sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / drivers / media / rc / rc-main.c
blob970b93d6f399b1ba87fbd22c3065e98a938a077e
1 /* rc-main.c - Remote Controller core module
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/device.h>
22 #include <linux/module.h>
23 #include "rc-core-priv.h"
25 /* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
26 #define IRRCV_NUM_DEVICES 256
27 static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE 256
31 #define IR_TAB_MAX_SIZE 8192
33 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
34 #define IR_KEYPRESS_TIMEOUT 250
36 /* Used to keep track of known keymaps */
37 static LIST_HEAD(rc_map_list);
38 static DEFINE_SPINLOCK(rc_map_lock);
39 static struct led_trigger *led_feedback;
41 static struct rc_map_list *seek_rc_map(const char *name)
43 struct rc_map_list *map = NULL;
45 spin_lock(&rc_map_lock);
46 list_for_each_entry(map, &rc_map_list, list) {
47 if (!strcmp(name, map->map.name)) {
48 spin_unlock(&rc_map_lock);
49 return map;
52 spin_unlock(&rc_map_lock);
54 return NULL;
57 struct rc_map *rc_map_get(const char *name)
60 struct rc_map_list *map;
62 map = seek_rc_map(name);
63 #ifdef MODULE
64 if (!map) {
65 int rc = request_module("%s", name);
66 if (rc < 0) {
67 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
68 return NULL;
70 msleep(20); /* Give some time for IR to register */
72 map = seek_rc_map(name);
74 #endif
75 if (!map) {
76 printk(KERN_ERR "IR keymap %s not found\n", name);
77 return NULL;
80 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
82 return &map->map;
84 EXPORT_SYMBOL_GPL(rc_map_get);
86 int rc_map_register(struct rc_map_list *map)
88 spin_lock(&rc_map_lock);
89 list_add_tail(&map->list, &rc_map_list);
90 spin_unlock(&rc_map_lock);
91 return 0;
93 EXPORT_SYMBOL_GPL(rc_map_register);
95 void rc_map_unregister(struct rc_map_list *map)
97 spin_lock(&rc_map_lock);
98 list_del(&map->list);
99 spin_unlock(&rc_map_lock);
101 EXPORT_SYMBOL_GPL(rc_map_unregister);
104 static struct rc_map_table empty[] = {
105 { 0x2a, KEY_COFFEE },
108 static struct rc_map_list empty_map = {
109 .map = {
110 .scan = empty,
111 .size = ARRAY_SIZE(empty),
112 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
113 .name = RC_MAP_EMPTY,
118 * ir_create_table() - initializes a scancode table
119 * @rc_map: the rc_map to initialize
120 * @name: name to assign to the table
121 * @rc_type: ir type to assign to the new table
122 * @size: initial size of the table
123 * @return: zero on success or a negative error code
125 * This routine will initialize the rc_map and will allocate
126 * memory to hold at least the specified number of elements.
128 static int ir_create_table(struct rc_map *rc_map,
129 const char *name, u64 rc_type, size_t size)
131 rc_map->name = name;
132 rc_map->rc_type = rc_type;
133 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
134 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
135 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
136 if (!rc_map->scan)
137 return -ENOMEM;
139 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140 rc_map->size, rc_map->alloc);
141 return 0;
145 * ir_free_table() - frees memory allocated by a scancode table
146 * @rc_map: the table whose mappings need to be freed
148 * This routine will free memory alloctaed for key mappings used by given
149 * scancode table.
151 static void ir_free_table(struct rc_map *rc_map)
153 rc_map->size = 0;
154 kfree(rc_map->scan);
155 rc_map->scan = NULL;
159 * ir_resize_table() - resizes a scancode table if necessary
160 * @rc_map: the rc_map to resize
161 * @gfp_flags: gfp flags to use when allocating memory
162 * @return: zero on success or a negative error code
164 * This routine will shrink the rc_map if it has lots of
165 * unused entries and grow it if it is full.
167 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
169 unsigned int oldalloc = rc_map->alloc;
170 unsigned int newalloc = oldalloc;
171 struct rc_map_table *oldscan = rc_map->scan;
172 struct rc_map_table *newscan;
174 if (rc_map->size == rc_map->len) {
175 /* All entries in use -> grow keytable */
176 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
177 return -ENOMEM;
179 newalloc *= 2;
180 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
183 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
184 /* Less than 1/3 of entries in use -> shrink keytable */
185 newalloc /= 2;
186 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
189 if (newalloc == oldalloc)
190 return 0;
192 newscan = kmalloc(newalloc, gfp_flags);
193 if (!newscan) {
194 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
195 return -ENOMEM;
198 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
199 rc_map->scan = newscan;
200 rc_map->alloc = newalloc;
201 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
202 kfree(oldscan);
203 return 0;
207 * ir_update_mapping() - set a keycode in the scancode->keycode table
208 * @dev: the struct rc_dev device descriptor
209 * @rc_map: scancode table to be adjusted
210 * @index: index of the mapping that needs to be updated
211 * @keycode: the desired keycode
212 * @return: previous keycode assigned to the mapping
214 * This routine is used to update scancode->keycode mapping at given
215 * position.
217 static unsigned int ir_update_mapping(struct rc_dev *dev,
218 struct rc_map *rc_map,
219 unsigned int index,
220 unsigned int new_keycode)
222 int old_keycode = rc_map->scan[index].keycode;
223 int i;
225 /* Did the user wish to remove the mapping? */
226 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
227 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228 index, rc_map->scan[index].scancode);
229 rc_map->len--;
230 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
231 (rc_map->len - index) * sizeof(struct rc_map_table));
232 } else {
233 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
234 index,
235 old_keycode == KEY_RESERVED ? "New" : "Replacing",
236 rc_map->scan[index].scancode, new_keycode);
237 rc_map->scan[index].keycode = new_keycode;
238 __set_bit(new_keycode, dev->input_dev->keybit);
241 if (old_keycode != KEY_RESERVED) {
242 /* A previous mapping was updated... */
243 __clear_bit(old_keycode, dev->input_dev->keybit);
244 /* ... but another scancode might use the same keycode */
245 for (i = 0; i < rc_map->len; i++) {
246 if (rc_map->scan[i].keycode == old_keycode) {
247 __set_bit(old_keycode, dev->input_dev->keybit);
248 break;
252 /* Possibly shrink the keytable, failure is not a problem */
253 ir_resize_table(rc_map, GFP_ATOMIC);
256 return old_keycode;
260 * ir_establish_scancode() - set a keycode in the scancode->keycode table
261 * @dev: the struct rc_dev device descriptor
262 * @rc_map: scancode table to be searched
263 * @scancode: the desired scancode
264 * @resize: controls whether we allowed to resize the table to
265 * accommodate not yet present scancodes
266 * @return: index of the mapping containing scancode in question
267 * or -1U in case of failure.
269 * This routine is used to locate given scancode in rc_map.
270 * If scancode is not yet present the routine will allocate a new slot
271 * for it.
273 static unsigned int ir_establish_scancode(struct rc_dev *dev,
274 struct rc_map *rc_map,
275 unsigned int scancode,
276 bool resize)
278 unsigned int i;
281 * Unfortunately, some hardware-based IR decoders don't provide
282 * all bits for the complete IR code. In general, they provide only
283 * the command part of the IR code. Yet, as it is possible to replace
284 * the provided IR with another one, it is needed to allow loading
285 * IR tables from other remotes. So, we support specifying a mask to
286 * indicate the valid bits of the scancodes.
288 if (dev->scanmask)
289 scancode &= dev->scanmask;
291 /* First check if we already have a mapping for this ir command */
292 for (i = 0; i < rc_map->len; i++) {
293 if (rc_map->scan[i].scancode == scancode)
294 return i;
296 /* Keytable is sorted from lowest to highest scancode */
297 if (rc_map->scan[i].scancode >= scancode)
298 break;
301 /* No previous mapping found, we might need to grow the table */
302 if (rc_map->size == rc_map->len) {
303 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
304 return -1U;
307 /* i is the proper index to insert our new keycode */
308 if (i < rc_map->len)
309 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
310 (rc_map->len - i) * sizeof(struct rc_map_table));
311 rc_map->scan[i].scancode = scancode;
312 rc_map->scan[i].keycode = KEY_RESERVED;
313 rc_map->len++;
315 return i;
319 * ir_setkeycode() - set a keycode in the scancode->keycode table
320 * @idev: the struct input_dev device descriptor
321 * @scancode: the desired scancode
322 * @keycode: result
323 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
325 * This routine is used to handle evdev EVIOCSKEY ioctl.
327 static int ir_setkeycode(struct input_dev *idev,
328 const struct input_keymap_entry *ke,
329 unsigned int *old_keycode)
331 struct rc_dev *rdev = input_get_drvdata(idev);
332 struct rc_map *rc_map = &rdev->rc_map;
333 unsigned int index;
334 unsigned int scancode;
335 int retval = 0;
336 unsigned long flags;
338 spin_lock_irqsave(&rc_map->lock, flags);
340 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
341 index = ke->index;
342 if (index >= rc_map->len) {
343 retval = -EINVAL;
344 goto out;
346 } else {
347 retval = input_scancode_to_scalar(ke, &scancode);
348 if (retval)
349 goto out;
351 index = ir_establish_scancode(rdev, rc_map, scancode, true);
352 if (index >= rc_map->len) {
353 retval = -ENOMEM;
354 goto out;
358 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
360 out:
361 spin_unlock_irqrestore(&rc_map->lock, flags);
362 return retval;
366 * ir_setkeytable() - sets several entries in the scancode->keycode table
367 * @dev: the struct rc_dev device descriptor
368 * @to: the struct rc_map to copy entries to
369 * @from: the struct rc_map to copy entries from
370 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
372 * This routine is used to handle table initialization.
374 static int ir_setkeytable(struct rc_dev *dev,
375 const struct rc_map *from)
377 struct rc_map *rc_map = &dev->rc_map;
378 unsigned int i, index;
379 int rc;
381 rc = ir_create_table(rc_map, from->name,
382 from->rc_type, from->size);
383 if (rc)
384 return rc;
386 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387 rc_map->size, rc_map->alloc);
389 for (i = 0; i < from->size; i++) {
390 index = ir_establish_scancode(dev, rc_map,
391 from->scan[i].scancode, false);
392 if (index >= rc_map->len) {
393 rc = -ENOMEM;
394 break;
397 ir_update_mapping(dev, rc_map, index,
398 from->scan[i].keycode);
401 if (rc)
402 ir_free_table(rc_map);
404 return rc;
408 * ir_lookup_by_scancode() - locate mapping by scancode
409 * @rc_map: the struct rc_map to search
410 * @scancode: scancode to look for in the table
411 * @return: index in the table, -1U if not found
413 * This routine performs binary search in RC keykeymap table for
414 * given scancode.
416 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
417 unsigned int scancode)
419 int start = 0;
420 int end = rc_map->len - 1;
421 int mid;
423 while (start <= end) {
424 mid = (start + end) / 2;
425 if (rc_map->scan[mid].scancode < scancode)
426 start = mid + 1;
427 else if (rc_map->scan[mid].scancode > scancode)
428 end = mid - 1;
429 else
430 return mid;
433 return -1U;
437 * ir_getkeycode() - get a keycode from the scancode->keycode table
438 * @idev: the struct input_dev device descriptor
439 * @scancode: the desired scancode
440 * @keycode: used to return the keycode, if found, or KEY_RESERVED
441 * @return: always returns zero.
443 * This routine is used to handle evdev EVIOCGKEY ioctl.
445 static int ir_getkeycode(struct input_dev *idev,
446 struct input_keymap_entry *ke)
448 struct rc_dev *rdev = input_get_drvdata(idev);
449 struct rc_map *rc_map = &rdev->rc_map;
450 struct rc_map_table *entry;
451 unsigned long flags;
452 unsigned int index;
453 unsigned int scancode;
454 int retval;
456 spin_lock_irqsave(&rc_map->lock, flags);
458 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
459 index = ke->index;
460 } else {
461 retval = input_scancode_to_scalar(ke, &scancode);
462 if (retval)
463 goto out;
465 index = ir_lookup_by_scancode(rc_map, scancode);
468 if (index < rc_map->len) {
469 entry = &rc_map->scan[index];
471 ke->index = index;
472 ke->keycode = entry->keycode;
473 ke->len = sizeof(entry->scancode);
474 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
476 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
478 * We do not really know the valid range of scancodes
479 * so let's respond with KEY_RESERVED to anything we
480 * do not have mapping for [yet].
482 ke->index = index;
483 ke->keycode = KEY_RESERVED;
484 } else {
485 retval = -EINVAL;
486 goto out;
489 retval = 0;
491 out:
492 spin_unlock_irqrestore(&rc_map->lock, flags);
493 return retval;
497 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498 * @dev: the struct rc_dev descriptor of the device
499 * @scancode: the scancode to look for
500 * @return: the corresponding keycode, or KEY_RESERVED
502 * This routine is used by drivers which need to convert a scancode to a
503 * keycode. Normally it should not be used since drivers should have no
504 * interest in keycodes.
506 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
508 struct rc_map *rc_map = &dev->rc_map;
509 unsigned int keycode;
510 unsigned int index;
511 unsigned long flags;
513 spin_lock_irqsave(&rc_map->lock, flags);
515 index = ir_lookup_by_scancode(rc_map, scancode);
516 keycode = index < rc_map->len ?
517 rc_map->scan[index].keycode : KEY_RESERVED;
519 spin_unlock_irqrestore(&rc_map->lock, flags);
521 if (keycode != KEY_RESERVED)
522 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523 dev->input_name, scancode, keycode);
525 return keycode;
527 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
530 * ir_do_keyup() - internal function to signal the release of a keypress
531 * @dev: the struct rc_dev descriptor of the device
532 * @sync: whether or not to call input_sync
534 * This function is used internally to release a keypress, it must be
535 * called with keylock held.
537 static void ir_do_keyup(struct rc_dev *dev, bool sync)
539 if (!dev->keypressed)
540 return;
542 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
543 input_report_key(dev->input_dev, dev->last_keycode, 0);
544 led_trigger_event(led_feedback, LED_OFF);
545 if (sync)
546 input_sync(dev->input_dev);
547 dev->keypressed = false;
551 * rc_keyup() - signals the release of a keypress
552 * @dev: the struct rc_dev descriptor of the device
554 * This routine is used to signal that a key has been released on the
555 * remote control.
557 void rc_keyup(struct rc_dev *dev)
559 unsigned long flags;
561 spin_lock_irqsave(&dev->keylock, flags);
562 ir_do_keyup(dev, true);
563 spin_unlock_irqrestore(&dev->keylock, flags);
565 EXPORT_SYMBOL_GPL(rc_keyup);
568 * ir_timer_keyup() - generates a keyup event after a timeout
569 * @cookie: a pointer to the struct rc_dev for the device
571 * This routine will generate a keyup event some time after a keydown event
572 * is generated when no further activity has been detected.
574 static void ir_timer_keyup(unsigned long cookie)
576 struct rc_dev *dev = (struct rc_dev *)cookie;
577 unsigned long flags;
580 * ir->keyup_jiffies is used to prevent a race condition if a
581 * hardware interrupt occurs at this point and the keyup timer
582 * event is moved further into the future as a result.
584 * The timer will then be reactivated and this function called
585 * again in the future. We need to exit gracefully in that case
586 * to allow the input subsystem to do its auto-repeat magic or
587 * a keyup event might follow immediately after the keydown.
589 spin_lock_irqsave(&dev->keylock, flags);
590 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
591 ir_do_keyup(dev, true);
592 spin_unlock_irqrestore(&dev->keylock, flags);
596 * rc_repeat() - signals that a key is still pressed
597 * @dev: the struct rc_dev descriptor of the device
599 * This routine is used by IR decoders when a repeat message which does
600 * not include the necessary bits to reproduce the scancode has been
601 * received.
603 void rc_repeat(struct rc_dev *dev)
605 unsigned long flags;
607 spin_lock_irqsave(&dev->keylock, flags);
609 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
610 input_sync(dev->input_dev);
612 if (!dev->keypressed)
613 goto out;
615 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
616 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
618 out:
619 spin_unlock_irqrestore(&dev->keylock, flags);
621 EXPORT_SYMBOL_GPL(rc_repeat);
624 * ir_do_keydown() - internal function to process a keypress
625 * @dev: the struct rc_dev descriptor of the device
626 * @scancode: the scancode of the keypress
627 * @keycode: the keycode of the keypress
628 * @toggle: the toggle value of the keypress
630 * This function is used internally to register a keypress, it must be
631 * called with keylock held.
633 static void ir_do_keydown(struct rc_dev *dev, int scancode,
634 u32 keycode, u8 toggle)
636 bool new_event = (!dev->keypressed ||
637 dev->last_scancode != scancode ||
638 dev->last_toggle != toggle);
640 if (new_event && dev->keypressed)
641 ir_do_keyup(dev, false);
643 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
645 if (new_event && keycode != KEY_RESERVED) {
646 /* Register a keypress */
647 dev->keypressed = true;
648 dev->last_scancode = scancode;
649 dev->last_toggle = toggle;
650 dev->last_keycode = keycode;
652 IR_dprintk(1, "%s: key down event, "
653 "key 0x%04x, scancode 0x%04x\n",
654 dev->input_name, keycode, scancode);
655 input_report_key(dev->input_dev, keycode, 1);
657 led_trigger_event(led_feedback, LED_FULL);
660 input_sync(dev->input_dev);
664 * rc_keydown() - generates input event for a key press
665 * @dev: the struct rc_dev descriptor of the device
666 * @scancode: the scancode that we're seeking
667 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
668 * support toggle values, this should be set to zero)
670 * This routine is used to signal that a key has been pressed on the
671 * remote control.
673 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
675 unsigned long flags;
676 u32 keycode = rc_g_keycode_from_table(dev, scancode);
678 spin_lock_irqsave(&dev->keylock, flags);
679 ir_do_keydown(dev, scancode, keycode, toggle);
681 if (dev->keypressed) {
682 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
683 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
685 spin_unlock_irqrestore(&dev->keylock, flags);
687 EXPORT_SYMBOL_GPL(rc_keydown);
690 * rc_keydown_notimeout() - generates input event for a key press without
691 * an automatic keyup event at a later time
692 * @dev: the struct rc_dev descriptor of the device
693 * @scancode: the scancode that we're seeking
694 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
695 * support toggle values, this should be set to zero)
697 * This routine is used to signal that a key has been pressed on the
698 * remote control. The driver must manually call rc_keyup() at a later stage.
700 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
702 unsigned long flags;
703 u32 keycode = rc_g_keycode_from_table(dev, scancode);
705 spin_lock_irqsave(&dev->keylock, flags);
706 ir_do_keydown(dev, scancode, keycode, toggle);
707 spin_unlock_irqrestore(&dev->keylock, flags);
709 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
711 int rc_open(struct rc_dev *rdev)
713 int rval = 0;
715 if (!rdev)
716 return -EINVAL;
718 mutex_lock(&rdev->lock);
719 if (!rdev->users++ && rdev->open != NULL)
720 rval = rdev->open(rdev);
722 if (rval)
723 rdev->users--;
725 mutex_unlock(&rdev->lock);
727 return rval;
729 EXPORT_SYMBOL_GPL(rc_open);
731 static int ir_open(struct input_dev *idev)
733 struct rc_dev *rdev = input_get_drvdata(idev);
735 return rc_open(rdev);
738 void rc_close(struct rc_dev *rdev)
740 if (rdev) {
741 mutex_lock(&rdev->lock);
743 if (!--rdev->users && rdev->close != NULL)
744 rdev->close(rdev);
746 mutex_unlock(&rdev->lock);
749 EXPORT_SYMBOL_GPL(rc_close);
751 static void ir_close(struct input_dev *idev)
753 struct rc_dev *rdev = input_get_drvdata(idev);
754 rc_close(rdev);
757 /* class for /sys/class/rc */
758 static char *rc_devnode(struct device *dev, umode_t *mode)
760 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
763 static struct class rc_class = {
764 .name = "rc",
765 .devnode = rc_devnode,
769 * These are the protocol textual descriptions that are
770 * used by the sysfs protocols file. Note that the order
771 * of the entries is relevant.
773 static struct {
774 u64 type;
775 char *name;
776 } proto_names[] = {
777 { RC_BIT_NONE, "none" },
778 { RC_BIT_OTHER, "other" },
779 { RC_BIT_UNKNOWN, "unknown" },
780 { RC_BIT_RC5 |
781 RC_BIT_RC5X, "rc-5" },
782 { RC_BIT_NEC, "nec" },
783 { RC_BIT_RC6_0 |
784 RC_BIT_RC6_6A_20 |
785 RC_BIT_RC6_6A_24 |
786 RC_BIT_RC6_6A_32 |
787 RC_BIT_RC6_MCE, "rc-6" },
788 { RC_BIT_JVC, "jvc" },
789 { RC_BIT_SONY12 |
790 RC_BIT_SONY15 |
791 RC_BIT_SONY20, "sony" },
792 { RC_BIT_RC5_SZ, "rc-5-sz" },
793 { RC_BIT_SANYO, "sanyo" },
794 { RC_BIT_SHARP, "sharp" },
795 { RC_BIT_MCE_KBD, "mce_kbd" },
796 { RC_BIT_LIRC, "lirc" },
800 * struct rc_filter_attribute - Device attribute relating to a filter type.
801 * @attr: Device attribute.
802 * @type: Filter type.
803 * @mask: false for filter value, true for filter mask.
805 struct rc_filter_attribute {
806 struct device_attribute attr;
807 enum rc_filter_type type;
808 bool mask;
810 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
812 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \
813 struct rc_filter_attribute dev_attr_##_name = { \
814 .attr = __ATTR(_name, _mode, _show, _store), \
815 .type = (_type), \
817 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
818 struct rc_filter_attribute dev_attr_##_name = { \
819 .attr = __ATTR(_name, _mode, _show, _store), \
820 .type = (_type), \
821 .mask = (_mask), \
825 * show_protocols() - shows the current/wakeup IR protocol(s)
826 * @device: the device descriptor
827 * @mattr: the device attribute struct (unused)
828 * @buf: a pointer to the output buffer
830 * This routine is a callback routine for input read the IR protocol type(s).
831 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
832 * It returns the protocol names of supported protocols.
833 * Enabled protocols are printed in brackets.
835 * dev->lock is taken to guard against races between device
836 * registration, store_protocols and show_protocols.
838 static ssize_t show_protocols(struct device *device,
839 struct device_attribute *mattr, char *buf)
841 struct rc_dev *dev = to_rc_dev(device);
842 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
843 u64 allowed, enabled;
844 char *tmp = buf;
845 int i;
847 /* Device is being removed */
848 if (!dev)
849 return -EINVAL;
851 mutex_lock(&dev->lock);
853 enabled = dev->enabled_protocols[fattr->type];
854 if (dev->driver_type == RC_DRIVER_SCANCODE ||
855 fattr->type == RC_FILTER_WAKEUP)
856 allowed = dev->allowed_protocols[fattr->type];
857 else if (dev->raw)
858 allowed = ir_raw_get_allowed_protocols();
859 else {
860 mutex_unlock(&dev->lock);
861 return -ENODEV;
864 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
865 (long long)allowed,
866 (long long)enabled);
868 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
869 if (allowed & enabled & proto_names[i].type)
870 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
871 else if (allowed & proto_names[i].type)
872 tmp += sprintf(tmp, "%s ", proto_names[i].name);
874 if (allowed & proto_names[i].type)
875 allowed &= ~proto_names[i].type;
878 if (tmp != buf)
879 tmp--;
880 *tmp = '\n';
882 mutex_unlock(&dev->lock);
884 return tmp + 1 - buf;
888 * store_protocols() - changes the current/wakeup IR protocol(s)
889 * @device: the device descriptor
890 * @mattr: the device attribute struct (unused)
891 * @buf: a pointer to the input buffer
892 * @len: length of the input buffer
894 * This routine is for changing the IR protocol type.
895 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
896 * Writing "+proto" will add a protocol to the list of enabled protocols.
897 * Writing "-proto" will remove a protocol from the list of enabled protocols.
898 * Writing "proto" will enable only "proto".
899 * Writing "none" will disable all protocols.
900 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
901 * is used, otherwise @len.
903 * dev->lock is taken to guard against races between device
904 * registration, store_protocols and show_protocols.
906 static ssize_t store_protocols(struct device *device,
907 struct device_attribute *mattr,
908 const char *data,
909 size_t len)
911 struct rc_dev *dev = to_rc_dev(device);
912 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
913 bool enable, disable;
914 const char *tmp;
915 u64 old_type, type;
916 u64 mask;
917 int rc, i, count = 0;
918 ssize_t ret;
919 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
920 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
921 struct rc_scancode_filter local_filter, *filter;
923 /* Device is being removed */
924 if (!dev)
925 return -EINVAL;
927 mutex_lock(&dev->lock);
929 if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
930 IR_dprintk(1, "Protocol switching not supported\n");
931 ret = -EINVAL;
932 goto out;
934 old_type = dev->enabled_protocols[fattr->type];
935 type = old_type;
937 while ((tmp = strsep((char **) &data, " \n")) != NULL) {
938 if (!*tmp)
939 break;
941 if (*tmp == '+') {
942 enable = true;
943 disable = false;
944 tmp++;
945 } else if (*tmp == '-') {
946 enable = false;
947 disable = true;
948 tmp++;
949 } else {
950 enable = false;
951 disable = false;
954 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
955 if (!strcasecmp(tmp, proto_names[i].name)) {
956 mask = proto_names[i].type;
957 break;
961 if (i == ARRAY_SIZE(proto_names)) {
962 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
963 ret = -EINVAL;
964 goto out;
967 count++;
969 if (enable)
970 type |= mask;
971 else if (disable)
972 type &= ~mask;
973 else
974 type = mask;
977 if (!count) {
978 IR_dprintk(1, "Protocol not specified\n");
979 ret = -EINVAL;
980 goto out;
983 change_protocol = (fattr->type == RC_FILTER_NORMAL)
984 ? dev->change_protocol : dev->change_wakeup_protocol;
985 if (change_protocol) {
986 rc = change_protocol(dev, &type);
987 if (rc < 0) {
988 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
989 (long long)type);
990 ret = -EINVAL;
991 goto out;
995 dev->enabled_protocols[fattr->type] = type;
996 IR_dprintk(1, "Current protocol(s): 0x%llx\n",
997 (long long)type);
1000 * If the protocol is changed the filter needs updating.
1001 * Try setting the same filter with the new protocol (if any).
1002 * Fall back to clearing the filter.
1004 filter = &dev->scancode_filters[fattr->type];
1005 set_filter = (fattr->type == RC_FILTER_NORMAL)
1006 ? dev->s_filter : dev->s_wakeup_filter;
1008 if (set_filter && old_type != type && filter->mask) {
1009 local_filter = *filter;
1010 if (!type) {
1011 /* no protocol => clear filter */
1012 ret = -1;
1013 } else {
1014 /* hardware filtering => try setting, otherwise clear */
1015 ret = set_filter(dev, &local_filter);
1017 if (ret < 0) {
1018 /* clear the filter */
1019 local_filter.data = 0;
1020 local_filter.mask = 0;
1021 set_filter(dev, &local_filter);
1024 /* commit the new filter */
1025 *filter = local_filter;
1028 ret = len;
1030 out:
1031 mutex_unlock(&dev->lock);
1032 return ret;
1036 * show_filter() - shows the current scancode filter value or mask
1037 * @device: the device descriptor
1038 * @attr: the device attribute struct
1039 * @buf: a pointer to the output buffer
1041 * This routine is a callback routine to read a scancode filter value or mask.
1042 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1043 * It prints the current scancode filter value or mask of the appropriate filter
1044 * type in hexadecimal into @buf and returns the size of the buffer.
1046 * Bits of the filter value corresponding to set bits in the filter mask are
1047 * compared against input scancodes and non-matching scancodes are discarded.
1049 * dev->lock is taken to guard against races between device registration,
1050 * store_filter and show_filter.
1052 static ssize_t show_filter(struct device *device,
1053 struct device_attribute *attr,
1054 char *buf)
1056 struct rc_dev *dev = to_rc_dev(device);
1057 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1058 u32 val;
1060 /* Device is being removed */
1061 if (!dev)
1062 return -EINVAL;
1064 mutex_lock(&dev->lock);
1065 if ((fattr->type == RC_FILTER_NORMAL && !dev->s_filter) ||
1066 (fattr->type == RC_FILTER_WAKEUP && !dev->s_wakeup_filter))
1067 val = 0;
1068 else if (fattr->mask)
1069 val = dev->scancode_filters[fattr->type].mask;
1070 else
1071 val = dev->scancode_filters[fattr->type].data;
1072 mutex_unlock(&dev->lock);
1074 return sprintf(buf, "%#x\n", val);
1078 * store_filter() - changes the scancode filter value
1079 * @device: the device descriptor
1080 * @attr: the device attribute struct
1081 * @buf: a pointer to the input buffer
1082 * @len: length of the input buffer
1084 * This routine is for changing a scancode filter value or mask.
1085 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1086 * Returns -EINVAL if an invalid filter value for the current protocol was
1087 * specified or if scancode filtering is not supported by the driver, otherwise
1088 * returns @len.
1090 * Bits of the filter value corresponding to set bits in the filter mask are
1091 * compared against input scancodes and non-matching scancodes are discarded.
1093 * dev->lock is taken to guard against races between device registration,
1094 * store_filter and show_filter.
1096 static ssize_t store_filter(struct device *device,
1097 struct device_attribute *attr,
1098 const char *buf,
1099 size_t count)
1101 struct rc_dev *dev = to_rc_dev(device);
1102 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1103 struct rc_scancode_filter local_filter, *filter;
1104 int ret;
1105 unsigned long val;
1106 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1108 /* Device is being removed */
1109 if (!dev)
1110 return -EINVAL;
1112 ret = kstrtoul(buf, 0, &val);
1113 if (ret < 0)
1114 return ret;
1116 /* Can the scancode filter be set? */
1117 set_filter = (fattr->type == RC_FILTER_NORMAL) ? dev->s_filter :
1118 dev->s_wakeup_filter;
1119 if (!set_filter)
1120 return -EINVAL;
1122 mutex_lock(&dev->lock);
1124 /* Tell the driver about the new filter */
1125 filter = &dev->scancode_filters[fattr->type];
1126 local_filter = *filter;
1127 if (fattr->mask)
1128 local_filter.mask = val;
1129 else
1130 local_filter.data = val;
1132 if (!dev->enabled_protocols[fattr->type] && local_filter.mask) {
1133 /* refuse to set a filter unless a protocol is enabled */
1134 ret = -EINVAL;
1135 goto unlock;
1138 ret = set_filter(dev, &local_filter);
1139 if (ret < 0)
1140 goto unlock;
1142 /* Success, commit the new filter */
1143 *filter = local_filter;
1145 unlock:
1146 mutex_unlock(&dev->lock);
1147 return (ret < 0) ? ret : count;
1150 static void rc_dev_release(struct device *device)
1154 #define ADD_HOTPLUG_VAR(fmt, val...) \
1155 do { \
1156 int err = add_uevent_var(env, fmt, val); \
1157 if (err) \
1158 return err; \
1159 } while (0)
1161 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1163 struct rc_dev *dev = to_rc_dev(device);
1165 if (!dev || !dev->input_dev)
1166 return -ENODEV;
1168 if (dev->rc_map.name)
1169 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1170 if (dev->driver_name)
1171 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1173 return 0;
1177 * Static device attribute struct with the sysfs attributes for IR's
1179 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1180 show_protocols, store_protocols, RC_FILTER_NORMAL);
1181 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1182 show_protocols, store_protocols, RC_FILTER_WAKEUP);
1183 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1184 show_filter, store_filter, RC_FILTER_NORMAL, false);
1185 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1186 show_filter, store_filter, RC_FILTER_NORMAL, true);
1187 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1188 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1189 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1190 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1192 static struct attribute *rc_dev_protocol_attrs[] = {
1193 &dev_attr_protocols.attr.attr,
1194 NULL,
1197 static struct attribute_group rc_dev_protocol_attr_grp = {
1198 .attrs = rc_dev_protocol_attrs,
1201 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1202 &dev_attr_wakeup_protocols.attr.attr,
1203 NULL,
1206 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1207 .attrs = rc_dev_wakeup_protocol_attrs,
1210 static struct attribute *rc_dev_filter_attrs[] = {
1211 &dev_attr_filter.attr.attr,
1212 &dev_attr_filter_mask.attr.attr,
1213 NULL,
1216 static struct attribute_group rc_dev_filter_attr_grp = {
1217 .attrs = rc_dev_filter_attrs,
1220 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1221 &dev_attr_wakeup_filter.attr.attr,
1222 &dev_attr_wakeup_filter_mask.attr.attr,
1223 NULL,
1226 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1227 .attrs = rc_dev_wakeup_filter_attrs,
1230 static struct device_type rc_dev_type = {
1231 .release = rc_dev_release,
1232 .uevent = rc_dev_uevent,
1235 struct rc_dev *rc_allocate_device(void)
1237 struct rc_dev *dev;
1239 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1240 if (!dev)
1241 return NULL;
1243 dev->input_dev = input_allocate_device();
1244 if (!dev->input_dev) {
1245 kfree(dev);
1246 return NULL;
1249 dev->input_dev->getkeycode = ir_getkeycode;
1250 dev->input_dev->setkeycode = ir_setkeycode;
1251 input_set_drvdata(dev->input_dev, dev);
1253 spin_lock_init(&dev->rc_map.lock);
1254 spin_lock_init(&dev->keylock);
1255 mutex_init(&dev->lock);
1256 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1258 dev->dev.type = &rc_dev_type;
1259 dev->dev.class = &rc_class;
1260 device_initialize(&dev->dev);
1262 __module_get(THIS_MODULE);
1263 return dev;
1265 EXPORT_SYMBOL_GPL(rc_allocate_device);
1267 void rc_free_device(struct rc_dev *dev)
1269 if (!dev)
1270 return;
1272 if (dev->input_dev)
1273 input_free_device(dev->input_dev);
1275 put_device(&dev->dev);
1277 kfree(dev);
1278 module_put(THIS_MODULE);
1280 EXPORT_SYMBOL_GPL(rc_free_device);
1282 int rc_register_device(struct rc_dev *dev)
1284 static bool raw_init = false; /* raw decoders loaded? */
1285 struct rc_map *rc_map;
1286 const char *path;
1287 int rc, devno, attr = 0;
1289 if (!dev || !dev->map_name)
1290 return -EINVAL;
1292 rc_map = rc_map_get(dev->map_name);
1293 if (!rc_map)
1294 rc_map = rc_map_get(RC_MAP_EMPTY);
1295 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1296 return -EINVAL;
1298 set_bit(EV_KEY, dev->input_dev->evbit);
1299 set_bit(EV_REP, dev->input_dev->evbit);
1300 set_bit(EV_MSC, dev->input_dev->evbit);
1301 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1302 if (dev->open)
1303 dev->input_dev->open = ir_open;
1304 if (dev->close)
1305 dev->input_dev->close = ir_close;
1307 do {
1308 devno = find_first_zero_bit(ir_core_dev_number,
1309 IRRCV_NUM_DEVICES);
1310 /* No free device slots */
1311 if (devno >= IRRCV_NUM_DEVICES)
1312 return -ENOMEM;
1313 } while (test_and_set_bit(devno, ir_core_dev_number));
1315 dev->dev.groups = dev->sysfs_groups;
1316 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1317 if (dev->s_filter)
1318 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1319 if (dev->s_wakeup_filter)
1320 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1321 if (dev->change_wakeup_protocol)
1322 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1323 dev->sysfs_groups[attr++] = NULL;
1326 * Take the lock here, as the device sysfs node will appear
1327 * when device_add() is called, which may trigger an ir-keytable udev
1328 * rule, which will in turn call show_protocols and access
1329 * dev->enabled_protocols before it has been initialized.
1331 mutex_lock(&dev->lock);
1333 dev->devno = devno;
1334 dev_set_name(&dev->dev, "rc%ld", dev->devno);
1335 dev_set_drvdata(&dev->dev, dev);
1336 rc = device_add(&dev->dev);
1337 if (rc)
1338 goto out_unlock;
1340 rc = ir_setkeytable(dev, rc_map);
1341 if (rc)
1342 goto out_dev;
1344 dev->input_dev->dev.parent = &dev->dev;
1345 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1346 dev->input_dev->phys = dev->input_phys;
1347 dev->input_dev->name = dev->input_name;
1349 /* input_register_device can call ir_open, so unlock mutex here */
1350 mutex_unlock(&dev->lock);
1352 rc = input_register_device(dev->input_dev);
1354 mutex_lock(&dev->lock);
1356 if (rc)
1357 goto out_table;
1360 * Default delay of 250ms is too short for some protocols, especially
1361 * since the timeout is currently set to 250ms. Increase it to 500ms,
1362 * to avoid wrong repetition of the keycodes. Note that this must be
1363 * set after the call to input_register_device().
1365 dev->input_dev->rep[REP_DELAY] = 500;
1368 * As a repeat event on protocols like RC-5 and NEC take as long as
1369 * 110/114ms, using 33ms as a repeat period is not the right thing
1370 * to do.
1372 dev->input_dev->rep[REP_PERIOD] = 125;
1374 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1375 printk(KERN_INFO "%s: %s as %s\n",
1376 dev_name(&dev->dev),
1377 dev->input_name ? dev->input_name : "Unspecified device",
1378 path ? path : "N/A");
1379 kfree(path);
1381 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1382 /* Load raw decoders, if they aren't already */
1383 if (!raw_init) {
1384 IR_dprintk(1, "Loading raw decoders\n");
1385 ir_raw_init();
1386 raw_init = true;
1388 rc = ir_raw_event_register(dev);
1389 if (rc < 0)
1390 goto out_input;
1393 if (dev->change_protocol) {
1394 u64 rc_type = (1 << rc_map->rc_type);
1395 rc = dev->change_protocol(dev, &rc_type);
1396 if (rc < 0)
1397 goto out_raw;
1398 dev->enabled_protocols[RC_FILTER_NORMAL] = rc_type;
1401 mutex_unlock(&dev->lock);
1403 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1404 dev->devno,
1405 dev->driver_name ? dev->driver_name : "unknown",
1406 rc_map->name ? rc_map->name : "unknown",
1407 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1409 return 0;
1411 out_raw:
1412 if (dev->driver_type == RC_DRIVER_IR_RAW)
1413 ir_raw_event_unregister(dev);
1414 out_input:
1415 input_unregister_device(dev->input_dev);
1416 dev->input_dev = NULL;
1417 out_table:
1418 ir_free_table(&dev->rc_map);
1419 out_dev:
1420 device_del(&dev->dev);
1421 out_unlock:
1422 mutex_unlock(&dev->lock);
1423 clear_bit(dev->devno, ir_core_dev_number);
1424 return rc;
1426 EXPORT_SYMBOL_GPL(rc_register_device);
1428 void rc_unregister_device(struct rc_dev *dev)
1430 if (!dev)
1431 return;
1433 del_timer_sync(&dev->timer_keyup);
1435 clear_bit(dev->devno, ir_core_dev_number);
1437 if (dev->driver_type == RC_DRIVER_IR_RAW)
1438 ir_raw_event_unregister(dev);
1440 /* Freeing the table should also call the stop callback */
1441 ir_free_table(&dev->rc_map);
1442 IR_dprintk(1, "Freed keycode table\n");
1444 input_unregister_device(dev->input_dev);
1445 dev->input_dev = NULL;
1447 device_del(&dev->dev);
1449 rc_free_device(dev);
1452 EXPORT_SYMBOL_GPL(rc_unregister_device);
1455 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1458 static int __init rc_core_init(void)
1460 int rc = class_register(&rc_class);
1461 if (rc) {
1462 printk(KERN_ERR "rc_core: unable to register rc class\n");
1463 return rc;
1466 led_trigger_register_simple("rc-feedback", &led_feedback);
1467 rc_map_register(&empty_map);
1469 return 0;
1472 static void __exit rc_core_exit(void)
1474 class_unregister(&rc_class);
1475 led_trigger_unregister_simple(led_feedback);
1476 rc_map_unregister(&empty_map);
1479 subsys_initcall(rc_core_init);
1480 module_exit(rc_core_exit);
1482 int rc_core_debug; /* ir_debug level (0,1,2) */
1483 EXPORT_SYMBOL_GPL(rc_core_debug);
1484 module_param_named(debug, rc_core_debug, int, 0644);
1486 MODULE_AUTHOR("Mauro Carvalho Chehab");
1487 MODULE_LICENSE("GPL");