2 * Copyright 2011 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
25 #include <linux/dma-mapping.h>
28 #include <drm/drm_crtc_helper.h>
29 #include <drm/drm_dp_helper.h>
31 #include "nouveau_drm.h"
32 #include "nouveau_dma.h"
33 #include "nouveau_gem.h"
34 #include "nouveau_connector.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_crtc.h"
37 #include "nouveau_fence.h"
38 #include "nv50_display.h"
40 #include <core/client.h>
41 #include <core/gpuobj.h>
42 #include <core/class.h>
44 #include <subdev/timer.h>
45 #include <subdev/bar.h>
46 #include <subdev/fb.h>
47 #include <subdev/i2c.h>
51 #define EVO_MASTER (0x00)
52 #define EVO_FLIP(c) (0x01 + (c))
53 #define EVO_OVLY(c) (0x05 + (c))
54 #define EVO_OIMM(c) (0x09 + (c))
55 #define EVO_CURS(c) (0x0d + (c))
57 /* offsets in shared sync bo of various structures */
58 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
59 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
60 #define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
61 #define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
63 #define EVO_CORE_HANDLE (0xd1500000)
64 #define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
65 #define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
66 #define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) | \
67 (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))
69 /******************************************************************************
71 *****************************************************************************/
74 struct nouveau_object
*user
;
79 nv50_chan_create(struct nouveau_object
*core
, u32 bclass
, u8 head
,
80 void *data
, u32 size
, struct nv50_chan
*chan
)
82 struct nouveau_object
*client
= nv_pclass(core
, NV_CLIENT_CLASS
);
83 const u32 oclass
= EVO_CHAN_OCLASS(bclass
, core
);
84 const u32 handle
= EVO_CHAN_HANDLE(bclass
, head
);
87 ret
= nouveau_object_new(client
, EVO_CORE_HANDLE
, handle
,
88 oclass
, data
, size
, &chan
->user
);
92 chan
->handle
= handle
;
97 nv50_chan_destroy(struct nouveau_object
*core
, struct nv50_chan
*chan
)
99 struct nouveau_object
*client
= nv_pclass(core
, NV_CLIENT_CLASS
);
101 nouveau_object_del(client
, EVO_CORE_HANDLE
, chan
->handle
);
104 /******************************************************************************
106 *****************************************************************************/
109 struct nv50_chan base
;
113 nv50_pioc_destroy(struct nouveau_object
*core
, struct nv50_pioc
*pioc
)
115 nv50_chan_destroy(core
, &pioc
->base
);
119 nv50_pioc_create(struct nouveau_object
*core
, u32 bclass
, u8 head
,
120 void *data
, u32 size
, struct nv50_pioc
*pioc
)
122 return nv50_chan_create(core
, bclass
, head
, data
, size
, &pioc
->base
);
125 /******************************************************************************
127 *****************************************************************************/
130 struct nv50_chan base
;
134 /* Protects against concurrent pushbuf access to this channel, lock is
135 * grabbed by evo_wait (if the pushbuf reservation is successful) and
136 * dropped again by evo_kick. */
141 nv50_dmac_destroy(struct nouveau_object
*core
, struct nv50_dmac
*dmac
)
144 struct pci_dev
*pdev
= nv_device(core
)->pdev
;
145 pci_free_consistent(pdev
, PAGE_SIZE
, dmac
->ptr
, dmac
->handle
);
148 nv50_chan_destroy(core
, &dmac
->base
);
152 nv50_dmac_create_fbdma(struct nouveau_object
*core
, u32 parent
)
154 struct nouveau_fb
*pfb
= nouveau_fb(core
);
155 struct nouveau_object
*client
= nv_pclass(core
, NV_CLIENT_CLASS
);
156 struct nouveau_object
*object
;
157 int ret
= nouveau_object_new(client
, parent
, NvEvoVRAM_LP
,
158 NV_DMA_IN_MEMORY_CLASS
,
159 &(struct nv_dma_class
) {
160 .flags
= NV_DMA_TARGET_VRAM
|
163 .limit
= pfb
->ram
->size
- 1,
164 .conf0
= NV50_DMA_CONF0_ENABLE
|
165 NV50_DMA_CONF0_PART_256
,
166 }, sizeof(struct nv_dma_class
), &object
);
170 ret
= nouveau_object_new(client
, parent
, NvEvoFB16
,
171 NV_DMA_IN_MEMORY_CLASS
,
172 &(struct nv_dma_class
) {
173 .flags
= NV_DMA_TARGET_VRAM
|
176 .limit
= pfb
->ram
->size
- 1,
177 .conf0
= NV50_DMA_CONF0_ENABLE
| 0x70 |
178 NV50_DMA_CONF0_PART_256
,
179 }, sizeof(struct nv_dma_class
), &object
);
183 ret
= nouveau_object_new(client
, parent
, NvEvoFB32
,
184 NV_DMA_IN_MEMORY_CLASS
,
185 &(struct nv_dma_class
) {
186 .flags
= NV_DMA_TARGET_VRAM
|
189 .limit
= pfb
->ram
->size
- 1,
190 .conf0
= NV50_DMA_CONF0_ENABLE
| 0x7a |
191 NV50_DMA_CONF0_PART_256
,
192 }, sizeof(struct nv_dma_class
), &object
);
197 nvc0_dmac_create_fbdma(struct nouveau_object
*core
, u32 parent
)
199 struct nouveau_fb
*pfb
= nouveau_fb(core
);
200 struct nouveau_object
*client
= nv_pclass(core
, NV_CLIENT_CLASS
);
201 struct nouveau_object
*object
;
202 int ret
= nouveau_object_new(client
, parent
, NvEvoVRAM_LP
,
203 NV_DMA_IN_MEMORY_CLASS
,
204 &(struct nv_dma_class
) {
205 .flags
= NV_DMA_TARGET_VRAM
|
208 .limit
= pfb
->ram
->size
- 1,
209 .conf0
= NVC0_DMA_CONF0_ENABLE
,
210 }, sizeof(struct nv_dma_class
), &object
);
214 ret
= nouveau_object_new(client
, parent
, NvEvoFB16
,
215 NV_DMA_IN_MEMORY_CLASS
,
216 &(struct nv_dma_class
) {
217 .flags
= NV_DMA_TARGET_VRAM
|
220 .limit
= pfb
->ram
->size
- 1,
221 .conf0
= NVC0_DMA_CONF0_ENABLE
| 0xfe,
222 }, sizeof(struct nv_dma_class
), &object
);
226 ret
= nouveau_object_new(client
, parent
, NvEvoFB32
,
227 NV_DMA_IN_MEMORY_CLASS
,
228 &(struct nv_dma_class
) {
229 .flags
= NV_DMA_TARGET_VRAM
|
232 .limit
= pfb
->ram
->size
- 1,
233 .conf0
= NVC0_DMA_CONF0_ENABLE
| 0xfe,
234 }, sizeof(struct nv_dma_class
), &object
);
239 nvd0_dmac_create_fbdma(struct nouveau_object
*core
, u32 parent
)
241 struct nouveau_fb
*pfb
= nouveau_fb(core
);
242 struct nouveau_object
*client
= nv_pclass(core
, NV_CLIENT_CLASS
);
243 struct nouveau_object
*object
;
244 int ret
= nouveau_object_new(client
, parent
, NvEvoVRAM_LP
,
245 NV_DMA_IN_MEMORY_CLASS
,
246 &(struct nv_dma_class
) {
247 .flags
= NV_DMA_TARGET_VRAM
|
250 .limit
= pfb
->ram
->size
- 1,
251 .conf0
= NVD0_DMA_CONF0_ENABLE
|
252 NVD0_DMA_CONF0_PAGE_LP
,
253 }, sizeof(struct nv_dma_class
), &object
);
257 ret
= nouveau_object_new(client
, parent
, NvEvoFB32
,
258 NV_DMA_IN_MEMORY_CLASS
,
259 &(struct nv_dma_class
) {
260 .flags
= NV_DMA_TARGET_VRAM
|
263 .limit
= pfb
->ram
->size
- 1,
264 .conf0
= NVD0_DMA_CONF0_ENABLE
| 0xfe |
265 NVD0_DMA_CONF0_PAGE_LP
,
266 }, sizeof(struct nv_dma_class
), &object
);
271 nv50_dmac_create(struct nouveau_object
*core
, u32 bclass
, u8 head
,
272 void *data
, u32 size
, u64 syncbuf
,
273 struct nv50_dmac
*dmac
)
275 struct nouveau_fb
*pfb
= nouveau_fb(core
);
276 struct nouveau_object
*client
= nv_pclass(core
, NV_CLIENT_CLASS
);
277 struct nouveau_object
*object
;
278 u32 pushbuf
= *(u32
*)data
;
281 mutex_init(&dmac
->lock
);
283 dmac
->ptr
= pci_alloc_consistent(nv_device(core
)->pdev
, PAGE_SIZE
,
288 ret
= nouveau_object_new(client
, NVDRM_DEVICE
, pushbuf
,
289 NV_DMA_FROM_MEMORY_CLASS
,
290 &(struct nv_dma_class
) {
291 .flags
= NV_DMA_TARGET_PCI_US
|
293 .start
= dmac
->handle
+ 0x0000,
294 .limit
= dmac
->handle
+ 0x0fff,
295 }, sizeof(struct nv_dma_class
), &object
);
299 ret
= nv50_chan_create(core
, bclass
, head
, data
, size
, &dmac
->base
);
303 ret
= nouveau_object_new(client
, dmac
->base
.handle
, NvEvoSync
,
304 NV_DMA_IN_MEMORY_CLASS
,
305 &(struct nv_dma_class
) {
306 .flags
= NV_DMA_TARGET_VRAM
|
308 .start
= syncbuf
+ 0x0000,
309 .limit
= syncbuf
+ 0x0fff,
310 }, sizeof(struct nv_dma_class
), &object
);
314 ret
= nouveau_object_new(client
, dmac
->base
.handle
, NvEvoVRAM
,
315 NV_DMA_IN_MEMORY_CLASS
,
316 &(struct nv_dma_class
) {
317 .flags
= NV_DMA_TARGET_VRAM
|
320 .limit
= pfb
->ram
->size
- 1,
321 }, sizeof(struct nv_dma_class
), &object
);
325 if (nv_device(core
)->card_type
< NV_C0
)
326 ret
= nv50_dmac_create_fbdma(core
, dmac
->base
.handle
);
328 if (nv_device(core
)->card_type
< NV_D0
)
329 ret
= nvc0_dmac_create_fbdma(core
, dmac
->base
.handle
);
331 ret
= nvd0_dmac_create_fbdma(core
, dmac
->base
.handle
);
336 struct nv50_dmac base
;
340 struct nv50_pioc base
;
344 struct nv50_dmac base
;
350 struct nv50_dmac base
;
354 struct nv50_pioc base
;
358 struct nouveau_crtc base
;
359 struct nouveau_bo
*image
;
360 struct nv50_curs curs
;
361 struct nv50_sync sync
;
362 struct nv50_ovly ovly
;
363 struct nv50_oimm oimm
;
366 #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
367 #define nv50_curs(c) (&nv50_head(c)->curs)
368 #define nv50_sync(c) (&nv50_head(c)->sync)
369 #define nv50_ovly(c) (&nv50_head(c)->ovly)
370 #define nv50_oimm(c) (&nv50_head(c)->oimm)
371 #define nv50_chan(c) (&(c)->base.base)
372 #define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
375 struct nouveau_object
*core
;
376 struct nv50_mast mast
;
380 struct nouveau_bo
*sync
;
383 static struct nv50_disp
*
384 nv50_disp(struct drm_device
*dev
)
386 return nouveau_display(dev
)->priv
;
389 #define nv50_mast(d) (&nv50_disp(d)->mast)
391 static struct drm_crtc
*
392 nv50_display_crtc_get(struct drm_encoder
*encoder
)
394 return nouveau_encoder(encoder
)->crtc
;
397 /******************************************************************************
398 * EVO channel helpers
399 *****************************************************************************/
401 evo_wait(void *evoc
, int nr
)
403 struct nv50_dmac
*dmac
= evoc
;
404 u32 put
= nv_ro32(dmac
->base
.user
, 0x0000) / 4;
406 mutex_lock(&dmac
->lock
);
407 if (put
+ nr
>= (PAGE_SIZE
/ 4) - 8) {
408 dmac
->ptr
[put
] = 0x20000000;
410 nv_wo32(dmac
->base
.user
, 0x0000, 0x00000000);
411 if (!nv_wait(dmac
->base
.user
, 0x0004, ~0, 0x00000000)) {
412 mutex_unlock(&dmac
->lock
);
413 NV_ERROR(dmac
->base
.user
, "channel stalled\n");
420 return dmac
->ptr
+ put
;
424 evo_kick(u32
*push
, void *evoc
)
426 struct nv50_dmac
*dmac
= evoc
;
427 nv_wo32(dmac
->base
.user
, 0x0000, (push
- dmac
->ptr
) << 2);
428 mutex_unlock(&dmac
->lock
);
431 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
432 #define evo_data(p,d) *((p)++) = (d)
435 evo_sync_wait(void *data
)
437 if (nouveau_bo_rd32(data
, EVO_MAST_NTFY
) != 0x00000000)
444 evo_sync(struct drm_device
*dev
)
446 struct nouveau_device
*device
= nouveau_dev(dev
);
447 struct nv50_disp
*disp
= nv50_disp(dev
);
448 struct nv50_mast
*mast
= nv50_mast(dev
);
449 u32
*push
= evo_wait(mast
, 8);
451 nouveau_bo_wr32(disp
->sync
, EVO_MAST_NTFY
, 0x00000000);
452 evo_mthd(push
, 0x0084, 1);
453 evo_data(push
, 0x80000000 | EVO_MAST_NTFY
);
454 evo_mthd(push
, 0x0080, 2);
455 evo_data(push
, 0x00000000);
456 evo_data(push
, 0x00000000);
457 evo_kick(push
, mast
);
458 if (nv_wait_cb(device
, evo_sync_wait
, disp
->sync
))
465 /******************************************************************************
466 * Page flipping channel
467 *****************************************************************************/
469 nv50_display_crtc_sema(struct drm_device
*dev
, int crtc
)
471 return nv50_disp(dev
)->sync
;
474 struct nv50_display_flip
{
475 struct nv50_disp
*disp
;
476 struct nv50_sync
*chan
;
480 nv50_display_flip_wait(void *data
)
482 struct nv50_display_flip
*flip
= data
;
483 if (nouveau_bo_rd32(flip
->disp
->sync
, flip
->chan
->addr
/ 4) ==
491 nv50_display_flip_stop(struct drm_crtc
*crtc
)
493 struct nouveau_device
*device
= nouveau_dev(crtc
->dev
);
494 struct nv50_display_flip flip
= {
495 .disp
= nv50_disp(crtc
->dev
),
496 .chan
= nv50_sync(crtc
),
500 push
= evo_wait(flip
.chan
, 8);
502 evo_mthd(push
, 0x0084, 1);
503 evo_data(push
, 0x00000000);
504 evo_mthd(push
, 0x0094, 1);
505 evo_data(push
, 0x00000000);
506 evo_mthd(push
, 0x00c0, 1);
507 evo_data(push
, 0x00000000);
508 evo_mthd(push
, 0x0080, 1);
509 evo_data(push
, 0x00000000);
510 evo_kick(push
, flip
.chan
);
513 nv_wait_cb(device
, nv50_display_flip_wait
, &flip
);
517 nv50_display_flip_next(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
518 struct nouveau_channel
*chan
, u32 swap_interval
)
520 struct nouveau_framebuffer
*nv_fb
= nouveau_framebuffer(fb
);
521 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
522 struct nv50_head
*head
= nv50_head(crtc
);
523 struct nv50_sync
*sync
= nv50_sync(crtc
);
528 if (swap_interval
== 0)
529 swap_interval
|= 0x100;
533 push
= evo_wait(sync
, 128);
534 if (unlikely(push
== NULL
))
537 if (chan
&& nv_mclass(chan
->object
) < NV84_CHANNEL_IND_CLASS
) {
538 ret
= RING_SPACE(chan
, 8);
542 BEGIN_NV04(chan
, 0, NV11_SUBCHAN_DMA_SEMAPHORE
, 2);
543 OUT_RING (chan
, NvEvoSema0
+ nv_crtc
->index
);
544 OUT_RING (chan
, sync
->addr
^ 0x10);
545 BEGIN_NV04(chan
, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE
, 1);
546 OUT_RING (chan
, sync
->data
+ 1);
547 BEGIN_NV04(chan
, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET
, 2);
548 OUT_RING (chan
, sync
->addr
);
549 OUT_RING (chan
, sync
->data
);
551 if (chan
&& nv_mclass(chan
->object
) < NVC0_CHANNEL_IND_CLASS
) {
552 u64 addr
= nv84_fence_crtc(chan
, nv_crtc
->index
) + sync
->addr
;
553 ret
= RING_SPACE(chan
, 12);
557 BEGIN_NV04(chan
, 0, NV11_SUBCHAN_DMA_SEMAPHORE
, 1);
558 OUT_RING (chan
, chan
->vram
);
559 BEGIN_NV04(chan
, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH
, 4);
560 OUT_RING (chan
, upper_32_bits(addr
^ 0x10));
561 OUT_RING (chan
, lower_32_bits(addr
^ 0x10));
562 OUT_RING (chan
, sync
->data
+ 1);
563 OUT_RING (chan
, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG
);
564 BEGIN_NV04(chan
, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH
, 4);
565 OUT_RING (chan
, upper_32_bits(addr
));
566 OUT_RING (chan
, lower_32_bits(addr
));
567 OUT_RING (chan
, sync
->data
);
568 OUT_RING (chan
, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL
);
571 u64 addr
= nv84_fence_crtc(chan
, nv_crtc
->index
) + sync
->addr
;
572 ret
= RING_SPACE(chan
, 10);
576 BEGIN_NVC0(chan
, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH
, 4);
577 OUT_RING (chan
, upper_32_bits(addr
^ 0x10));
578 OUT_RING (chan
, lower_32_bits(addr
^ 0x10));
579 OUT_RING (chan
, sync
->data
+ 1);
580 OUT_RING (chan
, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG
|
581 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD
);
582 BEGIN_NVC0(chan
, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH
, 4);
583 OUT_RING (chan
, upper_32_bits(addr
));
584 OUT_RING (chan
, lower_32_bits(addr
));
585 OUT_RING (chan
, sync
->data
);
586 OUT_RING (chan
, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL
|
587 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD
);
597 evo_mthd(push
, 0x0100, 1);
598 evo_data(push
, 0xfffe0000);
599 evo_mthd(push
, 0x0084, 1);
600 evo_data(push
, swap_interval
);
601 if (!(swap_interval
& 0x00000100)) {
602 evo_mthd(push
, 0x00e0, 1);
603 evo_data(push
, 0x40000000);
605 evo_mthd(push
, 0x0088, 4);
606 evo_data(push
, sync
->addr
);
607 evo_data(push
, sync
->data
++);
608 evo_data(push
, sync
->data
);
609 evo_data(push
, NvEvoSync
);
610 evo_mthd(push
, 0x00a0, 2);
611 evo_data(push
, 0x00000000);
612 evo_data(push
, 0x00000000);
613 evo_mthd(push
, 0x00c0, 1);
614 evo_data(push
, nv_fb
->r_dma
);
615 evo_mthd(push
, 0x0110, 2);
616 evo_data(push
, 0x00000000);
617 evo_data(push
, 0x00000000);
618 if (nv50_vers(sync
) < NVD0_DISP_SYNC_CLASS
) {
619 evo_mthd(push
, 0x0800, 5);
620 evo_data(push
, nv_fb
->nvbo
->bo
.offset
>> 8);
622 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
623 evo_data(push
, nv_fb
->r_pitch
);
624 evo_data(push
, nv_fb
->r_format
);
626 evo_mthd(push
, 0x0400, 5);
627 evo_data(push
, nv_fb
->nvbo
->bo
.offset
>> 8);
629 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
630 evo_data(push
, nv_fb
->r_pitch
);
631 evo_data(push
, nv_fb
->r_format
);
633 evo_mthd(push
, 0x0080, 1);
634 evo_data(push
, 0x00000000);
635 evo_kick(push
, sync
);
637 nouveau_bo_ref(nv_fb
->nvbo
, &head
->image
);
641 /******************************************************************************
643 *****************************************************************************/
645 nv50_crtc_set_dither(struct nouveau_crtc
*nv_crtc
, bool update
)
647 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
648 struct nouveau_connector
*nv_connector
;
649 struct drm_connector
*connector
;
650 u32
*push
, mode
= 0x00;
652 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
653 connector
= &nv_connector
->base
;
654 if (nv_connector
->dithering_mode
== DITHERING_MODE_AUTO
) {
655 if (nv_crtc
->base
.primary
->fb
->depth
> connector
->display_info
.bpc
* 3)
656 mode
= DITHERING_MODE_DYNAMIC2X2
;
658 mode
= nv_connector
->dithering_mode
;
661 if (nv_connector
->dithering_depth
== DITHERING_DEPTH_AUTO
) {
662 if (connector
->display_info
.bpc
>= 8)
663 mode
|= DITHERING_DEPTH_8BPC
;
665 mode
|= nv_connector
->dithering_depth
;
668 push
= evo_wait(mast
, 4);
670 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
671 evo_mthd(push
, 0x08a0 + (nv_crtc
->index
* 0x0400), 1);
672 evo_data(push
, mode
);
674 if (nv50_vers(mast
) < NVE0_DISP_MAST_CLASS
) {
675 evo_mthd(push
, 0x0490 + (nv_crtc
->index
* 0x0300), 1);
676 evo_data(push
, mode
);
678 evo_mthd(push
, 0x04a0 + (nv_crtc
->index
* 0x0300), 1);
679 evo_data(push
, mode
);
683 evo_mthd(push
, 0x0080, 1);
684 evo_data(push
, 0x00000000);
686 evo_kick(push
, mast
);
693 nv50_crtc_set_scale(struct nouveau_crtc
*nv_crtc
, bool update
)
695 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
696 struct drm_display_mode
*omode
, *umode
= &nv_crtc
->base
.mode
;
697 struct drm_crtc
*crtc
= &nv_crtc
->base
;
698 struct nouveau_connector
*nv_connector
;
699 int mode
= DRM_MODE_SCALE_NONE
;
702 /* start off at the resolution we programmed the crtc for, this
703 * effectively handles NONE/FULL scaling
705 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
706 if (nv_connector
&& nv_connector
->native_mode
)
707 mode
= nv_connector
->scaling_mode
;
709 if (mode
!= DRM_MODE_SCALE_NONE
)
710 omode
= nv_connector
->native_mode
;
714 oX
= omode
->hdisplay
;
715 oY
= omode
->vdisplay
;
716 if (omode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
719 /* add overscan compensation if necessary, will keep the aspect
720 * ratio the same as the backend mode unless overridden by the
721 * user setting both hborder and vborder properties.
723 if (nv_connector
&& ( nv_connector
->underscan
== UNDERSCAN_ON
||
724 (nv_connector
->underscan
== UNDERSCAN_AUTO
&&
725 nv_connector
->edid
&&
726 drm_detect_hdmi_monitor(nv_connector
->edid
)))) {
727 u32 bX
= nv_connector
->underscan_hborder
;
728 u32 bY
= nv_connector
->underscan_vborder
;
729 u32 aspect
= (oY
<< 19) / oX
;
733 if (bY
) oY
-= (bY
* 2);
734 else oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
736 oX
-= (oX
>> 4) + 32;
737 if (bY
) oY
-= (bY
* 2);
738 else oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
742 /* handle CENTER/ASPECT scaling, taking into account the areas
743 * removed already for overscan compensation
746 case DRM_MODE_SCALE_CENTER
:
747 oX
= min((u32
)umode
->hdisplay
, oX
);
748 oY
= min((u32
)umode
->vdisplay
, oY
);
750 case DRM_MODE_SCALE_ASPECT
:
752 u32 aspect
= (umode
->hdisplay
<< 19) / umode
->vdisplay
;
753 oX
= ((oY
* aspect
) + (aspect
/ 2)) >> 19;
755 u32 aspect
= (umode
->vdisplay
<< 19) / umode
->hdisplay
;
756 oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
763 push
= evo_wait(mast
, 8);
765 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
766 /*XXX: SCALE_CTRL_ACTIVE??? */
767 evo_mthd(push
, 0x08d8 + (nv_crtc
->index
* 0x400), 2);
768 evo_data(push
, (oY
<< 16) | oX
);
769 evo_data(push
, (oY
<< 16) | oX
);
770 evo_mthd(push
, 0x08a4 + (nv_crtc
->index
* 0x400), 1);
771 evo_data(push
, 0x00000000);
772 evo_mthd(push
, 0x08c8 + (nv_crtc
->index
* 0x400), 1);
773 evo_data(push
, umode
->vdisplay
<< 16 | umode
->hdisplay
);
775 evo_mthd(push
, 0x04c0 + (nv_crtc
->index
* 0x300), 3);
776 evo_data(push
, (oY
<< 16) | oX
);
777 evo_data(push
, (oY
<< 16) | oX
);
778 evo_data(push
, (oY
<< 16) | oX
);
779 evo_mthd(push
, 0x0494 + (nv_crtc
->index
* 0x300), 1);
780 evo_data(push
, 0x00000000);
781 evo_mthd(push
, 0x04b8 + (nv_crtc
->index
* 0x300), 1);
782 evo_data(push
, umode
->vdisplay
<< 16 | umode
->hdisplay
);
785 evo_kick(push
, mast
);
788 nv50_display_flip_stop(crtc
);
789 nv50_display_flip_next(crtc
, crtc
->primary
->fb
,
798 nv50_crtc_set_color_vibrance(struct nouveau_crtc
*nv_crtc
, bool update
)
800 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
804 adj
= (nv_crtc
->color_vibrance
> 0) ? 50 : 0;
805 vib
= ((nv_crtc
->color_vibrance
* 2047 + adj
) / 100) & 0xfff;
806 hue
= ((nv_crtc
->vibrant_hue
* 2047) / 100) & 0xfff;
808 push
= evo_wait(mast
, 16);
810 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
811 evo_mthd(push
, 0x08a8 + (nv_crtc
->index
* 0x400), 1);
812 evo_data(push
, (hue
<< 20) | (vib
<< 8));
814 evo_mthd(push
, 0x0498 + (nv_crtc
->index
* 0x300), 1);
815 evo_data(push
, (hue
<< 20) | (vib
<< 8));
819 evo_mthd(push
, 0x0080, 1);
820 evo_data(push
, 0x00000000);
822 evo_kick(push
, mast
);
829 nv50_crtc_set_image(struct nouveau_crtc
*nv_crtc
, struct drm_framebuffer
*fb
,
830 int x
, int y
, bool update
)
832 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(fb
);
833 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
836 push
= evo_wait(mast
, 16);
838 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
839 evo_mthd(push
, 0x0860 + (nv_crtc
->index
* 0x400), 1);
840 evo_data(push
, nvfb
->nvbo
->bo
.offset
>> 8);
841 evo_mthd(push
, 0x0868 + (nv_crtc
->index
* 0x400), 3);
842 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
843 evo_data(push
, nvfb
->r_pitch
);
844 evo_data(push
, nvfb
->r_format
);
845 evo_mthd(push
, 0x08c0 + (nv_crtc
->index
* 0x400), 1);
846 evo_data(push
, (y
<< 16) | x
);
847 if (nv50_vers(mast
) > NV50_DISP_MAST_CLASS
) {
848 evo_mthd(push
, 0x0874 + (nv_crtc
->index
* 0x400), 1);
849 evo_data(push
, nvfb
->r_dma
);
852 evo_mthd(push
, 0x0460 + (nv_crtc
->index
* 0x300), 1);
853 evo_data(push
, nvfb
->nvbo
->bo
.offset
>> 8);
854 evo_mthd(push
, 0x0468 + (nv_crtc
->index
* 0x300), 4);
855 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
856 evo_data(push
, nvfb
->r_pitch
);
857 evo_data(push
, nvfb
->r_format
);
858 evo_data(push
, nvfb
->r_dma
);
859 evo_mthd(push
, 0x04b0 + (nv_crtc
->index
* 0x300), 1);
860 evo_data(push
, (y
<< 16) | x
);
864 evo_mthd(push
, 0x0080, 1);
865 evo_data(push
, 0x00000000);
867 evo_kick(push
, mast
);
870 nv_crtc
->fb
.tile_flags
= nvfb
->r_dma
;
875 nv50_crtc_cursor_show(struct nouveau_crtc
*nv_crtc
)
877 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
878 u32
*push
= evo_wait(mast
, 16);
880 if (nv50_vers(mast
) < NV84_DISP_MAST_CLASS
) {
881 evo_mthd(push
, 0x0880 + (nv_crtc
->index
* 0x400), 2);
882 evo_data(push
, 0x85000000);
883 evo_data(push
, nv_crtc
->cursor
.nvbo
->bo
.offset
>> 8);
885 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
886 evo_mthd(push
, 0x0880 + (nv_crtc
->index
* 0x400), 2);
887 evo_data(push
, 0x85000000);
888 evo_data(push
, nv_crtc
->cursor
.nvbo
->bo
.offset
>> 8);
889 evo_mthd(push
, 0x089c + (nv_crtc
->index
* 0x400), 1);
890 evo_data(push
, NvEvoVRAM
);
892 evo_mthd(push
, 0x0480 + (nv_crtc
->index
* 0x300), 2);
893 evo_data(push
, 0x85000000);
894 evo_data(push
, nv_crtc
->cursor
.nvbo
->bo
.offset
>> 8);
895 evo_mthd(push
, 0x048c + (nv_crtc
->index
* 0x300), 1);
896 evo_data(push
, NvEvoVRAM
);
898 evo_kick(push
, mast
);
903 nv50_crtc_cursor_hide(struct nouveau_crtc
*nv_crtc
)
905 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
906 u32
*push
= evo_wait(mast
, 16);
908 if (nv50_vers(mast
) < NV84_DISP_MAST_CLASS
) {
909 evo_mthd(push
, 0x0880 + (nv_crtc
->index
* 0x400), 1);
910 evo_data(push
, 0x05000000);
912 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
913 evo_mthd(push
, 0x0880 + (nv_crtc
->index
* 0x400), 1);
914 evo_data(push
, 0x05000000);
915 evo_mthd(push
, 0x089c + (nv_crtc
->index
* 0x400), 1);
916 evo_data(push
, 0x00000000);
918 evo_mthd(push
, 0x0480 + (nv_crtc
->index
* 0x300), 1);
919 evo_data(push
, 0x05000000);
920 evo_mthd(push
, 0x048c + (nv_crtc
->index
* 0x300), 1);
921 evo_data(push
, 0x00000000);
923 evo_kick(push
, mast
);
928 nv50_crtc_cursor_show_hide(struct nouveau_crtc
*nv_crtc
, bool show
, bool update
)
930 struct nv50_mast
*mast
= nv50_mast(nv_crtc
->base
.dev
);
933 nv50_crtc_cursor_show(nv_crtc
);
935 nv50_crtc_cursor_hide(nv_crtc
);
938 u32
*push
= evo_wait(mast
, 2);
940 evo_mthd(push
, 0x0080, 1);
941 evo_data(push
, 0x00000000);
942 evo_kick(push
, mast
);
948 nv50_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
953 nv50_crtc_prepare(struct drm_crtc
*crtc
)
955 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
956 struct nv50_mast
*mast
= nv50_mast(crtc
->dev
);
959 nv50_display_flip_stop(crtc
);
961 push
= evo_wait(mast
, 6);
963 if (nv50_vers(mast
) < NV84_DISP_MAST_CLASS
) {
964 evo_mthd(push
, 0x0874 + (nv_crtc
->index
* 0x400), 1);
965 evo_data(push
, 0x00000000);
966 evo_mthd(push
, 0x0840 + (nv_crtc
->index
* 0x400), 1);
967 evo_data(push
, 0x40000000);
969 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
970 evo_mthd(push
, 0x0874 + (nv_crtc
->index
* 0x400), 1);
971 evo_data(push
, 0x00000000);
972 evo_mthd(push
, 0x0840 + (nv_crtc
->index
* 0x400), 1);
973 evo_data(push
, 0x40000000);
974 evo_mthd(push
, 0x085c + (nv_crtc
->index
* 0x400), 1);
975 evo_data(push
, 0x00000000);
977 evo_mthd(push
, 0x0474 + (nv_crtc
->index
* 0x300), 1);
978 evo_data(push
, 0x00000000);
979 evo_mthd(push
, 0x0440 + (nv_crtc
->index
* 0x300), 1);
980 evo_data(push
, 0x03000000);
981 evo_mthd(push
, 0x045c + (nv_crtc
->index
* 0x300), 1);
982 evo_data(push
, 0x00000000);
985 evo_kick(push
, mast
);
988 nv50_crtc_cursor_show_hide(nv_crtc
, false, false);
992 nv50_crtc_commit(struct drm_crtc
*crtc
)
994 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
995 struct nv50_mast
*mast
= nv50_mast(crtc
->dev
);
998 push
= evo_wait(mast
, 32);
1000 if (nv50_vers(mast
) < NV84_DISP_MAST_CLASS
) {
1001 evo_mthd(push
, 0x0874 + (nv_crtc
->index
* 0x400), 1);
1002 evo_data(push
, NvEvoVRAM_LP
);
1003 evo_mthd(push
, 0x0840 + (nv_crtc
->index
* 0x400), 2);
1004 evo_data(push
, 0xc0000000);
1005 evo_data(push
, nv_crtc
->lut
.nvbo
->bo
.offset
>> 8);
1007 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
1008 evo_mthd(push
, 0x0874 + (nv_crtc
->index
* 0x400), 1);
1009 evo_data(push
, nv_crtc
->fb
.tile_flags
);
1010 evo_mthd(push
, 0x0840 + (nv_crtc
->index
* 0x400), 2);
1011 evo_data(push
, 0xc0000000);
1012 evo_data(push
, nv_crtc
->lut
.nvbo
->bo
.offset
>> 8);
1013 evo_mthd(push
, 0x085c + (nv_crtc
->index
* 0x400), 1);
1014 evo_data(push
, NvEvoVRAM
);
1016 evo_mthd(push
, 0x0474 + (nv_crtc
->index
* 0x300), 1);
1017 evo_data(push
, nv_crtc
->fb
.tile_flags
);
1018 evo_mthd(push
, 0x0440 + (nv_crtc
->index
* 0x300), 4);
1019 evo_data(push
, 0x83000000);
1020 evo_data(push
, nv_crtc
->lut
.nvbo
->bo
.offset
>> 8);
1021 evo_data(push
, 0x00000000);
1022 evo_data(push
, 0x00000000);
1023 evo_mthd(push
, 0x045c + (nv_crtc
->index
* 0x300), 1);
1024 evo_data(push
, NvEvoVRAM
);
1025 evo_mthd(push
, 0x0430 + (nv_crtc
->index
* 0x300), 1);
1026 evo_data(push
, 0xffffff00);
1029 evo_kick(push
, mast
);
1032 nv50_crtc_cursor_show_hide(nv_crtc
, nv_crtc
->cursor
.visible
, true);
1033 nv50_display_flip_next(crtc
, crtc
->primary
->fb
, NULL
, 1);
1037 nv50_crtc_mode_fixup(struct drm_crtc
*crtc
, const struct drm_display_mode
*mode
,
1038 struct drm_display_mode
*adjusted_mode
)
1040 drm_mode_set_crtcinfo(adjusted_mode
, CRTC_INTERLACE_HALVE_V
);
1045 nv50_crtc_swap_fbs(struct drm_crtc
*crtc
, struct drm_framebuffer
*old_fb
)
1047 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(crtc
->primary
->fb
);
1048 struct nv50_head
*head
= nv50_head(crtc
);
1051 ret
= nouveau_bo_pin(nvfb
->nvbo
, TTM_PL_FLAG_VRAM
);
1054 nouveau_bo_unpin(head
->image
);
1055 nouveau_bo_ref(nvfb
->nvbo
, &head
->image
);
1062 nv50_crtc_mode_set(struct drm_crtc
*crtc
, struct drm_display_mode
*umode
,
1063 struct drm_display_mode
*mode
, int x
, int y
,
1064 struct drm_framebuffer
*old_fb
)
1066 struct nv50_mast
*mast
= nv50_mast(crtc
->dev
);
1067 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1068 struct nouveau_connector
*nv_connector
;
1069 u32 ilace
= (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ? 2 : 1;
1070 u32 vscan
= (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) ? 2 : 1;
1071 u32 hactive
, hsynce
, hbackp
, hfrontp
, hblanke
, hblanks
;
1072 u32 vactive
, vsynce
, vbackp
, vfrontp
, vblanke
, vblanks
;
1073 u32 vblan2e
= 0, vblan2s
= 1;
1077 hactive
= mode
->htotal
;
1078 hsynce
= mode
->hsync_end
- mode
->hsync_start
- 1;
1079 hbackp
= mode
->htotal
- mode
->hsync_end
;
1080 hblanke
= hsynce
+ hbackp
;
1081 hfrontp
= mode
->hsync_start
- mode
->hdisplay
;
1082 hblanks
= mode
->htotal
- hfrontp
- 1;
1084 vactive
= mode
->vtotal
* vscan
/ ilace
;
1085 vsynce
= ((mode
->vsync_end
- mode
->vsync_start
) * vscan
/ ilace
) - 1;
1086 vbackp
= (mode
->vtotal
- mode
->vsync_end
) * vscan
/ ilace
;
1087 vblanke
= vsynce
+ vbackp
;
1088 vfrontp
= (mode
->vsync_start
- mode
->vdisplay
) * vscan
/ ilace
;
1089 vblanks
= vactive
- vfrontp
- 1;
1090 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
1091 vblan2e
= vactive
+ vsynce
+ vbackp
;
1092 vblan2s
= vblan2e
+ (mode
->vdisplay
* vscan
/ ilace
);
1093 vactive
= (vactive
* 2) + 1;
1096 ret
= nv50_crtc_swap_fbs(crtc
, old_fb
);
1100 push
= evo_wait(mast
, 64);
1102 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
1103 evo_mthd(push
, 0x0804 + (nv_crtc
->index
* 0x400), 2);
1104 evo_data(push
, 0x00800000 | mode
->clock
);
1105 evo_data(push
, (ilace
== 2) ? 2 : 0);
1106 evo_mthd(push
, 0x0810 + (nv_crtc
->index
* 0x400), 6);
1107 evo_data(push
, 0x00000000);
1108 evo_data(push
, (vactive
<< 16) | hactive
);
1109 evo_data(push
, ( vsynce
<< 16) | hsynce
);
1110 evo_data(push
, (vblanke
<< 16) | hblanke
);
1111 evo_data(push
, (vblanks
<< 16) | hblanks
);
1112 evo_data(push
, (vblan2e
<< 16) | vblan2s
);
1113 evo_mthd(push
, 0x082c + (nv_crtc
->index
* 0x400), 1);
1114 evo_data(push
, 0x00000000);
1115 evo_mthd(push
, 0x0900 + (nv_crtc
->index
* 0x400), 2);
1116 evo_data(push
, 0x00000311);
1117 evo_data(push
, 0x00000100);
1119 evo_mthd(push
, 0x0410 + (nv_crtc
->index
* 0x300), 6);
1120 evo_data(push
, 0x00000000);
1121 evo_data(push
, (vactive
<< 16) | hactive
);
1122 evo_data(push
, ( vsynce
<< 16) | hsynce
);
1123 evo_data(push
, (vblanke
<< 16) | hblanke
);
1124 evo_data(push
, (vblanks
<< 16) | hblanks
);
1125 evo_data(push
, (vblan2e
<< 16) | vblan2s
);
1126 evo_mthd(push
, 0x042c + (nv_crtc
->index
* 0x300), 1);
1127 evo_data(push
, 0x00000000); /* ??? */
1128 evo_mthd(push
, 0x0450 + (nv_crtc
->index
* 0x300), 3);
1129 evo_data(push
, mode
->clock
* 1000);
1130 evo_data(push
, 0x00200000); /* ??? */
1131 evo_data(push
, mode
->clock
* 1000);
1132 evo_mthd(push
, 0x04d0 + (nv_crtc
->index
* 0x300), 2);
1133 evo_data(push
, 0x00000311);
1134 evo_data(push
, 0x00000100);
1137 evo_kick(push
, mast
);
1140 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
1141 nv50_crtc_set_dither(nv_crtc
, false);
1142 nv50_crtc_set_scale(nv_crtc
, false);
1143 nv50_crtc_set_color_vibrance(nv_crtc
, false);
1144 nv50_crtc_set_image(nv_crtc
, crtc
->primary
->fb
, x
, y
, false);
1149 nv50_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1150 struct drm_framebuffer
*old_fb
)
1152 struct nouveau_drm
*drm
= nouveau_drm(crtc
->dev
);
1153 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1156 if (!crtc
->primary
->fb
) {
1157 NV_DEBUG(drm
, "No FB bound\n");
1161 ret
= nv50_crtc_swap_fbs(crtc
, old_fb
);
1165 nv50_display_flip_stop(crtc
);
1166 nv50_crtc_set_image(nv_crtc
, crtc
->primary
->fb
, x
, y
, true);
1167 nv50_display_flip_next(crtc
, crtc
->primary
->fb
, NULL
, 1);
1172 nv50_crtc_mode_set_base_atomic(struct drm_crtc
*crtc
,
1173 struct drm_framebuffer
*fb
, int x
, int y
,
1174 enum mode_set_atomic state
)
1176 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1177 nv50_display_flip_stop(crtc
);
1178 nv50_crtc_set_image(nv_crtc
, fb
, x
, y
, true);
1183 nv50_crtc_lut_load(struct drm_crtc
*crtc
)
1185 struct nv50_disp
*disp
= nv50_disp(crtc
->dev
);
1186 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1187 void __iomem
*lut
= nvbo_kmap_obj_iovirtual(nv_crtc
->lut
.nvbo
);
1190 for (i
= 0; i
< 256; i
++) {
1191 u16 r
= nv_crtc
->lut
.r
[i
] >> 2;
1192 u16 g
= nv_crtc
->lut
.g
[i
] >> 2;
1193 u16 b
= nv_crtc
->lut
.b
[i
] >> 2;
1195 if (nv_mclass(disp
->core
) < NVD0_DISP_CLASS
) {
1196 writew(r
+ 0x0000, lut
+ (i
* 0x08) + 0);
1197 writew(g
+ 0x0000, lut
+ (i
* 0x08) + 2);
1198 writew(b
+ 0x0000, lut
+ (i
* 0x08) + 4);
1200 writew(r
+ 0x6000, lut
+ (i
* 0x20) + 0);
1201 writew(g
+ 0x6000, lut
+ (i
* 0x20) + 2);
1202 writew(b
+ 0x6000, lut
+ (i
* 0x20) + 4);
1208 nv50_crtc_disable(struct drm_crtc
*crtc
)
1210 struct nv50_head
*head
= nv50_head(crtc
);
1211 evo_sync(crtc
->dev
);
1213 nouveau_bo_unpin(head
->image
);
1214 nouveau_bo_ref(NULL
, &head
->image
);
1218 nv50_crtc_cursor_set(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
1219 uint32_t handle
, uint32_t width
, uint32_t height
)
1221 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1222 struct drm_device
*dev
= crtc
->dev
;
1223 struct drm_gem_object
*gem
;
1224 struct nouveau_bo
*nvbo
;
1225 bool visible
= (handle
!= 0);
1229 if (width
!= 64 || height
!= 64)
1232 gem
= drm_gem_object_lookup(dev
, file_priv
, handle
);
1235 nvbo
= nouveau_gem_object(gem
);
1237 ret
= nouveau_bo_map(nvbo
);
1239 for (i
= 0; i
< 64 * 64; i
++) {
1240 u32 v
= nouveau_bo_rd32(nvbo
, i
);
1241 nouveau_bo_wr32(nv_crtc
->cursor
.nvbo
, i
, v
);
1243 nouveau_bo_unmap(nvbo
);
1246 drm_gem_object_unreference_unlocked(gem
);
1249 if (visible
!= nv_crtc
->cursor
.visible
) {
1250 nv50_crtc_cursor_show_hide(nv_crtc
, visible
, true);
1251 nv_crtc
->cursor
.visible
= visible
;
1258 nv50_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1260 struct nv50_curs
*curs
= nv50_curs(crtc
);
1261 struct nv50_chan
*chan
= nv50_chan(curs
);
1262 nv_wo32(chan
->user
, 0x0084, (y
<< 16) | (x
& 0xffff));
1263 nv_wo32(chan
->user
, 0x0080, 0x00000000);
1268 nv50_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
1269 uint32_t start
, uint32_t size
)
1271 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1272 u32 end
= min_t(u32
, start
+ size
, 256);
1275 for (i
= start
; i
< end
; i
++) {
1276 nv_crtc
->lut
.r
[i
] = r
[i
];
1277 nv_crtc
->lut
.g
[i
] = g
[i
];
1278 nv_crtc
->lut
.b
[i
] = b
[i
];
1281 nv50_crtc_lut_load(crtc
);
1285 nv50_crtc_destroy(struct drm_crtc
*crtc
)
1287 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
1288 struct nv50_disp
*disp
= nv50_disp(crtc
->dev
);
1289 struct nv50_head
*head
= nv50_head(crtc
);
1291 nv50_dmac_destroy(disp
->core
, &head
->ovly
.base
);
1292 nv50_pioc_destroy(disp
->core
, &head
->oimm
.base
);
1293 nv50_dmac_destroy(disp
->core
, &head
->sync
.base
);
1294 nv50_pioc_destroy(disp
->core
, &head
->curs
.base
);
1296 /*XXX: this shouldn't be necessary, but the core doesn't call
1297 * disconnect() during the cleanup paths
1300 nouveau_bo_unpin(head
->image
);
1301 nouveau_bo_ref(NULL
, &head
->image
);
1303 nouveau_bo_unmap(nv_crtc
->cursor
.nvbo
);
1304 if (nv_crtc
->cursor
.nvbo
)
1305 nouveau_bo_unpin(nv_crtc
->cursor
.nvbo
);
1306 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
1308 nouveau_bo_unmap(nv_crtc
->lut
.nvbo
);
1309 if (nv_crtc
->lut
.nvbo
)
1310 nouveau_bo_unpin(nv_crtc
->lut
.nvbo
);
1311 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
1313 drm_crtc_cleanup(crtc
);
1317 static const struct drm_crtc_helper_funcs nv50_crtc_hfunc
= {
1318 .dpms
= nv50_crtc_dpms
,
1319 .prepare
= nv50_crtc_prepare
,
1320 .commit
= nv50_crtc_commit
,
1321 .mode_fixup
= nv50_crtc_mode_fixup
,
1322 .mode_set
= nv50_crtc_mode_set
,
1323 .mode_set_base
= nv50_crtc_mode_set_base
,
1324 .mode_set_base_atomic
= nv50_crtc_mode_set_base_atomic
,
1325 .load_lut
= nv50_crtc_lut_load
,
1326 .disable
= nv50_crtc_disable
,
1329 static const struct drm_crtc_funcs nv50_crtc_func
= {
1330 .cursor_set
= nv50_crtc_cursor_set
,
1331 .cursor_move
= nv50_crtc_cursor_move
,
1332 .gamma_set
= nv50_crtc_gamma_set
,
1333 .set_config
= nouveau_crtc_set_config
,
1334 .destroy
= nv50_crtc_destroy
,
1335 .page_flip
= nouveau_crtc_page_flip
,
1339 nv50_cursor_set_pos(struct nouveau_crtc
*nv_crtc
, int x
, int y
)
1344 nv50_cursor_set_offset(struct nouveau_crtc
*nv_crtc
, uint32_t offset
)
1349 nv50_crtc_create(struct drm_device
*dev
, struct nouveau_object
*core
, int index
)
1351 struct nv50_disp
*disp
= nv50_disp(dev
);
1352 struct nv50_head
*head
;
1353 struct drm_crtc
*crtc
;
1356 head
= kzalloc(sizeof(*head
), GFP_KERNEL
);
1360 head
->base
.index
= index
;
1361 head
->base
.set_dither
= nv50_crtc_set_dither
;
1362 head
->base
.set_scale
= nv50_crtc_set_scale
;
1363 head
->base
.set_color_vibrance
= nv50_crtc_set_color_vibrance
;
1364 head
->base
.color_vibrance
= 50;
1365 head
->base
.vibrant_hue
= 0;
1366 head
->base
.cursor
.set_offset
= nv50_cursor_set_offset
;
1367 head
->base
.cursor
.set_pos
= nv50_cursor_set_pos
;
1368 for (i
= 0; i
< 256; i
++) {
1369 head
->base
.lut
.r
[i
] = i
<< 8;
1370 head
->base
.lut
.g
[i
] = i
<< 8;
1371 head
->base
.lut
.b
[i
] = i
<< 8;
1374 crtc
= &head
->base
.base
;
1375 drm_crtc_init(dev
, crtc
, &nv50_crtc_func
);
1376 drm_crtc_helper_add(crtc
, &nv50_crtc_hfunc
);
1377 drm_mode_crtc_set_gamma_size(crtc
, 256);
1379 ret
= nouveau_bo_new(dev
, 8192, 0x100, TTM_PL_FLAG_VRAM
,
1380 0, 0x0000, NULL
, &head
->base
.lut
.nvbo
);
1382 ret
= nouveau_bo_pin(head
->base
.lut
.nvbo
, TTM_PL_FLAG_VRAM
);
1384 ret
= nouveau_bo_map(head
->base
.lut
.nvbo
);
1386 nouveau_bo_unpin(head
->base
.lut
.nvbo
);
1389 nouveau_bo_ref(NULL
, &head
->base
.lut
.nvbo
);
1395 nv50_crtc_lut_load(crtc
);
1397 /* allocate cursor resources */
1398 ret
= nv50_pioc_create(disp
->core
, NV50_DISP_CURS_CLASS
, index
,
1399 &(struct nv50_display_curs_class
) {
1401 }, sizeof(struct nv50_display_curs_class
),
1406 ret
= nouveau_bo_new(dev
, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM
,
1407 0, 0x0000, NULL
, &head
->base
.cursor
.nvbo
);
1409 ret
= nouveau_bo_pin(head
->base
.cursor
.nvbo
, TTM_PL_FLAG_VRAM
);
1411 ret
= nouveau_bo_map(head
->base
.cursor
.nvbo
);
1413 nouveau_bo_unpin(head
->base
.lut
.nvbo
);
1416 nouveau_bo_ref(NULL
, &head
->base
.cursor
.nvbo
);
1422 /* allocate page flip / sync resources */
1423 ret
= nv50_dmac_create(disp
->core
, NV50_DISP_SYNC_CLASS
, index
,
1424 &(struct nv50_display_sync_class
) {
1425 .pushbuf
= EVO_PUSH_HANDLE(SYNC
, index
),
1427 }, sizeof(struct nv50_display_sync_class
),
1428 disp
->sync
->bo
.offset
, &head
->sync
.base
);
1432 head
->sync
.addr
= EVO_FLIP_SEM0(index
);
1433 head
->sync
.data
= 0x00000000;
1435 /* allocate overlay resources */
1436 ret
= nv50_pioc_create(disp
->core
, NV50_DISP_OIMM_CLASS
, index
,
1437 &(struct nv50_display_oimm_class
) {
1439 }, sizeof(struct nv50_display_oimm_class
),
1444 ret
= nv50_dmac_create(disp
->core
, NV50_DISP_OVLY_CLASS
, index
,
1445 &(struct nv50_display_ovly_class
) {
1446 .pushbuf
= EVO_PUSH_HANDLE(OVLY
, index
),
1448 }, sizeof(struct nv50_display_ovly_class
),
1449 disp
->sync
->bo
.offset
, &head
->ovly
.base
);
1455 nv50_crtc_destroy(crtc
);
1459 /******************************************************************************
1461 *****************************************************************************/
1463 nv50_dac_dpms(struct drm_encoder
*encoder
, int mode
)
1465 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1466 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1467 int or = nv_encoder
->or;
1470 dpms_ctrl
= 0x00000000;
1471 if (mode
== DRM_MODE_DPMS_STANDBY
|| mode
== DRM_MODE_DPMS_OFF
)
1472 dpms_ctrl
|= 0x00000001;
1473 if (mode
== DRM_MODE_DPMS_SUSPEND
|| mode
== DRM_MODE_DPMS_OFF
)
1474 dpms_ctrl
|= 0x00000004;
1476 nv_call(disp
->core
, NV50_DISP_DAC_PWR
+ or, dpms_ctrl
);
1480 nv50_dac_mode_fixup(struct drm_encoder
*encoder
,
1481 const struct drm_display_mode
*mode
,
1482 struct drm_display_mode
*adjusted_mode
)
1484 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1485 struct nouveau_connector
*nv_connector
;
1487 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1488 if (nv_connector
&& nv_connector
->native_mode
) {
1489 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
1490 int id
= adjusted_mode
->base
.id
;
1491 *adjusted_mode
= *nv_connector
->native_mode
;
1492 adjusted_mode
->base
.id
= id
;
1500 nv50_dac_commit(struct drm_encoder
*encoder
)
1505 nv50_dac_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
1506 struct drm_display_mode
*adjusted_mode
)
1508 struct nv50_mast
*mast
= nv50_mast(encoder
->dev
);
1509 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1510 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
1513 nv50_dac_dpms(encoder
, DRM_MODE_DPMS_ON
);
1515 push
= evo_wait(mast
, 8);
1517 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
1518 u32 syncs
= 0x00000000;
1520 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
1521 syncs
|= 0x00000001;
1522 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
1523 syncs
|= 0x00000002;
1525 evo_mthd(push
, 0x0400 + (nv_encoder
->or * 0x080), 2);
1526 evo_data(push
, 1 << nv_crtc
->index
);
1527 evo_data(push
, syncs
);
1529 u32 magic
= 0x31ec6000 | (nv_crtc
->index
<< 25);
1530 u32 syncs
= 0x00000001;
1532 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
1533 syncs
|= 0x00000008;
1534 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
1535 syncs
|= 0x00000010;
1537 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
1538 magic
|= 0x00000001;
1540 evo_mthd(push
, 0x0404 + (nv_crtc
->index
* 0x300), 2);
1541 evo_data(push
, syncs
);
1542 evo_data(push
, magic
);
1543 evo_mthd(push
, 0x0180 + (nv_encoder
->or * 0x020), 1);
1544 evo_data(push
, 1 << nv_crtc
->index
);
1547 evo_kick(push
, mast
);
1550 nv_encoder
->crtc
= encoder
->crtc
;
1554 nv50_dac_disconnect(struct drm_encoder
*encoder
)
1556 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1557 struct nv50_mast
*mast
= nv50_mast(encoder
->dev
);
1558 const int or = nv_encoder
->or;
1561 if (nv_encoder
->crtc
) {
1562 nv50_crtc_prepare(nv_encoder
->crtc
);
1564 push
= evo_wait(mast
, 4);
1566 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
1567 evo_mthd(push
, 0x0400 + (or * 0x080), 1);
1568 evo_data(push
, 0x00000000);
1570 evo_mthd(push
, 0x0180 + (or * 0x020), 1);
1571 evo_data(push
, 0x00000000);
1573 evo_kick(push
, mast
);
1577 nv_encoder
->crtc
= NULL
;
1580 static enum drm_connector_status
1581 nv50_dac_detect(struct drm_encoder
*encoder
, struct drm_connector
*connector
)
1583 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1584 int ret
, or = nouveau_encoder(encoder
)->or;
1585 u32 load
= nouveau_drm(encoder
->dev
)->vbios
.dactestval
;
1589 ret
= nv_exec(disp
->core
, NV50_DISP_DAC_LOAD
+ or, &load
, sizeof(load
));
1591 return connector_status_disconnected
;
1593 return connector_status_connected
;
1597 nv50_dac_destroy(struct drm_encoder
*encoder
)
1599 drm_encoder_cleanup(encoder
);
1603 static const struct drm_encoder_helper_funcs nv50_dac_hfunc
= {
1604 .dpms
= nv50_dac_dpms
,
1605 .mode_fixup
= nv50_dac_mode_fixup
,
1606 .prepare
= nv50_dac_disconnect
,
1607 .commit
= nv50_dac_commit
,
1608 .mode_set
= nv50_dac_mode_set
,
1609 .disable
= nv50_dac_disconnect
,
1610 .get_crtc
= nv50_display_crtc_get
,
1611 .detect
= nv50_dac_detect
1614 static const struct drm_encoder_funcs nv50_dac_func
= {
1615 .destroy
= nv50_dac_destroy
,
1619 nv50_dac_create(struct drm_connector
*connector
, struct dcb_output
*dcbe
)
1621 struct nouveau_drm
*drm
= nouveau_drm(connector
->dev
);
1622 struct nouveau_i2c
*i2c
= nouveau_i2c(drm
->device
);
1623 struct nouveau_encoder
*nv_encoder
;
1624 struct drm_encoder
*encoder
;
1625 int type
= DRM_MODE_ENCODER_DAC
;
1627 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
1630 nv_encoder
->dcb
= dcbe
;
1631 nv_encoder
->or = ffs(dcbe
->or) - 1;
1632 nv_encoder
->i2c
= i2c
->find(i2c
, dcbe
->i2c_index
);
1634 encoder
= to_drm_encoder(nv_encoder
);
1635 encoder
->possible_crtcs
= dcbe
->heads
;
1636 encoder
->possible_clones
= 0;
1637 drm_encoder_init(connector
->dev
, encoder
, &nv50_dac_func
, type
);
1638 drm_encoder_helper_add(encoder
, &nv50_dac_hfunc
);
1640 drm_mode_connector_attach_encoder(connector
, encoder
);
1644 /******************************************************************************
1646 *****************************************************************************/
1648 nv50_audio_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
)
1650 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1651 struct nouveau_connector
*nv_connector
;
1652 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1654 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1655 if (!drm_detect_monitor_audio(nv_connector
->edid
))
1658 drm_edid_to_eld(&nv_connector
->base
, nv_connector
->edid
);
1660 nv_exec(disp
->core
, NVA3_DISP_SOR_HDA_ELD
+ nv_encoder
->or,
1661 nv_connector
->base
.eld
,
1662 nv_connector
->base
.eld
[2] * 4);
1666 nv50_audio_disconnect(struct drm_encoder
*encoder
)
1668 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1669 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1671 nv_exec(disp
->core
, NVA3_DISP_SOR_HDA_ELD
+ nv_encoder
->or, NULL
, 0);
1674 /******************************************************************************
1676 *****************************************************************************/
1678 nv50_hdmi_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
)
1680 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1681 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
1682 struct nouveau_connector
*nv_connector
;
1683 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1684 const u32 moff
= (nv_crtc
->index
<< 3) | nv_encoder
->or;
1685 u32 rekey
= 56; /* binary driver, and tegra constant */
1688 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1689 if (!drm_detect_hdmi_monitor(nv_connector
->edid
))
1692 max_ac_packet
= mode
->htotal
- mode
->hdisplay
;
1693 max_ac_packet
-= rekey
;
1694 max_ac_packet
-= 18; /* constant from tegra */
1695 max_ac_packet
/= 32;
1697 nv_call(disp
->core
, NV84_DISP_SOR_HDMI_PWR
+ moff
,
1698 NV84_DISP_SOR_HDMI_PWR_STATE_ON
|
1699 (max_ac_packet
<< 16) | rekey
);
1701 nv50_audio_mode_set(encoder
, mode
);
1705 nv50_hdmi_disconnect(struct drm_encoder
*encoder
, struct nouveau_crtc
*nv_crtc
)
1707 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1708 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1709 const u32 moff
= (nv_crtc
->index
<< 3) | nv_encoder
->or;
1711 nv50_audio_disconnect(encoder
);
1713 nv_call(disp
->core
, NV84_DISP_SOR_HDMI_PWR
+ moff
, 0x00000000);
1716 /******************************************************************************
1718 *****************************************************************************/
1720 nv50_sor_dpms(struct drm_encoder
*encoder
, int mode
)
1722 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1723 struct drm_device
*dev
= encoder
->dev
;
1724 struct nv50_disp
*disp
= nv50_disp(dev
);
1725 struct drm_encoder
*partner
;
1728 nv_encoder
->last_dpms
= mode
;
1730 list_for_each_entry(partner
, &dev
->mode_config
.encoder_list
, head
) {
1731 struct nouveau_encoder
*nv_partner
= nouveau_encoder(partner
);
1733 if (partner
->encoder_type
!= DRM_MODE_ENCODER_TMDS
)
1736 if (nv_partner
!= nv_encoder
&&
1737 nv_partner
->dcb
->or == nv_encoder
->dcb
->or) {
1738 if (nv_partner
->last_dpms
== DRM_MODE_DPMS_ON
)
1744 mthd
= (ffs(nv_encoder
->dcb
->heads
) - 1) << 3;
1745 mthd
|= (ffs(nv_encoder
->dcb
->sorconf
.link
) - 1) << 2;
1746 mthd
|= nv_encoder
->or;
1748 if (nv_encoder
->dcb
->type
== DCB_OUTPUT_DP
) {
1749 nv_call(disp
->core
, NV50_DISP_SOR_PWR
| mthd
, 1);
1750 mthd
|= NV94_DISP_SOR_DP_PWR
;
1752 mthd
|= NV50_DISP_SOR_PWR
;
1755 nv_call(disp
->core
, mthd
, (mode
== DRM_MODE_DPMS_ON
));
1759 nv50_sor_mode_fixup(struct drm_encoder
*encoder
,
1760 const struct drm_display_mode
*mode
,
1761 struct drm_display_mode
*adjusted_mode
)
1763 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1764 struct nouveau_connector
*nv_connector
;
1766 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1767 if (nv_connector
&& nv_connector
->native_mode
) {
1768 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
1769 int id
= adjusted_mode
->base
.id
;
1770 *adjusted_mode
= *nv_connector
->native_mode
;
1771 adjusted_mode
->base
.id
= id
;
1779 nv50_sor_ctrl(struct nouveau_encoder
*nv_encoder
, u32 mask
, u32 data
)
1781 struct nv50_mast
*mast
= nv50_mast(nv_encoder
->base
.base
.dev
);
1782 u32 temp
= (nv_encoder
->ctrl
& ~mask
) | (data
& mask
), *push
;
1783 if (temp
!= nv_encoder
->ctrl
&& (push
= evo_wait(mast
, 2))) {
1784 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
1785 evo_mthd(push
, 0x0600 + (nv_encoder
->or * 0x40), 1);
1786 evo_data(push
, (nv_encoder
->ctrl
= temp
));
1788 evo_mthd(push
, 0x0200 + (nv_encoder
->or * 0x20), 1);
1789 evo_data(push
, (nv_encoder
->ctrl
= temp
));
1791 evo_kick(push
, mast
);
1796 nv50_sor_disconnect(struct drm_encoder
*encoder
)
1798 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1799 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(nv_encoder
->crtc
);
1801 nv_encoder
->last_dpms
= DRM_MODE_DPMS_OFF
;
1802 nv_encoder
->crtc
= NULL
;
1805 nv50_crtc_prepare(&nv_crtc
->base
);
1806 nv50_sor_ctrl(nv_encoder
, 1 << nv_crtc
->index
, 0);
1807 nv50_hdmi_disconnect(&nv_encoder
->base
.base
, nv_crtc
);
1812 nv50_sor_commit(struct drm_encoder
*encoder
)
1817 nv50_sor_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*umode
,
1818 struct drm_display_mode
*mode
)
1820 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
1821 struct nv50_mast
*mast
= nv50_mast(encoder
->dev
);
1822 struct drm_device
*dev
= encoder
->dev
;
1823 struct nouveau_drm
*drm
= nouveau_drm(dev
);
1824 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1825 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
1826 struct nouveau_connector
*nv_connector
;
1827 struct nvbios
*bios
= &drm
->vbios
;
1828 u32 lvds
= 0, mask
, ctrl
;
1829 u8 owner
= 1 << nv_crtc
->index
;
1833 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1834 nv_encoder
->crtc
= encoder
->crtc
;
1836 switch (nv_encoder
->dcb
->type
) {
1837 case DCB_OUTPUT_TMDS
:
1838 if (nv_encoder
->dcb
->sorconf
.link
& 1) {
1839 if (mode
->clock
< 165000)
1847 nv50_hdmi_mode_set(&nv_encoder
->base
.base
, mode
);
1849 case DCB_OUTPUT_LVDS
:
1852 if (bios
->fp_no_ddc
) {
1853 if (bios
->fp
.dual_link
)
1855 if (bios
->fp
.if_is_24bit
)
1858 if (nv_connector
->type
== DCB_CONNECTOR_LVDS_SPWG
) {
1859 if (((u8
*)nv_connector
->edid
)[121] == 2)
1862 if (mode
->clock
>= bios
->fp
.duallink_transition_clk
) {
1866 if (lvds
& 0x0100) {
1867 if (bios
->fp
.strapless_is_24bit
& 2)
1870 if (bios
->fp
.strapless_is_24bit
& 1)
1874 if (nv_connector
->base
.display_info
.bpc
== 8)
1878 nv_call(disp
->core
, NV50_DISP_SOR_LVDS_SCRIPT
+ nv_encoder
->or, lvds
);
1881 if (nv_connector
->base
.display_info
.bpc
== 6) {
1882 nv_encoder
->dp
.datarate
= mode
->clock
* 18 / 8;
1885 if (nv_connector
->base
.display_info
.bpc
== 8) {
1886 nv_encoder
->dp
.datarate
= mode
->clock
* 24 / 8;
1889 nv_encoder
->dp
.datarate
= mode
->clock
* 30 / 8;
1893 if (nv_encoder
->dcb
->sorconf
.link
& 1)
1903 nv50_sor_dpms(&nv_encoder
->base
.base
, DRM_MODE_DPMS_ON
);
1905 if (nv50_vers(mast
) >= NVD0_DISP_CLASS
) {
1906 u32
*push
= evo_wait(mast
, 3);
1908 u32 magic
= 0x31ec6000 | (nv_crtc
->index
<< 25);
1909 u32 syncs
= 0x00000001;
1911 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
1912 syncs
|= 0x00000008;
1913 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
1914 syncs
|= 0x00000010;
1916 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
1917 magic
|= 0x00000001;
1919 evo_mthd(push
, 0x0404 + (nv_crtc
->index
* 0x300), 2);
1920 evo_data(push
, syncs
| (depth
<< 6));
1921 evo_data(push
, magic
);
1922 evo_kick(push
, mast
);
1928 ctrl
= (depth
<< 16) | (proto
<< 8);
1929 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
1931 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
1936 nv50_sor_ctrl(nv_encoder
, mask
| owner
, ctrl
| owner
);
1940 nv50_sor_destroy(struct drm_encoder
*encoder
)
1942 drm_encoder_cleanup(encoder
);
1946 static const struct drm_encoder_helper_funcs nv50_sor_hfunc
= {
1947 .dpms
= nv50_sor_dpms
,
1948 .mode_fixup
= nv50_sor_mode_fixup
,
1949 .prepare
= nv50_sor_disconnect
,
1950 .commit
= nv50_sor_commit
,
1951 .mode_set
= nv50_sor_mode_set
,
1952 .disable
= nv50_sor_disconnect
,
1953 .get_crtc
= nv50_display_crtc_get
,
1956 static const struct drm_encoder_funcs nv50_sor_func
= {
1957 .destroy
= nv50_sor_destroy
,
1961 nv50_sor_create(struct drm_connector
*connector
, struct dcb_output
*dcbe
)
1963 struct nouveau_drm
*drm
= nouveau_drm(connector
->dev
);
1964 struct nouveau_i2c
*i2c
= nouveau_i2c(drm
->device
);
1965 struct nouveau_encoder
*nv_encoder
;
1966 struct drm_encoder
*encoder
;
1969 switch (dcbe
->type
) {
1970 case DCB_OUTPUT_LVDS
: type
= DRM_MODE_ENCODER_LVDS
; break;
1971 case DCB_OUTPUT_TMDS
:
1974 type
= DRM_MODE_ENCODER_TMDS
;
1978 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
1981 nv_encoder
->dcb
= dcbe
;
1982 nv_encoder
->or = ffs(dcbe
->or) - 1;
1983 nv_encoder
->i2c
= i2c
->find(i2c
, dcbe
->i2c_index
);
1984 nv_encoder
->last_dpms
= DRM_MODE_DPMS_OFF
;
1986 encoder
= to_drm_encoder(nv_encoder
);
1987 encoder
->possible_crtcs
= dcbe
->heads
;
1988 encoder
->possible_clones
= 0;
1989 drm_encoder_init(connector
->dev
, encoder
, &nv50_sor_func
, type
);
1990 drm_encoder_helper_add(encoder
, &nv50_sor_hfunc
);
1992 drm_mode_connector_attach_encoder(connector
, encoder
);
1996 /******************************************************************************
1998 *****************************************************************************/
2001 nv50_pior_dpms(struct drm_encoder
*encoder
, int mode
)
2003 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
2004 struct nv50_disp
*disp
= nv50_disp(encoder
->dev
);
2005 u32 mthd
= (nv_encoder
->dcb
->type
<< 12) | nv_encoder
->or;
2006 u32 ctrl
= (mode
== DRM_MODE_DPMS_ON
);
2007 nv_call(disp
->core
, NV50_DISP_PIOR_PWR
+ mthd
, ctrl
);
2011 nv50_pior_mode_fixup(struct drm_encoder
*encoder
,
2012 const struct drm_display_mode
*mode
,
2013 struct drm_display_mode
*adjusted_mode
)
2015 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
2016 struct nouveau_connector
*nv_connector
;
2018 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
2019 if (nv_connector
&& nv_connector
->native_mode
) {
2020 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
2021 int id
= adjusted_mode
->base
.id
;
2022 *adjusted_mode
= *nv_connector
->native_mode
;
2023 adjusted_mode
->base
.id
= id
;
2027 adjusted_mode
->clock
*= 2;
2032 nv50_pior_commit(struct drm_encoder
*encoder
)
2037 nv50_pior_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
2038 struct drm_display_mode
*adjusted_mode
)
2040 struct nv50_mast
*mast
= nv50_mast(encoder
->dev
);
2041 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
2042 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
2043 struct nouveau_connector
*nv_connector
;
2044 u8 owner
= 1 << nv_crtc
->index
;
2048 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
2049 switch (nv_connector
->base
.display_info
.bpc
) {
2050 case 10: depth
= 0x6; break;
2051 case 8: depth
= 0x5; break;
2052 case 6: depth
= 0x2; break;
2053 default: depth
= 0x0; break;
2056 switch (nv_encoder
->dcb
->type
) {
2057 case DCB_OUTPUT_TMDS
:
2066 nv50_pior_dpms(encoder
, DRM_MODE_DPMS_ON
);
2068 push
= evo_wait(mast
, 8);
2070 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
2071 u32 ctrl
= (depth
<< 16) | (proto
<< 8) | owner
;
2072 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
2074 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
2076 evo_mthd(push
, 0x0700 + (nv_encoder
->or * 0x040), 1);
2077 evo_data(push
, ctrl
);
2080 evo_kick(push
, mast
);
2083 nv_encoder
->crtc
= encoder
->crtc
;
2087 nv50_pior_disconnect(struct drm_encoder
*encoder
)
2089 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
2090 struct nv50_mast
*mast
= nv50_mast(encoder
->dev
);
2091 const int or = nv_encoder
->or;
2094 if (nv_encoder
->crtc
) {
2095 nv50_crtc_prepare(nv_encoder
->crtc
);
2097 push
= evo_wait(mast
, 4);
2099 if (nv50_vers(mast
) < NVD0_DISP_MAST_CLASS
) {
2100 evo_mthd(push
, 0x0700 + (or * 0x040), 1);
2101 evo_data(push
, 0x00000000);
2103 evo_kick(push
, mast
);
2107 nv_encoder
->crtc
= NULL
;
2111 nv50_pior_destroy(struct drm_encoder
*encoder
)
2113 drm_encoder_cleanup(encoder
);
2117 static const struct drm_encoder_helper_funcs nv50_pior_hfunc
= {
2118 .dpms
= nv50_pior_dpms
,
2119 .mode_fixup
= nv50_pior_mode_fixup
,
2120 .prepare
= nv50_pior_disconnect
,
2121 .commit
= nv50_pior_commit
,
2122 .mode_set
= nv50_pior_mode_set
,
2123 .disable
= nv50_pior_disconnect
,
2124 .get_crtc
= nv50_display_crtc_get
,
2127 static const struct drm_encoder_funcs nv50_pior_func
= {
2128 .destroy
= nv50_pior_destroy
,
2132 nv50_pior_create(struct drm_connector
*connector
, struct dcb_output
*dcbe
)
2134 struct nouveau_drm
*drm
= nouveau_drm(connector
->dev
);
2135 struct nouveau_i2c
*i2c
= nouveau_i2c(drm
->device
);
2136 struct nouveau_i2c_port
*ddc
= NULL
;
2137 struct nouveau_encoder
*nv_encoder
;
2138 struct drm_encoder
*encoder
;
2141 switch (dcbe
->type
) {
2142 case DCB_OUTPUT_TMDS
:
2143 ddc
= i2c
->find_type(i2c
, NV_I2C_TYPE_EXTDDC(dcbe
->extdev
));
2144 type
= DRM_MODE_ENCODER_TMDS
;
2147 ddc
= i2c
->find_type(i2c
, NV_I2C_TYPE_EXTAUX(dcbe
->extdev
));
2148 type
= DRM_MODE_ENCODER_TMDS
;
2154 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
2157 nv_encoder
->dcb
= dcbe
;
2158 nv_encoder
->or = ffs(dcbe
->or) - 1;
2159 nv_encoder
->i2c
= ddc
;
2161 encoder
= to_drm_encoder(nv_encoder
);
2162 encoder
->possible_crtcs
= dcbe
->heads
;
2163 encoder
->possible_clones
= 0;
2164 drm_encoder_init(connector
->dev
, encoder
, &nv50_pior_func
, type
);
2165 drm_encoder_helper_add(encoder
, &nv50_pior_hfunc
);
2167 drm_mode_connector_attach_encoder(connector
, encoder
);
2171 /******************************************************************************
2173 *****************************************************************************/
2175 nv50_display_fini(struct drm_device
*dev
)
2180 nv50_display_init(struct drm_device
*dev
)
2182 struct nv50_disp
*disp
= nv50_disp(dev
);
2183 struct drm_crtc
*crtc
;
2186 push
= evo_wait(nv50_mast(dev
), 32);
2190 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
2191 struct nv50_sync
*sync
= nv50_sync(crtc
);
2192 nouveau_bo_wr32(disp
->sync
, sync
->addr
/ 4, sync
->data
);
2195 evo_mthd(push
, 0x0088, 1);
2196 evo_data(push
, NvEvoSync
);
2197 evo_kick(push
, nv50_mast(dev
));
2202 nv50_display_destroy(struct drm_device
*dev
)
2204 struct nv50_disp
*disp
= nv50_disp(dev
);
2206 nv50_dmac_destroy(disp
->core
, &disp
->mast
.base
);
2208 nouveau_bo_unmap(disp
->sync
);
2210 nouveau_bo_unpin(disp
->sync
);
2211 nouveau_bo_ref(NULL
, &disp
->sync
);
2213 nouveau_display(dev
)->priv
= NULL
;
2218 nv50_display_create(struct drm_device
*dev
)
2220 struct nouveau_device
*device
= nouveau_dev(dev
);
2221 struct nouveau_drm
*drm
= nouveau_drm(dev
);
2222 struct dcb_table
*dcb
= &drm
->vbios
.dcb
;
2223 struct drm_connector
*connector
, *tmp
;
2224 struct nv50_disp
*disp
;
2225 struct dcb_output
*dcbe
;
2228 disp
= kzalloc(sizeof(*disp
), GFP_KERNEL
);
2232 nouveau_display(dev
)->priv
= disp
;
2233 nouveau_display(dev
)->dtor
= nv50_display_destroy
;
2234 nouveau_display(dev
)->init
= nv50_display_init
;
2235 nouveau_display(dev
)->fini
= nv50_display_fini
;
2236 disp
->core
= nouveau_display(dev
)->core
;
2238 /* small shared memory area we use for notifiers and semaphores */
2239 ret
= nouveau_bo_new(dev
, 4096, 0x1000, TTM_PL_FLAG_VRAM
,
2240 0, 0x0000, NULL
, &disp
->sync
);
2242 ret
= nouveau_bo_pin(disp
->sync
, TTM_PL_FLAG_VRAM
);
2244 ret
= nouveau_bo_map(disp
->sync
);
2246 nouveau_bo_unpin(disp
->sync
);
2249 nouveau_bo_ref(NULL
, &disp
->sync
);
2255 /* allocate master evo channel */
2256 ret
= nv50_dmac_create(disp
->core
, NV50_DISP_MAST_CLASS
, 0,
2257 &(struct nv50_display_mast_class
) {
2258 .pushbuf
= EVO_PUSH_HANDLE(MAST
, 0),
2259 }, sizeof(struct nv50_display_mast_class
),
2260 disp
->sync
->bo
.offset
, &disp
->mast
.base
);
2264 /* create crtc objects to represent the hw heads */
2265 if (nv_mclass(disp
->core
) >= NVD0_DISP_CLASS
)
2266 crtcs
= nv_rd32(device
, 0x022448);
2270 for (i
= 0; i
< crtcs
; i
++) {
2271 ret
= nv50_crtc_create(dev
, disp
->core
, i
);
2276 /* create encoder/connector objects based on VBIOS DCB table */
2277 for (i
= 0, dcbe
= &dcb
->entry
[0]; i
< dcb
->entries
; i
++, dcbe
++) {
2278 connector
= nouveau_connector_create(dev
, dcbe
->connector
);
2279 if (IS_ERR(connector
))
2282 if (dcbe
->location
== DCB_LOC_ON_CHIP
) {
2283 switch (dcbe
->type
) {
2284 case DCB_OUTPUT_TMDS
:
2285 case DCB_OUTPUT_LVDS
:
2287 ret
= nv50_sor_create(connector
, dcbe
);
2289 case DCB_OUTPUT_ANALOG
:
2290 ret
= nv50_dac_create(connector
, dcbe
);
2297 ret
= nv50_pior_create(connector
, dcbe
);
2301 NV_WARN(drm
, "failed to create encoder %d/%d/%d: %d\n",
2302 dcbe
->location
, dcbe
->type
,
2303 ffs(dcbe
->or) - 1, ret
);
2308 /* cull any connectors we created that don't have an encoder */
2309 list_for_each_entry_safe(connector
, tmp
, &dev
->mode_config
.connector_list
, head
) {
2310 if (connector
->encoder_ids
[0])
2313 NV_WARN(drm
, "%s has no encoders, removing\n",
2315 connector
->funcs
->destroy(connector
);
2320 nv50_display_destroy(dev
);