ent
{
899 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
900 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
901 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
916 * Matching XFER_* value, 0xff if no match found.
918 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
920 int highbit
= fls(xfer_mask
) - 1;
921 const struct ata_xfer_ent
*ent
;
923 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
924 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
925 return ent
->base
+ highbit
- ent
->shift
;
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
933 * Return matching xfer_mask for @xfer_mode.
939 * Matching xfer_mask, 0 if no match found.
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
943 const struct ata_xfer_ent
*ent
;
945 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
946 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
947 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
948 & ~((1 << ent
->shift
) - 1);
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
956 * Return matching xfer_shift for @xfer_mode.
962 * Matching xfer_shift, -1 if no match found.
964 int ata_xfer_mode2shift(unsigned long xfer_mode
)
966 const struct ata_xfer_ent
*ent
;
968 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
969 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
988 const char *ata_mode_string(unsigned long xfer_mask
)
990 static const char * const xfer_mode_str
[] = {
1014 highbit
= fls(xfer_mask
) - 1;
1015 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1016 return xfer_mode_str
[highbit
];
1020 const char *sata_spd_string(unsigned int spd
)
1022 static const char * const spd_str
[] = {
1028 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1030 return spd_str
[spd
- 1];
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1048 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1071 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1072 DPRINTK("found ATA device by sig\n");
1076 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI
;
1081 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1086 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB
;
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN
;
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1110 void ata_id_string(const u16
*id
, unsigned char *s
,
1111 unsigned int ofs
, unsigned int len
)
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1145 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1146 unsigned int ofs
, unsigned int len
)
1150 ata_id_string(id
, s
, ofs
, len
- 1);
1152 p
= s
+ strnlen(s
, len
- 1);
1153 while (p
> s
&& p
[-1] == ' ')
1158 static u64
ata_id_n_sectors(const u16
*id
)
1160 if (ata_id_has_lba(id
)) {
1161 if (ata_id_has_lba48(id
))
1162 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1164 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1166 if (ata_id_current_chs_valid(id
))
1167 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1168 id
[ATA_ID_CUR_SECTORS
];
1170 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1175 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1179 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1180 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1181 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1182 sectors
|= (tf
->lbah
& 0xff) << 16;
1183 sectors
|= (tf
->lbam
& 0xff) << 8;
1184 sectors
|= (tf
->lbal
& 0xff);
1189 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1193 sectors
|= (tf
->device
& 0x0f) << 24;
1194 sectors
|= (tf
->lbah
& 0xff) << 16;
1195 sectors
|= (tf
->lbam
& 0xff) << 8;
1196 sectors
|= (tf
->lbal
& 0xff);
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1213 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1215 unsigned int err_mask
;
1216 struct ata_taskfile tf
;
1217 int lba48
= ata_id_has_lba48(dev
->id
);
1219 ata_tf_init(dev
, &tf
);
1221 /* always clear all address registers */
1222 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1225 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1226 tf
.flags
|= ATA_TFLAG_LBA48
;
1228 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1230 tf
.protocol
|= ATA_PROT_NODATA
;
1231 tf
.device
|= ATA_LBA
;
1233 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1236 "failed to read native max address (err_mask=0x%x)\n",
1238 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1244 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1246 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1247 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1257 * Set max sectors of @dev to @new_sectors.
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1264 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1266 unsigned int err_mask
;
1267 struct ata_taskfile tf
;
1268 int lba48
= ata_id_has_lba48(dev
->id
);
1272 ata_tf_init(dev
, &tf
);
1274 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1277 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1278 tf
.flags
|= ATA_TFLAG_LBA48
;
1280 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1281 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1282 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1284 tf
.command
= ATA_CMD_SET_MAX
;
1286 tf
.device
|= (new_sectors
>> 24) & 0xf;
1289 tf
.protocol
|= ATA_PROT_NODATA
;
1290 tf
.device
|= ATA_LBA
;
1292 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1293 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1294 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1296 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1299 "failed to set max address (err_mask=0x%x)\n",
1301 if (err_mask
== AC_ERR_DEV
&&
1302 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1319 * 0 on success, -errno on failure.
1321 static int ata_hpa_resize(struct ata_device
*dev
)
1323 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1324 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1325 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1326 u64 sectors
= ata_id_n_sectors(dev
->id
);
1330 /* do we need to do it? */
1331 if (dev
->class != ATA_DEV_ATA
||
1332 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1333 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1336 /* read native max address */
1337 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1342 if (rc
== -EACCES
|| !unlock_hpa
) {
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1347 /* we can continue if device aborted the command */
1354 dev
->n_native_sectors
= native_sectors
;
1356 /* nothing to do? */
1357 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1358 if (!print_info
|| native_sectors
== sectors
)
1361 if (native_sectors
> sectors
)
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors
,
1365 (unsigned long long)native_sectors
);
1366 else if (native_sectors
< sectors
)
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors
,
1370 (unsigned long long)sectors
);
1374 /* let's unlock HPA */
1375 rc
= ata_set_max_sectors(dev
, native_sectors
);
1376 if (rc
== -EACCES
) {
1377 /* if device aborted the command, skip HPA resizing */
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors
,
1381 (unsigned long long)native_sectors
);
1382 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1387 /* re-read IDENTIFY data */
1388 rc
= ata_dev_reread_id(dev
, 0);
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1396 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors
,
1400 (unsigned long long)new_sectors
,
1401 (unsigned long long)native_sectors
);
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1418 static inline void ata_dump_id(const u16
*id
)
1420 DPRINTK("49==0x%04x "
1430 DPRINTK("80==0x%04x "
1440 DPRINTK("88==0x%04x "
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1453 * FIXME: pre IDE drive timing (do we care ?).
1461 unsigned long ata_id_xfermask(const u16
*id
)
1463 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1467 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1475 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1476 if (mode
< 5) /* Valid PIO range */
1477 pio_mask
= (2 << mode
) - 1;
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1489 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1491 if (ata_id_is_cfa(id
)) {
1493 * Process compact flash extended modes
1495 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1496 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1499 pio_mask
|= (1 << 5);
1501 pio_mask
|= (1 << 6);
1503 mwdma_mask
|= (1 << 3);
1505 mwdma_mask
|= (1 << 4);
1509 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1510 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1512 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1515 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1517 struct completion
*waiting
= qc
->private_data
;
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data transfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1539 * None. Should be called with kernel context, might sleep.
1542 * Zero on success, AC_ERR_* mask on failure
1544 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1545 struct ata_taskfile
*tf
, const u8
*cdb
,
1546 int dma_dir
, struct scatterlist
*sgl
,
1547 unsigned int n_elem
, unsigned long timeout
)
1549 struct ata_link
*link
= dev
->link
;
1550 struct ata_port
*ap
= link
->ap
;
1551 u8 command
= tf
->command
;
1552 int auto_timeout
= 0;
1553 struct ata_queued_cmd
*qc
;
1554 unsigned int tag
, preempted_tag
;
1555 u32 preempted_sactive
, preempted_qc_active
;
1556 int preempted_nr_active_links
;
1557 DECLARE_COMPLETION_ONSTACK(wait
);
1558 unsigned long flags
;
1559 unsigned int err_mask
;
1562 spin_lock_irqsave(ap
->lock
, flags
);
1564 /* no internal command while frozen */
1565 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1566 spin_unlock_irqrestore(ap
->lock
, flags
);
1567 return AC_ERR_SYSTEM
;
1570 /* initialize internal qc */
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1577 if (ap
->ops
->error_handler
)
1578 tag
= ATA_TAG_INTERNAL
;
1582 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1584 qc
= __ata_qc_from_tag(ap
, tag
);
1592 preempted_tag
= link
->active_tag
;
1593 preempted_sactive
= link
->sactive
;
1594 preempted_qc_active
= ap
->qc_active
;
1595 preempted_nr_active_links
= ap
->nr_active_links
;
1596 link
->active_tag
= ATA_TAG_POISON
;
1599 ap
->nr_active_links
= 0;
1601 /* prepare & issue qc */
1604 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1606 /* some SATA bridges need us to indicate data xfer direction */
1607 if (tf
->protocol
== ATAPI_PROT_DMA
&& (dev
->flags
& ATA_DFLAG_DMADIR
) &&
1608 dma_dir
== DMA_FROM_DEVICE
)
1609 qc
->tf
.feature
|= ATAPI_DMADIR
;
1611 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1612 qc
->dma_dir
= dma_dir
;
1613 if (dma_dir
!= DMA_NONE
) {
1614 unsigned int i
, buflen
= 0;
1615 struct scatterlist
*sg
;
1617 for_each_sg(sgl
, sg
, n_elem
, i
)
1618 buflen
+= sg
->length
;
1620 ata_sg_init(qc
, sgl
, n_elem
);
1621 qc
->nbytes
= buflen
;
1624 qc
->private_data
= &wait
;
1625 qc
->complete_fn
= ata_qc_complete_internal
;
1629 spin_unlock_irqrestore(ap
->lock
, flags
);
1632 if (ata_probe_timeout
)
1633 timeout
= ata_probe_timeout
* 1000;
1635 timeout
= ata_internal_cmd_timeout(dev
, command
);
1640 if (ap
->ops
->error_handler
)
1643 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1645 if (ap
->ops
->error_handler
)
1648 ata_sff_flush_pio_task(ap
);
1651 spin_lock_irqsave(ap
->lock
, flags
);
1653 /* We're racing with irq here. If we lose, the
1654 * following test prevents us from completing the qc
1655 * twice. If we win, the port is frozen and will be
1656 * cleaned up by ->post_internal_cmd().
1658 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1659 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1661 if (ap
->ops
->error_handler
)
1662 ata_port_freeze(ap
);
1664 ata_qc_complete(qc
);
1666 if (ata_msg_warn(ap
))
1667 ata_dev_warn(dev
, "qc timeout (cmd 0x%x)\n",
1671 spin_unlock_irqrestore(ap
->lock
, flags
);
1674 /* do post_internal_cmd */
1675 if (ap
->ops
->post_internal_cmd
)
1676 ap
->ops
->post_internal_cmd(qc
);
1678 /* perform minimal error analysis */
1679 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1680 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1681 qc
->err_mask
|= AC_ERR_DEV
;
1684 qc
->err_mask
|= AC_ERR_OTHER
;
1686 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1687 qc
->err_mask
&= ~AC_ERR_OTHER
;
1691 spin_lock_irqsave(ap
->lock
, flags
);
1693 *tf
= qc
->result_tf
;
1694 err_mask
= qc
->err_mask
;
1697 link
->active_tag
= preempted_tag
;
1698 link
->sactive
= preempted_sactive
;
1699 ap
->qc_active
= preempted_qc_active
;
1700 ap
->nr_active_links
= preempted_nr_active_links
;
1702 spin_unlock_irqrestore(ap
->lock
, flags
);
1704 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1705 ata_internal_cmd_timed_out(dev
, command
);
1711 * ata_exec_internal - execute libata internal command
1712 * @dev: Device to which the command is sent
1713 * @tf: Taskfile registers for the command and the result
1714 * @cdb: CDB for packet command
1715 * @dma_dir: Data transfer direction of the command
1716 * @buf: Data buffer of the command
1717 * @buflen: Length of data buffer
1718 * @timeout: Timeout in msecs (0 for default)
1720 * Wrapper around ata_exec_internal_sg() which takes simple
1721 * buffer instead of sg list.
1724 * None. Should be called with kernel context, might sleep.
1727 * Zero on success, AC_ERR_* mask on failure
1729 unsigned ata_exec_internal(struct ata_device
*dev
,
1730 struct ata_taskfile
*tf
, const u8
*cdb
,
1731 int dma_dir
, void *buf
, unsigned int buflen
,
1732 unsigned long timeout
)
1734 struct scatterlist
*psg
= NULL
, sg
;
1735 unsigned int n_elem
= 0;
1737 if (dma_dir
!= DMA_NONE
) {
1739 sg_init_one(&sg
, buf
, buflen
);
1744 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1749 * ata_do_simple_cmd - execute simple internal command
1750 * @dev: Device to which the command is sent
1751 * @cmd: Opcode to execute
1753 * Execute a 'simple' command, that only consists of the opcode
1754 * 'cmd' itself, without filling any other registers
1757 * Kernel thread context (may sleep).
1760 * Zero on success, AC_ERR_* mask on failure
1762 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1764 struct ata_taskfile tf
;
1766 ata_tf_init(dev
, &tf
);
1769 tf
.flags
|= ATA_TFLAG_DEVICE
;
1770 tf
.protocol
= ATA_PROT_NODATA
;
1772 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1776 * ata_pio_need_iordy - check if iordy needed
1779 * Check if the current speed of the device requires IORDY. Used
1780 * by various controllers for chip configuration.
1782 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1784 /* Don't set IORDY if we're preparing for reset. IORDY may
1785 * lead to controller lock up on certain controllers if the
1786 * port is not occupied. See bko#11703 for details.
1788 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1790 /* Controller doesn't support IORDY. Probably a pointless
1791 * check as the caller should know this.
1793 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1796 if (ata_id_is_cfa(adev
->id
)
1797 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1799 /* PIO3 and higher it is mandatory */
1800 if (adev
->pio_mode
> XFER_PIO_2
)
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev
->id
))
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1815 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1819 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio
> 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO
;
1825 return 7 << ATA_SHIFT_PIO
;
1828 return 3 << ATA_SHIFT_PIO
;
1832 * ata_do_dev_read_id - default ID read method
1834 * @tf: proposed taskfile
1837 * Issue the identify taskfile and hand back the buffer containing
1838 * identify data. For some RAID controllers and for pre ATA devices
1839 * this function is wrapped or replaced by the driver
1841 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1842 struct ata_taskfile
*tf
, u16
*id
)
1844 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1845 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1849 * ata_dev_read_id - Read ID data from the specified device
1850 * @dev: target device
1851 * @p_class: pointer to class of the target device (may be changed)
1852 * @flags: ATA_READID_* flags
1853 * @id: buffer to read IDENTIFY data into
1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 * for pre-ATA4 drives.
1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 * now we abort if we hit that case.
1864 * Kernel thread context (may sleep)
1867 * 0 on success, -errno otherwise.
1869 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1870 unsigned int flags
, u16
*id
)
1872 struct ata_port
*ap
= dev
->link
->ap
;
1873 unsigned int class = *p_class
;
1874 struct ata_taskfile tf
;
1875 unsigned int err_mask
= 0;
1877 bool is_semb
= class == ATA_DEV_SEMB
;
1878 int may_fallback
= 1, tried_spinup
= 0;
1881 if (ata_msg_ctl(ap
))
1882 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
1885 ata_tf_init(dev
, &tf
);
1889 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
1891 tf
.command
= ATA_CMD_ID_ATA
;
1894 tf
.command
= ATA_CMD_ID_ATAPI
;
1898 reason
= "unsupported class";
1902 tf
.protocol
= ATA_PROT_PIO
;
1904 /* Some devices choke if TF registers contain garbage. Make
1905 * sure those are properly initialized.
1907 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1909 /* Device presence detection is unreliable on some
1910 * controllers. Always poll IDENTIFY if available.
1912 tf
.flags
|= ATA_TFLAG_POLLING
;
1914 if (ap
->ops
->read_id
)
1915 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1917 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1920 if (err_mask
& AC_ERR_NODEV_HINT
) {
1921 ata_dev_dbg(dev
, "NODEV after polling detection\n");
1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 /* SEMB is not supported yet */
1929 *p_class
= ATA_DEV_SEMB_UNSUP
;
1933 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1934 /* Device or controller might have reported
1935 * the wrong device class. Give a shot at the
1936 * other IDENTIFY if the current one is
1937 * aborted by the device.
1942 if (class == ATA_DEV_ATA
)
1943 class = ATA_DEV_ATAPI
;
1945 class = ATA_DEV_ATA
;
1949 /* Control reaches here iff the device aborted
1950 * both flavors of IDENTIFYs which happens
1951 * sometimes with phantom devices.
1954 "both IDENTIFYs aborted, assuming NODEV\n");
1959 reason
= "I/O error";
1963 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
1964 ata_dev_dbg(dev
, "dumping IDENTIFY data, "
1965 "class=%d may_fallback=%d tried_spinup=%d\n",
1966 class, may_fallback
, tried_spinup
);
1967 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
1968 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
1971 /* Falling back doesn't make sense if ID data was read
1972 * successfully at least once.
1976 swap_buf_le16(id
, ATA_ID_WORDS
);
1980 reason
= "device reports invalid type";
1982 if (class == ATA_DEV_ATA
) {
1983 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1985 if (ap
->host
->flags
& ATA_HOST_IGNORE_ATA
&&
1986 ata_id_is_ata(id
)) {
1988 "host indicates ignore ATA devices, ignored\n");
1992 if (ata_id_is_ata(id
))
1996 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1999 * Drive powered-up in standby mode, and requires a specific
2000 * SET_FEATURES spin-up subcommand before it will accept
2001 * anything other than the original IDENTIFY command.
2003 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2004 if (err_mask
&& id
[2] != 0x738c) {
2006 reason
= "SPINUP failed";
2010 * If the drive initially returned incomplete IDENTIFY info,
2011 * we now must reissue the IDENTIFY command.
2013 if (id
[2] == 0x37c8)
2017 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2019 * The exact sequence expected by certain pre-ATA4 drives is:
2021 * IDENTIFY (optional in early ATA)
2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2024 * Some drives were very specific about that exact sequence.
2026 * Note that ATA4 says lba is mandatory so the second check
2027 * should never trigger.
2029 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2030 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2033 reason
= "INIT_DEV_PARAMS failed";
2037 /* current CHS translation info (id[53-58]) might be
2038 * changed. reread the identify device info.
2040 flags
&= ~ATA_READID_POSTRESET
;
2050 if (ata_msg_warn(ap
))
2051 ata_dev_warn(dev
, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2056 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2058 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2059 u32 target
, target_limit
;
2061 if (!sata_scr_valid(plink
))
2064 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2069 target_limit
= (1 << target
) - 1;
2071 /* if already on stricter limit, no need to push further */
2072 if (plink
->sata_spd_limit
<= target_limit
)
2075 plink
->sata_spd_limit
= target_limit
;
2077 /* Request another EH round by returning -EAGAIN if link is
2078 * going faster than the target speed. Forward progress is
2079 * guaranteed by setting sata_spd_limit to target_limit above.
2081 if (plink
->sata_spd
> target
) {
2082 ata_dev_info(dev
, "applying link speed limit horkage to %s\n",
2083 sata_spd_string(target
));
2089 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2091 struct ata_port
*ap
= dev
->link
->ap
;
2093 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2096 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2099 static int ata_dev_config_ncq(struct ata_device
*dev
,
2100 char *desc
, size_t desc_sz
)
2102 struct ata_port
*ap
= dev
->link
->ap
;
2103 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2104 unsigned int err_mask
;
2107 if (!ata_id_has_ncq(dev
->id
)) {
2111 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2112 snprintf(desc
, desc_sz
, "NCQ (not used)");
2115 if (ap
->flags
& ATA_FLAG_NCQ
) {
2116 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2117 dev
->flags
|= ATA_DFLAG_NCQ
;
2120 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2121 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2122 ata_id_has_fpdma_aa(dev
->id
)) {
2123 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2127 "failed to enable AA (error_mask=0x%x)\n",
2129 if (err_mask
!= AC_ERR_DEV
) {
2130 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2137 if (hdepth
>= ddepth
)
2138 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2140 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2143 if ((ap
->flags
& ATA_FLAG_FPDMA_AUX
) &&
2144 ata_id_has_ncq_send_and_recv(dev
->id
)) {
2145 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_SEND_RECV
,
2146 0, ap
->sector_buf
, 1);
2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2152 u8
*cmds
= dev
->ncq_send_recv_cmds
;
2154 dev
->flags
|= ATA_DFLAG_NCQ_SEND_RECV
;
2155 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_SEND_RECV_SIZE
);
2157 if (dev
->horkage
& ATA_HORKAGE_NO_NCQ_TRIM
) {
2158 ata_dev_dbg(dev
, "disabling queued TRIM support\n");
2159 cmds
[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET
] &=
2160 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM
;
2169 * ata_dev_configure - Configure the specified ATA/ATAPI device
2170 * @dev: Target device to configure
2172 * Configure @dev according to @dev->id. Generic and low-level
2173 * driver specific fixups are also applied.
2176 * Kernel thread context (may sleep)
2179 * 0 on success, -errno otherwise
2181 int ata_dev_configure(struct ata_device
*dev
)
2183 struct ata_port
*ap
= dev
->link
->ap
;
2184 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2185 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2186 const u16
*id
= dev
->id
;
2187 unsigned long xfer_mask
;
2188 unsigned int err_mask
;
2189 char revbuf
[7]; /* XYZ-99\0 */
2190 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2191 char modelbuf
[ATA_ID_PROD_LEN
+1];
2194 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2195 ata_dev_info(dev
, "%s: ENTER/EXIT -- nodev\n", __func__
);
2199 if (ata_msg_probe(ap
))
2200 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
2203 dev
->horkage
|= ata_dev_blacklisted(dev
);
2204 ata_force_horkage(dev
);
2206 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2207 ata_dev_info(dev
, "unsupported device, disabling\n");
2208 ata_dev_disable(dev
);
2212 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2213 dev
->class == ATA_DEV_ATAPI
) {
2214 ata_dev_warn(dev
, "WARNING: ATAPI is %s, device ignored\n",
2215 atapi_enabled
? "not supported with this driver"
2217 ata_dev_disable(dev
);
2221 rc
= ata_do_link_spd_horkage(dev
);
2225 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226 if ((dev
->horkage
& ATA_HORKAGE_WD_BROKEN_LPM
) &&
2227 (id
[ATA_ID_SATA_CAPABILITY
] & 0xe) == 0x2)
2228 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2230 if (dev
->horkage
& ATA_HORKAGE_NOLPM
) {
2231 ata_dev_warn(dev
, "LPM support broken, forcing max_power\n");
2232 dev
->link
->ap
->target_lpm_policy
= ATA_LPM_MAX_POWER
;
2235 /* let ACPI work its magic */
2236 rc
= ata_acpi_on_devcfg(dev
);
2240 /* massage HPA, do it early as it might change IDENTIFY data */
2241 rc
= ata_hpa_resize(dev
);
2245 /* print device capabilities */
2246 if (ata_msg_probe(ap
))
2248 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2251 id
[49], id
[82], id
[83], id
[84],
2252 id
[85], id
[86], id
[87], id
[88]);
2254 /* initialize to-be-configured parameters */
2255 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2256 dev
->max_sectors
= 0;
2262 dev
->multi_count
= 0;
2265 * common ATA, ATAPI feature tests
2268 /* find max transfer mode; for printk only */
2269 xfer_mask
= ata_id_xfermask(id
);
2271 if (ata_msg_probe(ap
))
2274 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2278 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2281 /* ATA-specific feature tests */
2282 if (dev
->class == ATA_DEV_ATA
) {
2283 if (ata_id_is_cfa(id
)) {
2284 /* CPRM may make this media unusable */
2285 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2287 "supports DRM functions and may not be fully accessible\n");
2288 snprintf(revbuf
, 7, "CFA");
2290 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2291 /* Warn the user if the device has TPM extensions */
2292 if (ata_id_has_tpm(id
))
2294 "supports DRM functions and may not be fully accessible\n");
2297 dev
->n_sectors
= ata_id_n_sectors(id
);
2299 /* get current R/W Multiple count setting */
2300 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2301 unsigned int max
= dev
->id
[47] & 0xff;
2302 unsigned int cnt
= dev
->id
[59] & 0xff;
2303 /* only recognize/allow powers of two here */
2304 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2306 dev
->multi_count
= cnt
;
2309 if (ata_id_has_lba(id
)) {
2310 const char *lba_desc
;
2314 dev
->flags
|= ATA_DFLAG_LBA
;
2315 if (ata_id_has_lba48(id
)) {
2316 dev
->flags
|= ATA_DFLAG_LBA48
;
2319 if (dev
->n_sectors
>= (1UL << 28) &&
2320 ata_id_has_flush_ext(id
))
2321 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2325 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2329 /* print device info to dmesg */
2330 if (ata_msg_drv(ap
) && print_info
) {
2331 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2332 revbuf
, modelbuf
, fwrevbuf
,
2333 ata_mode_string(xfer_mask
));
2335 "%llu sectors, multi %u: %s %s\n",
2336 (unsigned long long)dev
->n_sectors
,
2337 dev
->multi_count
, lba_desc
, ncq_desc
);
2342 /* Default translation */
2343 dev
->cylinders
= id
[1];
2345 dev
->sectors
= id
[6];
2347 if (ata_id_current_chs_valid(id
)) {
2348 /* Current CHS translation is valid. */
2349 dev
->cylinders
= id
[54];
2350 dev
->heads
= id
[55];
2351 dev
->sectors
= id
[56];
2354 /* print device info to dmesg */
2355 if (ata_msg_drv(ap
) && print_info
) {
2356 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2357 revbuf
, modelbuf
, fwrevbuf
,
2358 ata_mode_string(xfer_mask
));
2360 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361 (unsigned long long)dev
->n_sectors
,
2362 dev
->multi_count
, dev
->cylinders
,
2363 dev
->heads
, dev
->sectors
);
2367 /* Check and mark DevSlp capability. Get DevSlp timing variables
2368 * from SATA Settings page of Identify Device Data Log.
2370 if (ata_id_has_devslp(dev
->id
)) {
2371 u8
*sata_setting
= ap
->sector_buf
;
2374 dev
->flags
|= ATA_DFLAG_DEVSLP
;
2375 err_mask
= ata_read_log_page(dev
,
2376 ATA_LOG_SATA_ID_DEV_DATA
,
2377 ATA_LOG_SATA_SETTINGS
,
2382 "failed to get Identify Device Data, Emask 0x%x\n",
2385 for (i
= 0; i
< ATA_LOG_DEVSLP_SIZE
; i
++) {
2386 j
= ATA_LOG_DEVSLP_OFFSET
+ i
;
2387 dev
->devslp_timing
[i
] = sata_setting
[j
];
2394 /* ATAPI-specific feature tests */
2395 else if (dev
->class == ATA_DEV_ATAPI
) {
2396 const char *cdb_intr_string
= "";
2397 const char *atapi_an_string
= "";
2398 const char *dma_dir_string
= "";
2401 rc
= atapi_cdb_len(id
);
2402 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2403 if (ata_msg_warn(ap
))
2404 ata_dev_warn(dev
, "unsupported CDB len\n");
2408 dev
->cdb_len
= (unsigned int) rc
;
2410 /* Enable ATAPI AN if both the host and device have
2411 * the support. If PMP is attached, SNTF is required
2412 * to enable ATAPI AN to discern between PHY status
2413 * changed notifications and ATAPI ANs.
2416 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2417 (!sata_pmp_attached(ap
) ||
2418 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2419 /* issue SET feature command to turn this on */
2420 err_mask
= ata_dev_set_feature(dev
,
2421 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2424 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2427 dev
->flags
|= ATA_DFLAG_AN
;
2428 atapi_an_string
= ", ATAPI AN";
2432 if (ata_id_cdb_intr(dev
->id
)) {
2433 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2434 cdb_intr_string
= ", CDB intr";
2437 if (atapi_dmadir
|| (dev
->horkage
& ATA_HORKAGE_ATAPI_DMADIR
) || atapi_id_dmadir(dev
->id
)) {
2438 dev
->flags
|= ATA_DFLAG_DMADIR
;
2439 dma_dir_string
= ", DMADIR";
2442 if (ata_id_has_da(dev
->id
)) {
2443 dev
->flags
|= ATA_DFLAG_DA
;
2447 /* print device info to dmesg */
2448 if (ata_msg_drv(ap
) && print_info
)
2450 "ATAPI: %s, %s, max %s%s%s%s\n",
2452 ata_mode_string(xfer_mask
),
2453 cdb_intr_string
, atapi_an_string
,
2457 /* determine max_sectors */
2458 dev
->max_sectors
= ATA_MAX_SECTORS
;
2459 if (dev
->flags
& ATA_DFLAG_LBA48
)
2460 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2462 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2464 if (ata_dev_knobble(dev
)) {
2465 if (ata_msg_drv(ap
) && print_info
)
2466 ata_dev_info(dev
, "applying bridge limits\n");
2467 dev
->udma_mask
&= ATA_UDMA5
;
2468 dev
->max_sectors
= ATA_MAX_SECTORS
;
2471 if ((dev
->class == ATA_DEV_ATAPI
) &&
2472 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2473 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2474 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2477 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2478 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2481 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_LBA48
)
2482 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2484 if (ap
->ops
->dev_config
)
2485 ap
->ops
->dev_config(dev
);
2487 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2488 /* Let the user know. We don't want to disallow opens for
2489 rescue purposes, or in case the vendor is just a blithering
2490 idiot. Do this after the dev_config call as some controllers
2491 with buggy firmware may want to avoid reporting false device
2496 "Drive reports diagnostics failure. This may indicate a drive\n");
2498 "fault or invalid emulation. Contact drive vendor for information.\n");
2502 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2503 ata_dev_warn(dev
, "WARNING: device requires firmware update to be fully functional\n");
2504 ata_dev_warn(dev
, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2510 if (ata_msg_probe(ap
))
2511 ata_dev_dbg(dev
, "%s: EXIT, err\n", __func__
);
2516 * ata_cable_40wire - return 40 wire cable type
2519 * Helper method for drivers which want to hardwire 40 wire cable
2523 int ata_cable_40wire(struct ata_port
*ap
)
2525 return ATA_CBL_PATA40
;
2529 * ata_cable_80wire - return 80 wire cable type
2532 * Helper method for drivers which want to hardwire 80 wire cable
2536 int ata_cable_80wire(struct ata_port
*ap
)
2538 return ATA_CBL_PATA80
;
2542 * ata_cable_unknown - return unknown PATA cable.
2545 * Helper method for drivers which have no PATA cable detection.
2548 int ata_cable_unknown(struct ata_port
*ap
)
2550 return ATA_CBL_PATA_UNK
;
2554 * ata_cable_ignore - return ignored PATA cable.
2557 * Helper method for drivers which don't use cable type to limit
2560 int ata_cable_ignore(struct ata_port
*ap
)
2562 return ATA_CBL_PATA_IGN
;
2566 * ata_cable_sata - return SATA cable type
2569 * Helper method for drivers which have SATA cables
2572 int ata_cable_sata(struct ata_port
*ap
)
2574 return ATA_CBL_SATA
;
2578 * ata_bus_probe - Reset and probe ATA bus
2581 * Master ATA bus probing function. Initiates a hardware-dependent
2582 * bus reset, then attempts to identify any devices found on
2586 * PCI/etc. bus probe sem.
2589 * Zero on success, negative errno otherwise.
2592 int ata_bus_probe(struct ata_port
*ap
)
2594 unsigned int classes
[ATA_MAX_DEVICES
];
2595 int tries
[ATA_MAX_DEVICES
];
2597 struct ata_device
*dev
;
2599 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2600 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2603 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2604 /* If we issue an SRST then an ATA drive (not ATAPI)
2605 * may change configuration and be in PIO0 timing. If
2606 * we do a hard reset (or are coming from power on)
2607 * this is true for ATA or ATAPI. Until we've set a
2608 * suitable controller mode we should not touch the
2609 * bus as we may be talking too fast.
2611 dev
->pio_mode
= XFER_PIO_0
;
2612 dev
->dma_mode
= 0xff;
2614 /* If the controller has a pio mode setup function
2615 * then use it to set the chipset to rights. Don't
2616 * touch the DMA setup as that will be dealt with when
2617 * configuring devices.
2619 if (ap
->ops
->set_piomode
)
2620 ap
->ops
->set_piomode(ap
, dev
);
2623 /* reset and determine device classes */
2624 ap
->ops
->phy_reset(ap
);
2626 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2627 if (dev
->class != ATA_DEV_UNKNOWN
)
2628 classes
[dev
->devno
] = dev
->class;
2630 classes
[dev
->devno
] = ATA_DEV_NONE
;
2632 dev
->class = ATA_DEV_UNKNOWN
;
2635 /* read IDENTIFY page and configure devices. We have to do the identify
2636 specific sequence bass-ackwards so that PDIAG- is released by
2639 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2640 if (tries
[dev
->devno
])
2641 dev
->class = classes
[dev
->devno
];
2643 if (!ata_dev_enabled(dev
))
2646 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2652 /* Now ask for the cable type as PDIAG- should have been released */
2653 if (ap
->ops
->cable_detect
)
2654 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2656 /* We may have SATA bridge glue hiding here irrespective of
2657 * the reported cable types and sensed types. When SATA
2658 * drives indicate we have a bridge, we don't know which end
2659 * of the link the bridge is which is a problem.
2661 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2662 if (ata_id_is_sata(dev
->id
))
2663 ap
->cbl
= ATA_CBL_SATA
;
2665 /* After the identify sequence we can now set up the devices. We do
2666 this in the normal order so that the user doesn't get confused */
2668 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2669 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2670 rc
= ata_dev_configure(dev
);
2671 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2676 /* configure transfer mode */
2677 rc
= ata_set_mode(&ap
->link
, &dev
);
2681 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2687 tries
[dev
->devno
]--;
2691 /* eeek, something went very wrong, give up */
2692 tries
[dev
->devno
] = 0;
2696 /* give it just one more chance */
2697 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2699 if (tries
[dev
->devno
] == 1) {
2700 /* This is the last chance, better to slow
2701 * down than lose it.
2703 sata_down_spd_limit(&ap
->link
, 0);
2704 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2708 if (!tries
[dev
->devno
])
2709 ata_dev_disable(dev
);
2715 * sata_print_link_status - Print SATA link status
2716 * @link: SATA link to printk link status about
2718 * This function prints link speed and status of a SATA link.
2723 static void sata_print_link_status(struct ata_link
*link
)
2725 u32 sstatus
, scontrol
, tmp
;
2727 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2729 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2731 if (ata_phys_link_online(link
)) {
2732 tmp
= (sstatus
>> 4) & 0xf;
2733 ata_link_info(link
, "SATA link up %s (SStatus %X SControl %X)\n",
2734 sata_spd_string(tmp
), sstatus
, scontrol
);
2736 ata_link_info(link
, "SATA link down (SStatus %X SControl %X)\n",
2742 * ata_dev_pair - return other device on cable
2745 * Obtain the other device on the same cable, or if none is
2746 * present NULL is returned
2749 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2751 struct ata_link
*link
= adev
->link
;
2752 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2753 if (!ata_dev_enabled(pair
))
2759 * sata_down_spd_limit - adjust SATA spd limit downward
2760 * @link: Link to adjust SATA spd limit for
2761 * @spd_limit: Additional limit
2763 * Adjust SATA spd limit of @link downward. Note that this
2764 * function only adjusts the limit. The change must be applied
2765 * using sata_set_spd().
2767 * If @spd_limit is non-zero, the speed is limited to equal to or
2768 * lower than @spd_limit if such speed is supported. If
2769 * @spd_limit is slower than any supported speed, only the lowest
2770 * supported speed is allowed.
2773 * Inherited from caller.
2776 * 0 on success, negative errno on failure
2778 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2780 u32 sstatus
, spd
, mask
;
2783 if (!sata_scr_valid(link
))
2786 /* If SCR can be read, use it to determine the current SPD.
2787 * If not, use cached value in link->sata_spd.
2789 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2790 if (rc
== 0 && ata_sstatus_online(sstatus
))
2791 spd
= (sstatus
>> 4) & 0xf;
2793 spd
= link
->sata_spd
;
2795 mask
= link
->sata_spd_limit
;
2799 /* unconditionally mask off the highest bit */
2800 bit
= fls(mask
) - 1;
2801 mask
&= ~(1 << bit
);
2803 /* Mask off all speeds higher than or equal to the current
2804 * one. Force 1.5Gbps if current SPD is not available.
2807 mask
&= (1 << (spd
- 1)) - 1;
2811 /* were we already at the bottom? */
2816 if (mask
& ((1 << spd_limit
) - 1))
2817 mask
&= (1 << spd_limit
) - 1;
2819 bit
= ffs(mask
) - 1;
2824 link
->sata_spd_limit
= mask
;
2826 ata_link_warn(link
, "limiting SATA link speed to %s\n",
2827 sata_spd_string(fls(mask
)));
2832 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2834 struct ata_link
*host_link
= &link
->ap
->link
;
2835 u32 limit
, target
, spd
;
2837 limit
= link
->sata_spd_limit
;
2839 /* Don't configure downstream link faster than upstream link.
2840 * It doesn't speed up anything and some PMPs choke on such
2843 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2844 limit
&= (1 << host_link
->sata_spd
) - 1;
2846 if (limit
== UINT_MAX
)
2849 target
= fls(limit
);
2851 spd
= (*scontrol
>> 4) & 0xf;
2852 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2854 return spd
!= target
;
2858 * sata_set_spd_needed - is SATA spd configuration needed
2859 * @link: Link in question
2861 * Test whether the spd limit in SControl matches
2862 * @link->sata_spd_limit. This function is used to determine
2863 * whether hardreset is necessary to apply SATA spd
2867 * Inherited from caller.
2870 * 1 if SATA spd configuration is needed, 0 otherwise.
2872 static int sata_set_spd_needed(struct ata_link
*link
)
2876 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2879 return __sata_set_spd_needed(link
, &scontrol
);
2883 * sata_set_spd - set SATA spd according to spd limit
2884 * @link: Link to set SATA spd for
2886 * Set SATA spd of @link according to sata_spd_limit.
2889 * Inherited from caller.
2892 * 0 if spd doesn't need to be changed, 1 if spd has been
2893 * changed. Negative errno if SCR registers are inaccessible.
2895 int sata_set_spd(struct ata_link
*link
)
2900 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2903 if (!__sata_set_spd_needed(link
, &scontrol
))
2906 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2924 static const struct ata_timing ata_timing
[] = {
2925 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2926 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2927 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2928 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2929 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2930 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2931 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2932 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2934 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2935 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2936 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2938 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2939 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2940 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2941 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2942 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2944 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2945 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2946 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2947 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2948 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2949 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2950 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2951 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2956 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2957 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2959 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2961 q
->setup
= EZ(t
->setup
* 1000, T
);
2962 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2963 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2964 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2965 q
->active
= EZ(t
->active
* 1000, T
);
2966 q
->recover
= EZ(t
->recover
* 1000, T
);
2967 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
2968 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2969 q
->udma
= EZ(t
->udma
* 1000, UT
);
2972 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2973 struct ata_timing
*m
, unsigned int what
)
2975 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2976 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2977 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2978 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2979 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2980 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2981 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
2982 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2983 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2986 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2988 const struct ata_timing
*t
= ata_timing
;
2990 while (xfer_mode
> t
->mode
)
2993 if (xfer_mode
== t
->mode
)
2996 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997 __func__
, xfer_mode
);
3002 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3003 struct ata_timing
*t
, int T
, int UT
)
3005 const u16
*id
= adev
->id
;
3006 const struct ata_timing
*s
;
3007 struct ata_timing p
;
3013 if (!(s
= ata_timing_find_mode(speed
)))
3016 memcpy(t
, s
, sizeof(*s
));
3019 * If the drive is an EIDE drive, it can tell us it needs extended
3020 * PIO/MW_DMA cycle timing.
3023 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3024 memset(&p
, 0, sizeof(p
));
3026 if (speed
>= XFER_PIO_0
&& speed
< XFER_SW_DMA_0
) {
3027 if (speed
<= XFER_PIO_2
)
3028 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
3029 else if ((speed
<= XFER_PIO_4
) ||
3030 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
3031 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
3032 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
3033 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
3035 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3039 * Convert the timing to bus clock counts.
3042 ata_timing_quantize(t
, t
, T
, UT
);
3045 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046 * S.M.A.R.T * and some other commands. We have to ensure that the
3047 * DMA cycle timing is slower/equal than the fastest PIO timing.
3050 if (speed
> XFER_PIO_6
) {
3051 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3052 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3056 * Lengthen active & recovery time so that cycle time is correct.
3059 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3060 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3061 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3064 if (t
->active
+ t
->recover
< t
->cycle
) {
3065 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3066 t
->recover
= t
->cycle
- t
->active
;
3069 /* In a few cases quantisation may produce enough errors to
3070 leave t->cycle too low for the sum of active and recovery
3071 if so we must correct this */
3072 if (t
->active
+ t
->recover
> t
->cycle
)
3073 t
->cycle
= t
->active
+ t
->recover
;
3079 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 * @cycle: cycle duration in ns
3083 * Return matching xfer mode for @cycle. The returned mode is of
3084 * the transfer type specified by @xfer_shift. If @cycle is too
3085 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3086 * than the fastest known mode, the fasted mode is returned.
3092 * Matching xfer_mode, 0xff if no match found.
3094 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3096 u8 base_mode
= 0xff, last_mode
= 0xff;
3097 const struct ata_xfer_ent
*ent
;
3098 const struct ata_timing
*t
;
3100 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3101 if (ent
->shift
== xfer_shift
)
3102 base_mode
= ent
->base
;
3104 for (t
= ata_timing_find_mode(base_mode
);
3105 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3106 unsigned short this_cycle
;
3108 switch (xfer_shift
) {
3110 case ATA_SHIFT_MWDMA
:
3111 this_cycle
= t
->cycle
;
3113 case ATA_SHIFT_UDMA
:
3114 this_cycle
= t
->udma
;
3120 if (cycle
> this_cycle
)
3123 last_mode
= t
->mode
;
3130 * ata_down_xfermask_limit - adjust dev xfer masks downward
3131 * @dev: Device to adjust xfer masks
3132 * @sel: ATA_DNXFER_* selector
3134 * Adjust xfer masks of @dev downward. Note that this function
3135 * does not apply the change. Invoking ata_set_mode() afterwards
3136 * will apply the limit.
3139 * Inherited from caller.
3142 * 0 on success, negative errno on failure
3144 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3147 unsigned long orig_mask
, xfer_mask
;
3148 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3151 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3152 sel
&= ~ATA_DNXFER_QUIET
;
3154 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3157 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3160 case ATA_DNXFER_PIO
:
3161 highbit
= fls(pio_mask
) - 1;
3162 pio_mask
&= ~(1 << highbit
);
3165 case ATA_DNXFER_DMA
:
3167 highbit
= fls(udma_mask
) - 1;
3168 udma_mask
&= ~(1 << highbit
);
3171 } else if (mwdma_mask
) {
3172 highbit
= fls(mwdma_mask
) - 1;
3173 mwdma_mask
&= ~(1 << highbit
);
3179 case ATA_DNXFER_40C
:
3180 udma_mask
&= ATA_UDMA_MASK_40C
;
3183 case ATA_DNXFER_FORCE_PIO0
:
3185 case ATA_DNXFER_FORCE_PIO
:
3194 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3196 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3200 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3201 snprintf(buf
, sizeof(buf
), "%s:%s",
3202 ata_mode_string(xfer_mask
),
3203 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3205 snprintf(buf
, sizeof(buf
), "%s",
3206 ata_mode_string(xfer_mask
));
3208 ata_dev_warn(dev
, "limiting speed to %s\n", buf
);
3211 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3217 static int ata_dev_set_mode(struct ata_device
*dev
)
3219 struct ata_port
*ap
= dev
->link
->ap
;
3220 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3221 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3222 const char *dev_err_whine
= "";
3223 int ign_dev_err
= 0;
3224 unsigned int err_mask
= 0;
3227 dev
->flags
&= ~ATA_DFLAG_PIO
;
3228 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3229 dev
->flags
|= ATA_DFLAG_PIO
;
3231 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3232 dev_err_whine
= " (SET_XFERMODE skipped)";
3236 "NOSETXFER but PATA detected - can't "
3237 "skip SETXFER, might malfunction\n");
3238 err_mask
= ata_dev_set_xfermode(dev
);
3241 if (err_mask
& ~AC_ERR_DEV
)
3245 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3246 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3247 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3251 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3252 /* Old CFA may refuse this command, which is just fine */
3253 if (ata_id_is_cfa(dev
->id
))
3255 /* Catch several broken garbage emulations plus some pre
3257 if (ata_id_major_version(dev
->id
) == 0 &&
3258 dev
->pio_mode
<= XFER_PIO_2
)
3260 /* Some very old devices and some bad newer ones fail
3261 any kind of SET_XFERMODE request but support PIO0-2
3262 timings and no IORDY */
3263 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3266 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3268 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3269 dev
->dma_mode
== XFER_MW_DMA_0
&&
3270 (dev
->id
[63] >> 8) & 1)
3273 /* if the device is actually configured correctly, ignore dev err */
3274 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3277 if (err_mask
& AC_ERR_DEV
) {
3281 dev_err_whine
= " (device error ignored)";
3284 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3287 ata_dev_info(dev
, "configured for %s%s\n",
3288 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3294 ata_dev_err(dev
, "failed to set xfermode (err_mask=0x%x)\n", err_mask
);
3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 * @link: link on which timings will be programmed
3301 * @r_failed_dev: out parameter for failed device
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
3306 * returned in @r_failed_dev.
3309 * PCI/etc. bus probe sem.
3312 * 0 on success, negative errno otherwise
3315 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3317 struct ata_port
*ap
= link
->ap
;
3318 struct ata_device
*dev
;
3319 int rc
= 0, used_dma
= 0, found
= 0;
3321 /* step 1: calculate xfer_mask */
3322 ata_for_each_dev(dev
, link
, ENABLED
) {
3323 unsigned long pio_mask
, dma_mask
;
3324 unsigned int mode_mask
;
3326 mode_mask
= ATA_DMA_MASK_ATA
;
3327 if (dev
->class == ATA_DEV_ATAPI
)
3328 mode_mask
= ATA_DMA_MASK_ATAPI
;
3329 else if (ata_id_is_cfa(dev
->id
))
3330 mode_mask
= ATA_DMA_MASK_CFA
;
3332 ata_dev_xfermask(dev
);
3333 ata_force_xfermask(dev
);
3335 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3337 if (libata_dma_mask
& mode_mask
)
3338 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
,
3343 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3344 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3347 if (ata_dma_enabled(dev
))
3353 /* step 2: always set host PIO timings */
3354 ata_for_each_dev(dev
, link
, ENABLED
) {
3355 if (dev
->pio_mode
== 0xff) {
3356 ata_dev_warn(dev
, "no PIO support\n");
3361 dev
->xfer_mode
= dev
->pio_mode
;
3362 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3363 if (ap
->ops
->set_piomode
)
3364 ap
->ops
->set_piomode(ap
, dev
);
3367 /* step 3: set host DMA timings */
3368 ata_for_each_dev(dev
, link
, ENABLED
) {
3369 if (!ata_dma_enabled(dev
))
3372 dev
->xfer_mode
= dev
->dma_mode
;
3373 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3374 if (ap
->ops
->set_dmamode
)
3375 ap
->ops
->set_dmamode(ap
, dev
);
3378 /* step 4: update devices' xfer mode */
3379 ata_for_each_dev(dev
, link
, ENABLED
) {
3380 rc
= ata_dev_set_mode(dev
);
3385 /* Record simplex status. If we selected DMA then the other
3386 * host channels are not permitted to do so.
3388 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3389 ap
->host
->simplex_claimed
= ap
;
3393 *r_failed_dev
= dev
;
3398 * ata_wait_ready - wait for link to become ready
3399 * @link: link to be waited on
3400 * @deadline: deadline jiffies for the operation
3401 * @check_ready: callback to check link readiness
3403 * Wait for @link to become ready. @check_ready should return
3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 * link doesn't seem to be occupied, other errno for other error
3408 * Transient -ENODEV conditions are allowed for
3409 * ATA_TMOUT_FF_WAIT.
3415 * 0 if @linke is ready before @deadline; otherwise, -errno.
3417 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3418 int (*check_ready
)(struct ata_link
*link
))
3420 unsigned long start
= jiffies
;
3421 unsigned long nodev_deadline
;
3424 /* choose which 0xff timeout to use, read comment in libata.h */
3425 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3426 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3428 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3430 /* Slave readiness can't be tested separately from master. On
3431 * M/S emulation configuration, this function should be called
3432 * only on the master and it will handle both master and slave.
3434 WARN_ON(link
== link
->ap
->slave_link
);
3436 if (time_after(nodev_deadline
, deadline
))
3437 nodev_deadline
= deadline
;
3440 unsigned long now
= jiffies
;
3443 ready
= tmp
= check_ready(link
);
3448 * -ENODEV could be transient. Ignore -ENODEV if link
3449 * is online. Also, some SATA devices take a long
3450 * time to clear 0xff after reset. Wait for
3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3454 * Note that some PATA controllers (pata_ali) explode
3455 * if status register is read more than once when
3456 * there's no device attached.
3458 if (ready
== -ENODEV
) {
3459 if (ata_link_online(link
))
3461 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3462 !ata_link_offline(link
) &&
3463 time_before(now
, nodev_deadline
))
3469 if (time_after(now
, deadline
))
3472 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3473 (deadline
- now
> 3 * HZ
)) {
3475 "link is slow to respond, please be patient "
3476 "(ready=%d)\n", tmp
);
3480 ata_msleep(link
->ap
, 50);
3485 * ata_wait_after_reset - wait for link to become ready after reset
3486 * @link: link to be waited on
3487 * @deadline: deadline jiffies for the operation
3488 * @check_ready: callback to check link readiness
3490 * Wait for @link to become ready after reset.
3496 * 0 if @linke is ready before @deadline; otherwise, -errno.
3498 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3499 int (*check_ready
)(struct ata_link
*link
))
3501 ata_msleep(link
->ap
, ATA_WAIT_AFTER_RESET
);
3503 return ata_wait_ready(link
, deadline
, check_ready
);
3507 * sata_link_debounce - debounce SATA phy status
3508 * @link: ATA link to debounce SATA phy status for
3509 * @params: timing parameters { interval, duratinon, timeout } in msec
3510 * @deadline: deadline jiffies for the operation
3512 * Make sure SStatus of @link reaches stable state, determined by
3513 * holding the same value where DET is not 1 for @duration polled
3514 * every @interval, before @timeout. Timeout constraints the
3515 * beginning of the stable state. Because DET gets stuck at 1 on
3516 * some controllers after hot unplugging, this functions waits
3517 * until timeout then returns 0 if DET is stable at 1.
3519 * @timeout is further limited by @deadline. The sooner of the
3523 * Kernel thread context (may sleep)
3526 * 0 on success, -errno on failure.
3528 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3529 unsigned long deadline
)
3531 unsigned long interval
= params
[0];
3532 unsigned long duration
= params
[1];
3533 unsigned long last_jiffies
, t
;
3537 t
= ata_deadline(jiffies
, params
[2]);
3538 if (time_before(t
, deadline
))
3541 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3546 last_jiffies
= jiffies
;
3549 ata_msleep(link
->ap
, interval
);
3550 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3556 if (cur
== 1 && time_before(jiffies
, deadline
))
3558 if (time_after(jiffies
,
3559 ata_deadline(last_jiffies
, duration
)))
3564 /* unstable, start over */
3566 last_jiffies
= jiffies
;
3568 /* Check deadline. If debouncing failed, return
3569 * -EPIPE to tell upper layer to lower link speed.
3571 if (time_after(jiffies
, deadline
))
3577 * sata_link_resume - resume SATA link
3578 * @link: ATA link to resume SATA
3579 * @params: timing parameters { interval, duratinon, timeout } in msec
3580 * @deadline: deadline jiffies for the operation
3582 * Resume SATA phy @link and debounce it.
3585 * Kernel thread context (may sleep)
3588 * 0 on success, -errno on failure.
3590 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3591 unsigned long deadline
)
3593 int tries
= ATA_LINK_RESUME_TRIES
;
3594 u32 scontrol
, serror
;
3597 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3601 * Writes to SControl sometimes get ignored under certain
3602 * controllers (ata_piix SIDPR). Make sure DET actually is
3606 scontrol
= (scontrol
& 0x0f0) | 0x300;
3607 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3610 * Some PHYs react badly if SStatus is pounded
3611 * immediately after resuming. Delay 200ms before
3614 ata_msleep(link
->ap
, 200);
3616 /* is SControl restored correctly? */
3617 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3619 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3621 if ((scontrol
& 0xf0f) != 0x300) {
3622 ata_link_warn(link
, "failed to resume link (SControl %X)\n",
3627 if (tries
< ATA_LINK_RESUME_TRIES
)
3628 ata_link_warn(link
, "link resume succeeded after %d retries\n",
3629 ATA_LINK_RESUME_TRIES
- tries
);
3631 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3634 /* clear SError, some PHYs require this even for SRST to work */
3635 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3636 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3638 return rc
!= -EINVAL
? rc
: 0;
3642 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 * @link: ATA link to manipulate SControl for
3644 * @policy: LPM policy to configure
3645 * @spm_wakeup: initiate LPM transition to active state
3647 * Manipulate the IPM field of the SControl register of @link
3648 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3649 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3650 * the link. This function also clears PHYRDY_CHG before
3657 * 0 on succes, -errno otherwise.
3659 int sata_link_scr_lpm(struct ata_link
*link
, enum ata_lpm_policy policy
,
3662 struct ata_eh_context
*ehc
= &link
->eh_context
;
3663 bool woken_up
= false;
3667 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3672 case ATA_LPM_MAX_POWER
:
3673 /* disable all LPM transitions */
3674 scontrol
|= (0x7 << 8);
3675 /* initiate transition to active state */
3677 scontrol
|= (0x4 << 12);
3681 case ATA_LPM_MED_POWER
:
3682 /* allow LPM to PARTIAL */
3683 scontrol
&= ~(0x1 << 8);
3684 scontrol
|= (0x6 << 8);
3686 case ATA_LPM_MIN_POWER
:
3687 if (ata_link_nr_enabled(link
) > 0)
3688 /* no restrictions on LPM transitions */
3689 scontrol
&= ~(0x7 << 8);
3691 /* empty port, power off */
3693 scontrol
|= (0x1 << 2);
3700 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
3704 /* give the link time to transit out of LPM state */
3708 /* clear PHYRDY_CHG from SError */
3709 ehc
->i
.serror
&= ~SERR_PHYRDY_CHG
;
3710 return sata_scr_write(link
, SCR_ERROR
, SERR_PHYRDY_CHG
);
3714 * ata_std_prereset - prepare for reset
3715 * @link: ATA link to be reset
3716 * @deadline: deadline jiffies for the operation
3718 * @link is about to be reset. Initialize it. Failure from
3719 * prereset makes libata abort whole reset sequence and give up
3720 * that port, so prereset should be best-effort. It does its
3721 * best to prepare for reset sequence but if things go wrong, it
3722 * should just whine, not fail.
3725 * Kernel thread context (may sleep)
3728 * 0 on success, -errno otherwise.
3730 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3732 struct ata_port
*ap
= link
->ap
;
3733 struct ata_eh_context
*ehc
= &link
->eh_context
;
3734 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3737 /* if we're about to do hardreset, nothing more to do */
3738 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3741 /* if SATA, resume link */
3742 if (ap
->flags
& ATA_FLAG_SATA
) {
3743 rc
= sata_link_resume(link
, timing
, deadline
);
3744 /* whine about phy resume failure but proceed */
3745 if (rc
&& rc
!= -EOPNOTSUPP
)
3747 "failed to resume link for reset (errno=%d)\n",
3751 /* no point in trying softreset on offline link */
3752 if (ata_phys_link_offline(link
))
3753 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3759 * sata_link_hardreset - reset link via SATA phy reset
3760 * @link: link to reset
3761 * @timing: timing parameters { interval, duratinon, timeout } in msec
3762 * @deadline: deadline jiffies for the operation
3763 * @online: optional out parameter indicating link onlineness
3764 * @check_ready: optional callback to check link readiness
3766 * SATA phy-reset @link using DET bits of SControl register.
3767 * After hardreset, link readiness is waited upon using
3768 * ata_wait_ready() if @check_ready is specified. LLDs are
3769 * allowed to not specify @check_ready and wait itself after this
3770 * function returns. Device classification is LLD's
3773 * *@online is set to one iff reset succeeded and @link is online
3777 * Kernel thread context (may sleep)
3780 * 0 on success, -errno otherwise.
3782 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3783 unsigned long deadline
,
3784 bool *online
, int (*check_ready
)(struct ata_link
*))
3794 if (sata_set_spd_needed(link
)) {
3795 /* SATA spec says nothing about how to reconfigure
3796 * spd. To be on the safe side, turn off phy during
3797 * reconfiguration. This works for at least ICH7 AHCI
3800 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3803 scontrol
= (scontrol
& 0x0f0) | 0x304;
3805 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3811 /* issue phy wake/reset */
3812 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3815 scontrol
= (scontrol
& 0x0f0) | 0x301;
3817 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3820 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3821 * 10.4.2 says at least 1 ms.
3823 ata_msleep(link
->ap
, 1);
3825 /* bring link back */
3826 rc
= sata_link_resume(link
, timing
, deadline
);
3829 /* if link is offline nothing more to do */
3830 if (ata_phys_link_offline(link
))
3833 /* Link is online. From this point, -ENODEV too is an error. */
3837 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3838 /* If PMP is supported, we have to do follow-up SRST.
3839 * Some PMPs don't send D2H Reg FIS after hardreset if
3840 * the first port is empty. Wait only for
3841 * ATA_TMOUT_PMP_SRST_WAIT.
3844 unsigned long pmp_deadline
;
3846 pmp_deadline
= ata_deadline(jiffies
,
3847 ATA_TMOUT_PMP_SRST_WAIT
);
3848 if (time_after(pmp_deadline
, deadline
))
3849 pmp_deadline
= deadline
;
3850 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3858 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3860 if (rc
&& rc
!= -EAGAIN
) {
3861 /* online is set iff link is online && reset succeeded */
3864 ata_link_err(link
, "COMRESET failed (errno=%d)\n", rc
);
3866 DPRINTK("EXIT, rc=%d\n", rc
);
3871 * sata_std_hardreset - COMRESET w/o waiting or classification
3872 * @link: link to reset
3873 * @class: resulting class of attached device
3874 * @deadline: deadline jiffies for the operation
3876 * Standard SATA COMRESET w/o waiting or classification.
3879 * Kernel thread context (may sleep)
3882 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3884 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3885 unsigned long deadline
)
3887 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3892 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3893 return online
? -EAGAIN
: rc
;
3897 * ata_std_postreset - standard postreset callback
3898 * @link: the target ata_link
3899 * @classes: classes of attached devices
3901 * This function is invoked after a successful reset. Note that
3902 * the device might have been reset more than once using
3903 * different reset methods before postreset is invoked.
3906 * Kernel thread context (may sleep)
3908 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3914 /* reset complete, clear SError */
3915 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3916 sata_scr_write(link
, SCR_ERROR
, serror
);
3918 /* print link status */
3919 sata_print_link_status(link
);
3925 * ata_dev_same_device - Determine whether new ID matches configured device
3926 * @dev: device to compare against
3927 * @new_class: class of the new device
3928 * @new_id: IDENTIFY page of the new device
3930 * Compare @new_class and @new_id against @dev and determine
3931 * whether @dev is the device indicated by @new_class and
3938 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3940 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3943 const u16
*old_id
= dev
->id
;
3944 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3945 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3947 if (dev
->class != new_class
) {
3948 ata_dev_info(dev
, "class mismatch %d != %d\n",
3949 dev
->class, new_class
);
3953 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3954 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3955 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3956 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3958 if (strcmp(model
[0], model
[1])) {
3959 ata_dev_info(dev
, "model number mismatch '%s' != '%s'\n",
3960 model
[0], model
[1]);
3964 if (strcmp(serial
[0], serial
[1])) {
3965 ata_dev_info(dev
, "serial number mismatch '%s' != '%s'\n",
3966 serial
[0], serial
[1]);
3974 * ata_dev_reread_id - Re-read IDENTIFY data
3975 * @dev: target ATA device
3976 * @readid_flags: read ID flags
3978 * Re-read IDENTIFY page and make sure @dev is still attached to
3982 * Kernel thread context (may sleep)
3985 * 0 on success, negative errno otherwise
3987 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3989 unsigned int class = dev
->class;
3990 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3994 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3998 /* is the device still there? */
3999 if (!ata_dev_same_device(dev
, class, id
))
4002 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4007 * ata_dev_revalidate - Revalidate ATA device
4008 * @dev: device to revalidate
4009 * @new_class: new class code
4010 * @readid_flags: read ID flags
4012 * Re-read IDENTIFY page, make sure @dev is still attached to the
4013 * port and reconfigure it according to the new IDENTIFY page.
4016 * Kernel thread context (may sleep)
4019 * 0 on success, negative errno otherwise
4021 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4022 unsigned int readid_flags
)
4024 u64 n_sectors
= dev
->n_sectors
;
4025 u64 n_native_sectors
= dev
->n_native_sectors
;
4028 if (!ata_dev_enabled(dev
))
4031 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032 if (ata_class_enabled(new_class
) &&
4033 new_class
!= ATA_DEV_ATA
&&
4034 new_class
!= ATA_DEV_ATAPI
&&
4035 new_class
!= ATA_DEV_SEMB
) {
4036 ata_dev_info(dev
, "class mismatch %u != %u\n",
4037 dev
->class, new_class
);
4043 rc
= ata_dev_reread_id(dev
, readid_flags
);
4047 /* configure device according to the new ID */
4048 rc
= ata_dev_configure(dev
);
4052 /* verify n_sectors hasn't changed */
4053 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
4054 dev
->n_sectors
== n_sectors
)
4057 /* n_sectors has changed */
4058 ata_dev_warn(dev
, "n_sectors mismatch %llu != %llu\n",
4059 (unsigned long long)n_sectors
,
4060 (unsigned long long)dev
->n_sectors
);
4063 * Something could have caused HPA to be unlocked
4064 * involuntarily. If n_native_sectors hasn't changed and the
4065 * new size matches it, keep the device.
4067 if (dev
->n_native_sectors
== n_native_sectors
&&
4068 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
4070 "new n_sectors matches native, probably "
4071 "late HPA unlock, n_sectors updated\n");
4072 /* use the larger n_sectors */
4077 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4078 * unlocking HPA in those cases.
4080 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4082 if (dev
->n_native_sectors
== n_native_sectors
&&
4083 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4084 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4086 "old n_sectors matches native, probably "
4087 "late HPA lock, will try to unlock HPA\n");
4088 /* try unlocking HPA */
4089 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4094 /* restore original n_[native_]sectors and fail */
4095 dev
->n_native_sectors
= n_native_sectors
;
4096 dev
->n_sectors
= n_sectors
;
4098 ata_dev_err(dev
, "revalidation failed (errno=%d)\n", rc
);
4102 struct ata_blacklist_entry
{
4103 const char *model_num
;
4104 const char *model_rev
;
4105 unsigned long horkage
;
4108 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4109 /* Devices with DMA related problems under Linux */
4110 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4111 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4112 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4113 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4114 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4115 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4116 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4117 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4118 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4119 { "CRD-848[02]B", NULL
, ATA_HORKAGE_NODMA
},
4120 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4121 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4122 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4123 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4124 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4125 { "HITACHI CDR-8[34]35",NULL
, ATA_HORKAGE_NODMA
},
4126 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4127 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4128 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4129 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4130 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4131 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4132 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4133 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4134 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4135 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4136 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4137 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4138 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA
},
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4142 /* Weird ATAPI devices */
4143 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4144 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4145 { "Slimtype DVD A DS8A8SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4146 { "Slimtype DVD A DS8A9SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4148 /* Devices we expect to fail diagnostics */
4150 /* Devices where NCQ should be avoided */
4152 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4153 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4154 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4155 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4157 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4158 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4161 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4163 /* Seagate NCQ + FLUSH CACHE firmware bug */
4164 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4165 ATA_HORKAGE_FIRMWARE_WARN
},
4167 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4168 ATA_HORKAGE_FIRMWARE_WARN
},
4170 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4171 ATA_HORKAGE_FIRMWARE_WARN
},
4173 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4174 ATA_HORKAGE_FIRMWARE_WARN
},
4176 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4177 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4178 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4180 /* Blacklist entries taken from Silicon Image 3124/3132
4181 Windows driver .inf file - also several Linux problem reports */
4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4186 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4187 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4189 /* devices which puke on READ_NATIVE_MAX */
4190 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4191 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4192 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4193 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4195 /* this one allows HPA unlocking but fails IOs on the area */
4196 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4198 /* Devices which report 1 sector over size HPA */
4199 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4200 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4201 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4203 /* Devices which get the IVB wrong */
4204 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4205 /* Maybe we should just blacklist TSSTcorp... */
4206 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB
, },
4208 /* Devices that do not need bridging limits applied */
4209 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4210 { "BUFFALO HD-QSU2/R5", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4212 /* Devices which aren't very happy with higher link speeds */
4213 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4214 { "Seagate FreeAgent GoFlex", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4217 * Devices which choke on SETXFER. Applies only if both the
4218 * device and controller are SATA.
4220 { "PIONEER DVD-RW DVRTD08", NULL
, ATA_HORKAGE_NOSETXFER
},
4221 { "PIONEER DVD-RW DVRTD08A", NULL
, ATA_HORKAGE_NOSETXFER
},
4222 { "PIONEER DVD-RW DVR-215", NULL
, ATA_HORKAGE_NOSETXFER
},
4223 { "PIONEER DVD-RW DVR-212D", NULL
, ATA_HORKAGE_NOSETXFER
},
4224 { "PIONEER DVD-RW DVR-216D", NULL
, ATA_HORKAGE_NOSETXFER
},
4226 /* devices that don't properly handle queued TRIM commands */
4227 { "Micron_M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
, },
4228 { "Crucial_CT???M500SSD*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
, },
4229 { "Micron_M550*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
, },
4230 { "Crucial_CT???M550SSD*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
, },
4233 * Some WD SATA-I drives spin up and down erratically when the link
4234 * is put into the slumber mode. We don't have full list of the
4235 * affected devices. Disable LPM if the device matches one of the
4236 * known prefixes and is SATA-1. As a side effect LPM partial is
4239 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4241 { "WDC WD800JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4242 { "WDC WD1200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4243 { "WDC WD1600JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4244 { "WDC WD2000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4245 { "WDC WD2500JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4246 { "WDC WD3000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4247 { "WDC WD3200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4254 * glob_match - match a text string against a glob-style pattern
4255 * @text: the string to be examined
4256 * @pattern: the glob-style pattern to be matched against
4258 * Either/both of text and pattern can be empty strings.
4260 * Match text against a glob-style pattern, with wildcards and simple sets:
4262 * ? matches any single character.
4263 * * matches any run of characters.
4264 * [xyz] matches a single character from the set: x, y, or z.
4265 * [a-d] matches a single character from the range: a, b, c, or d.
4266 * [a-d0-9] matches a single character from either range.
4268 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4269 * Behaviour with malformed patterns is undefined, though generally reasonable.
4271 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4273 * This function uses one level of recursion per '*' in pattern.
4274 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4275 * this will not cause stack problems for any reasonable use here.
4278 * 0 on match, 1 otherwise.
4280 static int glob_match (const char *text
, const char *pattern
)
4283 /* Match single character or a '?' wildcard */
4284 if (*text
== *pattern
|| *pattern
== '?') {
4286 return 0; /* End of both strings: match */
4288 /* Match single char against a '[' bracketed ']' pattern set */
4289 if (!*text
|| *pattern
!= '[')
4290 break; /* Not a pattern set */
4291 while (*++pattern
&& *pattern
!= ']' && *text
!= *pattern
) {
4292 if (*pattern
== '-' && *(pattern
- 1) != '[')
4293 if (*text
> *(pattern
- 1) && *text
< *(pattern
+ 1)) {
4298 if (!*pattern
|| *pattern
== ']')
4299 return 1; /* No match */
4300 while (*pattern
&& *pattern
++ != ']');
4302 } while (*++text
&& *pattern
);
4304 /* Match any run of chars against a '*' wildcard */
4305 if (*pattern
== '*') {
4307 return 0; /* Match: avoid recursion at end of pattern */
4308 /* Loop to handle additional pattern chars after the wildcard */
4310 if (glob_match(text
, pattern
) == 0)
4311 return 0; /* Remainder matched */
4312 ++text
; /* Absorb (match) this char and try again */
4315 if (!*text
&& !*pattern
)
4316 return 0; /* End of both strings: match */
4317 return 1; /* No match */
4320 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4322 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4323 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4324 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4326 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4327 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4329 while (ad
->model_num
) {
4330 if (!glob_match(model_num
, ad
->model_num
)) {
4331 if (ad
->model_rev
== NULL
)
4333 if (!glob_match(model_rev
, ad
->model_rev
))
4341 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4343 /* We don't support polling DMA.
4344 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4345 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4347 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4348 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4350 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4354 * ata_is_40wire - check drive side detection
4357 * Perform drive side detection decoding, allowing for device vendors
4358 * who can't follow the documentation.
4361 static int ata_is_40wire(struct ata_device
*dev
)
4363 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4364 return ata_drive_40wire_relaxed(dev
->id
);
4365 return ata_drive_40wire(dev
->id
);
4369 * cable_is_40wire - 40/80/SATA decider
4370 * @ap: port to consider
4372 * This function encapsulates the policy for speed management
4373 * in one place. At the moment we don't cache the result but
4374 * there is a good case for setting ap->cbl to the result when
4375 * we are called with unknown cables (and figuring out if it
4376 * impacts hotplug at all).
4378 * Return 1 if the cable appears to be 40 wire.
4381 static int cable_is_40wire(struct ata_port
*ap
)
4383 struct ata_link
*link
;
4384 struct ata_device
*dev
;
4386 /* If the controller thinks we are 40 wire, we are. */
4387 if (ap
->cbl
== ATA_CBL_PATA40
)
4390 /* If the controller thinks we are 80 wire, we are. */
4391 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4394 /* If the system is known to be 40 wire short cable (eg
4395 * laptop), then we allow 80 wire modes even if the drive
4398 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4401 /* If the controller doesn't know, we scan.
4403 * Note: We look for all 40 wire detects at this point. Any
4404 * 80 wire detect is taken to be 80 wire cable because
4405 * - in many setups only the one drive (slave if present) will
4406 * give a valid detect
4407 * - if you have a non detect capable drive you don't want it
4408 * to colour the choice
4410 ata_for_each_link(link
, ap
, EDGE
) {
4411 ata_for_each_dev(dev
, link
, ENABLED
) {
4412 if (!ata_is_40wire(dev
))
4420 * ata_dev_xfermask - Compute supported xfermask of the given device
4421 * @dev: Device to compute xfermask for
4423 * Compute supported xfermask of @dev and store it in
4424 * dev->*_mask. This function is responsible for applying all
4425 * known limits including host controller limits, device
4431 static void ata_dev_xfermask(struct ata_device
*dev
)
4433 struct ata_link
*link
= dev
->link
;
4434 struct ata_port
*ap
= link
->ap
;
4435 struct ata_host
*host
= ap
->host
;
4436 unsigned long xfer_mask
;
4438 /* controller modes available */
4439 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4440 ap
->mwdma_mask
, ap
->udma_mask
);
4442 /* drive modes available */
4443 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4444 dev
->mwdma_mask
, dev
->udma_mask
);
4445 xfer_mask
&= ata_id_xfermask(dev
->id
);
4448 * CFA Advanced TrueIDE timings are not allowed on a shared
4451 if (ata_dev_pair(dev
)) {
4452 /* No PIO5 or PIO6 */
4453 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4454 /* No MWDMA3 or MWDMA 4 */
4455 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4458 if (ata_dma_blacklisted(dev
)) {
4459 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4461 "device is on DMA blacklist, disabling DMA\n");
4464 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4465 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4466 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4468 "simplex DMA is claimed by other device, disabling DMA\n");
4471 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4472 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4474 if (ap
->ops
->mode_filter
)
4475 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4477 /* Apply cable rule here. Don't apply it early because when
4478 * we handle hot plug the cable type can itself change.
4479 * Check this last so that we know if the transfer rate was
4480 * solely limited by the cable.
4481 * Unknown or 80 wire cables reported host side are checked
4482 * drive side as well. Cases where we know a 40wire cable
4483 * is used safely for 80 are not checked here.
4485 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4486 /* UDMA/44 or higher would be available */
4487 if (cable_is_40wire(ap
)) {
4489 "limited to UDMA/33 due to 40-wire cable\n");
4490 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4493 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4494 &dev
->mwdma_mask
, &dev
->udma_mask
);
4498 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4499 * @dev: Device to which command will be sent
4501 * Issue SET FEATURES - XFER MODE command to device @dev
4505 * PCI/etc. bus probe sem.
4508 * 0 on success, AC_ERR_* mask otherwise.
4511 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4513 struct ata_taskfile tf
;
4514 unsigned int err_mask
;
4516 /* set up set-features taskfile */
4517 DPRINTK("set features - xfer mode\n");
4519 /* Some controllers and ATAPI devices show flaky interrupt
4520 * behavior after setting xfer mode. Use polling instead.
4522 ata_tf_init(dev
, &tf
);
4523 tf
.command
= ATA_CMD_SET_FEATURES
;
4524 tf
.feature
= SETFEATURES_XFER
;
4525 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4526 tf
.protocol
= ATA_PROT_NODATA
;
4527 /* If we are using IORDY we must send the mode setting command */
4528 if (ata_pio_need_iordy(dev
))
4529 tf
.nsect
= dev
->xfer_mode
;
4530 /* If the device has IORDY and the controller does not - turn it off */
4531 else if (ata_id_has_iordy(dev
->id
))
4533 else /* In the ancient relic department - skip all of this */
4536 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4538 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4543 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4544 * @dev: Device to which command will be sent
4545 * @enable: Whether to enable or disable the feature
4546 * @feature: The sector count represents the feature to set
4548 * Issue SET FEATURES - SATA FEATURES command to device @dev
4549 * on port @ap with sector count
4552 * PCI/etc. bus probe sem.
4555 * 0 on success, AC_ERR_* mask otherwise.
4557 unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
, u8 feature
)
4559 struct ata_taskfile tf
;
4560 unsigned int err_mask
;
4562 /* set up set-features taskfile */
4563 DPRINTK("set features - SATA features\n");
4565 ata_tf_init(dev
, &tf
);
4566 tf
.command
= ATA_CMD_SET_FEATURES
;
4567 tf
.feature
= enable
;
4568 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4569 tf
.protocol
= ATA_PROT_NODATA
;
4572 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4574 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4577 EXPORT_SYMBOL_GPL(ata_dev_set_feature
);
4580 * ata_dev_init_params - Issue INIT DEV PARAMS command
4581 * @dev: Device to which command will be sent
4582 * @heads: Number of heads (taskfile parameter)
4583 * @sectors: Number of sectors (taskfile parameter)
4586 * Kernel thread context (may sleep)
4589 * 0 on success, AC_ERR_* mask otherwise.
4591 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4592 u16 heads
, u16 sectors
)
4594 struct ata_taskfile tf
;
4595 unsigned int err_mask
;
4597 /* Number of sectors per track 1-255. Number of heads 1-16 */
4598 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4599 return AC_ERR_INVALID
;
4601 /* set up init dev params taskfile */
4602 DPRINTK("init dev params \n");
4604 ata_tf_init(dev
, &tf
);
4605 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4606 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4607 tf
.protocol
= ATA_PROT_NODATA
;
4609 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4611 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4612 /* A clean abort indicates an original or just out of spec drive
4613 and we should continue as we issue the setup based on the
4614 drive reported working geometry */
4615 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4618 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4623 * ata_sg_clean - Unmap DMA memory associated with command
4624 * @qc: Command containing DMA memory to be released
4626 * Unmap all mapped DMA memory associated with this command.
4629 * spin_lock_irqsave(host lock)
4631 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4633 struct ata_port
*ap
= qc
->ap
;
4634 struct scatterlist
*sg
= qc
->sg
;
4635 int dir
= qc
->dma_dir
;
4637 WARN_ON_ONCE(sg
== NULL
);
4639 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4642 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4644 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4649 * atapi_check_dma - Check whether ATAPI DMA can be supported
4650 * @qc: Metadata associated with taskfile to check
4652 * Allow low-level driver to filter ATA PACKET commands, returning
4653 * a status indicating whether or not it is OK to use DMA for the
4654 * supplied PACKET command.
4657 * spin_lock_irqsave(host lock)
4659 * RETURNS: 0 when ATAPI DMA can be used
4662 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4664 struct ata_port
*ap
= qc
->ap
;
4666 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4667 * few ATAPI devices choke on such DMA requests.
4669 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4670 unlikely(qc
->nbytes
& 15))
4673 if (ap
->ops
->check_atapi_dma
)
4674 return ap
->ops
->check_atapi_dma(qc
);
4680 * ata_std_qc_defer - Check whether a qc needs to be deferred
4681 * @qc: ATA command in question
4683 * Non-NCQ commands cannot run with any other command, NCQ or
4684 * not. As upper layer only knows the queue depth, we are
4685 * responsible for maintaining exclusion. This function checks
4686 * whether a new command @qc can be issued.
4689 * spin_lock_irqsave(host lock)
4692 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4694 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4696 struct ata_link
*link
= qc
->dev
->link
;
4698 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4699 if (!ata_tag_valid(link
->active_tag
))
4702 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4706 return ATA_DEFER_LINK
;
4709 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4712 * ata_sg_init - Associate command with scatter-gather table.
4713 * @qc: Command to be associated
4714 * @sg: Scatter-gather table.
4715 * @n_elem: Number of elements in s/g table.
4717 * Initialize the data-related elements of queued_cmd @qc
4718 * to point to a scatter-gather table @sg, containing @n_elem
4722 * spin_lock_irqsave(host lock)
4724 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4725 unsigned int n_elem
)
4728 qc
->n_elem
= n_elem
;
4733 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4734 * @qc: Command with scatter-gather table to be mapped.
4736 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4739 * spin_lock_irqsave(host lock)
4742 * Zero on success, negative on error.
4745 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4747 struct ata_port
*ap
= qc
->ap
;
4748 unsigned int n_elem
;
4750 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4752 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4756 DPRINTK("%d sg elements mapped\n", n_elem
);
4757 qc
->orig_n_elem
= qc
->n_elem
;
4758 qc
->n_elem
= n_elem
;
4759 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4765 * swap_buf_le16 - swap halves of 16-bit words in place
4766 * @buf: Buffer to swap
4767 * @buf_words: Number of 16-bit words in buffer.
4769 * Swap halves of 16-bit words if needed to convert from
4770 * little-endian byte order to native cpu byte order, or
4774 * Inherited from caller.
4776 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4781 for (i
= 0; i
< buf_words
; i
++)
4782 buf
[i
] = le16_to_cpu(buf
[i
]);
4783 #endif /* __BIG_ENDIAN */
4787 * ata_qc_new - Request an available ATA command, for queueing
4790 * Some ATA host controllers may implement a queue depth which is less
4791 * than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond
4792 * the hardware limitation.
4798 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4800 struct ata_queued_cmd
*qc
= NULL
;
4801 unsigned int max_queue
= ap
->host
->n_tags
;
4802 unsigned int i
, tag
;
4804 /* no command while frozen */
4805 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4808 for (i
= 0, tag
= ap
->last_tag
+ 1; i
< max_queue
; i
++, tag
++) {
4809 tag
= tag
< max_queue
? tag
: 0;
4811 /* the last tag is reserved for internal command. */
4812 if (tag
== ATA_TAG_INTERNAL
)
4815 if (!test_and_set_bit(tag
, &ap
->qc_allocated
)) {
4816 qc
= __ata_qc_from_tag(ap
, tag
);
4827 * ata_qc_new_init - Request an available ATA command, and initialize it
4828 * @dev: Device from whom we request an available command structure
4834 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4836 struct ata_port
*ap
= dev
->link
->ap
;
4837 struct ata_queued_cmd
*qc
;
4839 qc
= ata_qc_new(ap
);
4852 * ata_qc_free - free unused ata_queued_cmd
4853 * @qc: Command to complete
4855 * Designed to free unused ata_queued_cmd object
4856 * in case something prevents using it.
4859 * spin_lock_irqsave(host lock)
4861 void ata_qc_free(struct ata_queued_cmd
*qc
)
4863 struct ata_port
*ap
;
4866 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4871 if (likely(ata_tag_valid(tag
))) {
4872 qc
->tag
= ATA_TAG_POISON
;
4873 clear_bit(tag
, &ap
->qc_allocated
);
4877 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4879 struct ata_port
*ap
;
4880 struct ata_link
*link
;
4882 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4883 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4885 link
= qc
->dev
->link
;
4887 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4890 /* command should be marked inactive atomically with qc completion */
4891 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4892 link
->sactive
&= ~(1 << qc
->tag
);
4894 ap
->nr_active_links
--;
4896 link
->active_tag
= ATA_TAG_POISON
;
4897 ap
->nr_active_links
--;
4900 /* clear exclusive status */
4901 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4902 ap
->excl_link
== link
))
4903 ap
->excl_link
= NULL
;
4905 /* atapi: mark qc as inactive to prevent the interrupt handler
4906 * from completing the command twice later, before the error handler
4907 * is called. (when rc != 0 and atapi request sense is needed)
4909 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4910 ap
->qc_active
&= ~(1 << qc
->tag
);
4912 /* call completion callback */
4913 qc
->complete_fn(qc
);
4916 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4918 struct ata_port
*ap
= qc
->ap
;
4920 qc
->result_tf
.flags
= qc
->tf
.flags
;
4921 ap
->ops
->qc_fill_rtf(qc
);
4924 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4926 struct ata_device
*dev
= qc
->dev
;
4928 if (ata_is_nodata(qc
->tf
.protocol
))
4931 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4934 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4938 * ata_qc_complete - Complete an active ATA command
4939 * @qc: Command to complete
4941 * Indicate to the mid and upper layers that an ATA command has
4942 * completed, with either an ok or not-ok status.
4944 * Refrain from calling this function multiple times when
4945 * successfully completing multiple NCQ commands.
4946 * ata_qc_complete_multiple() should be used instead, which will
4947 * properly update IRQ expect state.
4950 * spin_lock_irqsave(host lock)
4952 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4954 struct ata_port
*ap
= qc
->ap
;
4956 /* XXX: New EH and old EH use different mechanisms to
4957 * synchronize EH with regular execution path.
4959 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4960 * Normal execution path is responsible for not accessing a
4961 * failed qc. libata core enforces the rule by returning NULL
4962 * from ata_qc_from_tag() for failed qcs.
4964 * Old EH depends on ata_qc_complete() nullifying completion
4965 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4966 * not synchronize with interrupt handler. Only PIO task is
4969 if (ap
->ops
->error_handler
) {
4970 struct ata_device
*dev
= qc
->dev
;
4971 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4973 if (unlikely(qc
->err_mask
))
4974 qc
->flags
|= ATA_QCFLAG_FAILED
;
4977 * Finish internal commands without any further processing
4978 * and always with the result TF filled.
4980 if (unlikely(ata_tag_internal(qc
->tag
))) {
4982 __ata_qc_complete(qc
);
4987 * Non-internal qc has failed. Fill the result TF and
4990 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4992 ata_qc_schedule_eh(qc
);
4996 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4998 /* read result TF if requested */
4999 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5002 /* Some commands need post-processing after successful
5005 switch (qc
->tf
.command
) {
5006 case ATA_CMD_SET_FEATURES
:
5007 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5008 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5011 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5012 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5013 /* revalidate device */
5014 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5015 ata_port_schedule_eh(ap
);
5019 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5023 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5024 ata_verify_xfer(qc
);
5026 __ata_qc_complete(qc
);
5028 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5031 /* read result TF if failed or requested */
5032 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5035 __ata_qc_complete(qc
);
5040 * ata_qc_complete_multiple - Complete multiple qcs successfully
5041 * @ap: port in question
5042 * @qc_active: new qc_active mask
5044 * Complete in-flight commands. This functions is meant to be
5045 * called from low-level driver's interrupt routine to complete
5046 * requests normally. ap->qc_active and @qc_active is compared
5047 * and commands are completed accordingly.
5049 * Always use this function when completing multiple NCQ commands
5050 * from IRQ handlers instead of calling ata_qc_complete()
5051 * multiple times to keep IRQ expect status properly in sync.
5054 * spin_lock_irqsave(host lock)
5057 * Number of completed commands on success, -errno otherwise.
5059 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5064 done_mask
= ap
->qc_active
^ qc_active
;
5066 if (unlikely(done_mask
& qc_active
)) {
5067 ata_port_err(ap
, "illegal qc_active transition (%08x->%08x)\n",
5068 ap
->qc_active
, qc_active
);
5073 struct ata_queued_cmd
*qc
;
5074 unsigned int tag
= __ffs(done_mask
);
5076 qc
= ata_qc_from_tag(ap
, tag
);
5078 ata_qc_complete(qc
);
5081 done_mask
&= ~(1 << tag
);
5088 * ata_qc_issue - issue taskfile to device
5089 * @qc: command to issue to device
5091 * Prepare an ATA command to submission to device.
5092 * This includes mapping the data into a DMA-able
5093 * area, filling in the S/G table, and finally
5094 * writing the taskfile to hardware, starting the command.
5097 * spin_lock_irqsave(host lock)
5099 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5101 struct ata_port
*ap
= qc
->ap
;
5102 struct ata_link
*link
= qc
->dev
->link
;
5103 u8 prot
= qc
->tf
.protocol
;
5105 /* Make sure only one non-NCQ command is outstanding. The
5106 * check is skipped for old EH because it reuses active qc to
5107 * request ATAPI sense.
5109 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5111 if (ata_is_ncq(prot
)) {
5112 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5115 ap
->nr_active_links
++;
5116 link
->sactive
|= 1 << qc
->tag
;
5118 WARN_ON_ONCE(link
->sactive
);
5120 ap
->nr_active_links
++;
5121 link
->active_tag
= qc
->tag
;
5124 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5125 ap
->qc_active
|= 1 << qc
->tag
;
5128 * We guarantee to LLDs that they will have at least one
5129 * non-zero sg if the command is a data command.
5131 if (WARN_ON_ONCE(ata_is_data(prot
) &&
5132 (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
)))
5135 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5136 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5137 if (ata_sg_setup(qc
))
5140 /* if device is sleeping, schedule reset and abort the link */
5141 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5142 link
->eh_info
.action
|= ATA_EH_RESET
;
5143 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5144 ata_link_abort(link
);
5148 ap
->ops
->qc_prep(qc
);
5150 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5151 if (unlikely(qc
->err_mask
))
5156 qc
->err_mask
|= AC_ERR_SYSTEM
;
5158 ata_qc_complete(qc
);
5162 * sata_scr_valid - test whether SCRs are accessible
5163 * @link: ATA link to test SCR accessibility for
5165 * Test whether SCRs are accessible for @link.
5171 * 1 if SCRs are accessible, 0 otherwise.
5173 int sata_scr_valid(struct ata_link
*link
)
5175 struct ata_port
*ap
= link
->ap
;
5177 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5181 * sata_scr_read - read SCR register of the specified port
5182 * @link: ATA link to read SCR for
5184 * @val: Place to store read value
5186 * Read SCR register @reg of @link into *@val. This function is
5187 * guaranteed to succeed if @link is ap->link, the cable type of
5188 * the port is SATA and the port implements ->scr_read.
5191 * None if @link is ap->link. Kernel thread context otherwise.
5194 * 0 on success, negative errno on failure.
5196 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5198 if (ata_is_host_link(link
)) {
5199 if (sata_scr_valid(link
))
5200 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5204 return sata_pmp_scr_read(link
, reg
, val
);
5208 * sata_scr_write - write SCR register of the specified port
5209 * @link: ATA link to write SCR for
5210 * @reg: SCR to write
5211 * @val: value to write
5213 * Write @val to SCR register @reg of @link. This function is
5214 * guaranteed to succeed if @link is ap->link, the cable type of
5215 * the port is SATA and the port implements ->scr_read.
5218 * None if @link is ap->link. Kernel thread context otherwise.
5221 * 0 on success, negative errno on failure.
5223 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5225 if (ata_is_host_link(link
)) {
5226 if (sata_scr_valid(link
))
5227 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5231 return sata_pmp_scr_write(link
, reg
, val
);
5235 * sata_scr_write_flush - write SCR register of the specified port and flush
5236 * @link: ATA link to write SCR for
5237 * @reg: SCR to write
5238 * @val: value to write
5240 * This function is identical to sata_scr_write() except that this
5241 * function performs flush after writing to the register.
5244 * None if @link is ap->link. Kernel thread context otherwise.
5247 * 0 on success, negative errno on failure.
5249 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5251 if (ata_is_host_link(link
)) {
5254 if (sata_scr_valid(link
)) {
5255 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5257 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5263 return sata_pmp_scr_write(link
, reg
, val
);
5267 * ata_phys_link_online - test whether the given link is online
5268 * @link: ATA link to test
5270 * Test whether @link is online. Note that this function returns
5271 * 0 if online status of @link cannot be obtained, so
5272 * ata_link_online(link) != !ata_link_offline(link).
5278 * True if the port online status is available and online.
5280 bool ata_phys_link_online(struct ata_link
*link
)
5284 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5285 ata_sstatus_online(sstatus
))
5291 * ata_phys_link_offline - test whether the given link is offline
5292 * @link: ATA link to test
5294 * Test whether @link is offline. Note that this function
5295 * returns 0 if offline status of @link cannot be obtained, so
5296 * ata_link_online(link) != !ata_link_offline(link).
5302 * True if the port offline status is available and offline.
5304 bool ata_phys_link_offline(struct ata_link
*link
)
5308 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5309 !ata_sstatus_online(sstatus
))
5315 * ata_link_online - test whether the given link is online
5316 * @link: ATA link to test
5318 * Test whether @link is online. This is identical to
5319 * ata_phys_link_online() when there's no slave link. When
5320 * there's a slave link, this function should only be called on
5321 * the master link and will return true if any of M/S links is
5328 * True if the port online status is available and online.
5330 bool ata_link_online(struct ata_link
*link
)
5332 struct ata_link
*slave
= link
->ap
->slave_link
;
5334 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5336 return ata_phys_link_online(link
) ||
5337 (slave
&& ata_phys_link_online(slave
));
5341 * ata_link_offline - test whether the given link is offline
5342 * @link: ATA link to test
5344 * Test whether @link is offline. This is identical to
5345 * ata_phys_link_offline() when there's no slave link. When
5346 * there's a slave link, this function should only be called on
5347 * the master link and will return true if both M/S links are
5354 * True if the port offline status is available and offline.
5356 bool ata_link_offline(struct ata_link
*link
)
5358 struct ata_link
*slave
= link
->ap
->slave_link
;
5360 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5362 return ata_phys_link_offline(link
) &&
5363 (!slave
|| ata_phys_link_offline(slave
));
5367 static void ata_port_request_pm(struct ata_port
*ap
, pm_message_t mesg
,
5368 unsigned int action
, unsigned int ehi_flags
,
5371 struct ata_link
*link
;
5372 unsigned long flags
;
5374 /* Previous resume operation might still be in
5375 * progress. Wait for PM_PENDING to clear.
5377 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5378 ata_port_wait_eh(ap
);
5379 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5382 /* request PM ops to EH */
5383 spin_lock_irqsave(ap
->lock
, flags
);
5386 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5387 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5388 link
->eh_info
.action
|= action
;
5389 link
->eh_info
.flags
|= ehi_flags
;
5392 ata_port_schedule_eh(ap
);
5394 spin_unlock_irqrestore(ap
->lock
, flags
);
5397 ata_port_wait_eh(ap
);
5398 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5403 * On some hardware, device fails to respond after spun down for suspend. As
5404 * the device won't be used before being resumed, we don't need to touch the
5405 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5407 * http://thread.gmane.org/gmane.linux.ide/46764
5409 static const unsigned int ata_port_suspend_ehi
= ATA_EHI_QUIET
5410 | ATA_EHI_NO_AUTOPSY
5411 | ATA_EHI_NO_RECOVERY
;
5413 static void ata_port_suspend(struct ata_port
*ap
, pm_message_t mesg
)
5415 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, false);
5418 static void ata_port_suspend_async(struct ata_port
*ap
, pm_message_t mesg
)
5420 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, true);
5423 static int ata_port_pm_suspend(struct device
*dev
)
5425 struct ata_port
*ap
= to_ata_port(dev
);
5427 if (pm_runtime_suspended(dev
))
5430 ata_port_suspend(ap
, PMSG_SUSPEND
);
5434 static int ata_port_pm_freeze(struct device
*dev
)
5436 struct ata_port
*ap
= to_ata_port(dev
);
5438 if (pm_runtime_suspended(dev
))
5441 ata_port_suspend(ap
, PMSG_FREEZE
);
5445 static int ata_port_pm_poweroff(struct device
*dev
)
5447 ata_port_suspend(to_ata_port(dev
), PMSG_HIBERNATE
);
5451 static const unsigned int ata_port_resume_ehi
= ATA_EHI_NO_AUTOPSY
5454 static void ata_port_resume(struct ata_port
*ap
, pm_message_t mesg
)
5456 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, false);
5459 static void ata_port_resume_async(struct ata_port
*ap
, pm_message_t mesg
)
5461 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, true);
5464 static int ata_port_pm_resume(struct device
*dev
)
5466 ata_port_resume_async(to_ata_port(dev
), PMSG_RESUME
);
5467 pm_runtime_disable(dev
);
5468 pm_runtime_set_active(dev
);
5469 pm_runtime_enable(dev
);
5474 * For ODDs, the upper layer will poll for media change every few seconds,
5475 * which will make it enter and leave suspend state every few seconds. And
5476 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5477 * is very little and the ODD may malfunction after constantly being reset.
5478 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5479 * ODD is attached to the port.
5481 static int ata_port_runtime_idle(struct device
*dev
)
5483 struct ata_port
*ap
= to_ata_port(dev
);
5484 struct ata_link
*link
;
5485 struct ata_device
*adev
;
5487 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5488 ata_for_each_dev(adev
, link
, ENABLED
)
5489 if (adev
->class == ATA_DEV_ATAPI
&&
5490 !zpodd_dev_enabled(adev
))
5497 static int ata_port_runtime_suspend(struct device
*dev
)
5499 ata_port_suspend(to_ata_port(dev
), PMSG_AUTO_SUSPEND
);
5503 static int ata_port_runtime_resume(struct device
*dev
)
5505 ata_port_resume(to_ata_port(dev
), PMSG_AUTO_RESUME
);
5509 static const struct dev_pm_ops ata_port_pm_ops
= {
5510 .suspend
= ata_port_pm_suspend
,
5511 .resume
= ata_port_pm_resume
,
5512 .freeze
= ata_port_pm_freeze
,
5513 .thaw
= ata_port_pm_resume
,
5514 .poweroff
= ata_port_pm_poweroff
,
5515 .restore
= ata_port_pm_resume
,
5517 .runtime_suspend
= ata_port_runtime_suspend
,
5518 .runtime_resume
= ata_port_runtime_resume
,
5519 .runtime_idle
= ata_port_runtime_idle
,
5522 /* sas ports don't participate in pm runtime management of ata_ports,
5523 * and need to resume ata devices at the domain level, not the per-port
5524 * level. sas suspend/resume is async to allow parallel port recovery
5525 * since sas has multiple ata_port instances per Scsi_Host.
5527 void ata_sas_port_suspend(struct ata_port
*ap
)
5529 ata_port_suspend_async(ap
, PMSG_SUSPEND
);
5531 EXPORT_SYMBOL_GPL(ata_sas_port_suspend
);
5533 void ata_sas_port_resume(struct ata_port
*ap
)
5535 ata_port_resume_async(ap
, PMSG_RESUME
);
5537 EXPORT_SYMBOL_GPL(ata_sas_port_resume
);
5540 * ata_host_suspend - suspend host
5541 * @host: host to suspend
5544 * Suspend @host. Actual operation is performed by port suspend.
5546 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5548 host
->dev
->power
.power_state
= mesg
;
5553 * ata_host_resume - resume host
5554 * @host: host to resume
5556 * Resume @host. Actual operation is performed by port resume.
5558 void ata_host_resume(struct ata_host
*host
)
5560 host
->dev
->power
.power_state
= PMSG_ON
;
5564 struct device_type ata_port_type
= {
5567 .pm
= &ata_port_pm_ops
,
5572 * ata_dev_init - Initialize an ata_device structure
5573 * @dev: Device structure to initialize
5575 * Initialize @dev in preparation for probing.
5578 * Inherited from caller.
5580 void ata_dev_init(struct ata_device
*dev
)
5582 struct ata_link
*link
= ata_dev_phys_link(dev
);
5583 struct ata_port
*ap
= link
->ap
;
5584 unsigned long flags
;
5586 /* SATA spd limit is bound to the attached device, reset together */
5587 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5590 /* High bits of dev->flags are used to record warm plug
5591 * requests which occur asynchronously. Synchronize using
5594 spin_lock_irqsave(ap
->lock
, flags
);
5595 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5597 spin_unlock_irqrestore(ap
->lock
, flags
);
5599 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5600 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5601 dev
->pio_mask
= UINT_MAX
;
5602 dev
->mwdma_mask
= UINT_MAX
;
5603 dev
->udma_mask
= UINT_MAX
;
5607 * ata_link_init - Initialize an ata_link structure
5608 * @ap: ATA port link is attached to
5609 * @link: Link structure to initialize
5610 * @pmp: Port multiplier port number
5615 * Kernel thread context (may sleep)
5617 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5621 /* clear everything except for devices */
5622 memset((void *)link
+ ATA_LINK_CLEAR_BEGIN
, 0,
5623 ATA_LINK_CLEAR_END
- ATA_LINK_CLEAR_BEGIN
);
5627 link
->active_tag
= ATA_TAG_POISON
;
5628 link
->hw_sata_spd_limit
= UINT_MAX
;
5630 /* can't use iterator, ap isn't initialized yet */
5631 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5632 struct ata_device
*dev
= &link
->device
[i
];
5635 dev
->devno
= dev
- link
->device
;
5636 #ifdef CONFIG_ATA_ACPI
5637 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5644 * sata_link_init_spd - Initialize link->sata_spd_limit
5645 * @link: Link to configure sata_spd_limit for
5647 * Initialize @link->[hw_]sata_spd_limit to the currently
5651 * Kernel thread context (may sleep).
5654 * 0 on success, -errno on failure.
5656 int sata_link_init_spd(struct ata_link
*link
)
5661 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5665 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5667 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5669 ata_force_link_limits(link
);
5671 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5677 * ata_port_alloc - allocate and initialize basic ATA port resources
5678 * @host: ATA host this allocated port belongs to
5680 * Allocate and initialize basic ATA port resources.
5683 * Allocate ATA port on success, NULL on failure.
5686 * Inherited from calling layer (may sleep).
5688 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5690 struct ata_port
*ap
;
5694 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5698 ap
->pflags
|= ATA_PFLAG_INITIALIZING
| ATA_PFLAG_FROZEN
;
5699 ap
->lock
= &host
->lock
;
5701 ap
->local_port_no
= -1;
5703 ap
->dev
= host
->dev
;
5705 #if defined(ATA_VERBOSE_DEBUG)
5706 /* turn on all debugging levels */
5707 ap
->msg_enable
= 0x00FF;
5708 #elif defined(ATA_DEBUG)
5709 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5711 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5714 mutex_init(&ap
->scsi_scan_mutex
);
5715 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5716 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5717 INIT_LIST_HEAD(&ap
->eh_done_q
);
5718 init_waitqueue_head(&ap
->eh_wait_q
);
5719 init_completion(&ap
->park_req_pending
);
5720 init_timer_deferrable(&ap
->fastdrain_timer
);
5721 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5722 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5724 ap
->cbl
= ATA_CBL_NONE
;
5726 ata_link_init(ap
, &ap
->link
, 0);
5729 ap
->stats
.unhandled_irq
= 1;
5730 ap
->stats
.idle_irq
= 1;
5732 ata_sff_port_init(ap
);
5737 static void ata_host_release(struct device
*gendev
, void *res
)
5739 struct ata_host
*host
= dev_get_drvdata(gendev
);
5742 for (i
= 0; i
< host
->n_ports
; i
++) {
5743 struct ata_port
*ap
= host
->ports
[i
];
5749 scsi_host_put(ap
->scsi_host
);
5751 kfree(ap
->pmp_link
);
5752 kfree(ap
->slave_link
);
5754 host
->ports
[i
] = NULL
;
5757 dev_set_drvdata(gendev
, NULL
);
5761 * ata_host_alloc - allocate and init basic ATA host resources
5762 * @dev: generic device this host is associated with
5763 * @max_ports: maximum number of ATA ports associated with this host
5765 * Allocate and initialize basic ATA host resources. LLD calls
5766 * this function to allocate a host, initializes it fully and
5767 * attaches it using ata_host_register().
5769 * @max_ports ports are allocated and host->n_ports is
5770 * initialized to @max_ports. The caller is allowed to decrease
5771 * host->n_ports before calling ata_host_register(). The unused
5772 * ports will be automatically freed on registration.
5775 * Allocate ATA host on success, NULL on failure.
5778 * Inherited from calling layer (may sleep).
5780 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5782 struct ata_host
*host
;
5788 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5791 /* alloc a container for our list of ATA ports (buses) */
5792 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5793 /* alloc a container for our list of ATA ports (buses) */
5794 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5798 devres_add(dev
, host
);
5799 dev_set_drvdata(dev
, host
);
5801 spin_lock_init(&host
->lock
);
5802 mutex_init(&host
->eh_mutex
);
5804 host
->n_ports
= max_ports
;
5806 /* allocate ports bound to this host */
5807 for (i
= 0; i
< max_ports
; i
++) {
5808 struct ata_port
*ap
;
5810 ap
= ata_port_alloc(host
);
5815 host
->ports
[i
] = ap
;
5818 devres_remove_group(dev
, NULL
);
5822 devres_release_group(dev
, NULL
);
5827 * ata_host_alloc_pinfo - alloc host and init with port_info array
5828 * @dev: generic device this host is associated with
5829 * @ppi: array of ATA port_info to initialize host with
5830 * @n_ports: number of ATA ports attached to this host
5832 * Allocate ATA host and initialize with info from @ppi. If NULL
5833 * terminated, @ppi may contain fewer entries than @n_ports. The
5834 * last entry will be used for the remaining ports.
5837 * Allocate ATA host on success, NULL on failure.
5840 * Inherited from calling layer (may sleep).
5842 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5843 const struct ata_port_info
* const * ppi
,
5846 const struct ata_port_info
*pi
;
5847 struct ata_host
*host
;
5850 host
= ata_host_alloc(dev
, n_ports
);
5854 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5855 struct ata_port
*ap
= host
->ports
[i
];
5860 ap
->pio_mask
= pi
->pio_mask
;
5861 ap
->mwdma_mask
= pi
->mwdma_mask
;
5862 ap
->udma_mask
= pi
->udma_mask
;
5863 ap
->flags
|= pi
->flags
;
5864 ap
->link
.flags
|= pi
->link_flags
;
5865 ap
->ops
= pi
->port_ops
;
5867 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5868 host
->ops
= pi
->port_ops
;
5875 * ata_slave_link_init - initialize slave link
5876 * @ap: port to initialize slave link for
5878 * Create and initialize slave link for @ap. This enables slave
5879 * link handling on the port.
5881 * In libata, a port contains links and a link contains devices.
5882 * There is single host link but if a PMP is attached to it,
5883 * there can be multiple fan-out links. On SATA, there's usually
5884 * a single device connected to a link but PATA and SATA
5885 * controllers emulating TF based interface can have two - master
5888 * However, there are a few controllers which don't fit into this
5889 * abstraction too well - SATA controllers which emulate TF
5890 * interface with both master and slave devices but also have
5891 * separate SCR register sets for each device. These controllers
5892 * need separate links for physical link handling
5893 * (e.g. onlineness, link speed) but should be treated like a
5894 * traditional M/S controller for everything else (e.g. command
5895 * issue, softreset).
5897 * slave_link is libata's way of handling this class of
5898 * controllers without impacting core layer too much. For
5899 * anything other than physical link handling, the default host
5900 * link is used for both master and slave. For physical link
5901 * handling, separate @ap->slave_link is used. All dirty details
5902 * are implemented inside libata core layer. From LLD's POV, the
5903 * only difference is that prereset, hardreset and postreset are
5904 * called once more for the slave link, so the reset sequence
5905 * looks like the following.
5907 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5908 * softreset(M) -> postreset(M) -> postreset(S)
5910 * Note that softreset is called only for the master. Softreset
5911 * resets both M/S by definition, so SRST on master should handle
5912 * both (the standard method will work just fine).
5915 * Should be called before host is registered.
5918 * 0 on success, -errno on failure.
5920 int ata_slave_link_init(struct ata_port
*ap
)
5922 struct ata_link
*link
;
5924 WARN_ON(ap
->slave_link
);
5925 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5927 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5931 ata_link_init(ap
, link
, 1);
5932 ap
->slave_link
= link
;
5936 static void ata_host_stop(struct device
*gendev
, void *res
)
5938 struct ata_host
*host
= dev_get_drvdata(gendev
);
5941 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5943 for (i
= 0; i
< host
->n_ports
; i
++) {
5944 struct ata_port
*ap
= host
->ports
[i
];
5946 if (ap
->ops
->port_stop
)
5947 ap
->ops
->port_stop(ap
);
5950 if (host
->ops
->host_stop
)
5951 host
->ops
->host_stop(host
);
5955 * ata_finalize_port_ops - finalize ata_port_operations
5956 * @ops: ata_port_operations to finalize
5958 * An ata_port_operations can inherit from another ops and that
5959 * ops can again inherit from another. This can go on as many
5960 * times as necessary as long as there is no loop in the
5961 * inheritance chain.
5963 * Ops tables are finalized when the host is started. NULL or
5964 * unspecified entries are inherited from the closet ancestor
5965 * which has the method and the entry is populated with it.
5966 * After finalization, the ops table directly points to all the
5967 * methods and ->inherits is no longer necessary and cleared.
5969 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5974 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5976 static DEFINE_SPINLOCK(lock
);
5977 const struct ata_port_operations
*cur
;
5978 void **begin
= (void **)ops
;
5979 void **end
= (void **)&ops
->inherits
;
5982 if (!ops
|| !ops
->inherits
)
5987 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5988 void **inherit
= (void **)cur
;
5990 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5995 for (pp
= begin
; pp
< end
; pp
++)
5999 ops
->inherits
= NULL
;
6005 * ata_host_start - start and freeze ports of an ATA host
6006 * @host: ATA host to start ports for
6008 * Start and then freeze ports of @host. Started status is
6009 * recorded in host->flags, so this function can be called
6010 * multiple times. Ports are guaranteed to get started only
6011 * once. If host->ops isn't initialized yet, its set to the
6012 * first non-dummy port ops.
6015 * Inherited from calling layer (may sleep).
6018 * 0 if all ports are started successfully, -errno otherwise.
6020 int ata_host_start(struct ata_host
*host
)
6023 void *start_dr
= NULL
;
6026 if (host
->flags
& ATA_HOST_STARTED
)
6029 ata_finalize_port_ops(host
->ops
);
6031 for (i
= 0; i
< host
->n_ports
; i
++) {
6032 struct ata_port
*ap
= host
->ports
[i
];
6034 ata_finalize_port_ops(ap
->ops
);
6036 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6037 host
->ops
= ap
->ops
;
6039 if (ap
->ops
->port_stop
)
6043 if (host
->ops
->host_stop
)
6047 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6052 for (i
= 0; i
< host
->n_ports
; i
++) {
6053 struct ata_port
*ap
= host
->ports
[i
];
6055 if (ap
->ops
->port_start
) {
6056 rc
= ap
->ops
->port_start(ap
);
6060 "failed to start port %d (errno=%d)\n",
6065 ata_eh_freeze_port(ap
);
6069 devres_add(host
->dev
, start_dr
);
6070 host
->flags
|= ATA_HOST_STARTED
;
6075 struct ata_port
*ap
= host
->ports
[i
];
6077 if (ap
->ops
->port_stop
)
6078 ap
->ops
->port_stop(ap
);
6080 devres_free(start_dr
);
6085 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6086 * @host: host to initialize
6087 * @dev: device host is attached to
6091 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6092 struct ata_port_operations
*ops
)
6094 spin_lock_init(&host
->lock
);
6095 mutex_init(&host
->eh_mutex
);
6096 host
->n_tags
= ATA_MAX_QUEUE
- 1;
6101 void __ata_port_probe(struct ata_port
*ap
)
6103 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6104 unsigned long flags
;
6106 /* kick EH for boot probing */
6107 spin_lock_irqsave(ap
->lock
, flags
);
6109 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6110 ehi
->action
|= ATA_EH_RESET
;
6111 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6113 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6114 ap
->pflags
|= ATA_PFLAG_LOADING
;
6115 ata_port_schedule_eh(ap
);
6117 spin_unlock_irqrestore(ap
->lock
, flags
);
6120 int ata_port_probe(struct ata_port
*ap
)
6124 if (ap
->ops
->error_handler
) {
6125 __ata_port_probe(ap
);
6126 ata_port_wait_eh(ap
);
6128 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6129 rc
= ata_bus_probe(ap
);
6130 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6136 static void async_port_probe(void *data
, async_cookie_t cookie
)
6138 struct ata_port
*ap
= data
;
6141 * If we're not allowed to scan this host in parallel,
6142 * we need to wait until all previous scans have completed
6143 * before going further.
6144 * Jeff Garzik says this is only within a controller, so we
6145 * don't need to wait for port 0, only for later ports.
6147 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6148 async_synchronize_cookie(cookie
);
6150 (void)ata_port_probe(ap
);
6152 /* in order to keep device order, we need to synchronize at this point */
6153 async_synchronize_cookie(cookie
);
6155 ata_scsi_scan_host(ap
, 1);
6159 * ata_host_register - register initialized ATA host
6160 * @host: ATA host to register
6161 * @sht: template for SCSI host
6163 * Register initialized ATA host. @host is allocated using
6164 * ata_host_alloc() and fully initialized by LLD. This function
6165 * starts ports, registers @host with ATA and SCSI layers and
6166 * probe registered devices.
6169 * Inherited from calling layer (may sleep).
6172 * 0 on success, -errno otherwise.
6174 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6178 host
->n_tags
= clamp(sht
->can_queue
, 1, ATA_MAX_QUEUE
- 1);
6180 /* host must have been started */
6181 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6182 dev_err(host
->dev
, "BUG: trying to register unstarted host\n");
6187 /* Blow away unused ports. This happens when LLD can't
6188 * determine the exact number of ports to allocate at
6191 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6192 kfree(host
->ports
[i
]);
6194 /* give ports names and add SCSI hosts */
6195 for (i
= 0; i
< host
->n_ports
; i
++) {
6196 host
->ports
[i
]->print_id
= atomic_inc_return(&ata_print_id
);
6197 host
->ports
[i
]->local_port_no
= i
+ 1;
6200 /* Create associated sysfs transport objects */
6201 for (i
= 0; i
< host
->n_ports
; i
++) {
6202 rc
= ata_tport_add(host
->dev
,host
->ports
[i
]);
6208 rc
= ata_scsi_add_hosts(host
, sht
);
6212 /* set cable, sata_spd_limit and report */
6213 for (i
= 0; i
< host
->n_ports
; i
++) {
6214 struct ata_port
*ap
= host
->ports
[i
];
6215 unsigned long xfer_mask
;
6217 /* set SATA cable type if still unset */
6218 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6219 ap
->cbl
= ATA_CBL_SATA
;
6221 /* init sata_spd_limit to the current value */
6222 sata_link_init_spd(&ap
->link
);
6224 sata_link_init_spd(ap
->slave_link
);
6226 /* print per-port info to dmesg */
6227 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6230 if (!ata_port_is_dummy(ap
)) {
6231 ata_port_info(ap
, "%cATA max %s %s\n",
6232 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6233 ata_mode_string(xfer_mask
),
6234 ap
->link
.eh_info
.desc
);
6235 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6237 ata_port_info(ap
, "DUMMY\n");
6240 /* perform each probe asynchronously */
6241 for (i
= 0; i
< host
->n_ports
; i
++) {
6242 struct ata_port
*ap
= host
->ports
[i
];
6243 async_schedule(async_port_probe
, ap
);
6250 ata_tport_delete(host
->ports
[i
]);
6257 * ata_host_activate - start host, request IRQ and register it
6258 * @host: target ATA host
6259 * @irq: IRQ to request
6260 * @irq_handler: irq_handler used when requesting IRQ
6261 * @irq_flags: irq_flags used when requesting IRQ
6262 * @sht: scsi_host_template to use when registering the host
6264 * After allocating an ATA host and initializing it, most libata
6265 * LLDs perform three steps to activate the host - start host,
6266 * request IRQ and register it. This helper takes necessasry
6267 * arguments and performs the three steps in one go.
6269 * An invalid IRQ skips the IRQ registration and expects the host to
6270 * have set polling mode on the port. In this case, @irq_handler
6274 * Inherited from calling layer (may sleep).
6277 * 0 on success, -errno otherwise.
6279 int ata_host_activate(struct ata_host
*host
, int irq
,
6280 irq_handler_t irq_handler
, unsigned long irq_flags
,
6281 struct scsi_host_template
*sht
)
6285 rc
= ata_host_start(host
);
6289 /* Special case for polling mode */
6291 WARN_ON(irq_handler
);
6292 return ata_host_register(host
, sht
);
6295 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6296 dev_driver_string(host
->dev
), host
);
6300 for (i
= 0; i
< host
->n_ports
; i
++)
6301 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6303 rc
= ata_host_register(host
, sht
);
6304 /* if failed, just free the IRQ and leave ports alone */
6306 devm_free_irq(host
->dev
, irq
, host
);
6312 * ata_port_detach - Detach ATA port in prepration of device removal
6313 * @ap: ATA port to be detached
6315 * Detach all ATA devices and the associated SCSI devices of @ap;
6316 * then, remove the associated SCSI host. @ap is guaranteed to
6317 * be quiescent on return from this function.
6320 * Kernel thread context (may sleep).
6322 static void ata_port_detach(struct ata_port
*ap
)
6324 unsigned long flags
;
6325 struct ata_link
*link
;
6326 struct ata_device
*dev
;
6328 if (!ap
->ops
->error_handler
)
6331 /* tell EH we're leaving & flush EH */
6332 spin_lock_irqsave(ap
->lock
, flags
);
6333 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6334 ata_port_schedule_eh(ap
);
6335 spin_unlock_irqrestore(ap
->lock
, flags
);
6337 /* wait till EH commits suicide */
6338 ata_port_wait_eh(ap
);
6340 /* it better be dead now */
6341 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6343 cancel_delayed_work_sync(&ap
->hotplug_task
);
6346 /* clean up zpodd on port removal */
6347 ata_for_each_link(link
, ap
, HOST_FIRST
) {
6348 ata_for_each_dev(dev
, link
, ALL
) {
6349 if (zpodd_dev_enabled(dev
))
6355 for (i
= 0; i
< SATA_PMP_MAX_PORTS
; i
++)
6356 ata_tlink_delete(&ap
->pmp_link
[i
]);
6358 /* remove the associated SCSI host */
6359 scsi_remove_host(ap
->scsi_host
);
6360 ata_tport_delete(ap
);
6364 * ata_host_detach - Detach all ports of an ATA host
6365 * @host: Host to detach
6367 * Detach all ports of @host.
6370 * Kernel thread context (may sleep).
6372 void ata_host_detach(struct ata_host
*host
)
6376 for (i
= 0; i
< host
->n_ports
; i
++)
6377 ata_port_detach(host
->ports
[i
]);
6379 /* the host is dead now, dissociate ACPI */
6380 ata_acpi_dissociate(host
);
6386 * ata_pci_remove_one - PCI layer callback for device removal
6387 * @pdev: PCI device that was removed
6389 * PCI layer indicates to libata via this hook that hot-unplug or
6390 * module unload event has occurred. Detach all ports. Resource
6391 * release is handled via devres.
6394 * Inherited from PCI layer (may sleep).
6396 void ata_pci_remove_one(struct pci_dev
*pdev
)
6398 struct ata_host
*host
= pci_get_drvdata(pdev
);
6400 ata_host_detach(host
);
6403 /* move to PCI subsystem */
6404 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6406 unsigned long tmp
= 0;
6408 switch (bits
->width
) {
6411 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6417 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6423 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6434 return (tmp
== bits
->val
) ? 1 : 0;
6438 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6440 pci_save_state(pdev
);
6441 pci_disable_device(pdev
);
6443 if (mesg
.event
& PM_EVENT_SLEEP
)
6444 pci_set_power_state(pdev
, PCI_D3hot
);
6447 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6451 pci_set_power_state(pdev
, PCI_D0
);
6452 pci_restore_state(pdev
);
6454 rc
= pcim_enable_device(pdev
);
6457 "failed to enable device after resume (%d)\n", rc
);
6461 pci_set_master(pdev
);
6465 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6467 struct ata_host
*host
= pci_get_drvdata(pdev
);
6470 rc
= ata_host_suspend(host
, mesg
);
6474 ata_pci_device_do_suspend(pdev
, mesg
);
6479 int ata_pci_device_resume(struct pci_dev
*pdev
)
6481 struct ata_host
*host
= pci_get_drvdata(pdev
);
6484 rc
= ata_pci_device_do_resume(pdev
);
6486 ata_host_resume(host
);
6489 #endif /* CONFIG_PM */
6491 #endif /* CONFIG_PCI */
6494 * ata_platform_remove_one - Platform layer callback for device removal
6495 * @pdev: Platform device that was removed
6497 * Platform layer indicates to libata via this hook that hot-unplug or
6498 * module unload event has occurred. Detach all ports. Resource
6499 * release is handled via devres.
6502 * Inherited from platform layer (may sleep).
6504 int ata_platform_remove_one(struct platform_device
*pdev
)
6506 struct ata_host
*host
= platform_get_drvdata(pdev
);
6508 ata_host_detach(host
);
6513 static int __init
ata_parse_force_one(char **cur
,
6514 struct ata_force_ent
*force_ent
,
6515 const char **reason
)
6517 /* FIXME: Currently, there's no way to tag init const data and
6518 * using __initdata causes build failure on some versions of
6519 * gcc. Once __initdataconst is implemented, add const to the
6520 * following structure.
6522 static struct ata_force_param force_tbl
[] __initdata
= {
6523 { "40c", .cbl
= ATA_CBL_PATA40
},
6524 { "80c", .cbl
= ATA_CBL_PATA80
},
6525 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6526 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6527 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6528 { "sata", .cbl
= ATA_CBL_SATA
},
6529 { "1.5Gbps", .spd_limit
= 1 },
6530 { "3.0Gbps", .spd_limit
= 2 },
6531 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6532 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6533 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6534 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6535 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6536 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6537 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6538 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6539 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6540 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6541 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6542 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6543 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6544 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6545 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6546 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6547 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6548 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6549 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6550 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6551 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6552 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6553 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6554 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6555 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6556 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6557 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6558 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6559 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6560 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6561 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6562 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6563 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6564 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6565 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6566 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6567 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6568 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6569 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6570 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6571 { "rstonce", .lflags
= ATA_LFLAG_RST_ONCE
},
6572 { "atapi_dmadir", .horkage_on
= ATA_HORKAGE_ATAPI_DMADIR
},
6573 { "disable", .horkage_on
= ATA_HORKAGE_DISABLE
},
6575 char *start
= *cur
, *p
= *cur
;
6576 char *id
, *val
, *endp
;
6577 const struct ata_force_param
*match_fp
= NULL
;
6578 int nr_matches
= 0, i
;
6580 /* find where this param ends and update *cur */
6581 while (*p
!= '\0' && *p
!= ',')
6592 p
= strchr(start
, ':');
6594 val
= strstrip(start
);
6599 id
= strstrip(start
);
6600 val
= strstrip(p
+ 1);
6603 p
= strchr(id
, '.');
6606 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6607 if (p
== endp
|| *endp
!= '\0') {
6608 *reason
= "invalid device";
6613 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6614 if (p
== endp
|| *endp
!= '\0') {
6615 *reason
= "invalid port/link";
6620 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6621 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6622 const struct ata_force_param
*fp
= &force_tbl
[i
];
6624 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6630 if (strcasecmp(val
, fp
->name
) == 0) {
6637 *reason
= "unknown value";
6640 if (nr_matches
> 1) {
6641 *reason
= "ambigious value";
6645 force_ent
->param
= *match_fp
;
6650 static void __init
ata_parse_force_param(void)
6652 int idx
= 0, size
= 1;
6653 int last_port
= -1, last_device
= -1;
6654 char *p
, *cur
, *next
;
6656 /* calculate maximum number of params and allocate force_tbl */
6657 for (p
= ata_force_param_buf
; *p
; p
++)
6661 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6662 if (!ata_force_tbl
) {
6663 printk(KERN_WARNING
"ata: failed to extend force table, "
6664 "libata.force ignored\n");
6668 /* parse and populate the table */
6669 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6670 const char *reason
= "";
6671 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6674 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6675 printk(KERN_WARNING
"ata: failed to parse force "
6676 "parameter \"%s\" (%s)\n",
6681 if (te
.port
== -1) {
6682 te
.port
= last_port
;
6683 te
.device
= last_device
;
6686 ata_force_tbl
[idx
++] = te
;
6688 last_port
= te
.port
;
6689 last_device
= te
.device
;
6692 ata_force_tbl_size
= idx
;
6695 static int __init
ata_init(void)
6699 ata_parse_force_param();
6701 rc
= ata_sff_init();
6703 kfree(ata_force_tbl
);
6707 libata_transport_init();
6708 ata_scsi_transport_template
= ata_attach_transport();
6709 if (!ata_scsi_transport_template
) {
6715 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6722 static void __exit
ata_exit(void)
6724 ata_release_transport(ata_scsi_transport_template
);
6725 libata_transport_exit();
6727 kfree(ata_force_tbl
);
6730 subsys_initcall(ata_init
);
6731 module_exit(ata_exit
);
6733 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
6735 int ata_ratelimit(void)
6737 return __ratelimit(&ratelimit
);
6741 * ata_msleep - ATA EH owner aware msleep
6742 * @ap: ATA port to attribute the sleep to
6743 * @msecs: duration to sleep in milliseconds
6745 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6746 * ownership is released before going to sleep and reacquired
6747 * after the sleep is complete. IOW, other ports sharing the
6748 * @ap->host will be allowed to own the EH while this task is
6754 void ata_msleep(struct ata_port
*ap
, unsigned int msecs
)
6756 bool owns_eh
= ap
&& ap
->host
->eh_owner
== current
;
6768 * ata_wait_register - wait until register value changes
6769 * @ap: ATA port to wait register for, can be NULL
6770 * @reg: IO-mapped register
6771 * @mask: Mask to apply to read register value
6772 * @val: Wait condition
6773 * @interval: polling interval in milliseconds
6774 * @timeout: timeout in milliseconds
6776 * Waiting for some bits of register to change is a common
6777 * operation for ATA controllers. This function reads 32bit LE
6778 * IO-mapped register @reg and tests for the following condition.
6780 * (*@reg & mask) != val
6782 * If the condition is met, it returns; otherwise, the process is
6783 * repeated after @interval_msec until timeout.
6786 * Kernel thread context (may sleep)
6789 * The final register value.
6791 u32
ata_wait_register(struct ata_port
*ap
, void __iomem
*reg
, u32 mask
, u32 val
,
6792 unsigned long interval
, unsigned long timeout
)
6794 unsigned long deadline
;
6797 tmp
= ioread32(reg
);
6799 /* Calculate timeout _after_ the first read to make sure
6800 * preceding writes reach the controller before starting to
6801 * eat away the timeout.
6803 deadline
= ata_deadline(jiffies
, timeout
);
6805 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6806 ata_msleep(ap
, interval
);
6807 tmp
= ioread32(reg
);
6816 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6818 return AC_ERR_SYSTEM
;
6821 static void ata_dummy_error_handler(struct ata_port
*ap
)
6826 struct ata_port_operations ata_dummy_port_ops
= {
6827 .qc_prep
= ata_noop_qc_prep
,
6828 .qc_issue
= ata_dummy_qc_issue
,
6829 .error_handler
= ata_dummy_error_handler
,
6830 .sched_eh
= ata_std_sched_eh
,
6831 .end_eh
= ata_std_end_eh
,
6834 const struct ata_port_info ata_dummy_port_info
= {
6835 .port_ops
= &ata_dummy_port_ops
,
6839 * Utility print functions
6841 int ata_port_printk(const struct ata_port
*ap
, const char *level
,
6842 const char *fmt
, ...)
6844 struct va_format vaf
;
6848 va_start(args
, fmt
);
6853 r
= printk("%sata%u: %pV", level
, ap
->print_id
, &vaf
);
6859 EXPORT_SYMBOL(ata_port_printk
);
6861 int ata_link_printk(const struct ata_link
*link
, const char *level
,
6862 const char *fmt
, ...)
6864 struct va_format vaf
;
6868 va_start(args
, fmt
);
6873 if (sata_pmp_attached(link
->ap
) || link
->ap
->slave_link
)
6874 r
= printk("%sata%u.%02u: %pV",
6875 level
, link
->ap
->print_id
, link
->pmp
, &vaf
);
6877 r
= printk("%sata%u: %pV",
6878 level
, link
->ap
->print_id
, &vaf
);
6884 EXPORT_SYMBOL(ata_link_printk
);
6886 int ata_dev_printk(const struct ata_device
*dev
, const char *level
,
6887 const char *fmt
, ...)
6889 struct va_format vaf
;
6893 va_start(args
, fmt
);
6898 r
= printk("%sata%u.%02u: %pV",
6899 level
, dev
->link
->ap
->print_id
, dev
->link
->pmp
+ dev
->devno
,
6906 EXPORT_SYMBOL(ata_dev_printk
);
6908 void ata_print_version(const struct device
*dev
, const char *version
)
6910 dev_printk(KERN_DEBUG
, dev
, "version %s\n", version
);
6912 EXPORT_SYMBOL(ata_print_version
);
6915 * libata is essentially a library of internal helper functions for
6916 * low-level ATA host controller drivers. As such, the API/ABI is
6917 * likely to change as new drivers are added and updated.
6918 * Do not depend on ABI/API stability.
6920 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6921 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6922 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6923 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6924 EXPORT_SYMBOL_GPL(sata_port_ops
);
6925 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6926 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6927 EXPORT_SYMBOL_GPL(ata_link_next
);
6928 EXPORT_SYMBOL_GPL(ata_dev_next
);
6929 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6930 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
6931 EXPORT_SYMBOL_GPL(ata_host_init
);
6932 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6933 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6934 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6935 EXPORT_SYMBOL_GPL(ata_host_start
);
6936 EXPORT_SYMBOL_GPL(ata_host_register
);
6937 EXPORT_SYMBOL_GPL(ata_host_activate
);
6938 EXPORT_SYMBOL_GPL(ata_host_detach
);
6939 EXPORT_SYMBOL_GPL(ata_sg_init
);
6940 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6941 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6942 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6943 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6944 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6945 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6946 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6947 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6948 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6949 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6950 EXPORT_SYMBOL_GPL(ata_mode_string
);
6951 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6952 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6953 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6954 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6955 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6956 EXPORT_SYMBOL_GPL(sata_set_spd
);
6957 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6958 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6959 EXPORT_SYMBOL_GPL(sata_link_resume
);
6960 EXPORT_SYMBOL_GPL(sata_link_scr_lpm
);
6961 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6962 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6963 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6964 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6965 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6966 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6967 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6968 EXPORT_SYMBOL_GPL(ata_msleep
);
6969 EXPORT_SYMBOL_GPL(ata_wait_register
);
6970 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6971 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6972 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6973 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6974 EXPORT_SYMBOL_GPL(__ata_change_queue_depth
);
6975 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6976 EXPORT_SYMBOL_GPL(sata_scr_read
);
6977 EXPORT_SYMBOL_GPL(sata_scr_write
);
6978 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6979 EXPORT_SYMBOL_GPL(ata_link_online
);
6980 EXPORT_SYMBOL_GPL(ata_link_offline
);
6982 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6983 EXPORT_SYMBOL_GPL(ata_host_resume
);
6984 #endif /* CONFIG_PM */
6985 EXPORT_SYMBOL_GPL(ata_id_string
);
6986 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6987 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6988 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6990 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6991 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6992 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6993 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6994 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6997 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6998 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7000 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7001 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7002 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7003 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7004 #endif /* CONFIG_PM */
7005 #endif /* CONFIG_PCI */
7007 EXPORT_SYMBOL_GPL(ata_platform_remove_one
);
7009 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7010 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7011 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7012 EXPORT_SYMBOL_GPL(ata_port_desc
);
7014 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7015 #endif /* CONFIG_PCI */
7016 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7017 EXPORT_SYMBOL_GPL(ata_link_abort
);
7018 EXPORT_SYMBOL_GPL(ata_port_abort
);
7019 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7020 EXPORT_SYMBOL_GPL(sata_async_notification
);
7021 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7022 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7023 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7024 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7025 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
7026 EXPORT_SYMBOL_GPL(ata_do_eh
);
7027 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
7029 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7030 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7031 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7032 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7033 EXPORT_SYMBOL_GPL(ata_cable_sata
);