sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / drivers / media / i2c / smiapp / smiapp-core.c
blob06fb03291d5908043c4cf8e80cf013b99e1e1ed7
1 /*
2 * drivers/media/i2c/smiapp/smiapp-core.c
4 * Generic driver for SMIA/SMIA++ compliant camera modules
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25 * 02110-1301 USA
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/v4l2-mediabus.h>
37 #include <media/v4l2-device.h>
39 #include "smiapp.h"
41 #define SMIAPP_ALIGN_DIM(dim, flags) \
42 ((flags) & V4L2_SEL_FLAG_GE \
43 ? ALIGN((dim), 2) \
44 : (dim) & ~1)
47 * smiapp_module_idents - supported camera modules
49 static const struct smiapp_module_ident smiapp_module_idents[] = {
50 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
51 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
52 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
53 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
54 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
55 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
56 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
57 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
58 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
59 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
60 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
65 * Dynamic Capability Identification
69 static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
71 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
72 u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
73 unsigned int i;
74 int rval;
75 int line_count = 0;
76 int embedded_start = -1, embedded_end = -1;
77 int image_start = 0;
79 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
80 &fmt_model_type);
81 if (rval)
82 return rval;
84 rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
85 &fmt_model_subtype);
86 if (rval)
87 return rval;
89 ncol_desc = (fmt_model_subtype
90 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
91 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
92 nrow_desc = fmt_model_subtype
93 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
95 dev_dbg(&client->dev, "format_model_type %s\n",
96 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
97 ? "2 byte" :
98 fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
99 ? "4 byte" : "is simply bad");
101 for (i = 0; i < ncol_desc + nrow_desc; i++) {
102 u32 desc;
103 u32 pixelcode;
104 u32 pixels;
105 char *which;
106 char *what;
108 if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
109 rval = smiapp_read(
110 sensor,
111 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
112 &desc);
113 if (rval)
114 return rval;
116 pixelcode =
117 (desc
118 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
119 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
120 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
121 } else if (fmt_model_type
122 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
123 rval = smiapp_read(
124 sensor,
125 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
126 &desc);
127 if (rval)
128 return rval;
130 pixelcode =
131 (desc
132 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
133 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
134 pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
135 } else {
136 dev_dbg(&client->dev,
137 "invalid frame format model type %d\n",
138 fmt_model_type);
139 return -EINVAL;
142 if (i < ncol_desc)
143 which = "columns";
144 else
145 which = "rows";
147 switch (pixelcode) {
148 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
149 what = "embedded";
150 break;
151 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
152 what = "dummy";
153 break;
154 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
155 what = "black";
156 break;
157 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
158 what = "dark";
159 break;
160 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
161 what = "visible";
162 break;
163 default:
164 what = "invalid";
165 dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
166 break;
169 dev_dbg(&client->dev, "%s pixels: %d %s\n",
170 what, pixels, which);
172 if (i < ncol_desc)
173 continue;
175 /* Handle row descriptors */
176 if (pixelcode
177 == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
178 embedded_start = line_count;
179 } else {
180 if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
181 || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
182 image_start = line_count;
183 if (embedded_start != -1 && embedded_end == -1)
184 embedded_end = line_count;
186 line_count += pixels;
189 if (embedded_start == -1 || embedded_end == -1) {
190 embedded_start = 0;
191 embedded_end = 0;
194 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
195 embedded_start, embedded_end);
196 dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
198 return 0;
201 static int smiapp_pll_configure(struct smiapp_sensor *sensor)
203 struct smiapp_pll *pll = &sensor->pll;
204 int rval;
206 rval = smiapp_write(
207 sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
208 if (rval < 0)
209 return rval;
211 rval = smiapp_write(
212 sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
213 if (rval < 0)
214 return rval;
216 rval = smiapp_write(
217 sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
218 if (rval < 0)
219 return rval;
221 rval = smiapp_write(
222 sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
223 if (rval < 0)
224 return rval;
226 /* Lane op clock ratio does not apply here. */
227 rval = smiapp_write(
228 sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
229 DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
230 if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
231 return rval;
233 rval = smiapp_write(
234 sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
235 if (rval < 0)
236 return rval;
238 return smiapp_write(
239 sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
242 static int smiapp_pll_update(struct smiapp_sensor *sensor)
244 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
245 struct smiapp_pll_limits lim = {
246 .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
247 .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
248 .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
249 .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
250 .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
251 .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
252 .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
253 .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
255 .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
256 .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
257 .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
258 .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
259 .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
260 .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
261 .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
262 .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
264 .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
265 .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
266 .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
267 .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
268 .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
269 .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
270 .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
271 .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
273 .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
274 .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
276 struct smiapp_pll *pll = &sensor->pll;
277 int rval;
279 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
281 * Fill in operational clock divisors limits from the
282 * video timing ones. On profile 0 sensors the
283 * requirements regarding them are essentially the
284 * same as on VT ones.
286 lim.op = lim.vt;
289 pll->binning_horizontal = sensor->binning_horizontal;
290 pll->binning_vertical = sensor->binning_vertical;
291 pll->link_freq =
292 sensor->link_freq->qmenu_int[sensor->link_freq->val];
293 pll->scale_m = sensor->scale_m;
294 pll->bits_per_pixel = sensor->csi_format->compressed;
296 rval = smiapp_pll_calculate(&client->dev, &lim, pll);
297 if (rval < 0)
298 return rval;
300 sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
301 sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
303 return 0;
309 * V4L2 Controls handling
313 static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
315 struct v4l2_ctrl *ctrl = sensor->exposure;
316 int max;
318 max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
319 + sensor->vblank->val
320 - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
322 ctrl->maximum = max;
323 if (ctrl->default_value > max)
324 ctrl->default_value = max;
325 if (ctrl->val > max)
326 ctrl->val = max;
327 if (ctrl->cur.val > max)
328 ctrl->cur.val = max;
332 * Order matters.
334 * 1. Bits-per-pixel, descending.
335 * 2. Bits-per-pixel compressed, descending.
336 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
337 * orders must be defined.
339 static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
340 { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
341 { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
342 { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
343 { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
344 { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
345 { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
346 { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
347 { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
348 { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
349 { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
350 { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
351 { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
352 { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
353 { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
354 { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
355 { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
358 const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
360 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
361 - (unsigned long)smiapp_csi_data_formats) \
362 / sizeof(*smiapp_csi_data_formats))
364 static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
366 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
367 int flip = 0;
369 if (sensor->hflip) {
370 if (sensor->hflip->val)
371 flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
373 if (sensor->vflip->val)
374 flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
377 flip ^= sensor->hvflip_inv_mask;
379 dev_dbg(&client->dev, "flip %d\n", flip);
380 return sensor->default_pixel_order ^ flip;
383 static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
385 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
386 unsigned int csi_format_idx =
387 to_csi_format_idx(sensor->csi_format) & ~3;
388 unsigned int internal_csi_format_idx =
389 to_csi_format_idx(sensor->internal_csi_format) & ~3;
390 unsigned int pixel_order = smiapp_pixel_order(sensor);
392 sensor->mbus_frame_fmts =
393 sensor->default_mbus_frame_fmts << pixel_order;
394 sensor->csi_format =
395 &smiapp_csi_data_formats[csi_format_idx + pixel_order];
396 sensor->internal_csi_format =
397 &smiapp_csi_data_formats[internal_csi_format_idx
398 + pixel_order];
400 BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
401 >= ARRAY_SIZE(smiapp_csi_data_formats));
403 dev_dbg(&client->dev, "new pixel order %s\n",
404 pixel_order_str[pixel_order]);
407 static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
409 struct smiapp_sensor *sensor =
410 container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
411 ->sensor;
412 u32 orient = 0;
413 int exposure;
414 int rval;
416 switch (ctrl->id) {
417 case V4L2_CID_ANALOGUE_GAIN:
418 return smiapp_write(
419 sensor,
420 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
422 case V4L2_CID_EXPOSURE:
423 return smiapp_write(
424 sensor,
425 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
427 case V4L2_CID_HFLIP:
428 case V4L2_CID_VFLIP:
429 if (sensor->streaming)
430 return -EBUSY;
432 if (sensor->hflip->val)
433 orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
435 if (sensor->vflip->val)
436 orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
438 orient ^= sensor->hvflip_inv_mask;
439 rval = smiapp_write(sensor,
440 SMIAPP_REG_U8_IMAGE_ORIENTATION,
441 orient);
442 if (rval < 0)
443 return rval;
445 smiapp_update_mbus_formats(sensor);
447 return 0;
449 case V4L2_CID_VBLANK:
450 exposure = sensor->exposure->val;
452 __smiapp_update_exposure_limits(sensor);
454 if (exposure > sensor->exposure->maximum) {
455 sensor->exposure->val =
456 sensor->exposure->maximum;
457 rval = smiapp_set_ctrl(
458 sensor->exposure);
459 if (rval < 0)
460 return rval;
463 return smiapp_write(
464 sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
465 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
466 + ctrl->val);
468 case V4L2_CID_HBLANK:
469 return smiapp_write(
470 sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
471 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
472 + ctrl->val);
474 case V4L2_CID_LINK_FREQ:
475 if (sensor->streaming)
476 return -EBUSY;
478 return smiapp_pll_update(sensor);
480 default:
481 return -EINVAL;
485 static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
486 .s_ctrl = smiapp_set_ctrl,
489 static int smiapp_init_controls(struct smiapp_sensor *sensor)
491 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
492 unsigned int max;
493 int rval;
495 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
496 if (rval)
497 return rval;
498 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
500 sensor->analog_gain = v4l2_ctrl_new_std(
501 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
502 V4L2_CID_ANALOGUE_GAIN,
503 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
504 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
505 max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
506 sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
508 /* Exposure limits will be updated soon, use just something here. */
509 sensor->exposure = v4l2_ctrl_new_std(
510 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
511 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
513 sensor->hflip = v4l2_ctrl_new_std(
514 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
515 V4L2_CID_HFLIP, 0, 1, 1, 0);
516 sensor->vflip = v4l2_ctrl_new_std(
517 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
518 V4L2_CID_VFLIP, 0, 1, 1, 0);
520 sensor->vblank = v4l2_ctrl_new_std(
521 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
522 V4L2_CID_VBLANK, 0, 1, 1, 0);
524 if (sensor->vblank)
525 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
527 sensor->hblank = v4l2_ctrl_new_std(
528 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
529 V4L2_CID_HBLANK, 0, 1, 1, 0);
531 if (sensor->hblank)
532 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
534 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
535 &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
536 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
538 if (sensor->pixel_array->ctrl_handler.error) {
539 dev_err(&client->dev,
540 "pixel array controls initialization failed (%d)\n",
541 sensor->pixel_array->ctrl_handler.error);
542 rval = sensor->pixel_array->ctrl_handler.error;
543 goto error;
546 sensor->pixel_array->sd.ctrl_handler =
547 &sensor->pixel_array->ctrl_handler;
549 v4l2_ctrl_cluster(2, &sensor->hflip);
551 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
552 if (rval)
553 goto error;
554 sensor->src->ctrl_handler.lock = &sensor->mutex;
556 for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
558 sensor->link_freq = v4l2_ctrl_new_int_menu(
559 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
560 V4L2_CID_LINK_FREQ, max, 0,
561 sensor->platform_data->op_sys_clock);
563 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
564 &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
565 V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
567 if (sensor->src->ctrl_handler.error) {
568 dev_err(&client->dev,
569 "src controls initialization failed (%d)\n",
570 sensor->src->ctrl_handler.error);
571 rval = sensor->src->ctrl_handler.error;
572 goto error;
575 sensor->src->sd.ctrl_handler =
576 &sensor->src->ctrl_handler;
578 return 0;
580 error:
581 v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
582 v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
584 return rval;
587 static void smiapp_free_controls(struct smiapp_sensor *sensor)
589 unsigned int i;
591 for (i = 0; i < sensor->ssds_used; i++)
592 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
595 static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
596 unsigned int n)
598 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
599 unsigned int i;
600 u32 val;
601 int rval;
603 for (i = 0; i < n; i++) {
604 rval = smiapp_read(
605 sensor, smiapp_reg_limits[limit[i]].addr, &val);
606 if (rval)
607 return rval;
608 sensor->limits[limit[i]] = val;
609 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
610 smiapp_reg_limits[limit[i]].addr,
611 smiapp_reg_limits[limit[i]].what, val, val);
614 return 0;
617 static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
619 unsigned int i;
620 int rval;
622 for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
623 rval = smiapp_get_limits(sensor, &i, 1);
624 if (rval < 0)
625 return rval;
628 if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
629 smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
631 return 0;
634 static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
636 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
637 static u32 const limits[] = {
638 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
639 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
640 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
641 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
642 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
643 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
644 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
646 static u32 const limits_replace[] = {
647 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
648 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
649 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
650 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
651 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
652 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
653 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
655 unsigned int i;
656 int rval;
658 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
659 SMIAPP_BINNING_CAPABILITY_NO) {
660 for (i = 0; i < ARRAY_SIZE(limits); i++)
661 sensor->limits[limits[i]] =
662 sensor->limits[limits_replace[i]];
664 return 0;
667 rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
668 if (rval < 0)
669 return rval;
672 * Sanity check whether the binning limits are valid. If not,
673 * use the non-binning ones.
675 if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
676 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
677 && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
678 return 0;
680 for (i = 0; i < ARRAY_SIZE(limits); i++) {
681 dev_dbg(&client->dev,
682 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
683 smiapp_reg_limits[limits[i]].addr,
684 smiapp_reg_limits[limits[i]].what,
685 sensor->limits[limits_replace[i]],
686 sensor->limits[limits_replace[i]]);
687 sensor->limits[limits[i]] =
688 sensor->limits[limits_replace[i]];
691 return 0;
694 static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
696 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
697 unsigned int type, n;
698 unsigned int i, pixel_order;
699 int rval;
701 rval = smiapp_read(
702 sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
703 if (rval)
704 return rval;
706 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
708 rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
709 &pixel_order);
710 if (rval)
711 return rval;
713 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
714 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
715 return -EINVAL;
718 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
719 pixel_order_str[pixel_order]);
721 switch (type) {
722 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
723 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
724 break;
725 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
726 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
727 break;
728 default:
729 return -EINVAL;
732 sensor->default_pixel_order = pixel_order;
733 sensor->mbus_frame_fmts = 0;
735 for (i = 0; i < n; i++) {
736 unsigned int fmt, j;
738 rval = smiapp_read(
739 sensor,
740 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
741 if (rval)
742 return rval;
744 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
745 i, fmt >> 8, (u8)fmt);
747 for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
748 const struct smiapp_csi_data_format *f =
749 &smiapp_csi_data_formats[j];
751 if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
752 continue;
754 if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
755 continue;
757 dev_dbg(&client->dev, "jolly good! %d\n", j);
759 sensor->default_mbus_frame_fmts |= 1 << j;
760 if (!sensor->csi_format
761 || f->width > sensor->csi_format->width
762 || (f->width == sensor->csi_format->width
763 && f->compressed
764 > sensor->csi_format->compressed)) {
765 sensor->csi_format = f;
766 sensor->internal_csi_format = f;
771 if (!sensor->csi_format) {
772 dev_err(&client->dev, "no supported mbus code found\n");
773 return -EINVAL;
776 smiapp_update_mbus_formats(sensor);
778 return 0;
781 static void smiapp_update_blanking(struct smiapp_sensor *sensor)
783 struct v4l2_ctrl *vblank = sensor->vblank;
784 struct v4l2_ctrl *hblank = sensor->hblank;
786 vblank->minimum =
787 max_t(int,
788 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
789 sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
790 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
791 vblank->maximum =
792 sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
793 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
795 vblank->val = clamp_t(int, vblank->val,
796 vblank->minimum, vblank->maximum);
797 vblank->default_value = vblank->minimum;
798 vblank->val = vblank->val;
799 vblank->cur.val = vblank->val;
801 hblank->minimum =
802 max_t(int,
803 sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
804 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
805 sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
806 hblank->maximum =
807 sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
808 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
810 hblank->val = clamp_t(int, hblank->val,
811 hblank->minimum, hblank->maximum);
812 hblank->default_value = hblank->minimum;
813 hblank->val = hblank->val;
814 hblank->cur.val = hblank->val;
816 __smiapp_update_exposure_limits(sensor);
819 static int smiapp_update_mode(struct smiapp_sensor *sensor)
821 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
822 unsigned int binning_mode;
823 int rval;
825 dev_dbg(&client->dev, "frame size: %dx%d\n",
826 sensor->src->crop[SMIAPP_PAD_SRC].width,
827 sensor->src->crop[SMIAPP_PAD_SRC].height);
828 dev_dbg(&client->dev, "csi format width: %d\n",
829 sensor->csi_format->width);
831 /* Binning has to be set up here; it affects limits */
832 if (sensor->binning_horizontal == 1 &&
833 sensor->binning_vertical == 1) {
834 binning_mode = 0;
835 } else {
836 u8 binning_type =
837 (sensor->binning_horizontal << 4)
838 | sensor->binning_vertical;
840 rval = smiapp_write(
841 sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
842 if (rval < 0)
843 return rval;
845 binning_mode = 1;
847 rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
848 if (rval < 0)
849 return rval;
851 /* Get updated limits due to binning */
852 rval = smiapp_get_limits_binning(sensor);
853 if (rval < 0)
854 return rval;
856 rval = smiapp_pll_update(sensor);
857 if (rval < 0)
858 return rval;
860 /* Output from pixel array, including blanking */
861 smiapp_update_blanking(sensor);
863 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
864 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
866 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
867 sensor->pll.vt_pix_clk_freq_hz /
868 ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
869 + sensor->hblank->val) *
870 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
871 + sensor->vblank->val) / 100));
873 return 0;
878 * SMIA++ NVM handling
881 static int smiapp_read_nvm(struct smiapp_sensor *sensor,
882 unsigned char *nvm)
884 u32 i, s, p, np, v;
885 int rval = 0, rval2;
887 np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
888 for (p = 0; p < np; p++) {
889 rval = smiapp_write(
890 sensor,
891 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
892 if (rval)
893 goto out;
895 rval = smiapp_write(sensor,
896 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
897 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
898 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
899 if (rval)
900 goto out;
902 for (i = 0; i < 1000; i++) {
903 rval = smiapp_read(
904 sensor,
905 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
907 if (rval)
908 goto out;
910 if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
911 break;
913 if (--i == 0) {
914 rval = -ETIMEDOUT;
915 goto out;
920 for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
921 rval = smiapp_read(
922 sensor,
923 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
924 &v);
925 if (rval)
926 goto out;
928 *nvm++ = v;
932 out:
933 rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
934 if (rval < 0)
935 return rval;
936 else
937 return rval2;
942 * SMIA++ CCI address control
945 static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
947 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
948 int rval;
949 u32 val;
951 client->addr = sensor->platform_data->i2c_addr_dfl;
953 rval = smiapp_write(sensor,
954 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
955 sensor->platform_data->i2c_addr_alt << 1);
956 if (rval)
957 return rval;
959 client->addr = sensor->platform_data->i2c_addr_alt;
961 /* verify addr change went ok */
962 rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
963 if (rval)
964 return rval;
966 if (val != sensor->platform_data->i2c_addr_alt << 1)
967 return -ENODEV;
969 return 0;
974 * SMIA++ Mode Control
977 static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
979 struct smiapp_flash_strobe_parms *strobe_setup;
980 unsigned int ext_freq = sensor->platform_data->ext_clk;
981 u32 tmp;
982 u32 strobe_adjustment;
983 u32 strobe_width_high_rs;
984 int rval;
986 strobe_setup = sensor->platform_data->strobe_setup;
989 * How to calculate registers related to strobe length. Please
990 * do not change, or if you do at least know what you're
991 * doing. :-)
993 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
995 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
996 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
998 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
999 * flash_strobe_adjustment E N, [1 - 0xff]
1001 * The formula above is written as below to keep it on one
1002 * line:
1004 * l / 10^6 = w / e * a
1006 * Let's mark w * a by x:
1008 * x = w * a
1010 * Thus, we get:
1012 * x = l * e / 10^6
1014 * The strobe width must be at least as long as requested,
1015 * thus rounding upwards is needed.
1017 * x = (l * e + 10^6 - 1) / 10^6
1018 * -----------------------------
1020 * Maximum possible accuracy is wanted at all times. Thus keep
1021 * a as small as possible.
1023 * Calculate a, assuming maximum w, with rounding upwards:
1025 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1026 * -------------------------------------
1028 * Thus, we also get w, with that a, with rounding upwards:
1030 * w = (x + a - 1) / a
1031 * -------------------
1033 * To get limits:
1035 * x E [1, (2^16 - 1) * (2^8 - 1)]
1037 * Substituting maximum x to the original formula (with rounding),
1038 * the maximum l is thus
1040 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1042 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1043 * --------------------------------------------------
1045 * flash_strobe_length must be clamped between 1 and
1046 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1048 * Then,
1050 * flash_strobe_adjustment = ((flash_strobe_length *
1051 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1053 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1054 * EXTCLK freq + 10^6 - 1) / 10^6 +
1055 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1057 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1058 1000000 + 1, ext_freq);
1059 strobe_setup->strobe_width_high_us =
1060 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1062 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1063 1000000 - 1), 1000000ULL);
1064 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1065 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1066 strobe_adjustment;
1068 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1069 strobe_setup->mode);
1070 if (rval < 0)
1071 goto out;
1073 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1074 strobe_adjustment);
1075 if (rval < 0)
1076 goto out;
1078 rval = smiapp_write(
1079 sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1080 strobe_width_high_rs);
1081 if (rval < 0)
1082 goto out;
1084 rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1085 strobe_setup->strobe_delay);
1086 if (rval < 0)
1087 goto out;
1089 rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1090 strobe_setup->stobe_start_point);
1091 if (rval < 0)
1092 goto out;
1094 rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1095 strobe_setup->trigger);
1097 out:
1098 sensor->platform_data->strobe_setup->trigger = 0;
1100 return rval;
1103 /* -----------------------------------------------------------------------------
1104 * Power management
1107 static int smiapp_power_on(struct smiapp_sensor *sensor)
1109 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1110 unsigned int sleep;
1111 int rval;
1113 rval = regulator_enable(sensor->vana);
1114 if (rval) {
1115 dev_err(&client->dev, "failed to enable vana regulator\n");
1116 return rval;
1118 usleep_range(1000, 1000);
1120 if (sensor->platform_data->set_xclk)
1121 rval = sensor->platform_data->set_xclk(
1122 &sensor->src->sd, sensor->platform_data->ext_clk);
1123 else
1124 rval = clk_prepare_enable(sensor->ext_clk);
1125 if (rval < 0) {
1126 dev_dbg(&client->dev, "failed to enable xclk\n");
1127 goto out_xclk_fail;
1129 usleep_range(1000, 1000);
1131 if (gpio_is_valid(sensor->platform_data->xshutdown))
1132 gpio_set_value(sensor->platform_data->xshutdown, 1);
1134 sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1135 usleep_range(sleep, sleep);
1138 * Failures to respond to the address change command have been noticed.
1139 * Those failures seem to be caused by the sensor requiring a longer
1140 * boot time than advertised. An additional 10ms delay seems to work
1141 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1142 * unnecessary. The failures need to be investigated to find a proper
1143 * fix, and a delay will likely need to be added here if the I2C write
1144 * retry hack is reverted before the root cause of the boot time issue
1145 * is found.
1148 if (sensor->platform_data->i2c_addr_alt) {
1149 rval = smiapp_change_cci_addr(sensor);
1150 if (rval) {
1151 dev_err(&client->dev, "cci address change error\n");
1152 goto out_cci_addr_fail;
1156 rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1157 SMIAPP_SOFTWARE_RESET);
1158 if (rval < 0) {
1159 dev_err(&client->dev, "software reset failed\n");
1160 goto out_cci_addr_fail;
1163 if (sensor->platform_data->i2c_addr_alt) {
1164 rval = smiapp_change_cci_addr(sensor);
1165 if (rval) {
1166 dev_err(&client->dev, "cci address change error\n");
1167 goto out_cci_addr_fail;
1171 rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1172 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1173 if (rval) {
1174 dev_err(&client->dev, "compression mode set failed\n");
1175 goto out_cci_addr_fail;
1178 rval = smiapp_write(
1179 sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1180 sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1181 if (rval) {
1182 dev_err(&client->dev, "extclk frequency set failed\n");
1183 goto out_cci_addr_fail;
1186 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1187 sensor->platform_data->lanes - 1);
1188 if (rval) {
1189 dev_err(&client->dev, "csi lane mode set failed\n");
1190 goto out_cci_addr_fail;
1193 rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1194 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1195 if (rval) {
1196 dev_err(&client->dev, "fast standby set failed\n");
1197 goto out_cci_addr_fail;
1200 rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1201 sensor->platform_data->csi_signalling_mode);
1202 if (rval) {
1203 dev_err(&client->dev, "csi signalling mode set failed\n");
1204 goto out_cci_addr_fail;
1207 /* DPHY control done by sensor based on requested link rate */
1208 rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1209 SMIAPP_DPHY_CTRL_UI);
1210 if (rval < 0)
1211 return rval;
1213 rval = smiapp_call_quirk(sensor, post_poweron);
1214 if (rval) {
1215 dev_err(&client->dev, "post_poweron quirks failed\n");
1216 goto out_cci_addr_fail;
1219 /* Are we still initialising...? If yes, return here. */
1220 if (!sensor->pixel_array)
1221 return 0;
1223 rval = v4l2_ctrl_handler_setup(
1224 &sensor->pixel_array->ctrl_handler);
1225 if (rval)
1226 goto out_cci_addr_fail;
1228 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1229 if (rval)
1230 goto out_cci_addr_fail;
1232 mutex_lock(&sensor->mutex);
1233 rval = smiapp_update_mode(sensor);
1234 mutex_unlock(&sensor->mutex);
1235 if (rval < 0)
1236 goto out_cci_addr_fail;
1238 return 0;
1240 out_cci_addr_fail:
1241 if (gpio_is_valid(sensor->platform_data->xshutdown))
1242 gpio_set_value(sensor->platform_data->xshutdown, 0);
1243 if (sensor->platform_data->set_xclk)
1244 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1245 else
1246 clk_disable_unprepare(sensor->ext_clk);
1248 out_xclk_fail:
1249 regulator_disable(sensor->vana);
1250 return rval;
1253 static void smiapp_power_off(struct smiapp_sensor *sensor)
1256 * Currently power/clock to lens are enable/disabled separately
1257 * but they are essentially the same signals. So if the sensor is
1258 * powered off while the lens is powered on the sensor does not
1259 * really see a power off and next time the cci address change
1260 * will fail. So do a soft reset explicitly here.
1262 if (sensor->platform_data->i2c_addr_alt)
1263 smiapp_write(sensor,
1264 SMIAPP_REG_U8_SOFTWARE_RESET,
1265 SMIAPP_SOFTWARE_RESET);
1267 if (gpio_is_valid(sensor->platform_data->xshutdown))
1268 gpio_set_value(sensor->platform_data->xshutdown, 0);
1269 if (sensor->platform_data->set_xclk)
1270 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1271 else
1272 clk_disable_unprepare(sensor->ext_clk);
1273 usleep_range(5000, 5000);
1274 regulator_disable(sensor->vana);
1275 sensor->streaming = 0;
1278 static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1280 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1281 int ret = 0;
1283 mutex_lock(&sensor->power_mutex);
1286 * If the power count is modified from 0 to != 0 or from != 0
1287 * to 0, update the power state.
1289 if (!sensor->power_count == !on)
1290 goto out;
1292 if (on) {
1293 /* Power on and perform initialisation. */
1294 ret = smiapp_power_on(sensor);
1295 if (ret < 0)
1296 goto out;
1297 } else {
1298 smiapp_power_off(sensor);
1301 /* Update the power count. */
1302 sensor->power_count += on ? 1 : -1;
1303 WARN_ON(sensor->power_count < 0);
1305 out:
1306 mutex_unlock(&sensor->power_mutex);
1307 return ret;
1310 /* -----------------------------------------------------------------------------
1311 * Video stream management
1314 static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1316 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1317 int rval;
1319 mutex_lock(&sensor->mutex);
1321 rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1322 (sensor->csi_format->width << 8) |
1323 sensor->csi_format->compressed);
1324 if (rval)
1325 goto out;
1327 rval = smiapp_pll_configure(sensor);
1328 if (rval)
1329 goto out;
1331 /* Analog crop start coordinates */
1332 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1333 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1334 if (rval < 0)
1335 goto out;
1337 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1338 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1339 if (rval < 0)
1340 goto out;
1342 /* Analog crop end coordinates */
1343 rval = smiapp_write(
1344 sensor, SMIAPP_REG_U16_X_ADDR_END,
1345 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1346 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1347 if (rval < 0)
1348 goto out;
1350 rval = smiapp_write(
1351 sensor, SMIAPP_REG_U16_Y_ADDR_END,
1352 sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1353 + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1354 if (rval < 0)
1355 goto out;
1358 * Output from pixel array, including blanking, is set using
1359 * controls below. No need to set here.
1362 /* Digital crop */
1363 if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1364 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1365 rval = smiapp_write(
1366 sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1367 sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1368 if (rval < 0)
1369 goto out;
1371 rval = smiapp_write(
1372 sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1373 sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1374 if (rval < 0)
1375 goto out;
1377 rval = smiapp_write(
1378 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1379 sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1380 if (rval < 0)
1381 goto out;
1383 rval = smiapp_write(
1384 sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1385 sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1386 if (rval < 0)
1387 goto out;
1390 /* Scaling */
1391 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1392 != SMIAPP_SCALING_CAPABILITY_NONE) {
1393 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1394 sensor->scaling_mode);
1395 if (rval < 0)
1396 goto out;
1398 rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1399 sensor->scale_m);
1400 if (rval < 0)
1401 goto out;
1404 /* Output size from sensor */
1405 rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1406 sensor->src->crop[SMIAPP_PAD_SRC].width);
1407 if (rval < 0)
1408 goto out;
1409 rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1410 sensor->src->crop[SMIAPP_PAD_SRC].height);
1411 if (rval < 0)
1412 goto out;
1414 if ((sensor->flash_capability &
1415 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1416 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1417 sensor->platform_data->strobe_setup != NULL &&
1418 sensor->platform_data->strobe_setup->trigger != 0) {
1419 rval = smiapp_setup_flash_strobe(sensor);
1420 if (rval)
1421 goto out;
1424 rval = smiapp_call_quirk(sensor, pre_streamon);
1425 if (rval) {
1426 dev_err(&client->dev, "pre_streamon quirks failed\n");
1427 goto out;
1430 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1431 SMIAPP_MODE_SELECT_STREAMING);
1433 out:
1434 mutex_unlock(&sensor->mutex);
1436 return rval;
1439 static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1441 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1442 int rval;
1444 mutex_lock(&sensor->mutex);
1445 rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1446 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1447 if (rval)
1448 goto out;
1450 rval = smiapp_call_quirk(sensor, post_streamoff);
1451 if (rval)
1452 dev_err(&client->dev, "post_streamoff quirks failed\n");
1454 out:
1455 mutex_unlock(&sensor->mutex);
1456 return rval;
1459 /* -----------------------------------------------------------------------------
1460 * V4L2 subdev video operations
1463 static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1465 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1466 int rval;
1468 if (sensor->streaming == enable)
1469 return 0;
1471 if (enable) {
1472 sensor->streaming = 1;
1473 rval = smiapp_start_streaming(sensor);
1474 if (rval < 0)
1475 sensor->streaming = 0;
1476 } else {
1477 rval = smiapp_stop_streaming(sensor);
1478 sensor->streaming = 0;
1481 return rval;
1484 static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1485 struct v4l2_subdev_fh *fh,
1486 struct v4l2_subdev_mbus_code_enum *code)
1488 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1489 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1490 unsigned int i;
1491 int idx = -1;
1492 int rval = -EINVAL;
1494 mutex_lock(&sensor->mutex);
1496 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1497 subdev->name, code->pad, code->index);
1499 if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1500 if (code->index)
1501 goto out;
1503 code->code = sensor->internal_csi_format->code;
1504 rval = 0;
1505 goto out;
1508 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1509 if (sensor->mbus_frame_fmts & (1 << i))
1510 idx++;
1512 if (idx == code->index) {
1513 code->code = smiapp_csi_data_formats[i].code;
1514 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1515 code->index, i, code->code);
1516 rval = 0;
1517 break;
1521 out:
1522 mutex_unlock(&sensor->mutex);
1524 return rval;
1527 static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1528 unsigned int pad)
1530 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1532 if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1533 return sensor->csi_format->code;
1534 else
1535 return sensor->internal_csi_format->code;
1538 static int __smiapp_get_format(struct v4l2_subdev *subdev,
1539 struct v4l2_subdev_fh *fh,
1540 struct v4l2_subdev_format *fmt)
1542 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1544 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1545 fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1546 } else {
1547 struct v4l2_rect *r;
1549 if (fmt->pad == ssd->source_pad)
1550 r = &ssd->crop[ssd->source_pad];
1551 else
1552 r = &ssd->sink_fmt;
1554 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1555 fmt->format.width = r->width;
1556 fmt->format.height = r->height;
1559 return 0;
1562 static int smiapp_get_format(struct v4l2_subdev *subdev,
1563 struct v4l2_subdev_fh *fh,
1564 struct v4l2_subdev_format *fmt)
1566 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1567 int rval;
1569 mutex_lock(&sensor->mutex);
1570 rval = __smiapp_get_format(subdev, fh, fmt);
1571 mutex_unlock(&sensor->mutex);
1573 return rval;
1576 static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1577 struct v4l2_subdev_fh *fh,
1578 struct v4l2_rect **crops,
1579 struct v4l2_rect **comps, int which)
1581 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1582 unsigned int i;
1584 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1585 if (crops)
1586 for (i = 0; i < subdev->entity.num_pads; i++)
1587 crops[i] = &ssd->crop[i];
1588 if (comps)
1589 *comps = &ssd->compose;
1590 } else {
1591 if (crops) {
1592 for (i = 0; i < subdev->entity.num_pads; i++) {
1593 crops[i] = v4l2_subdev_get_try_crop(fh, i);
1594 BUG_ON(!crops[i]);
1597 if (comps) {
1598 *comps = v4l2_subdev_get_try_compose(fh,
1599 SMIAPP_PAD_SINK);
1600 BUG_ON(!*comps);
1605 /* Changes require propagation only on sink pad. */
1606 static void smiapp_propagate(struct v4l2_subdev *subdev,
1607 struct v4l2_subdev_fh *fh, int which,
1608 int target)
1610 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1611 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1612 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1614 smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1616 switch (target) {
1617 case V4L2_SEL_TGT_CROP:
1618 comp->width = crops[SMIAPP_PAD_SINK]->width;
1619 comp->height = crops[SMIAPP_PAD_SINK]->height;
1620 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1621 if (ssd == sensor->scaler) {
1622 sensor->scale_m =
1623 sensor->limits[
1624 SMIAPP_LIMIT_SCALER_N_MIN];
1625 sensor->scaling_mode =
1626 SMIAPP_SCALING_MODE_NONE;
1627 } else if (ssd == sensor->binner) {
1628 sensor->binning_horizontal = 1;
1629 sensor->binning_vertical = 1;
1632 /* Fall through */
1633 case V4L2_SEL_TGT_COMPOSE:
1634 *crops[SMIAPP_PAD_SRC] = *comp;
1635 break;
1636 default:
1637 BUG();
1641 static const struct smiapp_csi_data_format
1642 *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1644 const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1645 unsigned int i;
1647 for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1648 if (sensor->mbus_frame_fmts & (1 << i)
1649 && smiapp_csi_data_formats[i].code == code)
1650 return &smiapp_csi_data_formats[i];
1653 return csi_format;
1656 static int smiapp_set_format(struct v4l2_subdev *subdev,
1657 struct v4l2_subdev_fh *fh,
1658 struct v4l2_subdev_format *fmt)
1660 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1661 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1662 struct v4l2_rect *crops[SMIAPP_PADS];
1664 mutex_lock(&sensor->mutex);
1667 * Media bus code is changeable on src subdev's source pad. On
1668 * other source pads we just get format here.
1670 if (fmt->pad == ssd->source_pad) {
1671 u32 code = fmt->format.code;
1672 int rval = __smiapp_get_format(subdev, fh, fmt);
1674 if (!rval && subdev == &sensor->src->sd) {
1675 const struct smiapp_csi_data_format *csi_format =
1676 smiapp_validate_csi_data_format(sensor, code);
1677 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1678 sensor->csi_format = csi_format;
1679 fmt->format.code = csi_format->code;
1682 mutex_unlock(&sensor->mutex);
1683 return rval;
1686 /* Sink pad. Width and height are changeable here. */
1687 fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1688 fmt->format.width &= ~1;
1689 fmt->format.height &= ~1;
1691 fmt->format.width =
1692 clamp(fmt->format.width,
1693 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1694 sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1695 fmt->format.height =
1696 clamp(fmt->format.height,
1697 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1698 sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1700 smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1702 crops[ssd->sink_pad]->left = 0;
1703 crops[ssd->sink_pad]->top = 0;
1704 crops[ssd->sink_pad]->width = fmt->format.width;
1705 crops[ssd->sink_pad]->height = fmt->format.height;
1706 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1707 ssd->sink_fmt = *crops[ssd->sink_pad];
1708 smiapp_propagate(subdev, fh, fmt->which,
1709 V4L2_SEL_TGT_CROP);
1711 mutex_unlock(&sensor->mutex);
1713 return 0;
1717 * Calculate goodness of scaled image size compared to expected image
1718 * size and flags provided.
1720 #define SCALING_GOODNESS 100000
1721 #define SCALING_GOODNESS_EXTREME 100000000
1722 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1723 int h, int ask_h, u32 flags)
1725 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1726 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1727 int val = 0;
1729 w &= ~1;
1730 ask_w &= ~1;
1731 h &= ~1;
1732 ask_h &= ~1;
1734 if (flags & V4L2_SEL_FLAG_GE) {
1735 if (w < ask_w)
1736 val -= SCALING_GOODNESS;
1737 if (h < ask_h)
1738 val -= SCALING_GOODNESS;
1741 if (flags & V4L2_SEL_FLAG_LE) {
1742 if (w > ask_w)
1743 val -= SCALING_GOODNESS;
1744 if (h > ask_h)
1745 val -= SCALING_GOODNESS;
1748 val -= abs(w - ask_w);
1749 val -= abs(h - ask_h);
1751 if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1752 val -= SCALING_GOODNESS_EXTREME;
1754 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1755 w, ask_h, h, ask_h, val);
1757 return val;
1760 static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1761 struct v4l2_subdev_fh *fh,
1762 struct v4l2_subdev_selection *sel,
1763 struct v4l2_rect **crops,
1764 struct v4l2_rect *comp)
1766 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1767 unsigned int i;
1768 unsigned int binh = 1, binv = 1;
1769 int best = scaling_goodness(
1770 subdev,
1771 crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1772 crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1774 for (i = 0; i < sensor->nbinning_subtypes; i++) {
1775 int this = scaling_goodness(
1776 subdev,
1777 crops[SMIAPP_PAD_SINK]->width
1778 / sensor->binning_subtypes[i].horizontal,
1779 sel->r.width,
1780 crops[SMIAPP_PAD_SINK]->height
1781 / sensor->binning_subtypes[i].vertical,
1782 sel->r.height, sel->flags);
1784 if (this > best) {
1785 binh = sensor->binning_subtypes[i].horizontal;
1786 binv = sensor->binning_subtypes[i].vertical;
1787 best = this;
1790 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1791 sensor->binning_vertical = binv;
1792 sensor->binning_horizontal = binh;
1795 sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1796 sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1800 * Calculate best scaling ratio and mode for given output resolution.
1802 * Try all of these: horizontal ratio, vertical ratio and smallest
1803 * size possible (horizontally).
1805 * Also try whether horizontal scaler or full scaler gives a better
1806 * result.
1808 static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1809 struct v4l2_subdev_fh *fh,
1810 struct v4l2_subdev_selection *sel,
1811 struct v4l2_rect **crops,
1812 struct v4l2_rect *comp)
1814 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1815 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1816 u32 min, max, a, b, max_m;
1817 u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1818 int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1819 u32 try[4];
1820 u32 ntry = 0;
1821 unsigned int i;
1822 int best = INT_MIN;
1824 sel->r.width = min_t(unsigned int, sel->r.width,
1825 crops[SMIAPP_PAD_SINK]->width);
1826 sel->r.height = min_t(unsigned int, sel->r.height,
1827 crops[SMIAPP_PAD_SINK]->height);
1829 a = crops[SMIAPP_PAD_SINK]->width
1830 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1831 b = crops[SMIAPP_PAD_SINK]->height
1832 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1833 max_m = crops[SMIAPP_PAD_SINK]->width
1834 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1835 / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1837 a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1838 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1839 b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1840 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1841 max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
1842 sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
1844 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1846 min = min(max_m, min(a, b));
1847 max = min(max_m, max(a, b));
1849 try[ntry] = min;
1850 ntry++;
1851 if (min != max) {
1852 try[ntry] = max;
1853 ntry++;
1855 if (max != max_m) {
1856 try[ntry] = min + 1;
1857 ntry++;
1858 if (min != max) {
1859 try[ntry] = max + 1;
1860 ntry++;
1864 for (i = 0; i < ntry; i++) {
1865 int this = scaling_goodness(
1866 subdev,
1867 crops[SMIAPP_PAD_SINK]->width
1868 / try[i]
1869 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1870 sel->r.width,
1871 crops[SMIAPP_PAD_SINK]->height,
1872 sel->r.height,
1873 sel->flags);
1875 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1877 if (this > best) {
1878 scale_m = try[i];
1879 mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1880 best = this;
1883 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1884 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1885 continue;
1887 this = scaling_goodness(
1888 subdev, crops[SMIAPP_PAD_SINK]->width
1889 / try[i]
1890 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1891 sel->r.width,
1892 crops[SMIAPP_PAD_SINK]->height
1893 / try[i]
1894 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1895 sel->r.height,
1896 sel->flags);
1898 if (this > best) {
1899 scale_m = try[i];
1900 mode = SMIAPP_SCALING_MODE_BOTH;
1901 best = this;
1905 sel->r.width =
1906 (crops[SMIAPP_PAD_SINK]->width
1907 / scale_m
1908 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1909 if (mode == SMIAPP_SCALING_MODE_BOTH)
1910 sel->r.height =
1911 (crops[SMIAPP_PAD_SINK]->height
1912 / scale_m
1913 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1914 & ~1;
1915 else
1916 sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1918 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1919 sensor->scale_m = scale_m;
1920 sensor->scaling_mode = mode;
1923 /* We're only called on source pads. This function sets scaling. */
1924 static int smiapp_set_compose(struct v4l2_subdev *subdev,
1925 struct v4l2_subdev_fh *fh,
1926 struct v4l2_subdev_selection *sel)
1928 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1929 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1930 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1932 smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1934 sel->r.top = 0;
1935 sel->r.left = 0;
1937 if (ssd == sensor->binner)
1938 smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1939 else
1940 smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1942 *comp = sel->r;
1943 smiapp_propagate(subdev, fh, sel->which,
1944 V4L2_SEL_TGT_COMPOSE);
1946 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1947 return smiapp_update_mode(sensor);
1949 return 0;
1952 static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1953 struct v4l2_subdev_selection *sel)
1955 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1956 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1958 /* We only implement crop in three places. */
1959 switch (sel->target) {
1960 case V4L2_SEL_TGT_CROP:
1961 case V4L2_SEL_TGT_CROP_BOUNDS:
1962 if (ssd == sensor->pixel_array
1963 && sel->pad == SMIAPP_PA_PAD_SRC)
1964 return 0;
1965 if (ssd == sensor->src
1966 && sel->pad == SMIAPP_PAD_SRC)
1967 return 0;
1968 if (ssd == sensor->scaler
1969 && sel->pad == SMIAPP_PAD_SINK
1970 && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1971 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1972 return 0;
1973 return -EINVAL;
1974 case V4L2_SEL_TGT_COMPOSE:
1975 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1976 if (sel->pad == ssd->source_pad)
1977 return -EINVAL;
1978 if (ssd == sensor->binner)
1979 return 0;
1980 if (ssd == sensor->scaler
1981 && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1982 != SMIAPP_SCALING_CAPABILITY_NONE)
1983 return 0;
1984 /* Fall through */
1985 default:
1986 return -EINVAL;
1990 static int smiapp_set_crop(struct v4l2_subdev *subdev,
1991 struct v4l2_subdev_fh *fh,
1992 struct v4l2_subdev_selection *sel)
1994 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1995 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1996 struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
1997 struct v4l2_rect _r;
1999 smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2001 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2002 if (sel->pad == ssd->sink_pad)
2003 src_size = &ssd->sink_fmt;
2004 else
2005 src_size = &ssd->compose;
2006 } else {
2007 if (sel->pad == ssd->sink_pad) {
2008 _r.left = 0;
2009 _r.top = 0;
2010 _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2011 ->width;
2012 _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2013 ->height;
2014 src_size = &_r;
2015 } else {
2016 src_size =
2017 v4l2_subdev_get_try_compose(
2018 fh, ssd->sink_pad);
2022 if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2023 sel->r.left = 0;
2024 sel->r.top = 0;
2027 sel->r.width = min(sel->r.width, src_size->width);
2028 sel->r.height = min(sel->r.height, src_size->height);
2030 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2031 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2033 *crops[sel->pad] = sel->r;
2035 if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2036 smiapp_propagate(subdev, fh, sel->which,
2037 V4L2_SEL_TGT_CROP);
2039 return 0;
2042 static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2043 struct v4l2_subdev_fh *fh,
2044 struct v4l2_subdev_selection *sel)
2046 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2047 struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2048 struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2049 struct v4l2_rect sink_fmt;
2050 int ret;
2052 ret = __smiapp_sel_supported(subdev, sel);
2053 if (ret)
2054 return ret;
2056 smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2058 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2059 sink_fmt = ssd->sink_fmt;
2060 } else {
2061 struct v4l2_mbus_framefmt *fmt =
2062 v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2064 sink_fmt.left = 0;
2065 sink_fmt.top = 0;
2066 sink_fmt.width = fmt->width;
2067 sink_fmt.height = fmt->height;
2070 switch (sel->target) {
2071 case V4L2_SEL_TGT_CROP_BOUNDS:
2072 if (ssd == sensor->pixel_array) {
2073 sel->r.width =
2074 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2075 sel->r.height =
2076 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2077 } else if (sel->pad == ssd->sink_pad) {
2078 sel->r = sink_fmt;
2079 } else {
2080 sel->r = *comp;
2082 break;
2083 case V4L2_SEL_TGT_CROP:
2084 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2085 sel->r = *crops[sel->pad];
2086 break;
2087 case V4L2_SEL_TGT_COMPOSE:
2088 sel->r = *comp;
2089 break;
2092 return 0;
2095 static int smiapp_get_selection(struct v4l2_subdev *subdev,
2096 struct v4l2_subdev_fh *fh,
2097 struct v4l2_subdev_selection *sel)
2099 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2100 int rval;
2102 mutex_lock(&sensor->mutex);
2103 rval = __smiapp_get_selection(subdev, fh, sel);
2104 mutex_unlock(&sensor->mutex);
2106 return rval;
2108 static int smiapp_set_selection(struct v4l2_subdev *subdev,
2109 struct v4l2_subdev_fh *fh,
2110 struct v4l2_subdev_selection *sel)
2112 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2113 int ret;
2115 ret = __smiapp_sel_supported(subdev, sel);
2116 if (ret)
2117 return ret;
2119 mutex_lock(&sensor->mutex);
2121 sel->r.left = max(0, sel->r.left & ~1);
2122 sel->r.top = max(0, sel->r.top & ~1);
2123 sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
2124 sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
2126 sel->r.width = max_t(unsigned int,
2127 sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2128 sel->r.width);
2129 sel->r.height = max_t(unsigned int,
2130 sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2131 sel->r.height);
2133 switch (sel->target) {
2134 case V4L2_SEL_TGT_CROP:
2135 ret = smiapp_set_crop(subdev, fh, sel);
2136 break;
2137 case V4L2_SEL_TGT_COMPOSE:
2138 ret = smiapp_set_compose(subdev, fh, sel);
2139 break;
2140 default:
2141 BUG();
2144 mutex_unlock(&sensor->mutex);
2145 return ret;
2148 static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2150 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2152 *frames = sensor->frame_skip;
2153 return 0;
2156 /* -----------------------------------------------------------------------------
2157 * sysfs attributes
2160 static ssize_t
2161 smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2162 char *buf)
2164 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2165 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2166 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2167 unsigned int nbytes;
2169 if (!sensor->dev_init_done)
2170 return -EBUSY;
2172 if (!sensor->nvm_size) {
2173 /* NVM not read yet - read it now */
2174 sensor->nvm_size = sensor->platform_data->nvm_size;
2175 if (smiapp_set_power(subdev, 1) < 0)
2176 return -ENODEV;
2177 if (smiapp_read_nvm(sensor, sensor->nvm)) {
2178 dev_err(&client->dev, "nvm read failed\n");
2179 return -ENODEV;
2181 smiapp_set_power(subdev, 0);
2184 * NVM is still way below a PAGE_SIZE, so we can safely
2185 * assume this for now.
2187 nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2188 memcpy(buf, sensor->nvm, nbytes);
2190 return nbytes;
2192 static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2194 static ssize_t
2195 smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2196 char *buf)
2198 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2199 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2200 struct smiapp_module_info *minfo = &sensor->minfo;
2202 return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2203 minfo->manufacturer_id, minfo->model_id,
2204 minfo->revision_number_major) + 1;
2207 static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
2209 /* -----------------------------------------------------------------------------
2210 * V4L2 subdev core operations
2213 static int smiapp_identify_module(struct v4l2_subdev *subdev)
2215 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2216 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2217 struct smiapp_module_info *minfo = &sensor->minfo;
2218 unsigned int i;
2219 int rval = 0;
2221 minfo->name = SMIAPP_NAME;
2223 /* Module info */
2224 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2225 &minfo->manufacturer_id);
2226 if (!rval)
2227 rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2228 &minfo->model_id);
2229 if (!rval)
2230 rval = smiapp_read_8only(sensor,
2231 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2232 &minfo->revision_number_major);
2233 if (!rval)
2234 rval = smiapp_read_8only(sensor,
2235 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2236 &minfo->revision_number_minor);
2237 if (!rval)
2238 rval = smiapp_read_8only(sensor,
2239 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2240 &minfo->module_year);
2241 if (!rval)
2242 rval = smiapp_read_8only(sensor,
2243 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2244 &minfo->module_month);
2245 if (!rval)
2246 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2247 &minfo->module_day);
2249 /* Sensor info */
2250 if (!rval)
2251 rval = smiapp_read_8only(sensor,
2252 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2253 &minfo->sensor_manufacturer_id);
2254 if (!rval)
2255 rval = smiapp_read_8only(sensor,
2256 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2257 &minfo->sensor_model_id);
2258 if (!rval)
2259 rval = smiapp_read_8only(sensor,
2260 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2261 &minfo->sensor_revision_number);
2262 if (!rval)
2263 rval = smiapp_read_8only(sensor,
2264 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2265 &minfo->sensor_firmware_version);
2267 /* SMIA */
2268 if (!rval)
2269 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2270 &minfo->smia_version);
2271 if (!rval)
2272 rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2273 &minfo->smiapp_version);
2275 if (rval) {
2276 dev_err(&client->dev, "sensor detection failed\n");
2277 return -ENODEV;
2280 dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2281 minfo->manufacturer_id, minfo->model_id);
2283 dev_dbg(&client->dev,
2284 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2285 minfo->revision_number_major, minfo->revision_number_minor,
2286 minfo->module_year, minfo->module_month, minfo->module_day);
2288 dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2289 minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2291 dev_dbg(&client->dev,
2292 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2293 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2295 dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2296 minfo->smia_version, minfo->smiapp_version);
2299 * Some modules have bad data in the lvalues below. Hope the
2300 * rvalues have better stuff. The lvalues are module
2301 * parameters whereas the rvalues are sensor parameters.
2303 if (!minfo->manufacturer_id && !minfo->model_id) {
2304 minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2305 minfo->model_id = minfo->sensor_model_id;
2306 minfo->revision_number_major = minfo->sensor_revision_number;
2309 for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2310 if (smiapp_module_idents[i].manufacturer_id
2311 != minfo->manufacturer_id)
2312 continue;
2313 if (smiapp_module_idents[i].model_id != minfo->model_id)
2314 continue;
2315 if (smiapp_module_idents[i].flags
2316 & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2317 if (smiapp_module_idents[i].revision_number_major
2318 < minfo->revision_number_major)
2319 continue;
2320 } else {
2321 if (smiapp_module_idents[i].revision_number_major
2322 != minfo->revision_number_major)
2323 continue;
2326 minfo->name = smiapp_module_idents[i].name;
2327 minfo->quirk = smiapp_module_idents[i].quirk;
2328 break;
2331 if (i >= ARRAY_SIZE(smiapp_module_idents))
2332 dev_warn(&client->dev,
2333 "no quirks for this module; let's hope it's fully compliant\n");
2335 dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2336 minfo->name, minfo->manufacturer_id, minfo->model_id,
2337 minfo->revision_number_major);
2339 strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2341 return 0;
2344 static const struct v4l2_subdev_ops smiapp_ops;
2345 static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2346 static const struct media_entity_operations smiapp_entity_ops;
2348 static int smiapp_registered(struct v4l2_subdev *subdev)
2350 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2351 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2352 struct smiapp_pll *pll = &sensor->pll;
2353 struct smiapp_subdev *last = NULL;
2354 u32 tmp;
2355 unsigned int i;
2356 int rval;
2358 sensor->vana = devm_regulator_get(&client->dev, "vana");
2359 if (IS_ERR(sensor->vana)) {
2360 dev_err(&client->dev, "could not get regulator for vana\n");
2361 return PTR_ERR(sensor->vana);
2364 if (!sensor->platform_data->set_xclk) {
2365 sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
2366 if (IS_ERR(sensor->ext_clk)) {
2367 dev_err(&client->dev, "could not get clock\n");
2368 return PTR_ERR(sensor->ext_clk);
2371 rval = clk_set_rate(sensor->ext_clk,
2372 sensor->platform_data->ext_clk);
2373 if (rval < 0) {
2374 dev_err(&client->dev,
2375 "unable to set clock freq to %u\n",
2376 sensor->platform_data->ext_clk);
2377 return rval;
2381 if (gpio_is_valid(sensor->platform_data->xshutdown)) {
2382 rval = devm_gpio_request_one(
2383 &client->dev, sensor->platform_data->xshutdown, 0,
2384 "SMIA++ xshutdown");
2385 if (rval < 0) {
2386 dev_err(&client->dev,
2387 "unable to acquire reset gpio %d\n",
2388 sensor->platform_data->xshutdown);
2389 return rval;
2393 rval = smiapp_power_on(sensor);
2394 if (rval)
2395 return -ENODEV;
2397 rval = smiapp_identify_module(subdev);
2398 if (rval) {
2399 rval = -ENODEV;
2400 goto out_power_off;
2403 rval = smiapp_get_all_limits(sensor);
2404 if (rval) {
2405 rval = -ENODEV;
2406 goto out_power_off;
2410 * Handle Sensor Module orientation on the board.
2412 * The application of H-FLIP and V-FLIP on the sensor is modified by
2413 * the sensor orientation on the board.
2415 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2416 * both H-FLIP and V-FLIP for normal operation which also implies
2417 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2418 * controls will need to be internally inverted.
2420 * Rotation also changes the bayer pattern.
2422 if (sensor->platform_data->module_board_orient ==
2423 SMIAPP_MODULE_BOARD_ORIENT_180)
2424 sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2425 SMIAPP_IMAGE_ORIENTATION_VFLIP;
2427 rval = smiapp_call_quirk(sensor, limits);
2428 if (rval) {
2429 dev_err(&client->dev, "limits quirks failed\n");
2430 goto out_power_off;
2433 rval = smiapp_get_mbus_formats(sensor);
2434 if (rval) {
2435 rval = -ENODEV;
2436 goto out_power_off;
2439 if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2440 u32 val;
2442 rval = smiapp_read(sensor,
2443 SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2444 if (rval < 0) {
2445 rval = -ENODEV;
2446 goto out_power_off;
2448 sensor->nbinning_subtypes = min_t(u8, val,
2449 SMIAPP_BINNING_SUBTYPES);
2451 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2452 rval = smiapp_read(
2453 sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2454 if (rval < 0) {
2455 rval = -ENODEV;
2456 goto out_power_off;
2458 sensor->binning_subtypes[i] =
2459 *(struct smiapp_binning_subtype *)&val;
2461 dev_dbg(&client->dev, "binning %xx%x\n",
2462 sensor->binning_subtypes[i].horizontal,
2463 sensor->binning_subtypes[i].vertical);
2466 sensor->binning_horizontal = 1;
2467 sensor->binning_vertical = 1;
2469 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
2470 dev_err(&client->dev, "sysfs ident entry creation failed\n");
2471 rval = -ENOENT;
2472 goto out_power_off;
2474 /* SMIA++ NVM initialization - it will be read from the sensor
2475 * when it is first requested by userspace.
2477 if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2478 sensor->nvm = devm_kzalloc(&client->dev,
2479 sensor->platform_data->nvm_size, GFP_KERNEL);
2480 if (sensor->nvm == NULL) {
2481 dev_err(&client->dev, "nvm buf allocation failed\n");
2482 rval = -ENOMEM;
2483 goto out_ident_release;
2486 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2487 dev_err(&client->dev, "sysfs nvm entry failed\n");
2488 rval = -EBUSY;
2489 goto out_ident_release;
2493 /* We consider this as profile 0 sensor if any of these are zero. */
2494 if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2495 !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2496 !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2497 !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2498 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2499 } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2500 != SMIAPP_SCALING_CAPABILITY_NONE) {
2501 if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2502 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2503 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2504 else
2505 sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2506 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2507 sensor->ssds_used++;
2508 } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2509 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2510 sensor->scaler = &sensor->ssds[sensor->ssds_used];
2511 sensor->ssds_used++;
2513 sensor->binner = &sensor->ssds[sensor->ssds_used];
2514 sensor->ssds_used++;
2515 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2516 sensor->ssds_used++;
2518 sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2520 for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2521 struct {
2522 struct smiapp_subdev *ssd;
2523 char *name;
2524 } const __this[] = {
2525 { sensor->scaler, "scaler", },
2526 { sensor->binner, "binner", },
2527 { sensor->pixel_array, "pixel array", },
2528 }, *_this = &__this[i];
2529 struct smiapp_subdev *this = _this->ssd;
2531 if (!this)
2532 continue;
2534 if (this != sensor->src)
2535 v4l2_subdev_init(&this->sd, &smiapp_ops);
2537 this->sensor = sensor;
2539 if (this == sensor->pixel_array) {
2540 this->npads = 1;
2541 } else {
2542 this->npads = 2;
2543 this->source_pad = 1;
2546 snprintf(this->sd.name,
2547 sizeof(this->sd.name), "%s %d-%4.4x %s",
2548 sensor->minfo.name, i2c_adapter_id(client->adapter),
2549 client->addr, _this->name);
2551 this->sink_fmt.width =
2552 sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2553 this->sink_fmt.height =
2554 sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2555 this->compose.width = this->sink_fmt.width;
2556 this->compose.height = this->sink_fmt.height;
2557 this->crop[this->source_pad] = this->compose;
2558 this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2559 if (this != sensor->pixel_array) {
2560 this->crop[this->sink_pad] = this->compose;
2561 this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2564 this->sd.entity.ops = &smiapp_entity_ops;
2566 if (last == NULL) {
2567 last = this;
2568 continue;
2571 this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2572 this->sd.internal_ops = &smiapp_internal_ops;
2573 this->sd.owner = NULL;
2574 v4l2_set_subdevdata(&this->sd, client);
2576 rval = media_entity_init(&this->sd.entity,
2577 this->npads, this->pads, 0);
2578 if (rval) {
2579 dev_err(&client->dev,
2580 "media_entity_init failed\n");
2581 goto out_nvm_release;
2584 rval = media_entity_create_link(&this->sd.entity,
2585 this->source_pad,
2586 &last->sd.entity,
2587 last->sink_pad,
2588 MEDIA_LNK_FL_ENABLED |
2589 MEDIA_LNK_FL_IMMUTABLE);
2590 if (rval) {
2591 dev_err(&client->dev,
2592 "media_entity_create_link failed\n");
2593 goto out_nvm_release;
2596 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2597 &this->sd);
2598 if (rval) {
2599 dev_err(&client->dev,
2600 "v4l2_device_register_subdev failed\n");
2601 goto out_nvm_release;
2604 last = this;
2607 dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2609 sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2611 /* final steps */
2612 smiapp_read_frame_fmt(sensor);
2613 rval = smiapp_init_controls(sensor);
2614 if (rval < 0)
2615 goto out_nvm_release;
2617 /* prepare PLL configuration input values */
2618 pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
2619 pll->csi2.lanes = sensor->platform_data->lanes;
2620 pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
2621 pll->flags = smiapp_call_quirk(sensor, pll_flags);
2623 /* Profile 0 sensors have no separate OP clock branch. */
2624 if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
2625 pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
2626 pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2628 rval = smiapp_update_mode(sensor);
2629 if (rval) {
2630 dev_err(&client->dev, "update mode failed\n");
2631 goto out_nvm_release;
2634 sensor->streaming = false;
2635 sensor->dev_init_done = true;
2637 /* check flash capability */
2638 rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2639 sensor->flash_capability = tmp;
2640 if (rval)
2641 goto out_nvm_release;
2643 smiapp_power_off(sensor);
2645 return 0;
2647 out_nvm_release:
2648 device_remove_file(&client->dev, &dev_attr_nvm);
2650 out_ident_release:
2651 device_remove_file(&client->dev, &dev_attr_ident);
2653 out_power_off:
2654 smiapp_power_off(sensor);
2655 return rval;
2658 static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2660 struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2661 struct smiapp_sensor *sensor = ssd->sensor;
2662 u32 mbus_code =
2663 smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2664 unsigned int i;
2666 mutex_lock(&sensor->mutex);
2668 for (i = 0; i < ssd->npads; i++) {
2669 struct v4l2_mbus_framefmt *try_fmt =
2670 v4l2_subdev_get_try_format(fh, i);
2671 struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2672 struct v4l2_rect *try_comp;
2674 try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2675 try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2676 try_fmt->code = mbus_code;
2678 try_crop->top = 0;
2679 try_crop->left = 0;
2680 try_crop->width = try_fmt->width;
2681 try_crop->height = try_fmt->height;
2683 if (ssd != sensor->pixel_array)
2684 continue;
2686 try_comp = v4l2_subdev_get_try_compose(fh, i);
2687 *try_comp = *try_crop;
2690 mutex_unlock(&sensor->mutex);
2692 return smiapp_set_power(sd, 1);
2695 static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2697 return smiapp_set_power(sd, 0);
2700 static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2701 .s_stream = smiapp_set_stream,
2704 static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2705 .s_power = smiapp_set_power,
2708 static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2709 .enum_mbus_code = smiapp_enum_mbus_code,
2710 .get_fmt = smiapp_get_format,
2711 .set_fmt = smiapp_set_format,
2712 .get_selection = smiapp_get_selection,
2713 .set_selection = smiapp_set_selection,
2716 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2717 .g_skip_frames = smiapp_get_skip_frames,
2720 static const struct v4l2_subdev_ops smiapp_ops = {
2721 .core = &smiapp_core_ops,
2722 .video = &smiapp_video_ops,
2723 .pad = &smiapp_pad_ops,
2724 .sensor = &smiapp_sensor_ops,
2727 static const struct media_entity_operations smiapp_entity_ops = {
2728 .link_validate = v4l2_subdev_link_validate,
2731 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2732 .registered = smiapp_registered,
2733 .open = smiapp_open,
2734 .close = smiapp_close,
2737 static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2738 .open = smiapp_open,
2739 .close = smiapp_close,
2742 /* -----------------------------------------------------------------------------
2743 * I2C Driver
2746 #ifdef CONFIG_PM
2748 static int smiapp_suspend(struct device *dev)
2750 struct i2c_client *client = to_i2c_client(dev);
2751 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2752 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2753 bool streaming;
2755 BUG_ON(mutex_is_locked(&sensor->mutex));
2757 if (sensor->power_count == 0)
2758 return 0;
2760 if (sensor->streaming)
2761 smiapp_stop_streaming(sensor);
2763 streaming = sensor->streaming;
2765 smiapp_power_off(sensor);
2767 /* save state for resume */
2768 sensor->streaming = streaming;
2770 return 0;
2773 static int smiapp_resume(struct device *dev)
2775 struct i2c_client *client = to_i2c_client(dev);
2776 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2777 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2778 int rval;
2780 if (sensor->power_count == 0)
2781 return 0;
2783 rval = smiapp_power_on(sensor);
2784 if (rval)
2785 return rval;
2787 if (sensor->streaming)
2788 rval = smiapp_start_streaming(sensor);
2790 return rval;
2793 #else
2795 #define smiapp_suspend NULL
2796 #define smiapp_resume NULL
2798 #endif /* CONFIG_PM */
2800 static int smiapp_probe(struct i2c_client *client,
2801 const struct i2c_device_id *devid)
2803 struct smiapp_sensor *sensor;
2805 if (client->dev.platform_data == NULL)
2806 return -ENODEV;
2808 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
2809 if (sensor == NULL)
2810 return -ENOMEM;
2812 sensor->platform_data = client->dev.platform_data;
2813 mutex_init(&sensor->mutex);
2814 mutex_init(&sensor->power_mutex);
2815 sensor->src = &sensor->ssds[sensor->ssds_used];
2817 v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2818 sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2819 sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2820 sensor->src->sensor = sensor;
2822 sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2823 return media_entity_init(&sensor->src->sd.entity, 2,
2824 sensor->src->pads, 0);
2827 static int smiapp_remove(struct i2c_client *client)
2829 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2830 struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2831 unsigned int i;
2833 if (sensor->power_count) {
2834 if (gpio_is_valid(sensor->platform_data->xshutdown))
2835 gpio_set_value(sensor->platform_data->xshutdown, 0);
2836 if (sensor->platform_data->set_xclk)
2837 sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2838 else
2839 clk_disable_unprepare(sensor->ext_clk);
2840 sensor->power_count = 0;
2843 device_remove_file(&client->dev, &dev_attr_ident);
2844 if (sensor->nvm)
2845 device_remove_file(&client->dev, &dev_attr_nvm);
2847 for (i = 0; i < sensor->ssds_used; i++) {
2848 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2849 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2851 smiapp_free_controls(sensor);
2853 return 0;
2856 static const struct i2c_device_id smiapp_id_table[] = {
2857 { SMIAPP_NAME, 0 },
2858 { },
2860 MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2862 static const struct dev_pm_ops smiapp_pm_ops = {
2863 .suspend = smiapp_suspend,
2864 .resume = smiapp_resume,
2867 static struct i2c_driver smiapp_i2c_driver = {
2868 .driver = {
2869 .name = SMIAPP_NAME,
2870 .pm = &smiapp_pm_ops,
2872 .probe = smiapp_probe,
2873 .remove = smiapp_remove,
2874 .id_table = smiapp_id_table,
2877 module_i2c_driver(smiapp_i2c_driver);
2879 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
2880 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2881 MODULE_LICENSE("GPL");