sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / drivers / media / rc / nuvoton-cir.c
blobd244e1a83f43f67f9c2f77156a920a42af591e9a
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25 * USA
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
40 #include "nuvoton-cir.h"
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
45 outb(reg, nvt->cr_efir);
46 outb(val, nvt->cr_efdr);
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
52 outb(reg, nvt->cr_efir);
53 return inb(nvt->cr_efdr);
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
59 u8 tmp = nvt_cr_read(nvt, reg) | val;
60 nvt_cr_write(nvt, tmp, reg);
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
66 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 nvt_cr_write(nvt, tmp, reg);
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
73 /* Enabling Extended Function Mode explicitly requires writing 2x */
74 outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 outb(EFER_EFM_ENABLE, nvt->cr_efir);
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
81 outb(EFER_EFM_DISABLE, nvt->cr_efir);
85 * When you want to address a specific logical device, write its logical
86 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
91 outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 outb(ldev, nvt->cr_efdr);
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
98 outb(val, nvt->cir_addr + offset);
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
104 u8 val;
106 val = inb(nvt->cir_addr + offset);
108 return val;
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 u8 val, u8 offset)
115 outb(val, nvt->cir_wake_addr + offset);
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
121 u8 val;
123 val = inb(nvt->cir_wake_addr + offset);
125 return val;
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
131 nvt_efm_enable(nvt);
132 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
134 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 pr_info(" * CR CIR ACTIVE : 0x%x\n",
136 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
141 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
143 nvt_efm_disable(nvt);
145 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
167 u8 i, fifo_len;
169 nvt_efm_enable(nvt);
170 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
172 pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 NVT_DRIVER_NAME);
174 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
175 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
180 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
182 nvt_efm_disable(nvt);
184 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 pr_info(" * IRCON: 0x%x\n",
186 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 pr_info(" * IRSTS: 0x%x\n",
188 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 pr_info(" * IREN: 0x%x\n",
190 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 pr_info(" * FIFO CMP DEEP: 0x%x\n",
192 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 pr_info(" * FIFO CMP TOL: 0x%x\n",
194 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 pr_info(" * FIFO COUNT: 0x%x\n",
196 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 pr_info(" * SLCH: 0x%x\n",
198 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 pr_info(" * SLCL: 0x%x\n",
200 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 pr_info(" * FIFOCON: 0x%x\n",
202 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 pr_info(" * SRXFSTS: 0x%x\n",
204 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 pr_info(" * WR FIFO DATA: 0x%x\n",
208 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 pr_info(" * RD FIFO ONLY: 0x%x\n",
210 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 pr_info(" * FIFO IGNORE: 0x%x\n",
214 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 pr_info(" * IRFSM: 0x%x\n",
216 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
218 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 pr_info("* Contents =");
221 for (i = 0; i < fifo_len; i++)
222 pr_cont(" %02x",
223 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 pr_cont("\n");
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
230 unsigned long flags;
231 u8 chip_major, chip_minor;
232 int ret = 0;
233 char chip_id[12];
234 bool chip_unknown = false;
236 nvt_efm_enable(nvt);
238 /* Check if we're wired for the alternate EFER setup */
239 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240 if (chip_major == 0xff) {
241 nvt->cr_efir = CR_EFIR2;
242 nvt->cr_efdr = CR_EFDR2;
243 nvt_efm_enable(nvt);
244 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
247 chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
249 /* these are the known working chip revisions... */
250 switch (chip_major) {
251 case CHIP_ID_HIGH_667:
252 strcpy(chip_id, "w83667hg\0");
253 if (chip_minor != CHIP_ID_LOW_667)
254 chip_unknown = true;
255 break;
256 case CHIP_ID_HIGH_677B:
257 strcpy(chip_id, "w83677hg\0");
258 if (chip_minor != CHIP_ID_LOW_677B2 &&
259 chip_minor != CHIP_ID_LOW_677B3)
260 chip_unknown = true;
261 break;
262 case CHIP_ID_HIGH_677C:
263 strcpy(chip_id, "w83677hg-c\0");
264 if (chip_minor != CHIP_ID_LOW_677C)
265 chip_unknown = true;
266 break;
267 default:
268 strcpy(chip_id, "w836x7hg\0");
269 chip_unknown = true;
270 break;
273 /* warn, but still let the driver load, if we don't know this chip */
274 if (chip_unknown)
275 nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276 "it may not work...", chip_id, chip_major, chip_minor);
277 else
278 nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279 chip_id, chip_major, chip_minor);
281 nvt_efm_disable(nvt);
283 spin_lock_irqsave(&nvt->nvt_lock, flags);
284 nvt->chip_major = chip_major;
285 nvt->chip_minor = chip_minor;
286 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
288 return ret;
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
293 u8 val, psreg, psmask, psval;
295 if (nvt->chip_major == CHIP_ID_HIGH_667) {
296 psreg = CR_MULTIFUNC_PIN_SEL;
297 psmask = MULTIFUNC_PIN_SEL_MASK;
298 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299 } else {
300 psreg = CR_OUTPUT_PIN_SEL;
301 psmask = OUTPUT_PIN_SEL_MASK;
302 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
305 /* output pin selection: enable CIR, with WB sensor enabled */
306 val = nvt_cr_read(nvt, psreg);
307 val &= psmask;
308 val |= psval;
309 nvt_cr_write(nvt, val, psreg);
311 /* Select CIR logical device and enable */
312 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
315 nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316 nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
318 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
320 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321 nvt->cir_addr, nvt->cir_irq);
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
326 /* Select ACPI logical device, enable it and CIR Wake */
327 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
330 /* Enable CIR Wake via PSOUT# (Pin60) */
331 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
333 /* enable pme interrupt of cir wakeup event */
334 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
336 /* Select CIR Wake logical device and enable */
337 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
338 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
340 nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
341 nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
343 nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
345 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
346 nvt->cir_wake_addr, nvt->cir_wake_irq);
349 /* clear out the hardware's cir rx fifo */
350 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
352 u8 val;
354 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
355 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
358 /* clear out the hardware's cir wake rx fifo */
359 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
361 u8 val;
363 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
364 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
365 CIR_WAKE_FIFOCON);
368 /* clear out the hardware's cir tx fifo */
369 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
371 u8 val;
373 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
374 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
377 /* enable RX Trigger Level Reach and Packet End interrupts */
378 static void nvt_set_cir_iren(struct nvt_dev *nvt)
380 u8 iren;
382 iren = CIR_IREN_RTR | CIR_IREN_PE;
383 nvt_cir_reg_write(nvt, iren, CIR_IREN);
386 static void nvt_cir_regs_init(struct nvt_dev *nvt)
388 /* set sample limit count (PE interrupt raised when reached) */
389 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
390 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
392 /* set fifo irq trigger levels */
393 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
394 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
397 * Enable TX and RX, specify carrier on = low, off = high, and set
398 * sample period (currently 50us)
400 nvt_cir_reg_write(nvt,
401 CIR_IRCON_TXEN | CIR_IRCON_RXEN |
402 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
403 CIR_IRCON);
405 /* clear hardware rx and tx fifos */
406 nvt_clear_cir_fifo(nvt);
407 nvt_clear_tx_fifo(nvt);
409 /* clear any and all stray interrupts */
410 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
412 /* and finally, enable interrupts */
413 nvt_set_cir_iren(nvt);
416 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
418 /* set number of bytes needed for wake from s3 (default 65) */
419 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
420 CIR_WAKE_FIFO_CMP_DEEP);
422 /* set tolerance/variance allowed per byte during wake compare */
423 nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
424 CIR_WAKE_FIFO_CMP_TOL);
426 /* set sample limit count (PE interrupt raised when reached) */
427 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
428 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
430 /* set cir wake fifo rx trigger level (currently 67) */
431 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
432 CIR_WAKE_FIFOCON);
435 * Enable TX and RX, specific carrier on = low, off = high, and set
436 * sample period (currently 50us)
438 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
439 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
440 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
441 CIR_WAKE_IRCON);
443 /* clear cir wake rx fifo */
444 nvt_clear_cir_wake_fifo(nvt);
446 /* clear any and all stray interrupts */
447 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
450 static void nvt_enable_wake(struct nvt_dev *nvt)
452 nvt_efm_enable(nvt);
454 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
455 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
456 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
458 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
459 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
461 nvt_efm_disable(nvt);
463 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
464 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
465 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
466 CIR_WAKE_IRCON);
467 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
468 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
471 #if 0 /* Currently unused */
472 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
473 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
475 u32 count, carrier, duration = 0;
476 int i;
478 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
479 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
481 for (i = 0; i < nvt->pkts; i++) {
482 if (nvt->buf[i] & BUF_PULSE_BIT)
483 duration += nvt->buf[i] & BUF_LEN_MASK;
486 duration *= SAMPLE_PERIOD;
488 if (!count || !duration) {
489 nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
490 count, duration);
491 return 0;
494 carrier = MS_TO_NS(count) / duration;
496 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
497 nvt_dbg("WTF? Carrier frequency out of range!");
499 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
500 carrier, count, duration);
502 return carrier;
504 #endif
506 * set carrier frequency
508 * set carrier on 2 registers: CP & CC
509 * always set CP as 0x81
510 * set CC by SPEC, CC = 3MHz/carrier - 1
512 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
514 struct nvt_dev *nvt = dev->priv;
515 u16 val;
517 if (carrier == 0)
518 return -EINVAL;
520 nvt_cir_reg_write(nvt, 1, CIR_CP);
521 val = 3000000 / (carrier) - 1;
522 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
524 nvt_dbg("cp: 0x%x cc: 0x%x\n",
525 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
527 return 0;
531 * nvt_tx_ir
533 * 1) clean TX fifo first (handled by AP)
534 * 2) copy data from user space
535 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
536 * 4) send 9 packets to TX FIFO to open TTR
537 * in interrupt_handler:
538 * 5) send all data out
539 * go back to write():
540 * 6) disable TX interrupts, re-enable RX interupts
542 * The key problem of this function is user space data may larger than
543 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
544 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
545 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
546 * set TXFCONT as 0xff, until buf_count less than 0xff.
548 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
550 struct nvt_dev *nvt = dev->priv;
551 unsigned long flags;
552 unsigned int i;
553 u8 iren;
554 int ret;
556 spin_lock_irqsave(&nvt->tx.lock, flags);
558 ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
559 nvt->tx.buf_count = (ret * sizeof(unsigned));
561 memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
563 nvt->tx.cur_buf_num = 0;
565 /* save currently enabled interrupts */
566 iren = nvt_cir_reg_read(nvt, CIR_IREN);
568 /* now disable all interrupts, save TFU & TTR */
569 nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
571 nvt->tx.tx_state = ST_TX_REPLY;
573 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
574 CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
576 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
577 for (i = 0; i < 9; i++)
578 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
580 spin_unlock_irqrestore(&nvt->tx.lock, flags);
582 wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
584 spin_lock_irqsave(&nvt->tx.lock, flags);
585 nvt->tx.tx_state = ST_TX_NONE;
586 spin_unlock_irqrestore(&nvt->tx.lock, flags);
588 /* restore enabled interrupts to prior state */
589 nvt_cir_reg_write(nvt, iren, CIR_IREN);
591 return ret;
594 /* dump contents of the last rx buffer we got from the hw rx fifo */
595 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
597 int i;
599 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
600 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
601 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
602 printk(KERN_CONT "\n");
606 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
607 * trigger decode when appropriate.
609 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
610 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
611 * (default 50us) intervals for that pulse/space. A discrete signal is
612 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
613 * to signal more IR coming (repeats) or end of IR, respectively. We store
614 * sample data in the raw event kfifo until we see 0x7<something> (except f)
615 * or 0x80, at which time, we trigger a decode operation.
617 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
619 DEFINE_IR_RAW_EVENT(rawir);
620 u8 sample;
621 int i;
623 nvt_dbg_verbose("%s firing", __func__);
625 if (debug)
626 nvt_dump_rx_buf(nvt);
628 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
630 init_ir_raw_event(&rawir);
632 for (i = 0; i < nvt->pkts; i++) {
633 sample = nvt->buf[i];
635 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
636 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
637 * SAMPLE_PERIOD);
639 nvt_dbg("Storing %s with duration %d",
640 rawir.pulse ? "pulse" : "space", rawir.duration);
642 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
645 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
646 * indicates end of IR signal, but new data incoming. In both
647 * cases, it means we're ready to call ir_raw_event_handle
649 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
650 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
651 ir_raw_event_handle(nvt->rdev);
655 nvt->pkts = 0;
657 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
658 ir_raw_event_handle(nvt->rdev);
660 nvt_dbg_verbose("%s done", __func__);
663 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
665 nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
667 nvt->pkts = 0;
668 nvt_clear_cir_fifo(nvt);
669 ir_raw_event_reset(nvt->rdev);
672 /* copy data from hardware rx fifo into driver buffer */
673 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
675 unsigned long flags;
676 u8 fifocount, val;
677 unsigned int b_idx;
678 bool overrun = false;
679 int i;
681 /* Get count of how many bytes to read from RX FIFO */
682 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
683 /* if we get 0xff, probably means the logical dev is disabled */
684 if (fifocount == 0xff)
685 return;
686 /* watch out for a fifo overrun condition */
687 else if (fifocount > RX_BUF_LEN) {
688 overrun = true;
689 fifocount = RX_BUF_LEN;
692 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
694 spin_lock_irqsave(&nvt->nvt_lock, flags);
696 b_idx = nvt->pkts;
698 /* This should never happen, but lets check anyway... */
699 if (b_idx + fifocount > RX_BUF_LEN) {
700 nvt_process_rx_ir_data(nvt);
701 b_idx = 0;
704 /* Read fifocount bytes from CIR Sample RX FIFO register */
705 for (i = 0; i < fifocount; i++) {
706 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
707 nvt->buf[b_idx + i] = val;
710 nvt->pkts += fifocount;
711 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
713 nvt_process_rx_ir_data(nvt);
715 if (overrun)
716 nvt_handle_rx_fifo_overrun(nvt);
718 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
721 static void nvt_cir_log_irqs(u8 status, u8 iren)
723 nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
724 status, iren,
725 status & CIR_IRSTS_RDR ? " RDR" : "",
726 status & CIR_IRSTS_RTR ? " RTR" : "",
727 status & CIR_IRSTS_PE ? " PE" : "",
728 status & CIR_IRSTS_RFO ? " RFO" : "",
729 status & CIR_IRSTS_TE ? " TE" : "",
730 status & CIR_IRSTS_TTR ? " TTR" : "",
731 status & CIR_IRSTS_TFU ? " TFU" : "",
732 status & CIR_IRSTS_GH ? " GH" : "",
733 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
734 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
735 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
738 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
740 unsigned long flags;
741 bool tx_inactive;
742 u8 tx_state;
744 spin_lock_irqsave(&nvt->tx.lock, flags);
745 tx_state = nvt->tx.tx_state;
746 spin_unlock_irqrestore(&nvt->tx.lock, flags);
748 tx_inactive = (tx_state == ST_TX_NONE);
750 return tx_inactive;
753 /* interrupt service routine for incoming and outgoing CIR data */
754 static irqreturn_t nvt_cir_isr(int irq, void *data)
756 struct nvt_dev *nvt = data;
757 u8 status, iren, cur_state;
758 unsigned long flags;
760 nvt_dbg_verbose("%s firing", __func__);
762 nvt_efm_enable(nvt);
763 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
764 nvt_efm_disable(nvt);
767 * Get IR Status register contents. Write 1 to ack/clear
769 * bit: reg name - description
770 * 7: CIR_IRSTS_RDR - RX Data Ready
771 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
772 * 5: CIR_IRSTS_PE - Packet End
773 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
774 * 3: CIR_IRSTS_TE - TX FIFO Empty
775 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
776 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
777 * 0: CIR_IRSTS_GH - Min Length Detected
779 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
780 if (!status) {
781 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
782 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
783 return IRQ_RETVAL(IRQ_NONE);
786 /* ack/clear all irq flags we've got */
787 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
788 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
790 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
791 iren = nvt_cir_reg_read(nvt, CIR_IREN);
792 if (!iren) {
793 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
794 return IRQ_RETVAL(IRQ_NONE);
797 if (debug)
798 nvt_cir_log_irqs(status, iren);
800 if (status & CIR_IRSTS_RTR) {
801 /* FIXME: add code for study/learn mode */
802 /* We only do rx if not tx'ing */
803 if (nvt_cir_tx_inactive(nvt))
804 nvt_get_rx_ir_data(nvt);
807 if (status & CIR_IRSTS_PE) {
808 if (nvt_cir_tx_inactive(nvt))
809 nvt_get_rx_ir_data(nvt);
811 spin_lock_irqsave(&nvt->nvt_lock, flags);
813 cur_state = nvt->study_state;
815 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
817 if (cur_state == ST_STUDY_NONE)
818 nvt_clear_cir_fifo(nvt);
821 if (status & CIR_IRSTS_TE)
822 nvt_clear_tx_fifo(nvt);
824 if (status & CIR_IRSTS_TTR) {
825 unsigned int pos, count;
826 u8 tmp;
828 spin_lock_irqsave(&nvt->tx.lock, flags);
830 pos = nvt->tx.cur_buf_num;
831 count = nvt->tx.buf_count;
833 /* Write data into the hardware tx fifo while pos < count */
834 if (pos < count) {
835 nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
836 nvt->tx.cur_buf_num++;
837 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
838 } else {
839 tmp = nvt_cir_reg_read(nvt, CIR_IREN);
840 nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
843 spin_unlock_irqrestore(&nvt->tx.lock, flags);
847 if (status & CIR_IRSTS_TFU) {
848 spin_lock_irqsave(&nvt->tx.lock, flags);
849 if (nvt->tx.tx_state == ST_TX_REPLY) {
850 nvt->tx.tx_state = ST_TX_REQUEST;
851 wake_up(&nvt->tx.queue);
853 spin_unlock_irqrestore(&nvt->tx.lock, flags);
856 nvt_dbg_verbose("%s done", __func__);
857 return IRQ_RETVAL(IRQ_HANDLED);
860 /* Interrupt service routine for CIR Wake */
861 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
863 u8 status, iren, val;
864 struct nvt_dev *nvt = data;
865 unsigned long flags;
867 nvt_dbg_wake("%s firing", __func__);
869 status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
870 if (!status)
871 return IRQ_RETVAL(IRQ_NONE);
873 if (status & CIR_WAKE_IRSTS_IR_PENDING)
874 nvt_clear_cir_wake_fifo(nvt);
876 nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
877 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
879 /* Interrupt may be shared with CIR, bail if Wake not enabled */
880 iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
881 if (!iren) {
882 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
883 return IRQ_RETVAL(IRQ_HANDLED);
886 if ((status & CIR_WAKE_IRSTS_PE) &&
887 (nvt->wake_state == ST_WAKE_START)) {
888 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
889 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
890 nvt_dbg("setting wake up key: 0x%x", val);
893 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
894 spin_lock_irqsave(&nvt->nvt_lock, flags);
895 nvt->wake_state = ST_WAKE_FINISH;
896 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
899 nvt_dbg_wake("%s done", __func__);
900 return IRQ_RETVAL(IRQ_HANDLED);
903 static void nvt_enable_cir(struct nvt_dev *nvt)
905 /* set function enable flags */
906 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
907 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
908 CIR_IRCON);
910 nvt_efm_enable(nvt);
912 /* enable the CIR logical device */
913 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
914 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
916 nvt_efm_disable(nvt);
918 /* clear all pending interrupts */
919 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
921 /* enable interrupts */
922 nvt_set_cir_iren(nvt);
925 static void nvt_disable_cir(struct nvt_dev *nvt)
927 /* disable CIR interrupts */
928 nvt_cir_reg_write(nvt, 0, CIR_IREN);
930 /* clear any and all pending interrupts */
931 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
933 /* clear all function enable flags */
934 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
936 /* clear hardware rx and tx fifos */
937 nvt_clear_cir_fifo(nvt);
938 nvt_clear_tx_fifo(nvt);
940 nvt_efm_enable(nvt);
942 /* disable the CIR logical device */
943 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
944 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
946 nvt_efm_disable(nvt);
949 static int nvt_open(struct rc_dev *dev)
951 struct nvt_dev *nvt = dev->priv;
952 unsigned long flags;
954 spin_lock_irqsave(&nvt->nvt_lock, flags);
955 nvt_enable_cir(nvt);
956 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
958 return 0;
961 static void nvt_close(struct rc_dev *dev)
963 struct nvt_dev *nvt = dev->priv;
964 unsigned long flags;
966 spin_lock_irqsave(&nvt->nvt_lock, flags);
967 nvt_disable_cir(nvt);
968 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
971 /* Allocate memory, probe hardware, and initialize everything */
972 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
974 struct nvt_dev *nvt;
975 struct rc_dev *rdev;
976 int ret = -ENOMEM;
978 nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
979 if (!nvt)
980 return ret;
982 /* input device for IR remote (and tx) */
983 rdev = rc_allocate_device();
984 if (!rdev)
985 goto exit_free_dev_rdev;
987 ret = -ENODEV;
988 /* activate pnp device */
989 if (pnp_activate_dev(pdev) < 0) {
990 dev_err(&pdev->dev, "Could not activate PNP device!\n");
991 goto exit_free_dev_rdev;
994 /* validate pnp resources */
995 if (!pnp_port_valid(pdev, 0) ||
996 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
997 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
998 goto exit_free_dev_rdev;
1001 if (!pnp_irq_valid(pdev, 0)) {
1002 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1003 goto exit_free_dev_rdev;
1006 if (!pnp_port_valid(pdev, 1) ||
1007 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1008 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1009 goto exit_free_dev_rdev;
1012 nvt->cir_addr = pnp_port_start(pdev, 0);
1013 nvt->cir_irq = pnp_irq(pdev, 0);
1015 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1016 /* irq is always shared between cir and cir wake */
1017 nvt->cir_wake_irq = nvt->cir_irq;
1019 nvt->cr_efir = CR_EFIR;
1020 nvt->cr_efdr = CR_EFDR;
1022 spin_lock_init(&nvt->nvt_lock);
1023 spin_lock_init(&nvt->tx.lock);
1025 pnp_set_drvdata(pdev, nvt);
1026 nvt->pdev = pdev;
1028 init_waitqueue_head(&nvt->tx.queue);
1030 ret = nvt_hw_detect(nvt);
1031 if (ret)
1032 goto exit_free_dev_rdev;
1034 /* Initialize CIR & CIR Wake Logical Devices */
1035 nvt_efm_enable(nvt);
1036 nvt_cir_ldev_init(nvt);
1037 nvt_cir_wake_ldev_init(nvt);
1038 nvt_efm_disable(nvt);
1040 /* Initialize CIR & CIR Wake Config Registers */
1041 nvt_cir_regs_init(nvt);
1042 nvt_cir_wake_regs_init(nvt);
1044 /* Set up the rc device */
1045 rdev->priv = nvt;
1046 rdev->driver_type = RC_DRIVER_IR_RAW;
1047 rc_set_allowed_protocols(rdev, RC_BIT_ALL);
1048 rdev->open = nvt_open;
1049 rdev->close = nvt_close;
1050 rdev->tx_ir = nvt_tx_ir;
1051 rdev->s_tx_carrier = nvt_set_tx_carrier;
1052 rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1053 rdev->input_phys = "nuvoton/cir0";
1054 rdev->input_id.bustype = BUS_HOST;
1055 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1056 rdev->input_id.product = nvt->chip_major;
1057 rdev->input_id.version = nvt->chip_minor;
1058 rdev->dev.parent = &pdev->dev;
1059 rdev->driver_name = NVT_DRIVER_NAME;
1060 rdev->map_name = RC_MAP_RC6_MCE;
1061 rdev->timeout = MS_TO_NS(100);
1062 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1063 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1064 #if 0
1065 rdev->min_timeout = XYZ;
1066 rdev->max_timeout = XYZ;
1067 /* tx bits */
1068 rdev->tx_resolution = XYZ;
1069 #endif
1070 nvt->rdev = rdev;
1072 ret = rc_register_device(rdev);
1073 if (ret)
1074 goto exit_free_dev_rdev;
1076 ret = -EBUSY;
1077 /* now claim resources */
1078 if (!request_region(nvt->cir_addr,
1079 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1080 goto exit_unregister_device;
1082 if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1083 NVT_DRIVER_NAME, (void *)nvt))
1084 goto exit_release_cir_addr;
1086 if (!request_region(nvt->cir_wake_addr,
1087 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1088 goto exit_free_irq;
1090 if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1091 NVT_DRIVER_NAME, (void *)nvt))
1092 goto exit_release_cir_wake_addr;
1094 device_init_wakeup(&pdev->dev, true);
1096 nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1097 if (debug) {
1098 cir_dump_regs(nvt);
1099 cir_wake_dump_regs(nvt);
1102 return 0;
1104 exit_release_cir_wake_addr:
1105 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1106 exit_free_irq:
1107 free_irq(nvt->cir_irq, nvt);
1108 exit_release_cir_addr:
1109 release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1110 exit_unregister_device:
1111 rc_unregister_device(rdev);
1112 rdev = NULL;
1113 exit_free_dev_rdev:
1114 rc_free_device(rdev);
1115 kfree(nvt);
1117 return ret;
1120 static void nvt_remove(struct pnp_dev *pdev)
1122 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1123 unsigned long flags;
1125 spin_lock_irqsave(&nvt->nvt_lock, flags);
1126 /* disable CIR */
1127 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1128 nvt_disable_cir(nvt);
1129 /* enable CIR Wake (for IR power-on) */
1130 nvt_enable_wake(nvt);
1131 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1133 /* free resources */
1134 free_irq(nvt->cir_irq, nvt);
1135 free_irq(nvt->cir_wake_irq, nvt);
1136 release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1137 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1139 rc_unregister_device(nvt->rdev);
1141 kfree(nvt);
1144 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1146 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1147 unsigned long flags;
1149 nvt_dbg("%s called", __func__);
1151 /* zero out misc state tracking */
1152 spin_lock_irqsave(&nvt->nvt_lock, flags);
1153 nvt->study_state = ST_STUDY_NONE;
1154 nvt->wake_state = ST_WAKE_NONE;
1155 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1157 spin_lock_irqsave(&nvt->tx.lock, flags);
1158 nvt->tx.tx_state = ST_TX_NONE;
1159 spin_unlock_irqrestore(&nvt->tx.lock, flags);
1161 /* disable all CIR interrupts */
1162 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1164 nvt_efm_enable(nvt);
1166 /* disable cir logical dev */
1167 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1168 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1170 nvt_efm_disable(nvt);
1172 /* make sure wake is enabled */
1173 nvt_enable_wake(nvt);
1175 return 0;
1178 static int nvt_resume(struct pnp_dev *pdev)
1180 int ret = 0;
1181 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1183 nvt_dbg("%s called", __func__);
1185 /* open interrupt */
1186 nvt_set_cir_iren(nvt);
1188 /* Enable CIR logical device */
1189 nvt_efm_enable(nvt);
1190 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1191 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1193 nvt_efm_disable(nvt);
1195 nvt_cir_regs_init(nvt);
1196 nvt_cir_wake_regs_init(nvt);
1198 return ret;
1201 static void nvt_shutdown(struct pnp_dev *pdev)
1203 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1204 nvt_enable_wake(nvt);
1207 static const struct pnp_device_id nvt_ids[] = {
1208 { "WEC0530", 0 }, /* CIR */
1209 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1210 { "", 0 },
1213 static struct pnp_driver nvt_driver = {
1214 .name = NVT_DRIVER_NAME,
1215 .id_table = nvt_ids,
1216 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1217 .probe = nvt_probe,
1218 .remove = nvt_remove,
1219 .suspend = nvt_suspend,
1220 .resume = nvt_resume,
1221 .shutdown = nvt_shutdown,
1224 static int nvt_init(void)
1226 return pnp_register_driver(&nvt_driver);
1229 static void nvt_exit(void)
1231 pnp_unregister_driver(&nvt_driver);
1234 module_param(debug, int, S_IRUGO | S_IWUSR);
1235 MODULE_PARM_DESC(debug, "Enable debugging output");
1237 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1238 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1240 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1241 MODULE_LICENSE("GPL");
1243 module_init(nvt_init);
1244 module_exit(nvt_exit);