2 * drivers/media/i2c/smiapp/smiapp-core.c
4 * Generic driver for SMIA/SMIA++ compliant camera modules
6 * Copyright (C) 2010--2012 Nokia Corporation
7 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
9 * Based on smiapp driver by Vimarsh Zutshi
10 * Based on jt8ev1.c by Vimarsh Zutshi
11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2 as published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/gpio.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/v4l2-mediabus.h>
37 #include <media/v4l2-device.h>
41 #define SMIAPP_ALIGN_DIM(dim, flags) \
42 ((flags) & V4L2_SEL_FLAG_GE \
47 * smiapp_module_idents - supported camera modules
49 static const struct smiapp_module_ident smiapp_module_idents
[] = {
50 SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
51 SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
52 SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
53 SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
54 SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
55 SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk
),
56 SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
57 SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
58 SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk
),
59 SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk
),
60 SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk
),
65 * Dynamic Capability Identification
69 static int smiapp_read_frame_fmt(struct smiapp_sensor
*sensor
)
71 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
72 u32 fmt_model_type
, fmt_model_subtype
, ncol_desc
, nrow_desc
;
76 int embedded_start
= -1, embedded_end
= -1;
79 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE
,
84 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE
,
89 ncol_desc
= (fmt_model_subtype
90 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK
)
91 >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT
;
92 nrow_desc
= fmt_model_subtype
93 & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK
;
95 dev_dbg(&client
->dev
, "format_model_type %s\n",
96 fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
98 fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
99 ? "4 byte" : "is simply bad");
101 for (i
= 0; i
< ncol_desc
+ nrow_desc
; i
++) {
108 if (fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
) {
111 SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i
),
118 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK
)
119 >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT
;
120 pixels
= desc
& SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK
;
121 } else if (fmt_model_type
122 == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
) {
125 SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i
),
132 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK
)
133 >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT
;
134 pixels
= desc
& SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK
;
136 dev_dbg(&client
->dev
,
137 "invalid frame format model type %d\n",
148 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED
:
151 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY
:
154 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK
:
157 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK
:
160 case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
:
165 dev_dbg(&client
->dev
, "pixelcode %d\n", pixelcode
);
169 dev_dbg(&client
->dev
, "%s pixels: %d %s\n",
170 what
, pixels
, which
);
175 /* Handle row descriptors */
177 == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED
) {
178 embedded_start
= line_count
;
180 if (pixelcode
== SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
181 || pixels
>= sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES
] / 2)
182 image_start
= line_count
;
183 if (embedded_start
!= -1 && embedded_end
== -1)
184 embedded_end
= line_count
;
186 line_count
+= pixels
;
189 if (embedded_start
== -1 || embedded_end
== -1) {
194 dev_dbg(&client
->dev
, "embedded data from lines %d to %d\n",
195 embedded_start
, embedded_end
);
196 dev_dbg(&client
->dev
, "image data starts at line %d\n", image_start
);
201 static int smiapp_pll_configure(struct smiapp_sensor
*sensor
)
203 struct smiapp_pll
*pll
= &sensor
->pll
;
207 sensor
, SMIAPP_REG_U16_VT_PIX_CLK_DIV
, pll
->vt_pix_clk_div
);
212 sensor
, SMIAPP_REG_U16_VT_SYS_CLK_DIV
, pll
->vt_sys_clk_div
);
217 sensor
, SMIAPP_REG_U16_PRE_PLL_CLK_DIV
, pll
->pre_pll_clk_div
);
222 sensor
, SMIAPP_REG_U16_PLL_MULTIPLIER
, pll
->pll_multiplier
);
226 /* Lane op clock ratio does not apply here. */
228 sensor
, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS
,
229 DIV_ROUND_UP(pll
->op_sys_clk_freq_hz
, 1000000 / 256 / 256));
230 if (rval
< 0 || sensor
->minfo
.smiapp_profile
== SMIAPP_PROFILE_0
)
234 sensor
, SMIAPP_REG_U16_OP_PIX_CLK_DIV
, pll
->op_pix_clk_div
);
239 sensor
, SMIAPP_REG_U16_OP_SYS_CLK_DIV
, pll
->op_sys_clk_div
);
242 static int smiapp_pll_update(struct smiapp_sensor
*sensor
)
244 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
245 struct smiapp_pll_limits lim
= {
246 .min_pre_pll_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV
],
247 .max_pre_pll_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV
],
248 .min_pll_ip_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ
],
249 .max_pll_ip_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ
],
250 .min_pll_multiplier
= sensor
->limits
[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER
],
251 .max_pll_multiplier
= sensor
->limits
[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER
],
252 .min_pll_op_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ
],
253 .max_pll_op_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ
],
255 .op
.min_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV
],
256 .op
.max_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV
],
257 .op
.min_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV
],
258 .op
.max_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV
],
259 .op
.min_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ
],
260 .op
.max_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ
],
261 .op
.min_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ
],
262 .op
.max_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ
],
264 .vt
.min_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV
],
265 .vt
.max_sys_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV
],
266 .vt
.min_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV
],
267 .vt
.max_pix_clk_div
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV
],
268 .vt
.min_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ
],
269 .vt
.max_sys_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ
],
270 .vt
.min_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ
],
271 .vt
.max_pix_clk_freq_hz
= sensor
->limits
[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ
],
273 .min_line_length_pck_bin
= sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
],
274 .min_line_length_pck
= sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK
],
276 struct smiapp_pll
*pll
= &sensor
->pll
;
279 if (sensor
->minfo
.smiapp_profile
== SMIAPP_PROFILE_0
) {
281 * Fill in operational clock divisors limits from the
282 * video timing ones. On profile 0 sensors the
283 * requirements regarding them are essentially the
284 * same as on VT ones.
289 pll
->binning_horizontal
= sensor
->binning_horizontal
;
290 pll
->binning_vertical
= sensor
->binning_vertical
;
292 sensor
->link_freq
->qmenu_int
[sensor
->link_freq
->val
];
293 pll
->scale_m
= sensor
->scale_m
;
294 pll
->bits_per_pixel
= sensor
->csi_format
->compressed
;
296 rval
= smiapp_pll_calculate(&client
->dev
, &lim
, pll
);
300 sensor
->pixel_rate_parray
->cur
.val64
= pll
->vt_pix_clk_freq_hz
;
301 sensor
->pixel_rate_csi
->cur
.val64
= pll
->pixel_rate_csi
;
309 * V4L2 Controls handling
313 static void __smiapp_update_exposure_limits(struct smiapp_sensor
*sensor
)
315 struct v4l2_ctrl
*ctrl
= sensor
->exposure
;
318 max
= sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
319 + sensor
->vblank
->val
320 - sensor
->limits
[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN
];
323 if (ctrl
->default_value
> max
)
324 ctrl
->default_value
= max
;
327 if (ctrl
->cur
.val
> max
)
334 * 1. Bits-per-pixel, descending.
335 * 2. Bits-per-pixel compressed, descending.
336 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
337 * orders must be defined.
339 static const struct smiapp_csi_data_format smiapp_csi_data_formats
[] = {
340 { V4L2_MBUS_FMT_SGRBG12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_GRBG
, },
341 { V4L2_MBUS_FMT_SRGGB12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_RGGB
, },
342 { V4L2_MBUS_FMT_SBGGR12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_BGGR
, },
343 { V4L2_MBUS_FMT_SGBRG12_1X12
, 12, 12, SMIAPP_PIXEL_ORDER_GBRG
, },
344 { V4L2_MBUS_FMT_SGRBG10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_GRBG
, },
345 { V4L2_MBUS_FMT_SRGGB10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_RGGB
, },
346 { V4L2_MBUS_FMT_SBGGR10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_BGGR
, },
347 { V4L2_MBUS_FMT_SGBRG10_1X10
, 10, 10, SMIAPP_PIXEL_ORDER_GBRG
, },
348 { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_GRBG
, },
349 { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_RGGB
, },
350 { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_BGGR
, },
351 { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8
, 10, 8, SMIAPP_PIXEL_ORDER_GBRG
, },
352 { V4L2_MBUS_FMT_SGRBG8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_GRBG
, },
353 { V4L2_MBUS_FMT_SRGGB8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_RGGB
, },
354 { V4L2_MBUS_FMT_SBGGR8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_BGGR
, },
355 { V4L2_MBUS_FMT_SGBRG8_1X8
, 8, 8, SMIAPP_PIXEL_ORDER_GBRG
, },
358 const char *pixel_order_str
[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
360 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
361 - (unsigned long)smiapp_csi_data_formats) \
362 / sizeof(*smiapp_csi_data_formats))
364 static u32
smiapp_pixel_order(struct smiapp_sensor
*sensor
)
366 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
370 if (sensor
->hflip
->val
)
371 flip
|= SMIAPP_IMAGE_ORIENTATION_HFLIP
;
373 if (sensor
->vflip
->val
)
374 flip
|= SMIAPP_IMAGE_ORIENTATION_VFLIP
;
377 flip
^= sensor
->hvflip_inv_mask
;
379 dev_dbg(&client
->dev
, "flip %d\n", flip
);
380 return sensor
->default_pixel_order
^ flip
;
383 static void smiapp_update_mbus_formats(struct smiapp_sensor
*sensor
)
385 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
386 unsigned int csi_format_idx
=
387 to_csi_format_idx(sensor
->csi_format
) & ~3;
388 unsigned int internal_csi_format_idx
=
389 to_csi_format_idx(sensor
->internal_csi_format
) & ~3;
390 unsigned int pixel_order
= smiapp_pixel_order(sensor
);
392 sensor
->mbus_frame_fmts
=
393 sensor
->default_mbus_frame_fmts
<< pixel_order
;
395 &smiapp_csi_data_formats
[csi_format_idx
+ pixel_order
];
396 sensor
->internal_csi_format
=
397 &smiapp_csi_data_formats
[internal_csi_format_idx
400 BUG_ON(max(internal_csi_format_idx
, csi_format_idx
) + pixel_order
401 >= ARRAY_SIZE(smiapp_csi_data_formats
));
403 dev_dbg(&client
->dev
, "new pixel order %s\n",
404 pixel_order_str
[pixel_order
]);
407 static int smiapp_set_ctrl(struct v4l2_ctrl
*ctrl
)
409 struct smiapp_sensor
*sensor
=
410 container_of(ctrl
->handler
, struct smiapp_subdev
, ctrl_handler
)
417 case V4L2_CID_ANALOGUE_GAIN
:
420 SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL
, ctrl
->val
);
422 case V4L2_CID_EXPOSURE
:
425 SMIAPP_REG_U16_COARSE_INTEGRATION_TIME
, ctrl
->val
);
429 if (sensor
->streaming
)
432 if (sensor
->hflip
->val
)
433 orient
|= SMIAPP_IMAGE_ORIENTATION_HFLIP
;
435 if (sensor
->vflip
->val
)
436 orient
|= SMIAPP_IMAGE_ORIENTATION_VFLIP
;
438 orient
^= sensor
->hvflip_inv_mask
;
439 rval
= smiapp_write(sensor
,
440 SMIAPP_REG_U8_IMAGE_ORIENTATION
,
445 smiapp_update_mbus_formats(sensor
);
449 case V4L2_CID_VBLANK
:
450 exposure
= sensor
->exposure
->val
;
452 __smiapp_update_exposure_limits(sensor
);
454 if (exposure
> sensor
->exposure
->maximum
) {
455 sensor
->exposure
->val
=
456 sensor
->exposure
->maximum
;
457 rval
= smiapp_set_ctrl(
464 sensor
, SMIAPP_REG_U16_FRAME_LENGTH_LINES
,
465 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
468 case V4L2_CID_HBLANK
:
470 sensor
, SMIAPP_REG_U16_LINE_LENGTH_PCK
,
471 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
474 case V4L2_CID_LINK_FREQ
:
475 if (sensor
->streaming
)
478 return smiapp_pll_update(sensor
);
485 static const struct v4l2_ctrl_ops smiapp_ctrl_ops
= {
486 .s_ctrl
= smiapp_set_ctrl
,
489 static int smiapp_init_controls(struct smiapp_sensor
*sensor
)
491 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
495 rval
= v4l2_ctrl_handler_init(&sensor
->pixel_array
->ctrl_handler
, 7);
498 sensor
->pixel_array
->ctrl_handler
.lock
= &sensor
->mutex
;
500 sensor
->analog_gain
= v4l2_ctrl_new_std(
501 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
502 V4L2_CID_ANALOGUE_GAIN
,
503 sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN
],
504 sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX
],
505 max(sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP
], 1U),
506 sensor
->limits
[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN
]);
508 /* Exposure limits will be updated soon, use just something here. */
509 sensor
->exposure
= v4l2_ctrl_new_std(
510 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
511 V4L2_CID_EXPOSURE
, 0, 0, 1, 0);
513 sensor
->hflip
= v4l2_ctrl_new_std(
514 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
515 V4L2_CID_HFLIP
, 0, 1, 1, 0);
516 sensor
->vflip
= v4l2_ctrl_new_std(
517 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
518 V4L2_CID_VFLIP
, 0, 1, 1, 0);
520 sensor
->vblank
= v4l2_ctrl_new_std(
521 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
522 V4L2_CID_VBLANK
, 0, 1, 1, 0);
525 sensor
->vblank
->flags
|= V4L2_CTRL_FLAG_UPDATE
;
527 sensor
->hblank
= v4l2_ctrl_new_std(
528 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
529 V4L2_CID_HBLANK
, 0, 1, 1, 0);
532 sensor
->hblank
->flags
|= V4L2_CTRL_FLAG_UPDATE
;
534 sensor
->pixel_rate_parray
= v4l2_ctrl_new_std(
535 &sensor
->pixel_array
->ctrl_handler
, &smiapp_ctrl_ops
,
536 V4L2_CID_PIXEL_RATE
, 0, 0, 1, 0);
538 if (sensor
->pixel_array
->ctrl_handler
.error
) {
539 dev_err(&client
->dev
,
540 "pixel array controls initialization failed (%d)\n",
541 sensor
->pixel_array
->ctrl_handler
.error
);
542 rval
= sensor
->pixel_array
->ctrl_handler
.error
;
546 sensor
->pixel_array
->sd
.ctrl_handler
=
547 &sensor
->pixel_array
->ctrl_handler
;
549 v4l2_ctrl_cluster(2, &sensor
->hflip
);
551 rval
= v4l2_ctrl_handler_init(&sensor
->src
->ctrl_handler
, 0);
554 sensor
->src
->ctrl_handler
.lock
= &sensor
->mutex
;
556 for (max
= 0; sensor
->platform_data
->op_sys_clock
[max
+ 1]; max
++);
558 sensor
->link_freq
= v4l2_ctrl_new_int_menu(
559 &sensor
->src
->ctrl_handler
, &smiapp_ctrl_ops
,
560 V4L2_CID_LINK_FREQ
, max
, 0,
561 sensor
->platform_data
->op_sys_clock
);
563 sensor
->pixel_rate_csi
= v4l2_ctrl_new_std(
564 &sensor
->src
->ctrl_handler
, &smiapp_ctrl_ops
,
565 V4L2_CID_PIXEL_RATE
, 0, 0, 1, 0);
567 if (sensor
->src
->ctrl_handler
.error
) {
568 dev_err(&client
->dev
,
569 "src controls initialization failed (%d)\n",
570 sensor
->src
->ctrl_handler
.error
);
571 rval
= sensor
->src
->ctrl_handler
.error
;
575 sensor
->src
->sd
.ctrl_handler
=
576 &sensor
->src
->ctrl_handler
;
581 v4l2_ctrl_handler_free(&sensor
->pixel_array
->ctrl_handler
);
582 v4l2_ctrl_handler_free(&sensor
->src
->ctrl_handler
);
587 static void smiapp_free_controls(struct smiapp_sensor
*sensor
)
591 for (i
= 0; i
< sensor
->ssds_used
; i
++)
592 v4l2_ctrl_handler_free(&sensor
->ssds
[i
].ctrl_handler
);
595 static int smiapp_get_limits(struct smiapp_sensor
*sensor
, int const *limit
,
598 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
603 for (i
= 0; i
< n
; i
++) {
605 sensor
, smiapp_reg_limits
[limit
[i
]].addr
, &val
);
608 sensor
->limits
[limit
[i
]] = val
;
609 dev_dbg(&client
->dev
, "0x%8.8x \"%s\" = %u, 0x%x\n",
610 smiapp_reg_limits
[limit
[i
]].addr
,
611 smiapp_reg_limits
[limit
[i
]].what
, val
, val
);
617 static int smiapp_get_all_limits(struct smiapp_sensor
*sensor
)
622 for (i
= 0; i
< SMIAPP_LIMIT_LAST
; i
++) {
623 rval
= smiapp_get_limits(sensor
, &i
, 1);
628 if (sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
] == 0)
629 smiapp_replace_limit(sensor
, SMIAPP_LIMIT_SCALER_N_MIN
, 16);
634 static int smiapp_get_limits_binning(struct smiapp_sensor
*sensor
)
636 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
637 static u32
const limits
[] = {
638 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN
,
639 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN
,
640 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
,
641 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN
,
642 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN
,
643 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN
,
644 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN
,
646 static u32
const limits_replace
[] = {
647 SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES
,
648 SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES
,
649 SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK
,
650 SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK
,
651 SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK
,
652 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN
,
653 SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN
,
658 if (sensor
->limits
[SMIAPP_LIMIT_BINNING_CAPABILITY
] ==
659 SMIAPP_BINNING_CAPABILITY_NO
) {
660 for (i
= 0; i
< ARRAY_SIZE(limits
); i
++)
661 sensor
->limits
[limits
[i
]] =
662 sensor
->limits
[limits_replace
[i
]];
667 rval
= smiapp_get_limits(sensor
, limits
, ARRAY_SIZE(limits
));
672 * Sanity check whether the binning limits are valid. If not,
673 * use the non-binning ones.
675 if (sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN
]
676 && sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
]
677 && sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN
])
680 for (i
= 0; i
< ARRAY_SIZE(limits
); i
++) {
681 dev_dbg(&client
->dev
,
682 "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
683 smiapp_reg_limits
[limits
[i
]].addr
,
684 smiapp_reg_limits
[limits
[i
]].what
,
685 sensor
->limits
[limits_replace
[i
]],
686 sensor
->limits
[limits_replace
[i
]]);
687 sensor
->limits
[limits
[i
]] =
688 sensor
->limits
[limits_replace
[i
]];
694 static int smiapp_get_mbus_formats(struct smiapp_sensor
*sensor
)
696 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
697 unsigned int type
, n
;
698 unsigned int i
, pixel_order
;
702 sensor
, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE
, &type
);
706 dev_dbg(&client
->dev
, "data_format_model_type %d\n", type
);
708 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_PIXEL_ORDER
,
713 if (pixel_order
>= ARRAY_SIZE(pixel_order_str
)) {
714 dev_dbg(&client
->dev
, "bad pixel order %d\n", pixel_order
);
718 dev_dbg(&client
->dev
, "pixel order %d (%s)\n", pixel_order
,
719 pixel_order_str
[pixel_order
]);
722 case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL
:
723 n
= SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N
;
725 case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED
:
726 n
= SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N
;
732 sensor
->default_pixel_order
= pixel_order
;
733 sensor
->mbus_frame_fmts
= 0;
735 for (i
= 0; i
< n
; i
++) {
740 SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i
), &fmt
);
744 dev_dbg(&client
->dev
, "%u: bpp %u, compressed %u\n",
745 i
, fmt
>> 8, (u8
)fmt
);
747 for (j
= 0; j
< ARRAY_SIZE(smiapp_csi_data_formats
); j
++) {
748 const struct smiapp_csi_data_format
*f
=
749 &smiapp_csi_data_formats
[j
];
751 if (f
->pixel_order
!= SMIAPP_PIXEL_ORDER_GRBG
)
754 if (f
->width
!= fmt
>> 8 || f
->compressed
!= (u8
)fmt
)
757 dev_dbg(&client
->dev
, "jolly good! %d\n", j
);
759 sensor
->default_mbus_frame_fmts
|= 1 << j
;
760 if (!sensor
->csi_format
761 || f
->width
> sensor
->csi_format
->width
762 || (f
->width
== sensor
->csi_format
->width
764 > sensor
->csi_format
->compressed
)) {
765 sensor
->csi_format
= f
;
766 sensor
->internal_csi_format
= f
;
771 if (!sensor
->csi_format
) {
772 dev_err(&client
->dev
, "no supported mbus code found\n");
776 smiapp_update_mbus_formats(sensor
);
781 static void smiapp_update_blanking(struct smiapp_sensor
*sensor
)
783 struct v4l2_ctrl
*vblank
= sensor
->vblank
;
784 struct v4l2_ctrl
*hblank
= sensor
->hblank
;
788 sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES
],
789 sensor
->limits
[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN
] -
790 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
);
792 sensor
->limits
[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN
] -
793 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
;
795 vblank
->val
= clamp_t(int, vblank
->val
,
796 vblank
->minimum
, vblank
->maximum
);
797 vblank
->default_value
= vblank
->minimum
;
798 vblank
->val
= vblank
->val
;
799 vblank
->cur
.val
= vblank
->val
;
803 sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN
] -
804 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
,
805 sensor
->limits
[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN
]);
807 sensor
->limits
[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN
] -
808 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
;
810 hblank
->val
= clamp_t(int, hblank
->val
,
811 hblank
->minimum
, hblank
->maximum
);
812 hblank
->default_value
= hblank
->minimum
;
813 hblank
->val
= hblank
->val
;
814 hblank
->cur
.val
= hblank
->val
;
816 __smiapp_update_exposure_limits(sensor
);
819 static int smiapp_update_mode(struct smiapp_sensor
*sensor
)
821 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
822 unsigned int binning_mode
;
825 dev_dbg(&client
->dev
, "frame size: %dx%d\n",
826 sensor
->src
->crop
[SMIAPP_PAD_SRC
].width
,
827 sensor
->src
->crop
[SMIAPP_PAD_SRC
].height
);
828 dev_dbg(&client
->dev
, "csi format width: %d\n",
829 sensor
->csi_format
->width
);
831 /* Binning has to be set up here; it affects limits */
832 if (sensor
->binning_horizontal
== 1 &&
833 sensor
->binning_vertical
== 1) {
837 (sensor
->binning_horizontal
<< 4)
838 | sensor
->binning_vertical
;
841 sensor
, SMIAPP_REG_U8_BINNING_TYPE
, binning_type
);
847 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_BINNING_MODE
, binning_mode
);
851 /* Get updated limits due to binning */
852 rval
= smiapp_get_limits_binning(sensor
);
856 rval
= smiapp_pll_update(sensor
);
860 /* Output from pixel array, including blanking */
861 smiapp_update_blanking(sensor
);
863 dev_dbg(&client
->dev
, "vblank\t\t%d\n", sensor
->vblank
->val
);
864 dev_dbg(&client
->dev
, "hblank\t\t%d\n", sensor
->hblank
->val
);
866 dev_dbg(&client
->dev
, "real timeperframe\t100/%d\n",
867 sensor
->pll
.vt_pix_clk_freq_hz
/
868 ((sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
869 + sensor
->hblank
->val
) *
870 (sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
871 + sensor
->vblank
->val
) / 100));
878 * SMIA++ NVM handling
881 static int smiapp_read_nvm(struct smiapp_sensor
*sensor
,
887 np
= sensor
->nvm_size
/ SMIAPP_NVM_PAGE_SIZE
;
888 for (p
= 0; p
< np
; p
++) {
891 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT
, p
);
895 rval
= smiapp_write(sensor
,
896 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL
,
897 SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN
|
898 SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN
);
902 for (i
= 0; i
< 1000; i
++) {
905 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS
, &s
);
910 if (s
& SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY
)
920 for (i
= 0; i
< SMIAPP_NVM_PAGE_SIZE
; i
++) {
923 SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0
+ i
,
933 rval2
= smiapp_write(sensor
, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL
, 0);
942 * SMIA++ CCI address control
945 static int smiapp_change_cci_addr(struct smiapp_sensor
*sensor
)
947 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
951 client
->addr
= sensor
->platform_data
->i2c_addr_dfl
;
953 rval
= smiapp_write(sensor
,
954 SMIAPP_REG_U8_CCI_ADDRESS_CONTROL
,
955 sensor
->platform_data
->i2c_addr_alt
<< 1);
959 client
->addr
= sensor
->platform_data
->i2c_addr_alt
;
961 /* verify addr change went ok */
962 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL
, &val
);
966 if (val
!= sensor
->platform_data
->i2c_addr_alt
<< 1)
974 * SMIA++ Mode Control
977 static int smiapp_setup_flash_strobe(struct smiapp_sensor
*sensor
)
979 struct smiapp_flash_strobe_parms
*strobe_setup
;
980 unsigned int ext_freq
= sensor
->platform_data
->ext_clk
;
982 u32 strobe_adjustment
;
983 u32 strobe_width_high_rs
;
986 strobe_setup
= sensor
->platform_data
->strobe_setup
;
989 * How to calculate registers related to strobe length. Please
990 * do not change, or if you do at least know what you're
993 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
995 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
996 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
998 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
999 * flash_strobe_adjustment E N, [1 - 0xff]
1001 * The formula above is written as below to keep it on one
1004 * l / 10^6 = w / e * a
1006 * Let's mark w * a by x:
1014 * The strobe width must be at least as long as requested,
1015 * thus rounding upwards is needed.
1017 * x = (l * e + 10^6 - 1) / 10^6
1018 * -----------------------------
1020 * Maximum possible accuracy is wanted at all times. Thus keep
1021 * a as small as possible.
1023 * Calculate a, assuming maximum w, with rounding upwards:
1025 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1026 * -------------------------------------
1028 * Thus, we also get w, with that a, with rounding upwards:
1030 * w = (x + a - 1) / a
1031 * -------------------
1035 * x E [1, (2^16 - 1) * (2^8 - 1)]
1037 * Substituting maximum x to the original formula (with rounding),
1038 * the maximum l is thus
1040 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1042 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1043 * --------------------------------------------------
1045 * flash_strobe_length must be clamped between 1 and
1046 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1050 * flash_strobe_adjustment = ((flash_strobe_length *
1051 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1053 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1054 * EXTCLK freq + 10^6 - 1) / 10^6 +
1055 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1057 tmp
= div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1058 1000000 + 1, ext_freq
);
1059 strobe_setup
->strobe_width_high_us
=
1060 clamp_t(u32
, strobe_setup
->strobe_width_high_us
, 1, tmp
);
1062 tmp
= div_u64(((u64
)strobe_setup
->strobe_width_high_us
* (u64
)ext_freq
+
1063 1000000 - 1), 1000000ULL);
1064 strobe_adjustment
= (tmp
+ (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1065 strobe_width_high_rs
= (tmp
+ strobe_adjustment
- 1) /
1068 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FLASH_MODE_RS
,
1069 strobe_setup
->mode
);
1073 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT
,
1078 rval
= smiapp_write(
1079 sensor
, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL
,
1080 strobe_width_high_rs
);
1084 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL
,
1085 strobe_setup
->strobe_delay
);
1089 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_FLASH_STROBE_START_POINT
,
1090 strobe_setup
->stobe_start_point
);
1094 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FLASH_TRIGGER_RS
,
1095 strobe_setup
->trigger
);
1098 sensor
->platform_data
->strobe_setup
->trigger
= 0;
1103 /* -----------------------------------------------------------------------------
1107 static int smiapp_power_on(struct smiapp_sensor
*sensor
)
1109 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
1113 rval
= regulator_enable(sensor
->vana
);
1115 dev_err(&client
->dev
, "failed to enable vana regulator\n");
1118 usleep_range(1000, 1000);
1120 if (sensor
->platform_data
->set_xclk
)
1121 rval
= sensor
->platform_data
->set_xclk(
1122 &sensor
->src
->sd
, sensor
->platform_data
->ext_clk
);
1124 rval
= clk_prepare_enable(sensor
->ext_clk
);
1126 dev_dbg(&client
->dev
, "failed to enable xclk\n");
1129 usleep_range(1000, 1000);
1131 if (gpio_is_valid(sensor
->platform_data
->xshutdown
))
1132 gpio_set_value(sensor
->platform_data
->xshutdown
, 1);
1134 sleep
= SMIAPP_RESET_DELAY(sensor
->platform_data
->ext_clk
);
1135 usleep_range(sleep
, sleep
);
1138 * Failures to respond to the address change command have been noticed.
1139 * Those failures seem to be caused by the sensor requiring a longer
1140 * boot time than advertised. An additional 10ms delay seems to work
1141 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1142 * unnecessary. The failures need to be investigated to find a proper
1143 * fix, and a delay will likely need to be added here if the I2C write
1144 * retry hack is reverted before the root cause of the boot time issue
1148 if (sensor
->platform_data
->i2c_addr_alt
) {
1149 rval
= smiapp_change_cci_addr(sensor
);
1151 dev_err(&client
->dev
, "cci address change error\n");
1152 goto out_cci_addr_fail
;
1156 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_SOFTWARE_RESET
,
1157 SMIAPP_SOFTWARE_RESET
);
1159 dev_err(&client
->dev
, "software reset failed\n");
1160 goto out_cci_addr_fail
;
1163 if (sensor
->platform_data
->i2c_addr_alt
) {
1164 rval
= smiapp_change_cci_addr(sensor
);
1166 dev_err(&client
->dev
, "cci address change error\n");
1167 goto out_cci_addr_fail
;
1171 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_COMPRESSION_MODE
,
1172 SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR
);
1174 dev_err(&client
->dev
, "compression mode set failed\n");
1175 goto out_cci_addr_fail
;
1178 rval
= smiapp_write(
1179 sensor
, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ
,
1180 sensor
->platform_data
->ext_clk
/ (1000000 / (1 << 8)));
1182 dev_err(&client
->dev
, "extclk frequency set failed\n");
1183 goto out_cci_addr_fail
;
1186 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_CSI_LANE_MODE
,
1187 sensor
->platform_data
->lanes
- 1);
1189 dev_err(&client
->dev
, "csi lane mode set failed\n");
1190 goto out_cci_addr_fail
;
1193 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_FAST_STANDBY_CTRL
,
1194 SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE
);
1196 dev_err(&client
->dev
, "fast standby set failed\n");
1197 goto out_cci_addr_fail
;
1200 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_CSI_SIGNALLING_MODE
,
1201 sensor
->platform_data
->csi_signalling_mode
);
1203 dev_err(&client
->dev
, "csi signalling mode set failed\n");
1204 goto out_cci_addr_fail
;
1207 /* DPHY control done by sensor based on requested link rate */
1208 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_DPHY_CTRL
,
1209 SMIAPP_DPHY_CTRL_UI
);
1213 rval
= smiapp_call_quirk(sensor
, post_poweron
);
1215 dev_err(&client
->dev
, "post_poweron quirks failed\n");
1216 goto out_cci_addr_fail
;
1219 /* Are we still initialising...? If yes, return here. */
1220 if (!sensor
->pixel_array
)
1223 rval
= v4l2_ctrl_handler_setup(
1224 &sensor
->pixel_array
->ctrl_handler
);
1226 goto out_cci_addr_fail
;
1228 rval
= v4l2_ctrl_handler_setup(&sensor
->src
->ctrl_handler
);
1230 goto out_cci_addr_fail
;
1232 mutex_lock(&sensor
->mutex
);
1233 rval
= smiapp_update_mode(sensor
);
1234 mutex_unlock(&sensor
->mutex
);
1236 goto out_cci_addr_fail
;
1241 if (gpio_is_valid(sensor
->platform_data
->xshutdown
))
1242 gpio_set_value(sensor
->platform_data
->xshutdown
, 0);
1243 if (sensor
->platform_data
->set_xclk
)
1244 sensor
->platform_data
->set_xclk(&sensor
->src
->sd
, 0);
1246 clk_disable_unprepare(sensor
->ext_clk
);
1249 regulator_disable(sensor
->vana
);
1253 static void smiapp_power_off(struct smiapp_sensor
*sensor
)
1256 * Currently power/clock to lens are enable/disabled separately
1257 * but they are essentially the same signals. So if the sensor is
1258 * powered off while the lens is powered on the sensor does not
1259 * really see a power off and next time the cci address change
1260 * will fail. So do a soft reset explicitly here.
1262 if (sensor
->platform_data
->i2c_addr_alt
)
1263 smiapp_write(sensor
,
1264 SMIAPP_REG_U8_SOFTWARE_RESET
,
1265 SMIAPP_SOFTWARE_RESET
);
1267 if (gpio_is_valid(sensor
->platform_data
->xshutdown
))
1268 gpio_set_value(sensor
->platform_data
->xshutdown
, 0);
1269 if (sensor
->platform_data
->set_xclk
)
1270 sensor
->platform_data
->set_xclk(&sensor
->src
->sd
, 0);
1272 clk_disable_unprepare(sensor
->ext_clk
);
1273 usleep_range(5000, 5000);
1274 regulator_disable(sensor
->vana
);
1275 sensor
->streaming
= 0;
1278 static int smiapp_set_power(struct v4l2_subdev
*subdev
, int on
)
1280 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1283 mutex_lock(&sensor
->power_mutex
);
1286 * If the power count is modified from 0 to != 0 or from != 0
1287 * to 0, update the power state.
1289 if (!sensor
->power_count
== !on
)
1293 /* Power on and perform initialisation. */
1294 ret
= smiapp_power_on(sensor
);
1298 smiapp_power_off(sensor
);
1301 /* Update the power count. */
1302 sensor
->power_count
+= on
? 1 : -1;
1303 WARN_ON(sensor
->power_count
< 0);
1306 mutex_unlock(&sensor
->power_mutex
);
1310 /* -----------------------------------------------------------------------------
1311 * Video stream management
1314 static int smiapp_start_streaming(struct smiapp_sensor
*sensor
)
1316 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
1319 mutex_lock(&sensor
->mutex
);
1321 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_CSI_DATA_FORMAT
,
1322 (sensor
->csi_format
->width
<< 8) |
1323 sensor
->csi_format
->compressed
);
1327 rval
= smiapp_pll_configure(sensor
);
1331 /* Analog crop start coordinates */
1332 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_X_ADDR_START
,
1333 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].left
);
1337 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_Y_ADDR_START
,
1338 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].top
);
1342 /* Analog crop end coordinates */
1343 rval
= smiapp_write(
1344 sensor
, SMIAPP_REG_U16_X_ADDR_END
,
1345 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].left
1346 + sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].width
- 1);
1350 rval
= smiapp_write(
1351 sensor
, SMIAPP_REG_U16_Y_ADDR_END
,
1352 sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].top
1353 + sensor
->pixel_array
->crop
[SMIAPP_PA_PAD_SRC
].height
- 1);
1358 * Output from pixel array, including blanking, is set using
1359 * controls below. No need to set here.
1363 if (sensor
->limits
[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY
]
1364 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP
) {
1365 rval
= smiapp_write(
1366 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET
,
1367 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].left
);
1371 rval
= smiapp_write(
1372 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET
,
1373 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].top
);
1377 rval
= smiapp_write(
1378 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH
,
1379 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].width
);
1383 rval
= smiapp_write(
1384 sensor
, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT
,
1385 sensor
->scaler
->crop
[SMIAPP_PAD_SINK
].height
);
1391 if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
1392 != SMIAPP_SCALING_CAPABILITY_NONE
) {
1393 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_SCALING_MODE
,
1394 sensor
->scaling_mode
);
1398 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_SCALE_M
,
1404 /* Output size from sensor */
1405 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_X_OUTPUT_SIZE
,
1406 sensor
->src
->crop
[SMIAPP_PAD_SRC
].width
);
1409 rval
= smiapp_write(sensor
, SMIAPP_REG_U16_Y_OUTPUT_SIZE
,
1410 sensor
->src
->crop
[SMIAPP_PAD_SRC
].height
);
1414 if ((sensor
->flash_capability
&
1415 (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE
|
1416 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE
)) &&
1417 sensor
->platform_data
->strobe_setup
!= NULL
&&
1418 sensor
->platform_data
->strobe_setup
->trigger
!= 0) {
1419 rval
= smiapp_setup_flash_strobe(sensor
);
1424 rval
= smiapp_call_quirk(sensor
, pre_streamon
);
1426 dev_err(&client
->dev
, "pre_streamon quirks failed\n");
1430 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_MODE_SELECT
,
1431 SMIAPP_MODE_SELECT_STREAMING
);
1434 mutex_unlock(&sensor
->mutex
);
1439 static int smiapp_stop_streaming(struct smiapp_sensor
*sensor
)
1441 struct i2c_client
*client
= v4l2_get_subdevdata(&sensor
->src
->sd
);
1444 mutex_lock(&sensor
->mutex
);
1445 rval
= smiapp_write(sensor
, SMIAPP_REG_U8_MODE_SELECT
,
1446 SMIAPP_MODE_SELECT_SOFTWARE_STANDBY
);
1450 rval
= smiapp_call_quirk(sensor
, post_streamoff
);
1452 dev_err(&client
->dev
, "post_streamoff quirks failed\n");
1455 mutex_unlock(&sensor
->mutex
);
1459 /* -----------------------------------------------------------------------------
1460 * V4L2 subdev video operations
1463 static int smiapp_set_stream(struct v4l2_subdev
*subdev
, int enable
)
1465 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1468 if (sensor
->streaming
== enable
)
1472 sensor
->streaming
= 1;
1473 rval
= smiapp_start_streaming(sensor
);
1475 sensor
->streaming
= 0;
1477 rval
= smiapp_stop_streaming(sensor
);
1478 sensor
->streaming
= 0;
1484 static int smiapp_enum_mbus_code(struct v4l2_subdev
*subdev
,
1485 struct v4l2_subdev_fh
*fh
,
1486 struct v4l2_subdev_mbus_code_enum
*code
)
1488 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
1489 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1494 mutex_lock(&sensor
->mutex
);
1496 dev_err(&client
->dev
, "subdev %s, pad %d, index %d\n",
1497 subdev
->name
, code
->pad
, code
->index
);
1499 if (subdev
!= &sensor
->src
->sd
|| code
->pad
!= SMIAPP_PAD_SRC
) {
1503 code
->code
= sensor
->internal_csi_format
->code
;
1508 for (i
= 0; i
< ARRAY_SIZE(smiapp_csi_data_formats
); i
++) {
1509 if (sensor
->mbus_frame_fmts
& (1 << i
))
1512 if (idx
== code
->index
) {
1513 code
->code
= smiapp_csi_data_formats
[i
].code
;
1514 dev_err(&client
->dev
, "found index %d, i %d, code %x\n",
1515 code
->index
, i
, code
->code
);
1522 mutex_unlock(&sensor
->mutex
);
1527 static u32
__smiapp_get_mbus_code(struct v4l2_subdev
*subdev
,
1530 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1532 if (subdev
== &sensor
->src
->sd
&& pad
== SMIAPP_PAD_SRC
)
1533 return sensor
->csi_format
->code
;
1535 return sensor
->internal_csi_format
->code
;
1538 static int __smiapp_get_format(struct v4l2_subdev
*subdev
,
1539 struct v4l2_subdev_fh
*fh
,
1540 struct v4l2_subdev_format
*fmt
)
1542 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1544 if (fmt
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1545 fmt
->format
= *v4l2_subdev_get_try_format(fh
, fmt
->pad
);
1547 struct v4l2_rect
*r
;
1549 if (fmt
->pad
== ssd
->source_pad
)
1550 r
= &ssd
->crop
[ssd
->source_pad
];
1554 fmt
->format
.code
= __smiapp_get_mbus_code(subdev
, fmt
->pad
);
1555 fmt
->format
.width
= r
->width
;
1556 fmt
->format
.height
= r
->height
;
1562 static int smiapp_get_format(struct v4l2_subdev
*subdev
,
1563 struct v4l2_subdev_fh
*fh
,
1564 struct v4l2_subdev_format
*fmt
)
1566 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1569 mutex_lock(&sensor
->mutex
);
1570 rval
= __smiapp_get_format(subdev
, fh
, fmt
);
1571 mutex_unlock(&sensor
->mutex
);
1576 static void smiapp_get_crop_compose(struct v4l2_subdev
*subdev
,
1577 struct v4l2_subdev_fh
*fh
,
1578 struct v4l2_rect
**crops
,
1579 struct v4l2_rect
**comps
, int which
)
1581 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1584 if (which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1586 for (i
= 0; i
< subdev
->entity
.num_pads
; i
++)
1587 crops
[i
] = &ssd
->crop
[i
];
1589 *comps
= &ssd
->compose
;
1592 for (i
= 0; i
< subdev
->entity
.num_pads
; i
++) {
1593 crops
[i
] = v4l2_subdev_get_try_crop(fh
, i
);
1598 *comps
= v4l2_subdev_get_try_compose(fh
,
1605 /* Changes require propagation only on sink pad. */
1606 static void smiapp_propagate(struct v4l2_subdev
*subdev
,
1607 struct v4l2_subdev_fh
*fh
, int which
,
1610 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1611 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1612 struct v4l2_rect
*comp
, *crops
[SMIAPP_PADS
];
1614 smiapp_get_crop_compose(subdev
, fh
, crops
, &comp
, which
);
1617 case V4L2_SEL_TGT_CROP
:
1618 comp
->width
= crops
[SMIAPP_PAD_SINK
]->width
;
1619 comp
->height
= crops
[SMIAPP_PAD_SINK
]->height
;
1620 if (which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1621 if (ssd
== sensor
->scaler
) {
1624 SMIAPP_LIMIT_SCALER_N_MIN
];
1625 sensor
->scaling_mode
=
1626 SMIAPP_SCALING_MODE_NONE
;
1627 } else if (ssd
== sensor
->binner
) {
1628 sensor
->binning_horizontal
= 1;
1629 sensor
->binning_vertical
= 1;
1633 case V4L2_SEL_TGT_COMPOSE
:
1634 *crops
[SMIAPP_PAD_SRC
] = *comp
;
1641 static const struct smiapp_csi_data_format
1642 *smiapp_validate_csi_data_format(struct smiapp_sensor
*sensor
, u32 code
)
1644 const struct smiapp_csi_data_format
*csi_format
= sensor
->csi_format
;
1647 for (i
= 0; i
< ARRAY_SIZE(smiapp_csi_data_formats
); i
++) {
1648 if (sensor
->mbus_frame_fmts
& (1 << i
)
1649 && smiapp_csi_data_formats
[i
].code
== code
)
1650 return &smiapp_csi_data_formats
[i
];
1656 static int smiapp_set_format(struct v4l2_subdev
*subdev
,
1657 struct v4l2_subdev_fh
*fh
,
1658 struct v4l2_subdev_format
*fmt
)
1660 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1661 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1662 struct v4l2_rect
*crops
[SMIAPP_PADS
];
1664 mutex_lock(&sensor
->mutex
);
1667 * Media bus code is changeable on src subdev's source pad. On
1668 * other source pads we just get format here.
1670 if (fmt
->pad
== ssd
->source_pad
) {
1671 u32 code
= fmt
->format
.code
;
1672 int rval
= __smiapp_get_format(subdev
, fh
, fmt
);
1674 if (!rval
&& subdev
== &sensor
->src
->sd
) {
1675 const struct smiapp_csi_data_format
*csi_format
=
1676 smiapp_validate_csi_data_format(sensor
, code
);
1677 if (fmt
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
)
1678 sensor
->csi_format
= csi_format
;
1679 fmt
->format
.code
= csi_format
->code
;
1682 mutex_unlock(&sensor
->mutex
);
1686 /* Sink pad. Width and height are changeable here. */
1687 fmt
->format
.code
= __smiapp_get_mbus_code(subdev
, fmt
->pad
);
1688 fmt
->format
.width
&= ~1;
1689 fmt
->format
.height
&= ~1;
1692 clamp(fmt
->format
.width
,
1693 sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
],
1694 sensor
->limits
[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE
]);
1695 fmt
->format
.height
=
1696 clamp(fmt
->format
.height
,
1697 sensor
->limits
[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE
],
1698 sensor
->limits
[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE
]);
1700 smiapp_get_crop_compose(subdev
, fh
, crops
, NULL
, fmt
->which
);
1702 crops
[ssd
->sink_pad
]->left
= 0;
1703 crops
[ssd
->sink_pad
]->top
= 0;
1704 crops
[ssd
->sink_pad
]->width
= fmt
->format
.width
;
1705 crops
[ssd
->sink_pad
]->height
= fmt
->format
.height
;
1706 if (fmt
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
)
1707 ssd
->sink_fmt
= *crops
[ssd
->sink_pad
];
1708 smiapp_propagate(subdev
, fh
, fmt
->which
,
1711 mutex_unlock(&sensor
->mutex
);
1717 * Calculate goodness of scaled image size compared to expected image
1718 * size and flags provided.
1720 #define SCALING_GOODNESS 100000
1721 #define SCALING_GOODNESS_EXTREME 100000000
1722 static int scaling_goodness(struct v4l2_subdev
*subdev
, int w
, int ask_w
,
1723 int h
, int ask_h
, u32 flags
)
1725 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1726 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
1734 if (flags
& V4L2_SEL_FLAG_GE
) {
1736 val
-= SCALING_GOODNESS
;
1738 val
-= SCALING_GOODNESS
;
1741 if (flags
& V4L2_SEL_FLAG_LE
) {
1743 val
-= SCALING_GOODNESS
;
1745 val
-= SCALING_GOODNESS
;
1748 val
-= abs(w
- ask_w
);
1749 val
-= abs(h
- ask_h
);
1751 if (w
< sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
])
1752 val
-= SCALING_GOODNESS_EXTREME
;
1754 dev_dbg(&client
->dev
, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1755 w
, ask_h
, h
, ask_h
, val
);
1760 static void smiapp_set_compose_binner(struct v4l2_subdev
*subdev
,
1761 struct v4l2_subdev_fh
*fh
,
1762 struct v4l2_subdev_selection
*sel
,
1763 struct v4l2_rect
**crops
,
1764 struct v4l2_rect
*comp
)
1766 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1768 unsigned int binh
= 1, binv
= 1;
1769 int best
= scaling_goodness(
1771 crops
[SMIAPP_PAD_SINK
]->width
, sel
->r
.width
,
1772 crops
[SMIAPP_PAD_SINK
]->height
, sel
->r
.height
, sel
->flags
);
1774 for (i
= 0; i
< sensor
->nbinning_subtypes
; i
++) {
1775 int this = scaling_goodness(
1777 crops
[SMIAPP_PAD_SINK
]->width
1778 / sensor
->binning_subtypes
[i
].horizontal
,
1780 crops
[SMIAPP_PAD_SINK
]->height
1781 / sensor
->binning_subtypes
[i
].vertical
,
1782 sel
->r
.height
, sel
->flags
);
1785 binh
= sensor
->binning_subtypes
[i
].horizontal
;
1786 binv
= sensor
->binning_subtypes
[i
].vertical
;
1790 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1791 sensor
->binning_vertical
= binv
;
1792 sensor
->binning_horizontal
= binh
;
1795 sel
->r
.width
= (crops
[SMIAPP_PAD_SINK
]->width
/ binh
) & ~1;
1796 sel
->r
.height
= (crops
[SMIAPP_PAD_SINK
]->height
/ binv
) & ~1;
1800 * Calculate best scaling ratio and mode for given output resolution.
1802 * Try all of these: horizontal ratio, vertical ratio and smallest
1803 * size possible (horizontally).
1805 * Also try whether horizontal scaler or full scaler gives a better
1808 static void smiapp_set_compose_scaler(struct v4l2_subdev
*subdev
,
1809 struct v4l2_subdev_fh
*fh
,
1810 struct v4l2_subdev_selection
*sel
,
1811 struct v4l2_rect
**crops
,
1812 struct v4l2_rect
*comp
)
1814 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
1815 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1816 u32 min
, max
, a
, b
, max_m
;
1817 u32 scale_m
= sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
];
1818 int mode
= SMIAPP_SCALING_MODE_HORIZONTAL
;
1824 sel
->r
.width
= min_t(unsigned int, sel
->r
.width
,
1825 crops
[SMIAPP_PAD_SINK
]->width
);
1826 sel
->r
.height
= min_t(unsigned int, sel
->r
.height
,
1827 crops
[SMIAPP_PAD_SINK
]->height
);
1829 a
= crops
[SMIAPP_PAD_SINK
]->width
1830 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
] / sel
->r
.width
;
1831 b
= crops
[SMIAPP_PAD_SINK
]->height
1832 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
] / sel
->r
.height
;
1833 max_m
= crops
[SMIAPP_PAD_SINK
]->width
1834 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
]
1835 / sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
];
1837 a
= clamp(a
, sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MIN
],
1838 sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MAX
]);
1839 b
= clamp(b
, sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MIN
],
1840 sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MAX
]);
1841 max_m
= clamp(max_m
, sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MIN
],
1842 sensor
->limits
[SMIAPP_LIMIT_SCALER_M_MAX
]);
1844 dev_dbg(&client
->dev
, "scaling: a %d b %d max_m %d\n", a
, b
, max_m
);
1846 min
= min(max_m
, min(a
, b
));
1847 max
= min(max_m
, max(a
, b
));
1856 try[ntry
] = min
+ 1;
1859 try[ntry
] = max
+ 1;
1864 for (i
= 0; i
< ntry
; i
++) {
1865 int this = scaling_goodness(
1867 crops
[SMIAPP_PAD_SINK
]->width
1869 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
],
1871 crops
[SMIAPP_PAD_SINK
]->height
,
1875 dev_dbg(&client
->dev
, "trying factor %d (%d)\n", try[i
], i
);
1879 mode
= SMIAPP_SCALING_MODE_HORIZONTAL
;
1883 if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
1884 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL
)
1887 this = scaling_goodness(
1888 subdev
, crops
[SMIAPP_PAD_SINK
]->width
1890 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
],
1892 crops
[SMIAPP_PAD_SINK
]->height
1894 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
],
1900 mode
= SMIAPP_SCALING_MODE_BOTH
;
1906 (crops
[SMIAPP_PAD_SINK
]->width
1908 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
]) & ~1;
1909 if (mode
== SMIAPP_SCALING_MODE_BOTH
)
1911 (crops
[SMIAPP_PAD_SINK
]->height
1913 * sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
])
1916 sel
->r
.height
= crops
[SMIAPP_PAD_SINK
]->height
;
1918 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
1919 sensor
->scale_m
= scale_m
;
1920 sensor
->scaling_mode
= mode
;
1923 /* We're only called on source pads. This function sets scaling. */
1924 static int smiapp_set_compose(struct v4l2_subdev
*subdev
,
1925 struct v4l2_subdev_fh
*fh
,
1926 struct v4l2_subdev_selection
*sel
)
1928 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1929 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1930 struct v4l2_rect
*comp
, *crops
[SMIAPP_PADS
];
1932 smiapp_get_crop_compose(subdev
, fh
, crops
, &comp
, sel
->which
);
1937 if (ssd
== sensor
->binner
)
1938 smiapp_set_compose_binner(subdev
, fh
, sel
, crops
, comp
);
1940 smiapp_set_compose_scaler(subdev
, fh
, sel
, crops
, comp
);
1943 smiapp_propagate(subdev
, fh
, sel
->which
,
1944 V4L2_SEL_TGT_COMPOSE
);
1946 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
)
1947 return smiapp_update_mode(sensor
);
1952 static int __smiapp_sel_supported(struct v4l2_subdev
*subdev
,
1953 struct v4l2_subdev_selection
*sel
)
1955 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1956 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1958 /* We only implement crop in three places. */
1959 switch (sel
->target
) {
1960 case V4L2_SEL_TGT_CROP
:
1961 case V4L2_SEL_TGT_CROP_BOUNDS
:
1962 if (ssd
== sensor
->pixel_array
1963 && sel
->pad
== SMIAPP_PA_PAD_SRC
)
1965 if (ssd
== sensor
->src
1966 && sel
->pad
== SMIAPP_PAD_SRC
)
1968 if (ssd
== sensor
->scaler
1969 && sel
->pad
== SMIAPP_PAD_SINK
1970 && sensor
->limits
[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY
]
1971 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP
)
1974 case V4L2_SEL_TGT_COMPOSE
:
1975 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
1976 if (sel
->pad
== ssd
->source_pad
)
1978 if (ssd
== sensor
->binner
)
1980 if (ssd
== sensor
->scaler
1981 && sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
1982 != SMIAPP_SCALING_CAPABILITY_NONE
)
1990 static int smiapp_set_crop(struct v4l2_subdev
*subdev
,
1991 struct v4l2_subdev_fh
*fh
,
1992 struct v4l2_subdev_selection
*sel
)
1994 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
1995 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
1996 struct v4l2_rect
*src_size
, *crops
[SMIAPP_PADS
];
1997 struct v4l2_rect _r
;
1999 smiapp_get_crop_compose(subdev
, fh
, crops
, NULL
, sel
->which
);
2001 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
2002 if (sel
->pad
== ssd
->sink_pad
)
2003 src_size
= &ssd
->sink_fmt
;
2005 src_size
= &ssd
->compose
;
2007 if (sel
->pad
== ssd
->sink_pad
) {
2010 _r
.width
= v4l2_subdev_get_try_format(fh
, sel
->pad
)
2012 _r
.height
= v4l2_subdev_get_try_format(fh
, sel
->pad
)
2017 v4l2_subdev_get_try_compose(
2022 if (ssd
== sensor
->src
&& sel
->pad
== SMIAPP_PAD_SRC
) {
2027 sel
->r
.width
= min(sel
->r
.width
, src_size
->width
);
2028 sel
->r
.height
= min(sel
->r
.height
, src_size
->height
);
2030 sel
->r
.left
= min_t(int, sel
->r
.left
, src_size
->width
- sel
->r
.width
);
2031 sel
->r
.top
= min_t(int, sel
->r
.top
, src_size
->height
- sel
->r
.height
);
2033 *crops
[sel
->pad
] = sel
->r
;
2035 if (ssd
!= sensor
->pixel_array
&& sel
->pad
== SMIAPP_PAD_SINK
)
2036 smiapp_propagate(subdev
, fh
, sel
->which
,
2042 static int __smiapp_get_selection(struct v4l2_subdev
*subdev
,
2043 struct v4l2_subdev_fh
*fh
,
2044 struct v4l2_subdev_selection
*sel
)
2046 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2047 struct smiapp_subdev
*ssd
= to_smiapp_subdev(subdev
);
2048 struct v4l2_rect
*comp
, *crops
[SMIAPP_PADS
];
2049 struct v4l2_rect sink_fmt
;
2052 ret
= __smiapp_sel_supported(subdev
, sel
);
2056 smiapp_get_crop_compose(subdev
, fh
, crops
, &comp
, sel
->which
);
2058 if (sel
->which
== V4L2_SUBDEV_FORMAT_ACTIVE
) {
2059 sink_fmt
= ssd
->sink_fmt
;
2061 struct v4l2_mbus_framefmt
*fmt
=
2062 v4l2_subdev_get_try_format(fh
, ssd
->sink_pad
);
2066 sink_fmt
.width
= fmt
->width
;
2067 sink_fmt
.height
= fmt
->height
;
2070 switch (sel
->target
) {
2071 case V4L2_SEL_TGT_CROP_BOUNDS
:
2072 if (ssd
== sensor
->pixel_array
) {
2074 sensor
->limits
[SMIAPP_LIMIT_X_ADDR_MAX
] + 1;
2076 sensor
->limits
[SMIAPP_LIMIT_Y_ADDR_MAX
] + 1;
2077 } else if (sel
->pad
== ssd
->sink_pad
) {
2083 case V4L2_SEL_TGT_CROP
:
2084 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
2085 sel
->r
= *crops
[sel
->pad
];
2087 case V4L2_SEL_TGT_COMPOSE
:
2095 static int smiapp_get_selection(struct v4l2_subdev
*subdev
,
2096 struct v4l2_subdev_fh
*fh
,
2097 struct v4l2_subdev_selection
*sel
)
2099 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2102 mutex_lock(&sensor
->mutex
);
2103 rval
= __smiapp_get_selection(subdev
, fh
, sel
);
2104 mutex_unlock(&sensor
->mutex
);
2108 static int smiapp_set_selection(struct v4l2_subdev
*subdev
,
2109 struct v4l2_subdev_fh
*fh
,
2110 struct v4l2_subdev_selection
*sel
)
2112 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2115 ret
= __smiapp_sel_supported(subdev
, sel
);
2119 mutex_lock(&sensor
->mutex
);
2121 sel
->r
.left
= max(0, sel
->r
.left
& ~1);
2122 sel
->r
.top
= max(0, sel
->r
.top
& ~1);
2123 sel
->r
.width
= SMIAPP_ALIGN_DIM(sel
->r
.width
, sel
->flags
);
2124 sel
->r
.height
= SMIAPP_ALIGN_DIM(sel
->r
.height
, sel
->flags
);
2126 sel
->r
.width
= max_t(unsigned int,
2127 sensor
->limits
[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE
],
2129 sel
->r
.height
= max_t(unsigned int,
2130 sensor
->limits
[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE
],
2133 switch (sel
->target
) {
2134 case V4L2_SEL_TGT_CROP
:
2135 ret
= smiapp_set_crop(subdev
, fh
, sel
);
2137 case V4L2_SEL_TGT_COMPOSE
:
2138 ret
= smiapp_set_compose(subdev
, fh
, sel
);
2144 mutex_unlock(&sensor
->mutex
);
2148 static int smiapp_get_skip_frames(struct v4l2_subdev
*subdev
, u32
*frames
)
2150 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2152 *frames
= sensor
->frame_skip
;
2156 /* -----------------------------------------------------------------------------
2161 smiapp_sysfs_nvm_read(struct device
*dev
, struct device_attribute
*attr
,
2164 struct v4l2_subdev
*subdev
= i2c_get_clientdata(to_i2c_client(dev
));
2165 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
2166 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2167 unsigned int nbytes
;
2169 if (!sensor
->dev_init_done
)
2172 if (!sensor
->nvm_size
) {
2173 /* NVM not read yet - read it now */
2174 sensor
->nvm_size
= sensor
->platform_data
->nvm_size
;
2175 if (smiapp_set_power(subdev
, 1) < 0)
2177 if (smiapp_read_nvm(sensor
, sensor
->nvm
)) {
2178 dev_err(&client
->dev
, "nvm read failed\n");
2181 smiapp_set_power(subdev
, 0);
2184 * NVM is still way below a PAGE_SIZE, so we can safely
2185 * assume this for now.
2187 nbytes
= min_t(unsigned int, sensor
->nvm_size
, PAGE_SIZE
);
2188 memcpy(buf
, sensor
->nvm
, nbytes
);
2192 static DEVICE_ATTR(nvm
, S_IRUGO
, smiapp_sysfs_nvm_read
, NULL
);
2195 smiapp_sysfs_ident_read(struct device
*dev
, struct device_attribute
*attr
,
2198 struct v4l2_subdev
*subdev
= i2c_get_clientdata(to_i2c_client(dev
));
2199 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2200 struct smiapp_module_info
*minfo
= &sensor
->minfo
;
2202 return snprintf(buf
, PAGE_SIZE
, "%2.2x%4.4x%2.2x\n",
2203 minfo
->manufacturer_id
, minfo
->model_id
,
2204 minfo
->revision_number_major
) + 1;
2207 static DEVICE_ATTR(ident
, S_IRUGO
, smiapp_sysfs_ident_read
, NULL
);
2209 /* -----------------------------------------------------------------------------
2210 * V4L2 subdev core operations
2213 static int smiapp_identify_module(struct v4l2_subdev
*subdev
)
2215 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2216 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
2217 struct smiapp_module_info
*minfo
= &sensor
->minfo
;
2221 minfo
->name
= SMIAPP_NAME
;
2224 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_MANUFACTURER_ID
,
2225 &minfo
->manufacturer_id
);
2227 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U16_MODEL_ID
,
2230 rval
= smiapp_read_8only(sensor
,
2231 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR
,
2232 &minfo
->revision_number_major
);
2234 rval
= smiapp_read_8only(sensor
,
2235 SMIAPP_REG_U8_REVISION_NUMBER_MINOR
,
2236 &minfo
->revision_number_minor
);
2238 rval
= smiapp_read_8only(sensor
,
2239 SMIAPP_REG_U8_MODULE_DATE_YEAR
,
2240 &minfo
->module_year
);
2242 rval
= smiapp_read_8only(sensor
,
2243 SMIAPP_REG_U8_MODULE_DATE_MONTH
,
2244 &minfo
->module_month
);
2246 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_MODULE_DATE_DAY
,
2247 &minfo
->module_day
);
2251 rval
= smiapp_read_8only(sensor
,
2252 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID
,
2253 &minfo
->sensor_manufacturer_id
);
2255 rval
= smiapp_read_8only(sensor
,
2256 SMIAPP_REG_U16_SENSOR_MODEL_ID
,
2257 &minfo
->sensor_model_id
);
2259 rval
= smiapp_read_8only(sensor
,
2260 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER
,
2261 &minfo
->sensor_revision_number
);
2263 rval
= smiapp_read_8only(sensor
,
2264 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION
,
2265 &minfo
->sensor_firmware_version
);
2269 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_SMIA_VERSION
,
2270 &minfo
->smia_version
);
2272 rval
= smiapp_read_8only(sensor
, SMIAPP_REG_U8_SMIAPP_VERSION
,
2273 &minfo
->smiapp_version
);
2276 dev_err(&client
->dev
, "sensor detection failed\n");
2280 dev_dbg(&client
->dev
, "module 0x%2.2x-0x%4.4x\n",
2281 minfo
->manufacturer_id
, minfo
->model_id
);
2283 dev_dbg(&client
->dev
,
2284 "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2285 minfo
->revision_number_major
, minfo
->revision_number_minor
,
2286 minfo
->module_year
, minfo
->module_month
, minfo
->module_day
);
2288 dev_dbg(&client
->dev
, "sensor 0x%2.2x-0x%4.4x\n",
2289 minfo
->sensor_manufacturer_id
, minfo
->sensor_model_id
);
2291 dev_dbg(&client
->dev
,
2292 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2293 minfo
->sensor_revision_number
, minfo
->sensor_firmware_version
);
2295 dev_dbg(&client
->dev
, "smia version %2.2d smiapp version %2.2d\n",
2296 minfo
->smia_version
, minfo
->smiapp_version
);
2299 * Some modules have bad data in the lvalues below. Hope the
2300 * rvalues have better stuff. The lvalues are module
2301 * parameters whereas the rvalues are sensor parameters.
2303 if (!minfo
->manufacturer_id
&& !minfo
->model_id
) {
2304 minfo
->manufacturer_id
= minfo
->sensor_manufacturer_id
;
2305 minfo
->model_id
= minfo
->sensor_model_id
;
2306 minfo
->revision_number_major
= minfo
->sensor_revision_number
;
2309 for (i
= 0; i
< ARRAY_SIZE(smiapp_module_idents
); i
++) {
2310 if (smiapp_module_idents
[i
].manufacturer_id
2311 != minfo
->manufacturer_id
)
2313 if (smiapp_module_idents
[i
].model_id
!= minfo
->model_id
)
2315 if (smiapp_module_idents
[i
].flags
2316 & SMIAPP_MODULE_IDENT_FLAG_REV_LE
) {
2317 if (smiapp_module_idents
[i
].revision_number_major
2318 < minfo
->revision_number_major
)
2321 if (smiapp_module_idents
[i
].revision_number_major
2322 != minfo
->revision_number_major
)
2326 minfo
->name
= smiapp_module_idents
[i
].name
;
2327 minfo
->quirk
= smiapp_module_idents
[i
].quirk
;
2331 if (i
>= ARRAY_SIZE(smiapp_module_idents
))
2332 dev_warn(&client
->dev
,
2333 "no quirks for this module; let's hope it's fully compliant\n");
2335 dev_dbg(&client
->dev
, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2336 minfo
->name
, minfo
->manufacturer_id
, minfo
->model_id
,
2337 minfo
->revision_number_major
);
2339 strlcpy(subdev
->name
, sensor
->minfo
.name
, sizeof(subdev
->name
));
2344 static const struct v4l2_subdev_ops smiapp_ops
;
2345 static const struct v4l2_subdev_internal_ops smiapp_internal_ops
;
2346 static const struct media_entity_operations smiapp_entity_ops
;
2348 static int smiapp_registered(struct v4l2_subdev
*subdev
)
2350 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2351 struct i2c_client
*client
= v4l2_get_subdevdata(subdev
);
2352 struct smiapp_pll
*pll
= &sensor
->pll
;
2353 struct smiapp_subdev
*last
= NULL
;
2358 sensor
->vana
= devm_regulator_get(&client
->dev
, "vana");
2359 if (IS_ERR(sensor
->vana
)) {
2360 dev_err(&client
->dev
, "could not get regulator for vana\n");
2361 return PTR_ERR(sensor
->vana
);
2364 if (!sensor
->platform_data
->set_xclk
) {
2365 sensor
->ext_clk
= devm_clk_get(&client
->dev
, "ext_clk");
2366 if (IS_ERR(sensor
->ext_clk
)) {
2367 dev_err(&client
->dev
, "could not get clock\n");
2368 return PTR_ERR(sensor
->ext_clk
);
2371 rval
= clk_set_rate(sensor
->ext_clk
,
2372 sensor
->platform_data
->ext_clk
);
2374 dev_err(&client
->dev
,
2375 "unable to set clock freq to %u\n",
2376 sensor
->platform_data
->ext_clk
);
2381 if (gpio_is_valid(sensor
->platform_data
->xshutdown
)) {
2382 rval
= devm_gpio_request_one(
2383 &client
->dev
, sensor
->platform_data
->xshutdown
, 0,
2384 "SMIA++ xshutdown");
2386 dev_err(&client
->dev
,
2387 "unable to acquire reset gpio %d\n",
2388 sensor
->platform_data
->xshutdown
);
2393 rval
= smiapp_power_on(sensor
);
2397 rval
= smiapp_identify_module(subdev
);
2403 rval
= smiapp_get_all_limits(sensor
);
2410 * Handle Sensor Module orientation on the board.
2412 * The application of H-FLIP and V-FLIP on the sensor is modified by
2413 * the sensor orientation on the board.
2415 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2416 * both H-FLIP and V-FLIP for normal operation which also implies
2417 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2418 * controls will need to be internally inverted.
2420 * Rotation also changes the bayer pattern.
2422 if (sensor
->platform_data
->module_board_orient
==
2423 SMIAPP_MODULE_BOARD_ORIENT_180
)
2424 sensor
->hvflip_inv_mask
= SMIAPP_IMAGE_ORIENTATION_HFLIP
|
2425 SMIAPP_IMAGE_ORIENTATION_VFLIP
;
2427 rval
= smiapp_call_quirk(sensor
, limits
);
2429 dev_err(&client
->dev
, "limits quirks failed\n");
2433 rval
= smiapp_get_mbus_formats(sensor
);
2439 if (sensor
->limits
[SMIAPP_LIMIT_BINNING_CAPABILITY
]) {
2442 rval
= smiapp_read(sensor
,
2443 SMIAPP_REG_U8_BINNING_SUBTYPES
, &val
);
2448 sensor
->nbinning_subtypes
= min_t(u8
, val
,
2449 SMIAPP_BINNING_SUBTYPES
);
2451 for (i
= 0; i
< sensor
->nbinning_subtypes
; i
++) {
2453 sensor
, SMIAPP_REG_U8_BINNING_TYPE_n(i
), &val
);
2458 sensor
->binning_subtypes
[i
] =
2459 *(struct smiapp_binning_subtype
*)&val
;
2461 dev_dbg(&client
->dev
, "binning %xx%x\n",
2462 sensor
->binning_subtypes
[i
].horizontal
,
2463 sensor
->binning_subtypes
[i
].vertical
);
2466 sensor
->binning_horizontal
= 1;
2467 sensor
->binning_vertical
= 1;
2469 if (device_create_file(&client
->dev
, &dev_attr_ident
) != 0) {
2470 dev_err(&client
->dev
, "sysfs ident entry creation failed\n");
2474 /* SMIA++ NVM initialization - it will be read from the sensor
2475 * when it is first requested by userspace.
2477 if (sensor
->minfo
.smiapp_version
&& sensor
->platform_data
->nvm_size
) {
2478 sensor
->nvm
= devm_kzalloc(&client
->dev
,
2479 sensor
->platform_data
->nvm_size
, GFP_KERNEL
);
2480 if (sensor
->nvm
== NULL
) {
2481 dev_err(&client
->dev
, "nvm buf allocation failed\n");
2483 goto out_ident_release
;
2486 if (device_create_file(&client
->dev
, &dev_attr_nvm
) != 0) {
2487 dev_err(&client
->dev
, "sysfs nvm entry failed\n");
2489 goto out_ident_release
;
2493 /* We consider this as profile 0 sensor if any of these are zero. */
2494 if (!sensor
->limits
[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV
] ||
2495 !sensor
->limits
[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV
] ||
2496 !sensor
->limits
[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV
] ||
2497 !sensor
->limits
[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV
]) {
2498 sensor
->minfo
.smiapp_profile
= SMIAPP_PROFILE_0
;
2499 } else if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
2500 != SMIAPP_SCALING_CAPABILITY_NONE
) {
2501 if (sensor
->limits
[SMIAPP_LIMIT_SCALING_CAPABILITY
]
2502 == SMIAPP_SCALING_CAPABILITY_HORIZONTAL
)
2503 sensor
->minfo
.smiapp_profile
= SMIAPP_PROFILE_1
;
2505 sensor
->minfo
.smiapp_profile
= SMIAPP_PROFILE_2
;
2506 sensor
->scaler
= &sensor
->ssds
[sensor
->ssds_used
];
2507 sensor
->ssds_used
++;
2508 } else if (sensor
->limits
[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY
]
2509 == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP
) {
2510 sensor
->scaler
= &sensor
->ssds
[sensor
->ssds_used
];
2511 sensor
->ssds_used
++;
2513 sensor
->binner
= &sensor
->ssds
[sensor
->ssds_used
];
2514 sensor
->ssds_used
++;
2515 sensor
->pixel_array
= &sensor
->ssds
[sensor
->ssds_used
];
2516 sensor
->ssds_used
++;
2518 sensor
->scale_m
= sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
];
2520 for (i
= 0; i
< SMIAPP_SUBDEVS
; i
++) {
2522 struct smiapp_subdev
*ssd
;
2524 } const __this
[] = {
2525 { sensor
->scaler
, "scaler", },
2526 { sensor
->binner
, "binner", },
2527 { sensor
->pixel_array
, "pixel array", },
2528 }, *_this
= &__this
[i
];
2529 struct smiapp_subdev
*this = _this
->ssd
;
2534 if (this != sensor
->src
)
2535 v4l2_subdev_init(&this->sd
, &smiapp_ops
);
2537 this->sensor
= sensor
;
2539 if (this == sensor
->pixel_array
) {
2543 this->source_pad
= 1;
2546 snprintf(this->sd
.name
,
2547 sizeof(this->sd
.name
), "%s %d-%4.4x %s",
2548 sensor
->minfo
.name
, i2c_adapter_id(client
->adapter
),
2549 client
->addr
, _this
->name
);
2551 this->sink_fmt
.width
=
2552 sensor
->limits
[SMIAPP_LIMIT_X_ADDR_MAX
] + 1;
2553 this->sink_fmt
.height
=
2554 sensor
->limits
[SMIAPP_LIMIT_Y_ADDR_MAX
] + 1;
2555 this->compose
.width
= this->sink_fmt
.width
;
2556 this->compose
.height
= this->sink_fmt
.height
;
2557 this->crop
[this->source_pad
] = this->compose
;
2558 this->pads
[this->source_pad
].flags
= MEDIA_PAD_FL_SOURCE
;
2559 if (this != sensor
->pixel_array
) {
2560 this->crop
[this->sink_pad
] = this->compose
;
2561 this->pads
[this->sink_pad
].flags
= MEDIA_PAD_FL_SINK
;
2564 this->sd
.entity
.ops
= &smiapp_entity_ops
;
2571 this->sd
.flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
;
2572 this->sd
.internal_ops
= &smiapp_internal_ops
;
2573 this->sd
.owner
= NULL
;
2574 v4l2_set_subdevdata(&this->sd
, client
);
2576 rval
= media_entity_init(&this->sd
.entity
,
2577 this->npads
, this->pads
, 0);
2579 dev_err(&client
->dev
,
2580 "media_entity_init failed\n");
2581 goto out_nvm_release
;
2584 rval
= media_entity_create_link(&this->sd
.entity
,
2588 MEDIA_LNK_FL_ENABLED
|
2589 MEDIA_LNK_FL_IMMUTABLE
);
2591 dev_err(&client
->dev
,
2592 "media_entity_create_link failed\n");
2593 goto out_nvm_release
;
2596 rval
= v4l2_device_register_subdev(sensor
->src
->sd
.v4l2_dev
,
2599 dev_err(&client
->dev
,
2600 "v4l2_device_register_subdev failed\n");
2601 goto out_nvm_release
;
2607 dev_dbg(&client
->dev
, "profile %d\n", sensor
->minfo
.smiapp_profile
);
2609 sensor
->pixel_array
->sd
.entity
.type
= MEDIA_ENT_T_V4L2_SUBDEV_SENSOR
;
2612 smiapp_read_frame_fmt(sensor
);
2613 rval
= smiapp_init_controls(sensor
);
2615 goto out_nvm_release
;
2617 /* prepare PLL configuration input values */
2618 pll
->bus_type
= SMIAPP_PLL_BUS_TYPE_CSI2
;
2619 pll
->csi2
.lanes
= sensor
->platform_data
->lanes
;
2620 pll
->ext_clk_freq_hz
= sensor
->platform_data
->ext_clk
;
2621 pll
->flags
= smiapp_call_quirk(sensor
, pll_flags
);
2623 /* Profile 0 sensors have no separate OP clock branch. */
2624 if (sensor
->minfo
.smiapp_profile
== SMIAPP_PROFILE_0
)
2625 pll
->flags
|= SMIAPP_PLL_FLAG_NO_OP_CLOCKS
;
2626 pll
->scale_n
= sensor
->limits
[SMIAPP_LIMIT_SCALER_N_MIN
];
2628 rval
= smiapp_update_mode(sensor
);
2630 dev_err(&client
->dev
, "update mode failed\n");
2631 goto out_nvm_release
;
2634 sensor
->streaming
= false;
2635 sensor
->dev_init_done
= true;
2637 /* check flash capability */
2638 rval
= smiapp_read(sensor
, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY
, &tmp
);
2639 sensor
->flash_capability
= tmp
;
2641 goto out_nvm_release
;
2643 smiapp_power_off(sensor
);
2648 device_remove_file(&client
->dev
, &dev_attr_nvm
);
2651 device_remove_file(&client
->dev
, &dev_attr_ident
);
2654 smiapp_power_off(sensor
);
2658 static int smiapp_open(struct v4l2_subdev
*sd
, struct v4l2_subdev_fh
*fh
)
2660 struct smiapp_subdev
*ssd
= to_smiapp_subdev(sd
);
2661 struct smiapp_sensor
*sensor
= ssd
->sensor
;
2663 smiapp_csi_data_formats
[smiapp_pixel_order(sensor
)].code
;
2666 mutex_lock(&sensor
->mutex
);
2668 for (i
= 0; i
< ssd
->npads
; i
++) {
2669 struct v4l2_mbus_framefmt
*try_fmt
=
2670 v4l2_subdev_get_try_format(fh
, i
);
2671 struct v4l2_rect
*try_crop
= v4l2_subdev_get_try_crop(fh
, i
);
2672 struct v4l2_rect
*try_comp
;
2674 try_fmt
->width
= sensor
->limits
[SMIAPP_LIMIT_X_ADDR_MAX
] + 1;
2675 try_fmt
->height
= sensor
->limits
[SMIAPP_LIMIT_Y_ADDR_MAX
] + 1;
2676 try_fmt
->code
= mbus_code
;
2680 try_crop
->width
= try_fmt
->width
;
2681 try_crop
->height
= try_fmt
->height
;
2683 if (ssd
!= sensor
->pixel_array
)
2686 try_comp
= v4l2_subdev_get_try_compose(fh
, i
);
2687 *try_comp
= *try_crop
;
2690 mutex_unlock(&sensor
->mutex
);
2692 return smiapp_set_power(sd
, 1);
2695 static int smiapp_close(struct v4l2_subdev
*sd
, struct v4l2_subdev_fh
*fh
)
2697 return smiapp_set_power(sd
, 0);
2700 static const struct v4l2_subdev_video_ops smiapp_video_ops
= {
2701 .s_stream
= smiapp_set_stream
,
2704 static const struct v4l2_subdev_core_ops smiapp_core_ops
= {
2705 .s_power
= smiapp_set_power
,
2708 static const struct v4l2_subdev_pad_ops smiapp_pad_ops
= {
2709 .enum_mbus_code
= smiapp_enum_mbus_code
,
2710 .get_fmt
= smiapp_get_format
,
2711 .set_fmt
= smiapp_set_format
,
2712 .get_selection
= smiapp_get_selection
,
2713 .set_selection
= smiapp_set_selection
,
2716 static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops
= {
2717 .g_skip_frames
= smiapp_get_skip_frames
,
2720 static const struct v4l2_subdev_ops smiapp_ops
= {
2721 .core
= &smiapp_core_ops
,
2722 .video
= &smiapp_video_ops
,
2723 .pad
= &smiapp_pad_ops
,
2724 .sensor
= &smiapp_sensor_ops
,
2727 static const struct media_entity_operations smiapp_entity_ops
= {
2728 .link_validate
= v4l2_subdev_link_validate
,
2731 static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops
= {
2732 .registered
= smiapp_registered
,
2733 .open
= smiapp_open
,
2734 .close
= smiapp_close
,
2737 static const struct v4l2_subdev_internal_ops smiapp_internal_ops
= {
2738 .open
= smiapp_open
,
2739 .close
= smiapp_close
,
2742 /* -----------------------------------------------------------------------------
2748 static int smiapp_suspend(struct device
*dev
)
2750 struct i2c_client
*client
= to_i2c_client(dev
);
2751 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
2752 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2755 BUG_ON(mutex_is_locked(&sensor
->mutex
));
2757 if (sensor
->power_count
== 0)
2760 if (sensor
->streaming
)
2761 smiapp_stop_streaming(sensor
);
2763 streaming
= sensor
->streaming
;
2765 smiapp_power_off(sensor
);
2767 /* save state for resume */
2768 sensor
->streaming
= streaming
;
2773 static int smiapp_resume(struct device
*dev
)
2775 struct i2c_client
*client
= to_i2c_client(dev
);
2776 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
2777 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2780 if (sensor
->power_count
== 0)
2783 rval
= smiapp_power_on(sensor
);
2787 if (sensor
->streaming
)
2788 rval
= smiapp_start_streaming(sensor
);
2795 #define smiapp_suspend NULL
2796 #define smiapp_resume NULL
2798 #endif /* CONFIG_PM */
2800 static int smiapp_probe(struct i2c_client
*client
,
2801 const struct i2c_device_id
*devid
)
2803 struct smiapp_sensor
*sensor
;
2805 if (client
->dev
.platform_data
== NULL
)
2808 sensor
= devm_kzalloc(&client
->dev
, sizeof(*sensor
), GFP_KERNEL
);
2812 sensor
->platform_data
= client
->dev
.platform_data
;
2813 mutex_init(&sensor
->mutex
);
2814 mutex_init(&sensor
->power_mutex
);
2815 sensor
->src
= &sensor
->ssds
[sensor
->ssds_used
];
2817 v4l2_i2c_subdev_init(&sensor
->src
->sd
, client
, &smiapp_ops
);
2818 sensor
->src
->sd
.internal_ops
= &smiapp_internal_src_ops
;
2819 sensor
->src
->sd
.flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
;
2820 sensor
->src
->sensor
= sensor
;
2822 sensor
->src
->pads
[0].flags
= MEDIA_PAD_FL_SOURCE
;
2823 return media_entity_init(&sensor
->src
->sd
.entity
, 2,
2824 sensor
->src
->pads
, 0);
2827 static int smiapp_remove(struct i2c_client
*client
)
2829 struct v4l2_subdev
*subdev
= i2c_get_clientdata(client
);
2830 struct smiapp_sensor
*sensor
= to_smiapp_sensor(subdev
);
2833 if (sensor
->power_count
) {
2834 if (gpio_is_valid(sensor
->platform_data
->xshutdown
))
2835 gpio_set_value(sensor
->platform_data
->xshutdown
, 0);
2836 if (sensor
->platform_data
->set_xclk
)
2837 sensor
->platform_data
->set_xclk(&sensor
->src
->sd
, 0);
2839 clk_disable_unprepare(sensor
->ext_clk
);
2840 sensor
->power_count
= 0;
2843 device_remove_file(&client
->dev
, &dev_attr_ident
);
2845 device_remove_file(&client
->dev
, &dev_attr_nvm
);
2847 for (i
= 0; i
< sensor
->ssds_used
; i
++) {
2848 v4l2_device_unregister_subdev(&sensor
->ssds
[i
].sd
);
2849 media_entity_cleanup(&sensor
->ssds
[i
].sd
.entity
);
2851 smiapp_free_controls(sensor
);
2856 static const struct i2c_device_id smiapp_id_table
[] = {
2860 MODULE_DEVICE_TABLE(i2c
, smiapp_id_table
);
2862 static const struct dev_pm_ops smiapp_pm_ops
= {
2863 .suspend
= smiapp_suspend
,
2864 .resume
= smiapp_resume
,
2867 static struct i2c_driver smiapp_i2c_driver
= {
2869 .name
= SMIAPP_NAME
,
2870 .pm
= &smiapp_pm_ops
,
2872 .probe
= smiapp_probe
,
2873 .remove
= smiapp_remove
,
2874 .id_table
= smiapp_id_table
,
2877 module_i2c_driver(smiapp_i2c_driver
);
2879 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
2880 MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2881 MODULE_LICENSE("GPL");