2 * Afatech AF9033 demodulator driver
4 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #include "af9033_priv.h"
24 /* Max transfer size done by I2C transfer functions */
25 #define MAX_XFER_SIZE 64
28 struct i2c_adapter
*i2c
;
29 struct dvb_frontend fe
;
30 struct af9033_config cfg
;
33 bool ts_mode_parallel
;
38 unsigned long last_stat_check
;
41 /* write multiple registers */
42 static int af9033_wr_regs(struct af9033_state
*state
, u32 reg
, const u8
*val
,
46 u8 buf
[MAX_XFER_SIZE
];
47 struct i2c_msg msg
[1] = {
49 .addr
= state
->cfg
.i2c_addr
,
56 if (3 + len
> sizeof(buf
)) {
57 dev_warn(&state
->i2c
->dev
,
58 "%s: i2c wr reg=%04x: len=%d is too big!\n",
59 KBUILD_MODNAME
, reg
, len
);
63 buf
[0] = (reg
>> 16) & 0xff;
64 buf
[1] = (reg
>> 8) & 0xff;
65 buf
[2] = (reg
>> 0) & 0xff;
66 memcpy(&buf
[3], val
, len
);
68 ret
= i2c_transfer(state
->i2c
, msg
, 1);
72 dev_warn(&state
->i2c
->dev
, "%s: i2c wr failed=%d reg=%06x " \
73 "len=%d\n", KBUILD_MODNAME
, ret
, reg
, len
);
80 /* read multiple registers */
81 static int af9033_rd_regs(struct af9033_state
*state
, u32 reg
, u8
*val
, int len
)
84 u8 buf
[3] = { (reg
>> 16) & 0xff, (reg
>> 8) & 0xff,
86 struct i2c_msg msg
[2] = {
88 .addr
= state
->cfg
.i2c_addr
,
93 .addr
= state
->cfg
.i2c_addr
,
100 ret
= i2c_transfer(state
->i2c
, msg
, 2);
104 dev_warn(&state
->i2c
->dev
, "%s: i2c rd failed=%d reg=%06x " \
105 "len=%d\n", KBUILD_MODNAME
, ret
, reg
, len
);
113 /* write single register */
114 static int af9033_wr_reg(struct af9033_state
*state
, u32 reg
, u8 val
)
116 return af9033_wr_regs(state
, reg
, &val
, 1);
119 /* read single register */
120 static int af9033_rd_reg(struct af9033_state
*state
, u32 reg
, u8
*val
)
122 return af9033_rd_regs(state
, reg
, val
, 1);
125 /* write single register with mask */
126 static int af9033_wr_reg_mask(struct af9033_state
*state
, u32 reg
, u8 val
,
132 /* no need for read if whole reg is written */
134 ret
= af9033_rd_regs(state
, reg
, &tmp
, 1);
143 return af9033_wr_regs(state
, reg
, &val
, 1);
146 /* read single register with mask */
147 static int af9033_rd_reg_mask(struct af9033_state
*state
, u32 reg
, u8
*val
,
153 ret
= af9033_rd_regs(state
, reg
, &tmp
, 1);
159 /* find position of the first bit */
160 for (i
= 0; i
< 8; i
++) {
161 if ((mask
>> i
) & 0x01)
169 /* write reg val table using reg addr auto increment */
170 static int af9033_wr_reg_val_tab(struct af9033_state
*state
,
171 const struct reg_val
*tab
, int tab_len
)
173 #define MAX_TAB_LEN 212
175 u8 buf
[1 + MAX_TAB_LEN
];
177 dev_dbg(&state
->i2c
->dev
, "%s: tab_len=%d\n", __func__
, tab_len
);
179 if (tab_len
> sizeof(buf
)) {
180 dev_warn(&state
->i2c
->dev
, "%s: tab len %d is too big\n",
181 KBUILD_MODNAME
, tab_len
);
185 for (i
= 0, j
= 0; i
< tab_len
; i
++) {
188 if (i
== tab_len
- 1 || tab
[i
].reg
!= tab
[i
+ 1].reg
- 1) {
189 ret
= af9033_wr_regs(state
, tab
[i
].reg
- j
, buf
, j
+ 1);
202 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
207 static u32
af9033_div(struct af9033_state
*state
, u32 a
, u32 b
, u32 x
)
211 dev_dbg(&state
->i2c
->dev
, "%s: a=%d b=%d x=%d\n", __func__
, a
, b
, x
);
218 for (i
= 0; i
< x
; i
++) {
226 r
= (c
<< (u32
)x
) + r
;
228 dev_dbg(&state
->i2c
->dev
, "%s: a=%d b=%d x=%d r=%d r=%x\n",
229 __func__
, a
, b
, x
, r
, r
);
234 static void af9033_release(struct dvb_frontend
*fe
)
236 struct af9033_state
*state
= fe
->demodulator_priv
;
241 static int af9033_init(struct dvb_frontend
*fe
)
243 struct af9033_state
*state
= fe
->demodulator_priv
;
245 const struct reg_val
*init
;
247 u32 adc_cw
, clock_cw
;
248 struct reg_val_mask tab
[] = {
249 { 0x80fb24, 0x00, 0x08 },
250 { 0x80004c, 0x00, 0xff },
251 { 0x00f641, state
->cfg
.tuner
, 0xff },
252 { 0x80f5ca, 0x01, 0x01 },
253 { 0x80f715, 0x01, 0x01 },
254 { 0x00f41f, 0x04, 0x04 },
255 { 0x00f41a, 0x01, 0x01 },
256 { 0x80f731, 0x00, 0x01 },
257 { 0x00d91e, 0x00, 0x01 },
258 { 0x00d919, 0x00, 0x01 },
259 { 0x80f732, 0x00, 0x01 },
260 { 0x00d91f, 0x00, 0x01 },
261 { 0x00d91a, 0x00, 0x01 },
262 { 0x80f730, 0x00, 0x01 },
263 { 0x80f778, 0x00, 0xff },
264 { 0x80f73c, 0x01, 0x01 },
265 { 0x80f776, 0x00, 0x01 },
266 { 0x00d8fd, 0x01, 0xff },
267 { 0x00d830, 0x01, 0xff },
268 { 0x00d831, 0x00, 0xff },
269 { 0x00d832, 0x00, 0xff },
270 { 0x80f985, state
->ts_mode_serial
, 0x01 },
271 { 0x80f986, state
->ts_mode_parallel
, 0x01 },
272 { 0x00d827, 0x00, 0xff },
273 { 0x00d829, 0x00, 0xff },
274 { 0x800045, state
->cfg
.adc_multiplier
, 0xff },
277 /* program clock control */
278 clock_cw
= af9033_div(state
, state
->cfg
.clock
, 1000000ul, 19ul);
279 buf
[0] = (clock_cw
>> 0) & 0xff;
280 buf
[1] = (clock_cw
>> 8) & 0xff;
281 buf
[2] = (clock_cw
>> 16) & 0xff;
282 buf
[3] = (clock_cw
>> 24) & 0xff;
284 dev_dbg(&state
->i2c
->dev
, "%s: clock=%d clock_cw=%08x\n",
285 __func__
, state
->cfg
.clock
, clock_cw
);
287 ret
= af9033_wr_regs(state
, 0x800025, buf
, 4);
291 /* program ADC control */
292 for (i
= 0; i
< ARRAY_SIZE(clock_adc_lut
); i
++) {
293 if (clock_adc_lut
[i
].clock
== state
->cfg
.clock
)
297 adc_cw
= af9033_div(state
, clock_adc_lut
[i
].adc
, 1000000ul, 19ul);
298 buf
[0] = (adc_cw
>> 0) & 0xff;
299 buf
[1] = (adc_cw
>> 8) & 0xff;
300 buf
[2] = (adc_cw
>> 16) & 0xff;
302 dev_dbg(&state
->i2c
->dev
, "%s: adc=%d adc_cw=%06x\n",
303 __func__
, clock_adc_lut
[i
].adc
, adc_cw
);
305 ret
= af9033_wr_regs(state
, 0x80f1cd, buf
, 3);
309 /* program register table */
310 for (i
= 0; i
< ARRAY_SIZE(tab
); i
++) {
311 ret
= af9033_wr_reg_mask(state
, tab
[i
].reg
, tab
[i
].val
,
317 /* settings for TS interface */
318 if (state
->cfg
.ts_mode
== AF9033_TS_MODE_USB
) {
319 ret
= af9033_wr_reg_mask(state
, 0x80f9a5, 0x00, 0x01);
323 ret
= af9033_wr_reg_mask(state
, 0x80f9b5, 0x01, 0x01);
327 ret
= af9033_wr_reg_mask(state
, 0x80f990, 0x00, 0x01);
331 ret
= af9033_wr_reg_mask(state
, 0x80f9b5, 0x00, 0x01);
336 /* load OFSM settings */
337 dev_dbg(&state
->i2c
->dev
, "%s: load ofsm settings\n", __func__
);
338 switch (state
->cfg
.tuner
) {
339 case AF9033_TUNER_IT9135_38
:
340 case AF9033_TUNER_IT9135_51
:
341 case AF9033_TUNER_IT9135_52
:
342 len
= ARRAY_SIZE(ofsm_init_it9135_v1
);
343 init
= ofsm_init_it9135_v1
;
345 case AF9033_TUNER_IT9135_60
:
346 case AF9033_TUNER_IT9135_61
:
347 case AF9033_TUNER_IT9135_62
:
348 len
= ARRAY_SIZE(ofsm_init_it9135_v2
);
349 init
= ofsm_init_it9135_v2
;
352 len
= ARRAY_SIZE(ofsm_init
);
357 ret
= af9033_wr_reg_val_tab(state
, init
, len
);
361 /* load tuner specific settings */
362 dev_dbg(&state
->i2c
->dev
, "%s: load tuner specific settings\n",
364 switch (state
->cfg
.tuner
) {
365 case AF9033_TUNER_TUA9001
:
366 len
= ARRAY_SIZE(tuner_init_tua9001
);
367 init
= tuner_init_tua9001
;
369 case AF9033_TUNER_FC0011
:
370 len
= ARRAY_SIZE(tuner_init_fc0011
);
371 init
= tuner_init_fc0011
;
373 case AF9033_TUNER_MXL5007T
:
374 len
= ARRAY_SIZE(tuner_init_mxl5007t
);
375 init
= tuner_init_mxl5007t
;
377 case AF9033_TUNER_TDA18218
:
378 len
= ARRAY_SIZE(tuner_init_tda18218
);
379 init
= tuner_init_tda18218
;
381 case AF9033_TUNER_FC2580
:
382 len
= ARRAY_SIZE(tuner_init_fc2580
);
383 init
= tuner_init_fc2580
;
385 case AF9033_TUNER_FC0012
:
386 len
= ARRAY_SIZE(tuner_init_fc0012
);
387 init
= tuner_init_fc0012
;
389 case AF9033_TUNER_IT9135_38
:
390 len
= ARRAY_SIZE(tuner_init_it9135_38
);
391 init
= tuner_init_it9135_38
;
393 case AF9033_TUNER_IT9135_51
:
394 len
= ARRAY_SIZE(tuner_init_it9135_51
);
395 init
= tuner_init_it9135_51
;
397 case AF9033_TUNER_IT9135_52
:
398 len
= ARRAY_SIZE(tuner_init_it9135_52
);
399 init
= tuner_init_it9135_52
;
401 case AF9033_TUNER_IT9135_60
:
402 len
= ARRAY_SIZE(tuner_init_it9135_60
);
403 init
= tuner_init_it9135_60
;
405 case AF9033_TUNER_IT9135_61
:
406 len
= ARRAY_SIZE(tuner_init_it9135_61
);
407 init
= tuner_init_it9135_61
;
409 case AF9033_TUNER_IT9135_62
:
410 len
= ARRAY_SIZE(tuner_init_it9135_62
);
411 init
= tuner_init_it9135_62
;
414 dev_dbg(&state
->i2c
->dev
, "%s: unsupported tuner ID=%d\n",
415 __func__
, state
->cfg
.tuner
);
420 ret
= af9033_wr_reg_val_tab(state
, init
, len
);
424 if (state
->cfg
.ts_mode
== AF9033_TS_MODE_SERIAL
) {
425 ret
= af9033_wr_reg_mask(state
, 0x00d91c, 0x01, 0x01);
429 ret
= af9033_wr_reg_mask(state
, 0x00d917, 0x00, 0x01);
433 ret
= af9033_wr_reg_mask(state
, 0x00d916, 0x00, 0x01);
438 switch (state
->cfg
.tuner
) {
439 case AF9033_TUNER_IT9135_60
:
440 case AF9033_TUNER_IT9135_61
:
441 case AF9033_TUNER_IT9135_62
:
442 ret
= af9033_wr_reg(state
, 0x800000, 0x01);
447 state
->bandwidth_hz
= 0; /* force to program all parameters */
452 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
457 static int af9033_sleep(struct dvb_frontend
*fe
)
459 struct af9033_state
*state
= fe
->demodulator_priv
;
463 ret
= af9033_wr_reg(state
, 0x80004c, 1);
467 ret
= af9033_wr_reg(state
, 0x800000, 0);
471 for (i
= 100, tmp
= 1; i
&& tmp
; i
--) {
472 ret
= af9033_rd_reg(state
, 0x80004c, &tmp
);
476 usleep_range(200, 10000);
479 dev_dbg(&state
->i2c
->dev
, "%s: loop=%d\n", __func__
, i
);
486 ret
= af9033_wr_reg_mask(state
, 0x80fb24, 0x08, 0x08);
490 /* prevent current leak (?) */
491 if (state
->cfg
.ts_mode
== AF9033_TS_MODE_SERIAL
) {
492 /* enable parallel TS */
493 ret
= af9033_wr_reg_mask(state
, 0x00d917, 0x00, 0x01);
497 ret
= af9033_wr_reg_mask(state
, 0x00d916, 0x01, 0x01);
505 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
510 static int af9033_get_tune_settings(struct dvb_frontend
*fe
,
511 struct dvb_frontend_tune_settings
*fesettings
)
513 /* 800 => 2000 because IT9135 v2 is slow to gain lock */
514 fesettings
->min_delay_ms
= 2000;
515 fesettings
->step_size
= 0;
516 fesettings
->max_drift
= 0;
521 static int af9033_set_frontend(struct dvb_frontend
*fe
)
523 struct af9033_state
*state
= fe
->demodulator_priv
;
524 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
525 int ret
, i
, spec_inv
, sampling_freq
;
526 u8 tmp
, buf
[3], bandwidth_reg_val
;
527 u32 if_frequency
, freq_cw
, adc_freq
;
529 dev_dbg(&state
->i2c
->dev
, "%s: frequency=%d bandwidth_hz=%d\n",
530 __func__
, c
->frequency
, c
->bandwidth_hz
);
532 /* check bandwidth */
533 switch (c
->bandwidth_hz
) {
535 bandwidth_reg_val
= 0x00;
538 bandwidth_reg_val
= 0x01;
541 bandwidth_reg_val
= 0x02;
544 dev_dbg(&state
->i2c
->dev
, "%s: invalid bandwidth_hz\n",
551 if (fe
->ops
.tuner_ops
.set_params
)
552 fe
->ops
.tuner_ops
.set_params(fe
);
554 /* program CFOE coefficients */
555 if (c
->bandwidth_hz
!= state
->bandwidth_hz
) {
556 for (i
= 0; i
< ARRAY_SIZE(coeff_lut
); i
++) {
557 if (coeff_lut
[i
].clock
== state
->cfg
.clock
&&
558 coeff_lut
[i
].bandwidth_hz
== c
->bandwidth_hz
) {
562 ret
= af9033_wr_regs(state
, 0x800001,
563 coeff_lut
[i
].val
, sizeof(coeff_lut
[i
].val
));
566 /* program frequency control */
567 if (c
->bandwidth_hz
!= state
->bandwidth_hz
) {
568 spec_inv
= state
->cfg
.spec_inv
? -1 : 1;
570 for (i
= 0; i
< ARRAY_SIZE(clock_adc_lut
); i
++) {
571 if (clock_adc_lut
[i
].clock
== state
->cfg
.clock
)
574 adc_freq
= clock_adc_lut
[i
].adc
;
576 /* get used IF frequency */
577 if (fe
->ops
.tuner_ops
.get_if_frequency
)
578 fe
->ops
.tuner_ops
.get_if_frequency(fe
, &if_frequency
);
582 sampling_freq
= if_frequency
;
584 while (sampling_freq
> (adc_freq
/ 2))
585 sampling_freq
-= adc_freq
;
587 if (sampling_freq
>= 0)
592 freq_cw
= af9033_div(state
, sampling_freq
, adc_freq
, 23ul);
595 freq_cw
= 0x800000 - freq_cw
;
597 if (state
->cfg
.adc_multiplier
== AF9033_ADC_MULTIPLIER_2X
)
600 buf
[0] = (freq_cw
>> 0) & 0xff;
601 buf
[1] = (freq_cw
>> 8) & 0xff;
602 buf
[2] = (freq_cw
>> 16) & 0x7f;
604 /* FIXME: there seems to be calculation error here... */
605 if (if_frequency
== 0)
608 ret
= af9033_wr_regs(state
, 0x800029, buf
, 3);
612 state
->bandwidth_hz
= c
->bandwidth_hz
;
615 ret
= af9033_wr_reg_mask(state
, 0x80f904, bandwidth_reg_val
, 0x03);
619 ret
= af9033_wr_reg(state
, 0x800040, 0x00);
623 ret
= af9033_wr_reg(state
, 0x800047, 0x00);
627 ret
= af9033_wr_reg_mask(state
, 0x80f999, 0x00, 0x01);
631 if (c
->frequency
<= 230000000)
632 tmp
= 0x00; /* VHF */
634 tmp
= 0x01; /* UHF */
636 ret
= af9033_wr_reg(state
, 0x80004b, tmp
);
640 ret
= af9033_wr_reg(state
, 0x800000, 0x00);
647 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
652 static int af9033_get_frontend(struct dvb_frontend
*fe
)
654 struct af9033_state
*state
= fe
->demodulator_priv
;
655 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
659 dev_dbg(&state
->i2c
->dev
, "%s:\n", __func__
);
661 /* read all needed registers */
662 ret
= af9033_rd_regs(state
, 0x80f900, buf
, sizeof(buf
));
666 switch ((buf
[0] >> 0) & 3) {
668 c
->transmission_mode
= TRANSMISSION_MODE_2K
;
671 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
675 switch ((buf
[1] >> 0) & 3) {
677 c
->guard_interval
= GUARD_INTERVAL_1_32
;
680 c
->guard_interval
= GUARD_INTERVAL_1_16
;
683 c
->guard_interval
= GUARD_INTERVAL_1_8
;
686 c
->guard_interval
= GUARD_INTERVAL_1_4
;
690 switch ((buf
[2] >> 0) & 7) {
692 c
->hierarchy
= HIERARCHY_NONE
;
695 c
->hierarchy
= HIERARCHY_1
;
698 c
->hierarchy
= HIERARCHY_2
;
701 c
->hierarchy
= HIERARCHY_4
;
705 switch ((buf
[3] >> 0) & 3) {
707 c
->modulation
= QPSK
;
710 c
->modulation
= QAM_16
;
713 c
->modulation
= QAM_64
;
717 switch ((buf
[4] >> 0) & 3) {
719 c
->bandwidth_hz
= 6000000;
722 c
->bandwidth_hz
= 7000000;
725 c
->bandwidth_hz
= 8000000;
729 switch ((buf
[6] >> 0) & 7) {
731 c
->code_rate_HP
= FEC_1_2
;
734 c
->code_rate_HP
= FEC_2_3
;
737 c
->code_rate_HP
= FEC_3_4
;
740 c
->code_rate_HP
= FEC_5_6
;
743 c
->code_rate_HP
= FEC_7_8
;
746 c
->code_rate_HP
= FEC_NONE
;
750 switch ((buf
[7] >> 0) & 7) {
752 c
->code_rate_LP
= FEC_1_2
;
755 c
->code_rate_LP
= FEC_2_3
;
758 c
->code_rate_LP
= FEC_3_4
;
761 c
->code_rate_LP
= FEC_5_6
;
764 c
->code_rate_LP
= FEC_7_8
;
767 c
->code_rate_LP
= FEC_NONE
;
774 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
779 static int af9033_read_status(struct dvb_frontend
*fe
, fe_status_t
*status
)
781 struct af9033_state
*state
= fe
->demodulator_priv
;
787 /* radio channel status, 0=no result, 1=has signal, 2=no signal */
788 ret
= af9033_rd_reg(state
, 0x800047, &tmp
);
794 *status
|= FE_HAS_SIGNAL
;
798 ret
= af9033_rd_reg_mask(state
, 0x80f5a9, &tmp
, 0x01);
803 *status
|= FE_HAS_SIGNAL
| FE_HAS_CARRIER
|
807 ret
= af9033_rd_reg_mask(state
, 0x80f999, &tmp
, 0x01);
812 *status
|= FE_HAS_SIGNAL
| FE_HAS_CARRIER
|
813 FE_HAS_VITERBI
| FE_HAS_SYNC
|
820 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
825 static int af9033_read_snr(struct dvb_frontend
*fe
, u16
*snr
)
827 struct af9033_state
*state
= fe
->demodulator_priv
;
831 const struct val_snr
*uninitialized_var(snr_lut
);
834 ret
= af9033_rd_regs(state
, 0x80002c, buf
, 3);
838 snr_val
= (buf
[2] << 16) | (buf
[1] << 8) | buf
[0];
840 /* read current modulation */
841 ret
= af9033_rd_reg(state
, 0x80f903, &tmp
);
845 switch ((tmp
>> 0) & 3) {
847 len
= ARRAY_SIZE(qpsk_snr_lut
);
848 snr_lut
= qpsk_snr_lut
;
851 len
= ARRAY_SIZE(qam16_snr_lut
);
852 snr_lut
= qam16_snr_lut
;
855 len
= ARRAY_SIZE(qam64_snr_lut
);
856 snr_lut
= qam64_snr_lut
;
862 for (i
= 0; i
< len
; i
++) {
863 tmp
= snr_lut
[i
].snr
;
865 if (snr_val
< snr_lut
[i
].val
)
869 *snr
= tmp
* 10; /* dB/10 */
874 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
879 static int af9033_read_signal_strength(struct dvb_frontend
*fe
, u16
*strength
)
881 struct af9033_state
*state
= fe
->demodulator_priv
;
885 /* read signal strength of 0-100 scale */
886 ret
= af9033_rd_reg(state
, 0x800048, &strength2
);
890 /* scale value to 0x0000-0xffff */
891 *strength
= strength2
* 0xffff / 100;
896 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
901 static int af9033_update_ch_stat(struct af9033_state
*state
)
904 u32 err_cnt
, bit_cnt
;
908 /* only update data every half second */
909 if (time_after(jiffies
, state
->last_stat_check
+ msecs_to_jiffies(500))) {
910 ret
= af9033_rd_regs(state
, 0x800032, buf
, sizeof(buf
));
913 /* in 8 byte packets? */
914 abort_cnt
= (buf
[1] << 8) + buf
[0];
916 err_cnt
= (buf
[4] << 16) + (buf
[3] << 8) + buf
[2];
917 /* in 8 byte packets? always(?) 0x2710 = 10000 */
918 bit_cnt
= (buf
[6] << 8) + buf
[5];
920 if (bit_cnt
< abort_cnt
) {
922 state
->ber
= 0xffffffff;
924 /* 8 byte packets, that have not been rejected already */
925 bit_cnt
-= (u32
)abort_cnt
;
927 state
->ber
= 0xffffffff;
929 err_cnt
-= (u32
)abort_cnt
* 8 * 8;
931 state
->ber
= err_cnt
* (0xffffffff / bit_cnt
);
934 state
->ucb
+= abort_cnt
;
935 state
->last_stat_check
= jiffies
;
940 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
945 static int af9033_read_ber(struct dvb_frontend
*fe
, u32
*ber
)
947 struct af9033_state
*state
= fe
->demodulator_priv
;
950 ret
= af9033_update_ch_stat(state
);
959 static int af9033_read_ucblocks(struct dvb_frontend
*fe
, u32
*ucblocks
)
961 struct af9033_state
*state
= fe
->demodulator_priv
;
964 ret
= af9033_update_ch_stat(state
);
968 *ucblocks
= state
->ucb
;
973 static int af9033_i2c_gate_ctrl(struct dvb_frontend
*fe
, int enable
)
975 struct af9033_state
*state
= fe
->demodulator_priv
;
978 dev_dbg(&state
->i2c
->dev
, "%s: enable=%d\n", __func__
, enable
);
980 ret
= af9033_wr_reg_mask(state
, 0x00fa04, enable
, 0x01);
987 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
992 static int af9033_pid_filter_ctrl(struct dvb_frontend
*fe
, int onoff
)
994 struct af9033_state
*state
= fe
->demodulator_priv
;
997 dev_dbg(&state
->i2c
->dev
, "%s: onoff=%d\n", __func__
, onoff
);
999 ret
= af9033_wr_reg_mask(state
, 0x80f993, onoff
, 0x01);
1006 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
1011 static int af9033_pid_filter(struct dvb_frontend
*fe
, int index
, u16 pid
, int onoff
)
1013 struct af9033_state
*state
= fe
->demodulator_priv
;
1015 u8 wbuf
[2] = {(pid
>> 0) & 0xff, (pid
>> 8) & 0xff};
1017 dev_dbg(&state
->i2c
->dev
, "%s: index=%d pid=%04x onoff=%d\n",
1018 __func__
, index
, pid
, onoff
);
1023 ret
= af9033_wr_regs(state
, 0x80f996, wbuf
, 2);
1027 ret
= af9033_wr_reg(state
, 0x80f994, onoff
);
1031 ret
= af9033_wr_reg(state
, 0x80f995, index
);
1038 dev_dbg(&state
->i2c
->dev
, "%s: failed=%d\n", __func__
, ret
);
1043 static struct dvb_frontend_ops af9033_ops
;
1045 struct dvb_frontend
*af9033_attach(const struct af9033_config
*config
,
1046 struct i2c_adapter
*i2c
,
1047 struct af9033_ops
*ops
)
1050 struct af9033_state
*state
;
1053 dev_dbg(&i2c
->dev
, "%s:\n", __func__
);
1055 /* allocate memory for the internal state */
1056 state
= kzalloc(sizeof(struct af9033_state
), GFP_KERNEL
);
1060 /* setup the state */
1062 memcpy(&state
->cfg
, config
, sizeof(struct af9033_config
));
1064 if (state
->cfg
.clock
!= 12000000) {
1065 dev_err(&state
->i2c
->dev
, "%s: af9033: unsupported clock=%d, " \
1066 "only 12000000 Hz is supported currently\n",
1067 KBUILD_MODNAME
, state
->cfg
.clock
);
1071 /* firmware version */
1072 ret
= af9033_rd_regs(state
, 0x0083e9, &buf
[0], 4);
1076 ret
= af9033_rd_regs(state
, 0x804191, &buf
[4], 4);
1080 dev_info(&state
->i2c
->dev
, "%s: firmware version: LINK=%d.%d.%d.%d " \
1081 "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME
, buf
[0], buf
[1],
1082 buf
[2], buf
[3], buf
[4], buf
[5], buf
[6], buf
[7]);
1085 switch (state
->cfg
.tuner
) {
1086 case AF9033_TUNER_IT9135_38
:
1087 case AF9033_TUNER_IT9135_51
:
1088 case AF9033_TUNER_IT9135_52
:
1089 case AF9033_TUNER_IT9135_60
:
1090 case AF9033_TUNER_IT9135_61
:
1091 case AF9033_TUNER_IT9135_62
:
1092 /* IT9135 did not like to sleep at that early */
1095 ret
= af9033_wr_reg(state
, 0x80004c, 1);
1099 ret
= af9033_wr_reg(state
, 0x800000, 0);
1104 /* configure internal TS mode */
1105 switch (state
->cfg
.ts_mode
) {
1106 case AF9033_TS_MODE_PARALLEL
:
1107 state
->ts_mode_parallel
= true;
1109 case AF9033_TS_MODE_SERIAL
:
1110 state
->ts_mode_serial
= true;
1112 case AF9033_TS_MODE_USB
:
1113 /* usb mode for AF9035 */
1118 /* create dvb_frontend */
1119 memcpy(&state
->fe
.ops
, &af9033_ops
, sizeof(struct dvb_frontend_ops
));
1120 state
->fe
.demodulator_priv
= state
;
1123 ops
->pid_filter
= af9033_pid_filter
;
1124 ops
->pid_filter_ctrl
= af9033_pid_filter_ctrl
;
1133 EXPORT_SYMBOL(af9033_attach
);
1135 static struct dvb_frontend_ops af9033_ops
= {
1136 .delsys
= { SYS_DVBT
},
1138 .name
= "Afatech AF9033 (DVB-T)",
1139 .frequency_min
= 174000000,
1140 .frequency_max
= 862000000,
1141 .frequency_stepsize
= 250000,
1142 .frequency_tolerance
= 0,
1143 .caps
= FE_CAN_FEC_1_2
|
1153 FE_CAN_TRANSMISSION_MODE_AUTO
|
1154 FE_CAN_GUARD_INTERVAL_AUTO
|
1155 FE_CAN_HIERARCHY_AUTO
|
1160 .release
= af9033_release
,
1162 .init
= af9033_init
,
1163 .sleep
= af9033_sleep
,
1165 .get_tune_settings
= af9033_get_tune_settings
,
1166 .set_frontend
= af9033_set_frontend
,
1167 .get_frontend
= af9033_get_frontend
,
1169 .read_status
= af9033_read_status
,
1170 .read_snr
= af9033_read_snr
,
1171 .read_signal_strength
= af9033_read_signal_strength
,
1172 .read_ber
= af9033_read_ber
,
1173 .read_ucblocks
= af9033_read_ucblocks
,
1175 .i2c_gate_ctrl
= af9033_i2c_gate_ctrl
,
1178 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1179 MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
1180 MODULE_LICENSE("GPL");