sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / drivers / media / usb / gspca / ov519.c
blobc95f32a0c02b4283d0f4c66b253e0a7e402f392d
1 /**
2 * OV519 driver
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #define MODULE_NAME "ov519"
44 #include <linux/input.h>
45 #include "gspca.h"
47 /* The jpeg_hdr is used by w996Xcf only */
48 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49 #define CONEX_CAM
50 #include "jpeg.h"
52 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
53 MODULE_DESCRIPTION("OV519 USB Camera Driver");
54 MODULE_LICENSE("GPL");
56 /* global parameters */
57 static int frame_rate;
59 /* Number of times to retry a failed I2C transaction. Increase this if you
60 * are getting "Failed to read sensor ID..." */
61 static int i2c_detect_tries = 10;
63 /* ov519 device descriptor */
64 struct sd {
65 struct gspca_dev gspca_dev; /* !! must be the first item */
67 struct v4l2_ctrl *jpegqual;
68 struct v4l2_ctrl *freq;
69 struct { /* h/vflip control cluster */
70 struct v4l2_ctrl *hflip;
71 struct v4l2_ctrl *vflip;
73 struct { /* autobrightness/brightness control cluster */
74 struct v4l2_ctrl *autobright;
75 struct v4l2_ctrl *brightness;
78 u8 revision;
80 u8 packet_nr;
82 char bridge;
83 #define BRIDGE_OV511 0
84 #define BRIDGE_OV511PLUS 1
85 #define BRIDGE_OV518 2
86 #define BRIDGE_OV518PLUS 3
87 #define BRIDGE_OV519 4 /* = ov530 */
88 #define BRIDGE_OVFX2 5
89 #define BRIDGE_W9968CF 6
90 #define BRIDGE_MASK 7
92 char invert_led;
93 #define BRIDGE_INVERT_LED 8
95 char snapshot_pressed;
96 char snapshot_needs_reset;
98 /* Determined by sensor type */
99 u8 sif;
101 #define QUALITY_MIN 50
102 #define QUALITY_MAX 70
103 #define QUALITY_DEF 50
105 u8 stopped; /* Streaming is temporarily paused */
106 u8 first_frame;
108 u8 frame_rate; /* current Framerate */
109 u8 clockdiv; /* clockdiv override */
111 s8 sensor; /* Type of image sensor chip (SEN_*) */
113 u8 sensor_addr;
114 u16 sensor_width;
115 u16 sensor_height;
116 s16 sensor_reg_cache[256];
118 u8 jpeg_hdr[JPEG_HDR_SZ];
120 enum sensors {
121 SEN_OV2610,
122 SEN_OV2610AE,
123 SEN_OV3610,
124 SEN_OV6620,
125 SEN_OV6630,
126 SEN_OV66308AF,
127 SEN_OV7610,
128 SEN_OV7620,
129 SEN_OV7620AE,
130 SEN_OV7640,
131 SEN_OV7648,
132 SEN_OV7660,
133 SEN_OV7670,
134 SEN_OV76BE,
135 SEN_OV8610,
136 SEN_OV9600,
139 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
140 the ov sensors which is already present here. When we have the time we
141 really should move the sensor drivers to v4l2 sub drivers. */
142 #include "w996Xcf.c"
144 /* table of the disabled controls */
145 struct ctrl_valid {
146 unsigned int has_brightness:1;
147 unsigned int has_contrast:1;
148 unsigned int has_exposure:1;
149 unsigned int has_autogain:1;
150 unsigned int has_sat:1;
151 unsigned int has_hvflip:1;
152 unsigned int has_autobright:1;
153 unsigned int has_freq:1;
156 static const struct ctrl_valid valid_controls[] = {
157 [SEN_OV2610] = {
158 .has_exposure = 1,
159 .has_autogain = 1,
161 [SEN_OV2610AE] = {
162 .has_exposure = 1,
163 .has_autogain = 1,
165 [SEN_OV3610] = {
166 /* No controls */
168 [SEN_OV6620] = {
169 .has_brightness = 1,
170 .has_contrast = 1,
171 .has_sat = 1,
172 .has_autobright = 1,
173 .has_freq = 1,
175 [SEN_OV6630] = {
176 .has_brightness = 1,
177 .has_contrast = 1,
178 .has_sat = 1,
179 .has_autobright = 1,
180 .has_freq = 1,
182 [SEN_OV66308AF] = {
183 .has_brightness = 1,
184 .has_contrast = 1,
185 .has_sat = 1,
186 .has_autobright = 1,
187 .has_freq = 1,
189 [SEN_OV7610] = {
190 .has_brightness = 1,
191 .has_contrast = 1,
192 .has_sat = 1,
193 .has_autobright = 1,
194 .has_freq = 1,
196 [SEN_OV7620] = {
197 .has_brightness = 1,
198 .has_contrast = 1,
199 .has_sat = 1,
200 .has_autobright = 1,
201 .has_freq = 1,
203 [SEN_OV7620AE] = {
204 .has_brightness = 1,
205 .has_contrast = 1,
206 .has_sat = 1,
207 .has_autobright = 1,
208 .has_freq = 1,
210 [SEN_OV7640] = {
211 .has_brightness = 1,
212 .has_sat = 1,
213 .has_freq = 1,
215 [SEN_OV7648] = {
216 .has_brightness = 1,
217 .has_sat = 1,
218 .has_freq = 1,
220 [SEN_OV7660] = {
221 .has_brightness = 1,
222 .has_contrast = 1,
223 .has_sat = 1,
224 .has_hvflip = 1,
225 .has_freq = 1,
227 [SEN_OV7670] = {
228 .has_brightness = 1,
229 .has_contrast = 1,
230 .has_hvflip = 1,
231 .has_freq = 1,
233 [SEN_OV76BE] = {
234 .has_brightness = 1,
235 .has_contrast = 1,
236 .has_sat = 1,
237 .has_autobright = 1,
238 .has_freq = 1,
240 [SEN_OV8610] = {
241 .has_brightness = 1,
242 .has_contrast = 1,
243 .has_sat = 1,
244 .has_autobright = 1,
246 [SEN_OV9600] = {
247 .has_exposure = 1,
248 .has_autogain = 1,
252 static const struct v4l2_pix_format ov519_vga_mode[] = {
253 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
254 .bytesperline = 320,
255 .sizeimage = 320 * 240 * 3 / 8 + 590,
256 .colorspace = V4L2_COLORSPACE_JPEG,
257 .priv = 1},
258 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
259 .bytesperline = 640,
260 .sizeimage = 640 * 480 * 3 / 8 + 590,
261 .colorspace = V4L2_COLORSPACE_JPEG,
262 .priv = 0},
264 static const struct v4l2_pix_format ov519_sif_mode[] = {
265 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
266 .bytesperline = 160,
267 .sizeimage = 160 * 120 * 3 / 8 + 590,
268 .colorspace = V4L2_COLORSPACE_JPEG,
269 .priv = 3},
270 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
271 .bytesperline = 176,
272 .sizeimage = 176 * 144 * 3 / 8 + 590,
273 .colorspace = V4L2_COLORSPACE_JPEG,
274 .priv = 1},
275 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
276 .bytesperline = 320,
277 .sizeimage = 320 * 240 * 3 / 8 + 590,
278 .colorspace = V4L2_COLORSPACE_JPEG,
279 .priv = 2},
280 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
281 .bytesperline = 352,
282 .sizeimage = 352 * 288 * 3 / 8 + 590,
283 .colorspace = V4L2_COLORSPACE_JPEG,
284 .priv = 0},
287 /* Note some of the sizeimage values for the ov511 / ov518 may seem
288 larger then necessary, however they need to be this big as the ov511 /
289 ov518 always fills the entire isoc frame, using 0 padding bytes when
290 it doesn't have any data. So with low framerates the amount of data
291 transferred can become quite large (libv4l will remove all the 0 padding
292 in userspace). */
293 static const struct v4l2_pix_format ov518_vga_mode[] = {
294 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
295 .bytesperline = 320,
296 .sizeimage = 320 * 240 * 3,
297 .colorspace = V4L2_COLORSPACE_JPEG,
298 .priv = 1},
299 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
300 .bytesperline = 640,
301 .sizeimage = 640 * 480 * 2,
302 .colorspace = V4L2_COLORSPACE_JPEG,
303 .priv = 0},
305 static const struct v4l2_pix_format ov518_sif_mode[] = {
306 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
307 .bytesperline = 160,
308 .sizeimage = 70000,
309 .colorspace = V4L2_COLORSPACE_JPEG,
310 .priv = 3},
311 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
312 .bytesperline = 176,
313 .sizeimage = 70000,
314 .colorspace = V4L2_COLORSPACE_JPEG,
315 .priv = 1},
316 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
317 .bytesperline = 320,
318 .sizeimage = 320 * 240 * 3,
319 .colorspace = V4L2_COLORSPACE_JPEG,
320 .priv = 2},
321 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
322 .bytesperline = 352,
323 .sizeimage = 352 * 288 * 3,
324 .colorspace = V4L2_COLORSPACE_JPEG,
325 .priv = 0},
328 static const struct v4l2_pix_format ov511_vga_mode[] = {
329 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
330 .bytesperline = 320,
331 .sizeimage = 320 * 240 * 3,
332 .colorspace = V4L2_COLORSPACE_JPEG,
333 .priv = 1},
334 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
335 .bytesperline = 640,
336 .sizeimage = 640 * 480 * 2,
337 .colorspace = V4L2_COLORSPACE_JPEG,
338 .priv = 0},
340 static const struct v4l2_pix_format ov511_sif_mode[] = {
341 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
342 .bytesperline = 160,
343 .sizeimage = 70000,
344 .colorspace = V4L2_COLORSPACE_JPEG,
345 .priv = 3},
346 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
347 .bytesperline = 176,
348 .sizeimage = 70000,
349 .colorspace = V4L2_COLORSPACE_JPEG,
350 .priv = 1},
351 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
352 .bytesperline = 320,
353 .sizeimage = 320 * 240 * 3,
354 .colorspace = V4L2_COLORSPACE_JPEG,
355 .priv = 2},
356 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
357 .bytesperline = 352,
358 .sizeimage = 352 * 288 * 3,
359 .colorspace = V4L2_COLORSPACE_JPEG,
360 .priv = 0},
363 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
364 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
365 .bytesperline = 320,
366 .sizeimage = 320 * 240,
367 .colorspace = V4L2_COLORSPACE_SRGB,
368 .priv = 1},
369 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
370 .bytesperline = 640,
371 .sizeimage = 640 * 480,
372 .colorspace = V4L2_COLORSPACE_SRGB,
373 .priv = 0},
375 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
376 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377 .bytesperline = 160,
378 .sizeimage = 160 * 120,
379 .colorspace = V4L2_COLORSPACE_SRGB,
380 .priv = 3},
381 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382 .bytesperline = 176,
383 .sizeimage = 176 * 144,
384 .colorspace = V4L2_COLORSPACE_SRGB,
385 .priv = 1},
386 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
387 .bytesperline = 320,
388 .sizeimage = 320 * 240,
389 .colorspace = V4L2_COLORSPACE_SRGB,
390 .priv = 2},
391 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
392 .bytesperline = 352,
393 .sizeimage = 352 * 288,
394 .colorspace = V4L2_COLORSPACE_SRGB,
395 .priv = 0},
397 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
398 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
399 .bytesperline = 800,
400 .sizeimage = 800 * 600,
401 .colorspace = V4L2_COLORSPACE_SRGB,
402 .priv = 1},
403 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
404 .bytesperline = 1600,
405 .sizeimage = 1600 * 1200,
406 .colorspace = V4L2_COLORSPACE_SRGB},
408 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
409 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
410 .bytesperline = 640,
411 .sizeimage = 640 * 480,
412 .colorspace = V4L2_COLORSPACE_SRGB,
413 .priv = 1},
414 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
415 .bytesperline = 800,
416 .sizeimage = 800 * 600,
417 .colorspace = V4L2_COLORSPACE_SRGB,
418 .priv = 1},
419 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
420 .bytesperline = 1024,
421 .sizeimage = 1024 * 768,
422 .colorspace = V4L2_COLORSPACE_SRGB,
423 .priv = 1},
424 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
425 .bytesperline = 1600,
426 .sizeimage = 1600 * 1200,
427 .colorspace = V4L2_COLORSPACE_SRGB,
428 .priv = 0},
429 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
430 .bytesperline = 2048,
431 .sizeimage = 2048 * 1536,
432 .colorspace = V4L2_COLORSPACE_SRGB,
433 .priv = 0},
435 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
436 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
437 .bytesperline = 640,
438 .sizeimage = 640 * 480,
439 .colorspace = V4L2_COLORSPACE_SRGB,
440 .priv = 1},
441 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
442 .bytesperline = 1280,
443 .sizeimage = 1280 * 1024,
444 .colorspace = V4L2_COLORSPACE_SRGB},
447 /* Registers common to OV511 / OV518 */
448 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
449 #define R51x_SYS_RESET 0x50
450 /* Reset type flags */
451 #define OV511_RESET_OMNICE 0x08
452 #define R51x_SYS_INIT 0x53
453 #define R51x_SYS_SNAP 0x52
454 #define R51x_SYS_CUST_ID 0x5f
455 #define R51x_COMP_LUT_BEGIN 0x80
457 /* OV511 Camera interface register numbers */
458 #define R511_CAM_DELAY 0x10
459 #define R511_CAM_EDGE 0x11
460 #define R511_CAM_PXCNT 0x12
461 #define R511_CAM_LNCNT 0x13
462 #define R511_CAM_PXDIV 0x14
463 #define R511_CAM_LNDIV 0x15
464 #define R511_CAM_UV_EN 0x16
465 #define R511_CAM_LINE_MODE 0x17
466 #define R511_CAM_OPTS 0x18
468 #define R511_SNAP_FRAME 0x19
469 #define R511_SNAP_PXCNT 0x1a
470 #define R511_SNAP_LNCNT 0x1b
471 #define R511_SNAP_PXDIV 0x1c
472 #define R511_SNAP_LNDIV 0x1d
473 #define R511_SNAP_UV_EN 0x1e
474 #define R511_SNAP_OPTS 0x1f
476 #define R511_DRAM_FLOW_CTL 0x20
477 #define R511_FIFO_OPTS 0x31
478 #define R511_I2C_CTL 0x40
479 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
480 #define R511_COMP_EN 0x78
481 #define R511_COMP_LUT_EN 0x79
483 /* OV518 Camera interface register numbers */
484 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
485 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
487 /* OV519 Camera interface register numbers */
488 #define OV519_R10_H_SIZE 0x10
489 #define OV519_R11_V_SIZE 0x11
490 #define OV519_R12_X_OFFSETL 0x12
491 #define OV519_R13_X_OFFSETH 0x13
492 #define OV519_R14_Y_OFFSETL 0x14
493 #define OV519_R15_Y_OFFSETH 0x15
494 #define OV519_R16_DIVIDER 0x16
495 #define OV519_R20_DFR 0x20
496 #define OV519_R25_FORMAT 0x25
498 /* OV519 System Controller register numbers */
499 #define OV519_R51_RESET1 0x51
500 #define OV519_R54_EN_CLK1 0x54
501 #define OV519_R57_SNAPSHOT 0x57
503 #define OV519_GPIO_DATA_OUT0 0x71
504 #define OV519_GPIO_IO_CTRL0 0x72
506 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
509 * The FX2 chip does not give us a zero length read at end of frame.
510 * It does, however, give a short read at the end of a frame, if
511 * necessary, rather than run two frames together.
513 * By choosing the right bulk transfer size, we are guaranteed to always
514 * get a short read for the last read of each frame. Frame sizes are
515 * always a composite number (width * height, or a multiple) so if we
516 * choose a prime number, we are guaranteed that the last read of a
517 * frame will be short.
519 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
520 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
521 * to figure out why. [PMiller]
523 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
525 * It isn't enough to know the number of bytes per frame, in case we
526 * have data dropouts or buffer overruns (even though the FX2 double
527 * buffers, there are some pretty strict real time constraints for
528 * isochronous transfer for larger frame sizes).
530 /*jfm: this value does not work for 800x600 - see isoc_init */
531 #define OVFX2_BULK_SIZE (13 * 4096)
533 /* I2C registers */
534 #define R51x_I2C_W_SID 0x41
535 #define R51x_I2C_SADDR_3 0x42
536 #define R51x_I2C_SADDR_2 0x43
537 #define R51x_I2C_R_SID 0x44
538 #define R51x_I2C_DATA 0x45
539 #define R518_I2C_CTL 0x47 /* OV518(+) only */
540 #define OVFX2_I2C_ADDR 0x00
542 /* I2C ADDRESSES */
543 #define OV7xx0_SID 0x42
544 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
545 #define OV8xx0_SID 0xa0
546 #define OV6xx0_SID 0xc0
548 /* OV7610 registers */
549 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
550 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
551 #define OV7610_REG_RED 0x02 /* red channel balance */
552 #define OV7610_REG_SAT 0x03 /* saturation */
553 #define OV8610_REG_HUE 0x04 /* 04 reserved */
554 #define OV7610_REG_CNT 0x05 /* Y contrast */
555 #define OV7610_REG_BRT 0x06 /* Y brightness */
556 #define OV7610_REG_COM_C 0x14 /* misc common regs */
557 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
558 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
559 #define OV7610_REG_COM_I 0x29 /* misc settings */
561 /* OV7660 and OV7670 registers */
562 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
563 #define OV7670_R01_BLUE 0x01 /* blue gain */
564 #define OV7670_R02_RED 0x02 /* red gain */
565 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
566 #define OV7670_R04_COM1 0x04 /* Control 1 */
567 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
568 #define OV7670_R0C_COM3 0x0c /* Control 3 */
569 #define OV7670_R0D_COM4 0x0d /* Control 4 */
570 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
571 #define OV7670_R0F_COM6 0x0f /* Control 6 */
572 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
573 #define OV7670_R11_CLKRC 0x11 /* Clock control */
574 #define OV7670_R12_COM7 0x12 /* Control 7 */
575 #define OV7670_COM7_FMT_VGA 0x00
576 /*#define OV7670_COM7_YUV 0x00 * YUV */
577 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
578 #define OV7670_COM7_FMT_MASK 0x38
579 #define OV7670_COM7_RESET 0x80 /* Register reset */
580 #define OV7670_R13_COM8 0x13 /* Control 8 */
581 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
582 #define OV7670_COM8_AWB 0x02 /* White balance enable */
583 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
584 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
585 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
586 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
587 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
588 #define OV7670_R15_COM10 0x15 /* Control 10 */
589 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
590 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
591 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
592 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
593 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
594 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
595 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
596 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
597 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
598 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
599 #define OV7670_R32_HREF 0x32 /* HREF pieces */
600 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
601 #define OV7670_R3B_COM11 0x3b /* Control 11 */
602 #define OV7670_COM11_EXP 0x02
603 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
604 #define OV7670_R3C_COM12 0x3c /* Control 12 */
605 #define OV7670_R3D_COM13 0x3d /* Control 13 */
606 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
607 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
608 #define OV7670_R3E_COM14 0x3e /* Control 14 */
609 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
610 #define OV7670_R40_COM15 0x40 /* Control 15 */
611 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
612 #define OV7670_R41_COM16 0x41 /* Control 16 */
613 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
614 /* end of ov7660 common registers */
615 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
616 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
617 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
618 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
619 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
620 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
621 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
622 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
623 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
624 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
625 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
626 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
627 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
629 struct ov_regvals {
630 u8 reg;
631 u8 val;
633 struct ov_i2c_regvals {
634 u8 reg;
635 u8 val;
638 /* Settings for OV2610 camera chip */
639 static const struct ov_i2c_regvals norm_2610[] = {
640 { 0x12, 0x80 }, /* reset */
643 static const struct ov_i2c_regvals norm_2610ae[] = {
644 {0x12, 0x80}, /* reset */
645 {0x13, 0xcd},
646 {0x09, 0x01},
647 {0x0d, 0x00},
648 {0x11, 0x80},
649 {0x12, 0x20}, /* 1600x1200 */
650 {0x33, 0x0c},
651 {0x35, 0x90},
652 {0x36, 0x37},
653 /* ms-win traces */
654 {0x11, 0x83}, /* clock / 3 ? */
655 {0x2d, 0x00}, /* 60 Hz filter */
656 {0x24, 0xb0}, /* normal colors */
657 {0x25, 0x90},
658 {0x10, 0x43},
661 static const struct ov_i2c_regvals norm_3620b[] = {
663 * From the datasheet: "Note that after writing to register COMH
664 * (0x12) to change the sensor mode, registers related to the
665 * sensor’s cropping window will be reset back to their default
666 * values."
668 * "wait 4096 external clock ... to make sure the sensor is
669 * stable and ready to access registers" i.e. 160us at 24MHz
671 { 0x12, 0x80 }, /* COMH reset */
672 { 0x12, 0x00 }, /* QXGA, master */
675 * 11 CLKRC "Clock Rate Control"
676 * [7] internal frequency doublers: on
677 * [6] video port mode: master
678 * [5:0] clock divider: 1
680 { 0x11, 0x80 },
683 * 13 COMI "Common Control I"
684 * = 192 (0xC0) 11000000
685 * COMI[7] "AEC speed selection"
686 * = 1 (0x01) 1....... "Faster AEC correction"
687 * COMI[6] "AEC speed step selection"
688 * = 1 (0x01) .1...... "Big steps, fast"
689 * COMI[5] "Banding filter on off"
690 * = 0 (0x00) ..0..... "Off"
691 * COMI[4] "Banding filter option"
692 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
693 * the PLL is ON"
694 * COMI[3] "Reserved"
695 * = 0 (0x00) ....0...
696 * COMI[2] "AGC auto manual control selection"
697 * = 0 (0x00) .....0.. "Manual"
698 * COMI[1] "AWB auto manual control selection"
699 * = 0 (0x00) ......0. "Manual"
700 * COMI[0] "Exposure control"
701 * = 0 (0x00) .......0 "Manual"
703 { 0x13, 0xc0 },
706 * 09 COMC "Common Control C"
707 * = 8 (0x08) 00001000
708 * COMC[7:5] "Reserved"
709 * = 0 (0x00) 000.....
710 * COMC[4] "Sleep Mode Enable"
711 * = 0 (0x00) ...0.... "Normal mode"
712 * COMC[3:2] "Sensor sampling reset timing selection"
713 * = 2 (0x02) ....10.. "Longer reset time"
714 * COMC[1:0] "Output drive current select"
715 * = 0 (0x00) ......00 "Weakest"
717 { 0x09, 0x08 },
720 * 0C COMD "Common Control D"
721 * = 8 (0x08) 00001000
722 * COMD[7] "Reserved"
723 * = 0 (0x00) 0.......
724 * COMD[6] "Swap MSB and LSB at the output port"
725 * = 0 (0x00) .0...... "False"
726 * COMD[5:3] "Reserved"
727 * = 1 (0x01) ..001...
728 * COMD[2] "Output Average On Off"
729 * = 0 (0x00) .....0.. "Output Normal"
730 * COMD[1] "Sensor precharge voltage selection"
731 * = 0 (0x00) ......0. "Selects internal
732 * reference precharge
733 * voltage"
734 * COMD[0] "Snapshot option"
735 * = 0 (0x00) .......0 "Enable live video output
736 * after snapshot sequence"
738 { 0x0c, 0x08 },
741 * 0D COME "Common Control E"
742 * = 161 (0xA1) 10100001
743 * COME[7] "Output average option"
744 * = 1 (0x01) 1....... "Output average of 4 pixels"
745 * COME[6] "Anti-blooming control"
746 * = 0 (0x00) .0...... "Off"
747 * COME[5:3] "Reserved"
748 * = 4 (0x04) ..100...
749 * COME[2] "Clock output power down pin status"
750 * = 0 (0x00) .....0.. "Tri-state data output pin
751 * on power down"
752 * COME[1] "Data output pin status selection at power down"
753 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
754 * HREF, and CHSYNC pins on
755 * power down"
756 * COME[0] "Auto zero circuit select"
757 * = 1 (0x01) .......1 "On"
759 { 0x0d, 0xa1 },
762 * 0E COMF "Common Control F"
763 * = 112 (0x70) 01110000
764 * COMF[7] "System clock selection"
765 * = 0 (0x00) 0....... "Use 24 MHz system clock"
766 * COMF[6:4] "Reserved"
767 * = 7 (0x07) .111....
768 * COMF[3] "Manual auto negative offset canceling selection"
769 * = 0 (0x00) ....0... "Auto detect negative
770 * offset and cancel it"
771 * COMF[2:0] "Reserved"
772 * = 0 (0x00) .....000
774 { 0x0e, 0x70 },
777 * 0F COMG "Common Control G"
778 * = 66 (0x42) 01000010
779 * COMG[7] "Optical black output selection"
780 * = 0 (0x00) 0....... "Disable"
781 * COMG[6] "Black level calibrate selection"
782 * = 1 (0x01) .1...... "Use optical black pixels
783 * to calibrate"
784 * COMG[5:4] "Reserved"
785 * = 0 (0x00) ..00....
786 * COMG[3] "Channel offset adjustment"
787 * = 0 (0x00) ....0... "Disable offset adjustment"
788 * COMG[2] "ADC black level calibration option"
789 * = 0 (0x00) .....0.. "Use B/G line and G/R
790 * line to calibrate each
791 * channel's black level"
792 * COMG[1] "Reserved"
793 * = 1 (0x01) ......1.
794 * COMG[0] "ADC black level calibration enable"
795 * = 0 (0x00) .......0 "Disable"
797 { 0x0f, 0x42 },
800 * 14 COMJ "Common Control J"
801 * = 198 (0xC6) 11000110
802 * COMJ[7:6] "AGC gain ceiling"
803 * = 3 (0x03) 11...... "8x"
804 * COMJ[5:4] "Reserved"
805 * = 0 (0x00) ..00....
806 * COMJ[3] "Auto banding filter"
807 * = 0 (0x00) ....0... "Banding filter is always
808 * on off depending on
809 * COMI[5] setting"
810 * COMJ[2] "VSYNC drop option"
811 * = 1 (0x01) .....1.. "SYNC is dropped if frame
812 * data is dropped"
813 * COMJ[1] "Frame data drop"
814 * = 1 (0x01) ......1. "Drop frame data if
815 * exposure is not within
816 * tolerance. In AEC mode,
817 * data is normally dropped
818 * when data is out of
819 * range."
820 * COMJ[0] "Reserved"
821 * = 0 (0x00) .......0
823 { 0x14, 0xc6 },
826 * 15 COMK "Common Control K"
827 * = 2 (0x02) 00000010
828 * COMK[7] "CHSYNC pin output swap"
829 * = 0 (0x00) 0....... "CHSYNC"
830 * COMK[6] "HREF pin output swap"
831 * = 0 (0x00) .0...... "HREF"
832 * COMK[5] "PCLK output selection"
833 * = 0 (0x00) ..0..... "PCLK always output"
834 * COMK[4] "PCLK edge selection"
835 * = 0 (0x00) ...0.... "Data valid on falling edge"
836 * COMK[3] "HREF output polarity"
837 * = 0 (0x00) ....0... "positive"
838 * COMK[2] "Reserved"
839 * = 0 (0x00) .....0..
840 * COMK[1] "VSYNC polarity"
841 * = 1 (0x01) ......1. "negative"
842 * COMK[0] "HSYNC polarity"
843 * = 0 (0x00) .......0 "positive"
845 { 0x15, 0x02 },
848 * 33 CHLF "Current Control"
849 * = 9 (0x09) 00001001
850 * CHLF[7:6] "Sensor current control"
851 * = 0 (0x00) 00......
852 * CHLF[5] "Sensor current range control"
853 * = 0 (0x00) ..0..... "normal range"
854 * CHLF[4] "Sensor current"
855 * = 0 (0x00) ...0.... "normal current"
856 * CHLF[3] "Sensor buffer current control"
857 * = 1 (0x01) ....1... "half current"
858 * CHLF[2] "Column buffer current control"
859 * = 0 (0x00) .....0.. "normal current"
860 * CHLF[1] "Analog DSP current control"
861 * = 0 (0x00) ......0. "normal current"
862 * CHLF[1] "ADC current control"
863 * = 0 (0x00) ......0. "normal current"
865 { 0x33, 0x09 },
868 * 34 VBLM "Blooming Control"
869 * = 80 (0x50) 01010000
870 * VBLM[7] "Hard soft reset switch"
871 * = 0 (0x00) 0....... "Hard reset"
872 * VBLM[6:4] "Blooming voltage selection"
873 * = 5 (0x05) .101....
874 * VBLM[3:0] "Sensor current control"
875 * = 0 (0x00) ....0000
877 { 0x34, 0x50 },
880 * 36 VCHG "Sensor Precharge Voltage Control"
881 * = 0 (0x00) 00000000
882 * VCHG[7] "Reserved"
883 * = 0 (0x00) 0.......
884 * VCHG[6:4] "Sensor precharge voltage control"
885 * = 0 (0x00) .000....
886 * VCHG[3:0] "Sensor array common reference"
887 * = 0 (0x00) ....0000
889 { 0x36, 0x00 },
892 * 37 ADC "ADC Reference Control"
893 * = 4 (0x04) 00000100
894 * ADC[7:4] "Reserved"
895 * = 0 (0x00) 0000....
896 * ADC[3] "ADC input signal range"
897 * = 0 (0x00) ....0... "Input signal 1.0x"
898 * ADC[2:0] "ADC range control"
899 * = 4 (0x04) .....100
901 { 0x37, 0x04 },
904 * 38 ACOM "Analog Common Ground"
905 * = 82 (0x52) 01010010
906 * ACOM[7] "Analog gain control"
907 * = 0 (0x00) 0....... "Gain 1x"
908 * ACOM[6] "Analog black level calibration"
909 * = 1 (0x01) .1...... "On"
910 * ACOM[5:0] "Reserved"
911 * = 18 (0x12) ..010010
913 { 0x38, 0x52 },
916 * 3A FREFA "Internal Reference Adjustment"
917 * = 0 (0x00) 00000000
918 * FREFA[7:0] "Range"
919 * = 0 (0x00) 00000000
921 { 0x3a, 0x00 },
924 * 3C FVOPT "Internal Reference Adjustment"
925 * = 31 (0x1F) 00011111
926 * FVOPT[7:0] "Range"
927 * = 31 (0x1F) 00011111
929 { 0x3c, 0x1f },
932 * 44 Undocumented = 0 (0x00) 00000000
933 * 44[7:0] "It's a secret"
934 * = 0 (0x00) 00000000
936 { 0x44, 0x00 },
939 * 40 Undocumented = 0 (0x00) 00000000
940 * 40[7:0] "It's a secret"
941 * = 0 (0x00) 00000000
943 { 0x40, 0x00 },
946 * 41 Undocumented = 0 (0x00) 00000000
947 * 41[7:0] "It's a secret"
948 * = 0 (0x00) 00000000
950 { 0x41, 0x00 },
953 * 42 Undocumented = 0 (0x00) 00000000
954 * 42[7:0] "It's a secret"
955 * = 0 (0x00) 00000000
957 { 0x42, 0x00 },
960 * 43 Undocumented = 0 (0x00) 00000000
961 * 43[7:0] "It's a secret"
962 * = 0 (0x00) 00000000
964 { 0x43, 0x00 },
967 * 45 Undocumented = 128 (0x80) 10000000
968 * 45[7:0] "It's a secret"
969 * = 128 (0x80) 10000000
971 { 0x45, 0x80 },
974 * 48 Undocumented = 192 (0xC0) 11000000
975 * 48[7:0] "It's a secret"
976 * = 192 (0xC0) 11000000
978 { 0x48, 0xc0 },
981 * 49 Undocumented = 25 (0x19) 00011001
982 * 49[7:0] "It's a secret"
983 * = 25 (0x19) 00011001
985 { 0x49, 0x19 },
988 * 4B Undocumented = 128 (0x80) 10000000
989 * 4B[7:0] "It's a secret"
990 * = 128 (0x80) 10000000
992 { 0x4b, 0x80 },
995 * 4D Undocumented = 196 (0xC4) 11000100
996 * 4D[7:0] "It's a secret"
997 * = 196 (0xC4) 11000100
999 { 0x4d, 0xc4 },
1002 * 35 VREF "Reference Voltage Control"
1003 * = 76 (0x4c) 01001100
1004 * VREF[7:5] "Column high reference control"
1005 * = 2 (0x02) 010..... "higher voltage"
1006 * VREF[4:2] "Column low reference control"
1007 * = 3 (0x03) ...011.. "Highest voltage"
1008 * VREF[1:0] "Reserved"
1009 * = 0 (0x00) ......00
1011 { 0x35, 0x4c },
1014 * 3D Undocumented = 0 (0x00) 00000000
1015 * 3D[7:0] "It's a secret"
1016 * = 0 (0x00) 00000000
1018 { 0x3d, 0x00 },
1021 * 3E Undocumented = 0 (0x00) 00000000
1022 * 3E[7:0] "It's a secret"
1023 * = 0 (0x00) 00000000
1025 { 0x3e, 0x00 },
1028 * 3B FREFB "Internal Reference Adjustment"
1029 * = 24 (0x18) 00011000
1030 * FREFB[7:0] "Range"
1031 * = 24 (0x18) 00011000
1033 { 0x3b, 0x18 },
1036 * 33 CHLF "Current Control"
1037 * = 25 (0x19) 00011001
1038 * CHLF[7:6] "Sensor current control"
1039 * = 0 (0x00) 00......
1040 * CHLF[5] "Sensor current range control"
1041 * = 0 (0x00) ..0..... "normal range"
1042 * CHLF[4] "Sensor current"
1043 * = 1 (0x01) ...1.... "double current"
1044 * CHLF[3] "Sensor buffer current control"
1045 * = 1 (0x01) ....1... "half current"
1046 * CHLF[2] "Column buffer current control"
1047 * = 0 (0x00) .....0.. "normal current"
1048 * CHLF[1] "Analog DSP current control"
1049 * = 0 (0x00) ......0. "normal current"
1050 * CHLF[1] "ADC current control"
1051 * = 0 (0x00) ......0. "normal current"
1053 { 0x33, 0x19 },
1056 * 34 VBLM "Blooming Control"
1057 * = 90 (0x5A) 01011010
1058 * VBLM[7] "Hard soft reset switch"
1059 * = 0 (0x00) 0....... "Hard reset"
1060 * VBLM[6:4] "Blooming voltage selection"
1061 * = 5 (0x05) .101....
1062 * VBLM[3:0] "Sensor current control"
1063 * = 10 (0x0A) ....1010
1065 { 0x34, 0x5a },
1068 * 3B FREFB "Internal Reference Adjustment"
1069 * = 0 (0x00) 00000000
1070 * FREFB[7:0] "Range"
1071 * = 0 (0x00) 00000000
1073 { 0x3b, 0x00 },
1076 * 33 CHLF "Current Control"
1077 * = 9 (0x09) 00001001
1078 * CHLF[7:6] "Sensor current control"
1079 * = 0 (0x00) 00......
1080 * CHLF[5] "Sensor current range control"
1081 * = 0 (0x00) ..0..... "normal range"
1082 * CHLF[4] "Sensor current"
1083 * = 0 (0x00) ...0.... "normal current"
1084 * CHLF[3] "Sensor buffer current control"
1085 * = 1 (0x01) ....1... "half current"
1086 * CHLF[2] "Column buffer current control"
1087 * = 0 (0x00) .....0.. "normal current"
1088 * CHLF[1] "Analog DSP current control"
1089 * = 0 (0x00) ......0. "normal current"
1090 * CHLF[1] "ADC current control"
1091 * = 0 (0x00) ......0. "normal current"
1093 { 0x33, 0x09 },
1096 * 34 VBLM "Blooming Control"
1097 * = 80 (0x50) 01010000
1098 * VBLM[7] "Hard soft reset switch"
1099 * = 0 (0x00) 0....... "Hard reset"
1100 * VBLM[6:4] "Blooming voltage selection"
1101 * = 5 (0x05) .101....
1102 * VBLM[3:0] "Sensor current control"
1103 * = 0 (0x00) ....0000
1105 { 0x34, 0x50 },
1108 * 12 COMH "Common Control H"
1109 * = 64 (0x40) 01000000
1110 * COMH[7] "SRST"
1111 * = 0 (0x00) 0....... "No-op"
1112 * COMH[6:4] "Resolution selection"
1113 * = 4 (0x04) .100.... "XGA"
1114 * COMH[3] "Master slave selection"
1115 * = 0 (0x00) ....0... "Master mode"
1116 * COMH[2] "Internal B/R channel option"
1117 * = 0 (0x00) .....0.. "B/R use same channel"
1118 * COMH[1] "Color bar test pattern"
1119 * = 0 (0x00) ......0. "Off"
1120 * COMH[0] "Reserved"
1121 * = 0 (0x00) .......0
1123 { 0x12, 0x40 },
1126 * 17 HREFST "Horizontal window start"
1127 * = 31 (0x1F) 00011111
1128 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1129 * = 31 (0x1F) 00011111
1131 { 0x17, 0x1f },
1134 * 18 HREFEND "Horizontal window end"
1135 * = 95 (0x5F) 01011111
1136 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1137 * = 95 (0x5F) 01011111
1139 { 0x18, 0x5f },
1142 * 19 VSTRT "Vertical window start"
1143 * = 0 (0x00) 00000000
1144 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1145 * = 0 (0x00) 00000000
1147 { 0x19, 0x00 },
1150 * 1A VEND "Vertical window end"
1151 * = 96 (0x60) 01100000
1152 * VEND[7:0] "Vertical Window End, 8 MSBs"
1153 * = 96 (0x60) 01100000
1155 { 0x1a, 0x60 },
1158 * 32 COMM "Common Control M"
1159 * = 18 (0x12) 00010010
1160 * COMM[7:6] "Pixel clock divide option"
1161 * = 0 (0x00) 00...... "/1"
1162 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1163 * = 2 (0x02) ..010...
1164 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1165 * = 2 (0x02) .....010
1167 { 0x32, 0x12 },
1170 * 03 COMA "Common Control A"
1171 * = 74 (0x4A) 01001010
1172 * COMA[7:4] "AWB Update Threshold"
1173 * = 4 (0x04) 0100....
1174 * COMA[3:2] "Vertical window end line control 2 LSBs"
1175 * = 2 (0x02) ....10..
1176 * COMA[1:0] "Vertical window start line control 2 LSBs"
1177 * = 2 (0x02) ......10
1179 { 0x03, 0x4a },
1182 * 11 CLKRC "Clock Rate Control"
1183 * = 128 (0x80) 10000000
1184 * CLKRC[7] "Internal frequency doublers on off seclection"
1185 * = 1 (0x01) 1....... "On"
1186 * CLKRC[6] "Digital video master slave selection"
1187 * = 0 (0x00) .0...... "Master mode, sensor
1188 * provides PCLK"
1189 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1190 * = 0 (0x00) ..000000
1192 { 0x11, 0x80 },
1195 * 12 COMH "Common Control H"
1196 * = 0 (0x00) 00000000
1197 * COMH[7] "SRST"
1198 * = 0 (0x00) 0....... "No-op"
1199 * COMH[6:4] "Resolution selection"
1200 * = 0 (0x00) .000.... "QXGA"
1201 * COMH[3] "Master slave selection"
1202 * = 0 (0x00) ....0... "Master mode"
1203 * COMH[2] "Internal B/R channel option"
1204 * = 0 (0x00) .....0.. "B/R use same channel"
1205 * COMH[1] "Color bar test pattern"
1206 * = 0 (0x00) ......0. "Off"
1207 * COMH[0] "Reserved"
1208 * = 0 (0x00) .......0
1210 { 0x12, 0x00 },
1213 * 12 COMH "Common Control H"
1214 * = 64 (0x40) 01000000
1215 * COMH[7] "SRST"
1216 * = 0 (0x00) 0....... "No-op"
1217 * COMH[6:4] "Resolution selection"
1218 * = 4 (0x04) .100.... "XGA"
1219 * COMH[3] "Master slave selection"
1220 * = 0 (0x00) ....0... "Master mode"
1221 * COMH[2] "Internal B/R channel option"
1222 * = 0 (0x00) .....0.. "B/R use same channel"
1223 * COMH[1] "Color bar test pattern"
1224 * = 0 (0x00) ......0. "Off"
1225 * COMH[0] "Reserved"
1226 * = 0 (0x00) .......0
1228 { 0x12, 0x40 },
1231 * 17 HREFST "Horizontal window start"
1232 * = 31 (0x1F) 00011111
1233 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1234 * = 31 (0x1F) 00011111
1236 { 0x17, 0x1f },
1239 * 18 HREFEND "Horizontal window end"
1240 * = 95 (0x5F) 01011111
1241 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1242 * = 95 (0x5F) 01011111
1244 { 0x18, 0x5f },
1247 * 19 VSTRT "Vertical window start"
1248 * = 0 (0x00) 00000000
1249 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1250 * = 0 (0x00) 00000000
1252 { 0x19, 0x00 },
1255 * 1A VEND "Vertical window end"
1256 * = 96 (0x60) 01100000
1257 * VEND[7:0] "Vertical Window End, 8 MSBs"
1258 * = 96 (0x60) 01100000
1260 { 0x1a, 0x60 },
1263 * 32 COMM "Common Control M"
1264 * = 18 (0x12) 00010010
1265 * COMM[7:6] "Pixel clock divide option"
1266 * = 0 (0x00) 00...... "/1"
1267 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1268 * = 2 (0x02) ..010...
1269 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1270 * = 2 (0x02) .....010
1272 { 0x32, 0x12 },
1275 * 03 COMA "Common Control A"
1276 * = 74 (0x4A) 01001010
1277 * COMA[7:4] "AWB Update Threshold"
1278 * = 4 (0x04) 0100....
1279 * COMA[3:2] "Vertical window end line control 2 LSBs"
1280 * = 2 (0x02) ....10..
1281 * COMA[1:0] "Vertical window start line control 2 LSBs"
1282 * = 2 (0x02) ......10
1284 { 0x03, 0x4a },
1287 * 02 RED "Red Gain Control"
1288 * = 175 (0xAF) 10101111
1289 * RED[7] "Action"
1290 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1291 * RED[6:0] "Value"
1292 * = 47 (0x2F) .0101111
1294 { 0x02, 0xaf },
1297 * 2D ADDVSL "VSYNC Pulse Width"
1298 * = 210 (0xD2) 11010010
1299 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1300 * = 210 (0xD2) 11010010
1302 { 0x2d, 0xd2 },
1305 * 00 GAIN = 24 (0x18) 00011000
1306 * GAIN[7:6] "Reserved"
1307 * = 0 (0x00) 00......
1308 * GAIN[5] "Double"
1309 * = 0 (0x00) ..0..... "False"
1310 * GAIN[4] "Double"
1311 * = 1 (0x01) ...1.... "True"
1312 * GAIN[3:0] "Range"
1313 * = 8 (0x08) ....1000
1315 { 0x00, 0x18 },
1318 * 01 BLUE "Blue Gain Control"
1319 * = 240 (0xF0) 11110000
1320 * BLUE[7] "Action"
1321 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1322 * BLUE[6:0] "Value"
1323 * = 112 (0x70) .1110000
1325 { 0x01, 0xf0 },
1328 * 10 AEC "Automatic Exposure Control"
1329 * = 10 (0x0A) 00001010
1330 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1331 * = 10 (0x0A) 00001010
1333 { 0x10, 0x0a },
1335 { 0xe1, 0x67 },
1336 { 0xe3, 0x03 },
1337 { 0xe4, 0x26 },
1338 { 0xe5, 0x3e },
1339 { 0xf8, 0x01 },
1340 { 0xff, 0x01 },
1343 static const struct ov_i2c_regvals norm_6x20[] = {
1344 { 0x12, 0x80 }, /* reset */
1345 { 0x11, 0x01 },
1346 { 0x03, 0x60 },
1347 { 0x05, 0x7f }, /* For when autoadjust is off */
1348 { 0x07, 0xa8 },
1349 /* The ratio of 0x0c and 0x0d controls the white point */
1350 { 0x0c, 0x24 },
1351 { 0x0d, 0x24 },
1352 { 0x0f, 0x15 }, /* COMS */
1353 { 0x10, 0x75 }, /* AEC Exposure time */
1354 { 0x12, 0x24 }, /* Enable AGC */
1355 { 0x14, 0x04 },
1356 /* 0x16: 0x06 helps frame stability with moving objects */
1357 { 0x16, 0x06 },
1358 /* { 0x20, 0x30 }, * Aperture correction enable */
1359 { 0x26, 0xb2 }, /* BLC enable */
1360 /* 0x28: 0x05 Selects RGB format if RGB on */
1361 { 0x28, 0x05 },
1362 { 0x2a, 0x04 }, /* Disable framerate adjust */
1363 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1364 { 0x2d, 0x85 },
1365 { 0x33, 0xa0 }, /* Color Processing Parameter */
1366 { 0x34, 0xd2 }, /* Max A/D range */
1367 { 0x38, 0x8b },
1368 { 0x39, 0x40 },
1370 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1371 { 0x3c, 0x3c }, /* Change AEC mode */
1372 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1374 { 0x3d, 0x80 },
1375 /* These next two registers (0x4a, 0x4b) are undocumented.
1376 * They control the color balance */
1377 { 0x4a, 0x80 },
1378 { 0x4b, 0x80 },
1379 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1380 { 0x4e, 0xc1 },
1381 { 0x4f, 0x04 },
1382 /* Do 50-53 have any effect? */
1383 /* Toggle 0x12[2] off and on here? */
1386 static const struct ov_i2c_regvals norm_6x30[] = {
1387 { 0x12, 0x80 }, /* Reset */
1388 { 0x00, 0x1f }, /* Gain */
1389 { 0x01, 0x99 }, /* Blue gain */
1390 { 0x02, 0x7c }, /* Red gain */
1391 { 0x03, 0xc0 }, /* Saturation */
1392 { 0x05, 0x0a }, /* Contrast */
1393 { 0x06, 0x95 }, /* Brightness */
1394 { 0x07, 0x2d }, /* Sharpness */
1395 { 0x0c, 0x20 },
1396 { 0x0d, 0x20 },
1397 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1398 { 0x0f, 0x05 },
1399 { 0x10, 0x9a },
1400 { 0x11, 0x00 }, /* Pixel clock = fastest */
1401 { 0x12, 0x24 }, /* Enable AGC and AWB */
1402 { 0x13, 0x21 },
1403 { 0x14, 0x80 },
1404 { 0x15, 0x01 },
1405 { 0x16, 0x03 },
1406 { 0x17, 0x38 },
1407 { 0x18, 0xea },
1408 { 0x19, 0x04 },
1409 { 0x1a, 0x93 },
1410 { 0x1b, 0x00 },
1411 { 0x1e, 0xc4 },
1412 { 0x1f, 0x04 },
1413 { 0x20, 0x20 },
1414 { 0x21, 0x10 },
1415 { 0x22, 0x88 },
1416 { 0x23, 0xc0 }, /* Crystal circuit power level */
1417 { 0x25, 0x9a }, /* Increase AEC black ratio */
1418 { 0x26, 0xb2 }, /* BLC enable */
1419 { 0x27, 0xa2 },
1420 { 0x28, 0x00 },
1421 { 0x29, 0x00 },
1422 { 0x2a, 0x84 }, /* 60 Hz power */
1423 { 0x2b, 0xa8 }, /* 60 Hz power */
1424 { 0x2c, 0xa0 },
1425 { 0x2d, 0x95 }, /* Enable auto-brightness */
1426 { 0x2e, 0x88 },
1427 { 0x33, 0x26 },
1428 { 0x34, 0x03 },
1429 { 0x36, 0x8f },
1430 { 0x37, 0x80 },
1431 { 0x38, 0x83 },
1432 { 0x39, 0x80 },
1433 { 0x3a, 0x0f },
1434 { 0x3b, 0x3c },
1435 { 0x3c, 0x1a },
1436 { 0x3d, 0x80 },
1437 { 0x3e, 0x80 },
1438 { 0x3f, 0x0e },
1439 { 0x40, 0x00 }, /* White bal */
1440 { 0x41, 0x00 }, /* White bal */
1441 { 0x42, 0x80 },
1442 { 0x43, 0x3f }, /* White bal */
1443 { 0x44, 0x80 },
1444 { 0x45, 0x20 },
1445 { 0x46, 0x20 },
1446 { 0x47, 0x80 },
1447 { 0x48, 0x7f },
1448 { 0x49, 0x00 },
1449 { 0x4a, 0x00 },
1450 { 0x4b, 0x80 },
1451 { 0x4c, 0xd0 },
1452 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1453 { 0x4e, 0x40 },
1454 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1455 { 0x50, 0xff },
1456 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1457 { 0x55, 0xff },
1458 { 0x56, 0x12 },
1459 { 0x57, 0x81 },
1460 { 0x58, 0x75 },
1461 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1462 { 0x5a, 0x2c },
1463 { 0x5b, 0x0f }, /* AWB chrominance levels */
1464 { 0x5c, 0x10 },
1465 { 0x3d, 0x80 },
1466 { 0x27, 0xa6 },
1467 { 0x12, 0x20 }, /* Toggle AWB */
1468 { 0x12, 0x24 },
1471 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1473 * Register 0x0f in the 7610 has the following effects:
1475 * 0x85 (AEC method 1): Best overall, good contrast range
1476 * 0x45 (AEC method 2): Very overexposed
1477 * 0xa5 (spec sheet default): Ok, but the black level is
1478 * shifted resulting in loss of contrast
1479 * 0x05 (old driver setting): very overexposed, too much
1480 * contrast
1482 static const struct ov_i2c_regvals norm_7610[] = {
1483 { 0x10, 0xff },
1484 { 0x16, 0x06 },
1485 { 0x28, 0x24 },
1486 { 0x2b, 0xac },
1487 { 0x12, 0x00 },
1488 { 0x38, 0x81 },
1489 { 0x28, 0x24 }, /* 0c */
1490 { 0x0f, 0x85 }, /* lg's setting */
1491 { 0x15, 0x01 },
1492 { 0x20, 0x1c },
1493 { 0x23, 0x2a },
1494 { 0x24, 0x10 },
1495 { 0x25, 0x8a },
1496 { 0x26, 0xa2 },
1497 { 0x27, 0xc2 },
1498 { 0x2a, 0x04 },
1499 { 0x2c, 0xfe },
1500 { 0x2d, 0x93 },
1501 { 0x30, 0x71 },
1502 { 0x31, 0x60 },
1503 { 0x32, 0x26 },
1504 { 0x33, 0x20 },
1505 { 0x34, 0x48 },
1506 { 0x12, 0x24 },
1507 { 0x11, 0x01 },
1508 { 0x0c, 0x24 },
1509 { 0x0d, 0x24 },
1512 static const struct ov_i2c_regvals norm_7620[] = {
1513 { 0x12, 0x80 }, /* reset */
1514 { 0x00, 0x00 }, /* gain */
1515 { 0x01, 0x80 }, /* blue gain */
1516 { 0x02, 0x80 }, /* red gain */
1517 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1518 { 0x06, 0x60 },
1519 { 0x07, 0x00 },
1520 { 0x0c, 0x24 },
1521 { 0x0c, 0x24 },
1522 { 0x0d, 0x24 },
1523 { 0x11, 0x01 },
1524 { 0x12, 0x24 },
1525 { 0x13, 0x01 },
1526 { 0x14, 0x84 },
1527 { 0x15, 0x01 },
1528 { 0x16, 0x03 },
1529 { 0x17, 0x2f },
1530 { 0x18, 0xcf },
1531 { 0x19, 0x06 },
1532 { 0x1a, 0xf5 },
1533 { 0x1b, 0x00 },
1534 { 0x20, 0x18 },
1535 { 0x21, 0x80 },
1536 { 0x22, 0x80 },
1537 { 0x23, 0x00 },
1538 { 0x26, 0xa2 },
1539 { 0x27, 0xea },
1540 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1541 { 0x29, 0x00 },
1542 { 0x2a, 0x10 },
1543 { 0x2b, 0x00 },
1544 { 0x2c, 0x88 },
1545 { 0x2d, 0x91 },
1546 { 0x2e, 0x80 },
1547 { 0x2f, 0x44 },
1548 { 0x60, 0x27 },
1549 { 0x61, 0x02 },
1550 { 0x62, 0x5f },
1551 { 0x63, 0xd5 },
1552 { 0x64, 0x57 },
1553 { 0x65, 0x83 },
1554 { 0x66, 0x55 },
1555 { 0x67, 0x92 },
1556 { 0x68, 0xcf },
1557 { 0x69, 0x76 },
1558 { 0x6a, 0x22 },
1559 { 0x6b, 0x00 },
1560 { 0x6c, 0x02 },
1561 { 0x6d, 0x44 },
1562 { 0x6e, 0x80 },
1563 { 0x6f, 0x1d },
1564 { 0x70, 0x8b },
1565 { 0x71, 0x00 },
1566 { 0x72, 0x14 },
1567 { 0x73, 0x54 },
1568 { 0x74, 0x00 },
1569 { 0x75, 0x8e },
1570 { 0x76, 0x00 },
1571 { 0x77, 0xff },
1572 { 0x78, 0x80 },
1573 { 0x79, 0x80 },
1574 { 0x7a, 0x80 },
1575 { 0x7b, 0xe2 },
1576 { 0x7c, 0x00 },
1579 /* 7640 and 7648. The defaults should be OK for most registers. */
1580 static const struct ov_i2c_regvals norm_7640[] = {
1581 { 0x12, 0x80 },
1582 { 0x12, 0x14 },
1585 static const struct ov_regvals init_519_ov7660[] = {
1586 { 0x5d, 0x03 }, /* Turn off suspend mode */
1587 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1588 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1589 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1590 { 0xa3, 0x18 },
1591 { 0xa4, 0x04 },
1592 { 0xa5, 0x28 },
1593 { 0x37, 0x00 }, /* SetUsbInit */
1594 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1595 /* Enable both fields, YUV Input, disable defect comp (why?) */
1596 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1597 { 0x21, 0x38 },
1598 { 0x22, 0x1d },
1599 { 0x17, 0x50 }, /* undocumented */
1600 { 0x37, 0x00 }, /* undocumented */
1601 { 0x40, 0xff }, /* I2C timeout counter */
1602 { 0x46, 0x00 }, /* I2C clock prescaler */
1604 static const struct ov_i2c_regvals norm_7660[] = {
1605 {OV7670_R12_COM7, OV7670_COM7_RESET},
1606 {OV7670_R11_CLKRC, 0x81},
1607 {0x92, 0x00}, /* DM_LNL */
1608 {0x93, 0x00}, /* DM_LNH */
1609 {0x9d, 0x4c}, /* BD50ST */
1610 {0x9e, 0x3f}, /* BD60ST */
1611 {OV7670_R3B_COM11, 0x02},
1612 {OV7670_R13_COM8, 0xf5},
1613 {OV7670_R10_AECH, 0x00},
1614 {OV7670_R00_GAIN, 0x00},
1615 {OV7670_R01_BLUE, 0x7c},
1616 {OV7670_R02_RED, 0x9d},
1617 {OV7670_R12_COM7, 0x00},
1618 {OV7670_R04_COM1, 00},
1619 {OV7670_R18_HSTOP, 0x01},
1620 {OV7670_R17_HSTART, 0x13},
1621 {OV7670_R32_HREF, 0x92},
1622 {OV7670_R19_VSTART, 0x02},
1623 {OV7670_R1A_VSTOP, 0x7a},
1624 {OV7670_R03_VREF, 0x00},
1625 {OV7670_R0E_COM5, 0x04},
1626 {OV7670_R0F_COM6, 0x62},
1627 {OV7670_R15_COM10, 0x00},
1628 {0x16, 0x02}, /* RSVD */
1629 {0x1b, 0x00}, /* PSHFT */
1630 {OV7670_R1E_MVFP, 0x01},
1631 {0x29, 0x3c}, /* RSVD */
1632 {0x33, 0x00}, /* CHLF */
1633 {0x34, 0x07}, /* ARBLM */
1634 {0x35, 0x84}, /* RSVD */
1635 {0x36, 0x00}, /* RSVD */
1636 {0x37, 0x04}, /* ADC */
1637 {0x39, 0x43}, /* OFON */
1638 {OV7670_R3A_TSLB, 0x00},
1639 {OV7670_R3C_COM12, 0x6c},
1640 {OV7670_R3D_COM13, 0x98},
1641 {OV7670_R3F_EDGE, 0x23},
1642 {OV7670_R40_COM15, 0xc1},
1643 {OV7670_R41_COM16, 0x22},
1644 {0x6b, 0x0a}, /* DBLV */
1645 {0xa1, 0x08}, /* RSVD */
1646 {0x69, 0x80}, /* HV */
1647 {0x43, 0xf0}, /* RSVD.. */
1648 {0x44, 0x10},
1649 {0x45, 0x78},
1650 {0x46, 0xa8},
1651 {0x47, 0x60},
1652 {0x48, 0x80},
1653 {0x59, 0xba},
1654 {0x5a, 0x9a},
1655 {0x5b, 0x22},
1656 {0x5c, 0xb9},
1657 {0x5d, 0x9b},
1658 {0x5e, 0x10},
1659 {0x5f, 0xe0},
1660 {0x60, 0x85},
1661 {0x61, 0x60},
1662 {0x9f, 0x9d}, /* RSVD */
1663 {0xa0, 0xa0}, /* DSPC2 */
1664 {0x4f, 0x60}, /* matrix */
1665 {0x50, 0x64},
1666 {0x51, 0x04},
1667 {0x52, 0x18},
1668 {0x53, 0x3c},
1669 {0x54, 0x54},
1670 {0x55, 0x40},
1671 {0x56, 0x40},
1672 {0x57, 0x40},
1673 {0x58, 0x0d}, /* matrix sign */
1674 {0x8b, 0xcc}, /* RSVD */
1675 {0x8c, 0xcc},
1676 {0x8d, 0xcf},
1677 {0x6c, 0x40}, /* gamma curve */
1678 {0x6d, 0xe0},
1679 {0x6e, 0xa0},
1680 {0x6f, 0x80},
1681 {0x70, 0x70},
1682 {0x71, 0x80},
1683 {0x72, 0x60},
1684 {0x73, 0x60},
1685 {0x74, 0x50},
1686 {0x75, 0x40},
1687 {0x76, 0x38},
1688 {0x77, 0x3c},
1689 {0x78, 0x32},
1690 {0x79, 0x1a},
1691 {0x7a, 0x28},
1692 {0x7b, 0x24},
1693 {0x7c, 0x04}, /* gamma curve */
1694 {0x7d, 0x12},
1695 {0x7e, 0x26},
1696 {0x7f, 0x46},
1697 {0x80, 0x54},
1698 {0x81, 0x64},
1699 {0x82, 0x70},
1700 {0x83, 0x7c},
1701 {0x84, 0x86},
1702 {0x85, 0x8e},
1703 {0x86, 0x9c},
1704 {0x87, 0xab},
1705 {0x88, 0xc4},
1706 {0x89, 0xd1},
1707 {0x8a, 0xe5},
1708 {OV7670_R14_COM9, 0x1e},
1709 {OV7670_R24_AEW, 0x80},
1710 {OV7670_R25_AEB, 0x72},
1711 {OV7670_R26_VPT, 0xb3},
1712 {0x62, 0x80}, /* LCC1 */
1713 {0x63, 0x80}, /* LCC2 */
1714 {0x64, 0x06}, /* LCC3 */
1715 {0x65, 0x00}, /* LCC4 */
1716 {0x66, 0x01}, /* LCC5 */
1717 {0x94, 0x0e}, /* RSVD.. */
1718 {0x95, 0x14},
1719 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1720 | OV7670_COM8_AECSTEP
1721 | OV7670_COM8_BFILT
1722 | 0x10
1723 | OV7670_COM8_AGC
1724 | OV7670_COM8_AWB
1725 | OV7670_COM8_AEC},
1726 {0xa1, 0xc8}
1728 static const struct ov_i2c_regvals norm_9600[] = {
1729 {0x12, 0x80},
1730 {0x0c, 0x28},
1731 {0x11, 0x80},
1732 {0x13, 0xb5},
1733 {0x14, 0x3e},
1734 {0x1b, 0x04},
1735 {0x24, 0xb0},
1736 {0x25, 0x90},
1737 {0x26, 0x94},
1738 {0x35, 0x90},
1739 {0x37, 0x07},
1740 {0x38, 0x08},
1741 {0x01, 0x8e},
1742 {0x02, 0x85}
1745 /* 7670. Defaults taken from OmniVision provided data,
1746 * as provided by Jonathan Corbet of OLPC */
1747 static const struct ov_i2c_regvals norm_7670[] = {
1748 { OV7670_R12_COM7, OV7670_COM7_RESET },
1749 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1750 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1751 { OV7670_R11_CLKRC, 0x01 },
1753 * Set the hardware window. These values from OV don't entirely
1754 * make sense - hstop is less than hstart. But they work...
1756 { OV7670_R17_HSTART, 0x13 },
1757 { OV7670_R18_HSTOP, 0x01 },
1758 { OV7670_R32_HREF, 0xb6 },
1759 { OV7670_R19_VSTART, 0x02 },
1760 { OV7670_R1A_VSTOP, 0x7a },
1761 { OV7670_R03_VREF, 0x0a },
1763 { OV7670_R0C_COM3, 0x00 },
1764 { OV7670_R3E_COM14, 0x00 },
1765 /* Mystery scaling numbers */
1766 { 0x70, 0x3a },
1767 { 0x71, 0x35 },
1768 { 0x72, 0x11 },
1769 { 0x73, 0xf0 },
1770 { 0xa2, 0x02 },
1771 /* { OV7670_R15_COM10, 0x0 }, */
1773 /* Gamma curve values */
1774 { 0x7a, 0x20 },
1775 { 0x7b, 0x10 },
1776 { 0x7c, 0x1e },
1777 { 0x7d, 0x35 },
1778 { 0x7e, 0x5a },
1779 { 0x7f, 0x69 },
1780 { 0x80, 0x76 },
1781 { 0x81, 0x80 },
1782 { 0x82, 0x88 },
1783 { 0x83, 0x8f },
1784 { 0x84, 0x96 },
1785 { 0x85, 0xa3 },
1786 { 0x86, 0xaf },
1787 { 0x87, 0xc4 },
1788 { 0x88, 0xd7 },
1789 { 0x89, 0xe8 },
1791 /* AGC and AEC parameters. Note we start by disabling those features,
1792 then turn them only after tweaking the values. */
1793 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1794 | OV7670_COM8_AECSTEP
1795 | OV7670_COM8_BFILT },
1796 { OV7670_R00_GAIN, 0x00 },
1797 { OV7670_R10_AECH, 0x00 },
1798 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1799 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1800 { OV7670_RA5_BD50MAX, 0x05 },
1801 { OV7670_RAB_BD60MAX, 0x07 },
1802 { OV7670_R24_AEW, 0x95 },
1803 { OV7670_R25_AEB, 0x33 },
1804 { OV7670_R26_VPT, 0xe3 },
1805 { OV7670_R9F_HAECC1, 0x78 },
1806 { OV7670_RA0_HAECC2, 0x68 },
1807 { 0xa1, 0x03 }, /* magic */
1808 { OV7670_RA6_HAECC3, 0xd8 },
1809 { OV7670_RA7_HAECC4, 0xd8 },
1810 { OV7670_RA8_HAECC5, 0xf0 },
1811 { OV7670_RA9_HAECC6, 0x90 },
1812 { OV7670_RAA_HAECC7, 0x94 },
1813 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1814 | OV7670_COM8_AECSTEP
1815 | OV7670_COM8_BFILT
1816 | OV7670_COM8_AGC
1817 | OV7670_COM8_AEC },
1819 /* Almost all of these are magic "reserved" values. */
1820 { OV7670_R0E_COM5, 0x61 },
1821 { OV7670_R0F_COM6, 0x4b },
1822 { 0x16, 0x02 },
1823 { OV7670_R1E_MVFP, 0x07 },
1824 { 0x21, 0x02 },
1825 { 0x22, 0x91 },
1826 { 0x29, 0x07 },
1827 { 0x33, 0x0b },
1828 { 0x35, 0x0b },
1829 { 0x37, 0x1d },
1830 { 0x38, 0x71 },
1831 { 0x39, 0x2a },
1832 { OV7670_R3C_COM12, 0x78 },
1833 { 0x4d, 0x40 },
1834 { 0x4e, 0x20 },
1835 { OV7670_R69_GFIX, 0x00 },
1836 { 0x6b, 0x4a },
1837 { 0x74, 0x10 },
1838 { 0x8d, 0x4f },
1839 { 0x8e, 0x00 },
1840 { 0x8f, 0x00 },
1841 { 0x90, 0x00 },
1842 { 0x91, 0x00 },
1843 { 0x96, 0x00 },
1844 { 0x9a, 0x00 },
1845 { 0xb0, 0x84 },
1846 { 0xb1, 0x0c },
1847 { 0xb2, 0x0e },
1848 { 0xb3, 0x82 },
1849 { 0xb8, 0x0a },
1851 /* More reserved magic, some of which tweaks white balance */
1852 { 0x43, 0x0a },
1853 { 0x44, 0xf0 },
1854 { 0x45, 0x34 },
1855 { 0x46, 0x58 },
1856 { 0x47, 0x28 },
1857 { 0x48, 0x3a },
1858 { 0x59, 0x88 },
1859 { 0x5a, 0x88 },
1860 { 0x5b, 0x44 },
1861 { 0x5c, 0x67 },
1862 { 0x5d, 0x49 },
1863 { 0x5e, 0x0e },
1864 { 0x6c, 0x0a },
1865 { 0x6d, 0x55 },
1866 { 0x6e, 0x11 },
1867 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1868 { 0x6a, 0x40 },
1869 { OV7670_R01_BLUE, 0x40 },
1870 { OV7670_R02_RED, 0x60 },
1871 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1872 | OV7670_COM8_AECSTEP
1873 | OV7670_COM8_BFILT
1874 | OV7670_COM8_AGC
1875 | OV7670_COM8_AEC
1876 | OV7670_COM8_AWB },
1878 /* Matrix coefficients */
1879 { 0x4f, 0x80 },
1880 { 0x50, 0x80 },
1881 { 0x51, 0x00 },
1882 { 0x52, 0x22 },
1883 { 0x53, 0x5e },
1884 { 0x54, 0x80 },
1885 { 0x58, 0x9e },
1887 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1888 { OV7670_R3F_EDGE, 0x00 },
1889 { 0x75, 0x05 },
1890 { 0x76, 0xe1 },
1891 { 0x4c, 0x00 },
1892 { 0x77, 0x01 },
1893 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1894 | OV7670_COM13_UVSAT
1895 | 2}, /* was 3 */
1896 { 0x4b, 0x09 },
1897 { 0xc9, 0x60 },
1898 { OV7670_R41_COM16, 0x38 },
1899 { 0x56, 0x40 },
1901 { 0x34, 0x11 },
1902 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1903 { 0xa4, 0x88 },
1904 { 0x96, 0x00 },
1905 { 0x97, 0x30 },
1906 { 0x98, 0x20 },
1907 { 0x99, 0x30 },
1908 { 0x9a, 0x84 },
1909 { 0x9b, 0x29 },
1910 { 0x9c, 0x03 },
1911 { 0x9d, 0x4c },
1912 { 0x9e, 0x3f },
1913 { 0x78, 0x04 },
1915 /* Extra-weird stuff. Some sort of multiplexor register */
1916 { 0x79, 0x01 },
1917 { 0xc8, 0xf0 },
1918 { 0x79, 0x0f },
1919 { 0xc8, 0x00 },
1920 { 0x79, 0x10 },
1921 { 0xc8, 0x7e },
1922 { 0x79, 0x0a },
1923 { 0xc8, 0x80 },
1924 { 0x79, 0x0b },
1925 { 0xc8, 0x01 },
1926 { 0x79, 0x0c },
1927 { 0xc8, 0x0f },
1928 { 0x79, 0x0d },
1929 { 0xc8, 0x20 },
1930 { 0x79, 0x09 },
1931 { 0xc8, 0x80 },
1932 { 0x79, 0x02 },
1933 { 0xc8, 0xc0 },
1934 { 0x79, 0x03 },
1935 { 0xc8, 0x40 },
1936 { 0x79, 0x05 },
1937 { 0xc8, 0x30 },
1938 { 0x79, 0x26 },
1941 static const struct ov_i2c_regvals norm_8610[] = {
1942 { 0x12, 0x80 },
1943 { 0x00, 0x00 },
1944 { 0x01, 0x80 },
1945 { 0x02, 0x80 },
1946 { 0x03, 0xc0 },
1947 { 0x04, 0x30 },
1948 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1949 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1950 { 0x0a, 0x86 },
1951 { 0x0b, 0xb0 },
1952 { 0x0c, 0x20 },
1953 { 0x0d, 0x20 },
1954 { 0x11, 0x01 },
1955 { 0x12, 0x25 },
1956 { 0x13, 0x01 },
1957 { 0x14, 0x04 },
1958 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1959 { 0x16, 0x03 },
1960 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1961 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1962 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1963 { 0x1a, 0xf5 },
1964 { 0x1b, 0x00 },
1965 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1966 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1967 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1968 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1969 { 0x26, 0xa2 },
1970 { 0x27, 0xea },
1971 { 0x28, 0x00 },
1972 { 0x29, 0x00 },
1973 { 0x2a, 0x80 },
1974 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1975 { 0x2c, 0xac },
1976 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1977 { 0x2e, 0x80 },
1978 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1979 { 0x4c, 0x00 },
1980 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1981 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1982 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1983 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1984 { 0x63, 0xff },
1985 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1986 * maybe thats wrong */
1987 { 0x65, 0x00 },
1988 { 0x66, 0x55 },
1989 { 0x67, 0xb0 },
1990 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1991 { 0x69, 0x02 },
1992 { 0x6a, 0x22 },
1993 { 0x6b, 0x00 },
1994 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1995 * deleting bit7 colors the first images red */
1996 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1997 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1998 { 0x6f, 0x01 },
1999 { 0x70, 0x8b },
2000 { 0x71, 0x00 },
2001 { 0x72, 0x14 },
2002 { 0x73, 0x54 },
2003 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2004 { 0x75, 0x0e },
2005 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2006 { 0x77, 0xff },
2007 { 0x78, 0x80 },
2008 { 0x79, 0x80 },
2009 { 0x7a, 0x80 },
2010 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2011 { 0x7c, 0x00 },
2012 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2013 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2014 { 0x7f, 0xfb },
2015 { 0x80, 0x28 },
2016 { 0x81, 0x00 },
2017 { 0x82, 0x23 },
2018 { 0x83, 0x0b },
2019 { 0x84, 0x00 },
2020 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2021 { 0x86, 0xc9 },
2022 { 0x87, 0x00 },
2023 { 0x88, 0x00 },
2024 { 0x89, 0x01 },
2025 { 0x12, 0x20 },
2026 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2029 static unsigned char ov7670_abs_to_sm(unsigned char v)
2031 if (v > 127)
2032 return v & 0x7f;
2033 return (128 - v) | 0x80;
2036 /* Write a OV519 register */
2037 static void reg_w(struct sd *sd, u16 index, u16 value)
2039 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2040 int ret, req = 0;
2042 if (sd->gspca_dev.usb_err < 0)
2043 return;
2045 switch (sd->bridge) {
2046 case BRIDGE_OV511:
2047 case BRIDGE_OV511PLUS:
2048 req = 2;
2049 break;
2050 case BRIDGE_OVFX2:
2051 req = 0x0a;
2052 /* fall through */
2053 case BRIDGE_W9968CF:
2054 PDEBUG(D_USBO, "SET %02x %04x %04x",
2055 req, value, index);
2056 ret = usb_control_msg(sd->gspca_dev.dev,
2057 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2058 req,
2059 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2060 value, index, NULL, 0, 500);
2061 goto leave;
2062 default:
2063 req = 1;
2066 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2067 req, index, value);
2068 sd->gspca_dev.usb_buf[0] = value;
2069 ret = usb_control_msg(sd->gspca_dev.dev,
2070 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2071 req,
2072 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2073 0, index,
2074 sd->gspca_dev.usb_buf, 1, 500);
2075 leave:
2076 if (ret < 0) {
2077 PERR("reg_w %02x failed %d\n", index, ret);
2078 sd->gspca_dev.usb_err = ret;
2079 return;
2083 /* Read from a OV519 register, note not valid for the w9968cf!! */
2084 /* returns: negative is error, pos or zero is data */
2085 static int reg_r(struct sd *sd, u16 index)
2087 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2088 int ret;
2089 int req;
2091 if (sd->gspca_dev.usb_err < 0)
2092 return -1;
2094 switch (sd->bridge) {
2095 case BRIDGE_OV511:
2096 case BRIDGE_OV511PLUS:
2097 req = 3;
2098 break;
2099 case BRIDGE_OVFX2:
2100 req = 0x0b;
2101 break;
2102 default:
2103 req = 1;
2106 ret = usb_control_msg(sd->gspca_dev.dev,
2107 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2108 req,
2109 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2110 0, index, sd->gspca_dev.usb_buf, 1, 500);
2112 if (ret >= 0) {
2113 ret = sd->gspca_dev.usb_buf[0];
2114 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2115 req, index, ret);
2116 } else {
2117 PERR("reg_r %02x failed %d\n", index, ret);
2118 sd->gspca_dev.usb_err = ret;
2121 return ret;
2124 /* Read 8 values from a OV519 register */
2125 static int reg_r8(struct sd *sd,
2126 u16 index)
2128 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2129 int ret;
2131 if (sd->gspca_dev.usb_err < 0)
2132 return -1;
2134 ret = usb_control_msg(sd->gspca_dev.dev,
2135 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2136 1, /* REQ_IO */
2137 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2138 0, index, sd->gspca_dev.usb_buf, 8, 500);
2140 if (ret >= 0) {
2141 ret = sd->gspca_dev.usb_buf[0];
2142 } else {
2143 PERR("reg_r8 %02x failed %d\n", index, ret);
2144 sd->gspca_dev.usb_err = ret;
2147 return ret;
2151 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2152 * the same position as 1's in "mask" are cleared and set to "value". Bits
2153 * that are in the same position as 0's in "mask" are preserved, regardless
2154 * of their respective state in "value".
2156 static void reg_w_mask(struct sd *sd,
2157 u16 index,
2158 u8 value,
2159 u8 mask)
2161 int ret;
2162 u8 oldval;
2164 if (mask != 0xff) {
2165 value &= mask; /* Enforce mask on value */
2166 ret = reg_r(sd, index);
2167 if (ret < 0)
2168 return;
2170 oldval = ret & ~mask; /* Clear the masked bits */
2171 value |= oldval; /* Set the desired bits */
2173 reg_w(sd, index, value);
2177 * Writes multiple (n) byte value to a single register. Only valid with certain
2178 * registers (0x30 and 0xc4 - 0xce).
2180 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2182 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2183 int ret;
2185 if (sd->gspca_dev.usb_err < 0)
2186 return;
2188 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2190 ret = usb_control_msg(sd->gspca_dev.dev,
2191 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2192 1 /* REG_IO */,
2193 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2194 0, index,
2195 sd->gspca_dev.usb_buf, n, 500);
2196 if (ret < 0) {
2197 PERR("reg_w32 %02x failed %d\n", index, ret);
2198 sd->gspca_dev.usb_err = ret;
2202 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2204 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2205 int rc, retries;
2207 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2209 /* Three byte write cycle */
2210 for (retries = 6; ; ) {
2211 /* Select camera register */
2212 reg_w(sd, R51x_I2C_SADDR_3, reg);
2214 /* Write "value" to I2C data port of OV511 */
2215 reg_w(sd, R51x_I2C_DATA, value);
2217 /* Initiate 3-byte write cycle */
2218 reg_w(sd, R511_I2C_CTL, 0x01);
2220 do {
2221 rc = reg_r(sd, R511_I2C_CTL);
2222 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2224 if (rc < 0)
2225 return;
2227 if ((rc & 2) == 0) /* Ack? */
2228 break;
2229 if (--retries < 0) {
2230 PDEBUG(D_USBO, "i2c write retries exhausted");
2231 return;
2236 static int ov511_i2c_r(struct sd *sd, u8 reg)
2238 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2239 int rc, value, retries;
2241 /* Two byte write cycle */
2242 for (retries = 6; ; ) {
2243 /* Select camera register */
2244 reg_w(sd, R51x_I2C_SADDR_2, reg);
2246 /* Initiate 2-byte write cycle */
2247 reg_w(sd, R511_I2C_CTL, 0x03);
2249 do {
2250 rc = reg_r(sd, R511_I2C_CTL);
2251 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2253 if (rc < 0)
2254 return rc;
2256 if ((rc & 2) == 0) /* Ack? */
2257 break;
2259 /* I2C abort */
2260 reg_w(sd, R511_I2C_CTL, 0x10);
2262 if (--retries < 0) {
2263 PDEBUG(D_USBI, "i2c write retries exhausted");
2264 return -1;
2268 /* Two byte read cycle */
2269 for (retries = 6; ; ) {
2270 /* Initiate 2-byte read cycle */
2271 reg_w(sd, R511_I2C_CTL, 0x05);
2273 do {
2274 rc = reg_r(sd, R511_I2C_CTL);
2275 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2277 if (rc < 0)
2278 return rc;
2280 if ((rc & 2) == 0) /* Ack? */
2281 break;
2283 /* I2C abort */
2284 reg_w(sd, R511_I2C_CTL, 0x10);
2286 if (--retries < 0) {
2287 PDEBUG(D_USBI, "i2c read retries exhausted");
2288 return -1;
2292 value = reg_r(sd, R51x_I2C_DATA);
2294 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2296 /* This is needed to make i2c_w() work */
2297 reg_w(sd, R511_I2C_CTL, 0x05);
2299 return value;
2303 * The OV518 I2C I/O procedure is different, hence, this function.
2304 * This is normally only called from i2c_w(). Note that this function
2305 * always succeeds regardless of whether the sensor is present and working.
2307 static void ov518_i2c_w(struct sd *sd,
2308 u8 reg,
2309 u8 value)
2311 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2313 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2315 /* Select camera register */
2316 reg_w(sd, R51x_I2C_SADDR_3, reg);
2318 /* Write "value" to I2C data port of OV511 */
2319 reg_w(sd, R51x_I2C_DATA, value);
2321 /* Initiate 3-byte write cycle */
2322 reg_w(sd, R518_I2C_CTL, 0x01);
2324 /* wait for write complete */
2325 msleep(4);
2326 reg_r8(sd, R518_I2C_CTL);
2330 * returns: negative is error, pos or zero is data
2332 * The OV518 I2C I/O procedure is different, hence, this function.
2333 * This is normally only called from i2c_r(). Note that this function
2334 * always succeeds regardless of whether the sensor is present and working.
2336 static int ov518_i2c_r(struct sd *sd, u8 reg)
2338 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2339 int value;
2341 /* Select camera register */
2342 reg_w(sd, R51x_I2C_SADDR_2, reg);
2344 /* Initiate 2-byte write cycle */
2345 reg_w(sd, R518_I2C_CTL, 0x03);
2346 reg_r8(sd, R518_I2C_CTL);
2348 /* Initiate 2-byte read cycle */
2349 reg_w(sd, R518_I2C_CTL, 0x05);
2350 reg_r8(sd, R518_I2C_CTL);
2352 value = reg_r(sd, R51x_I2C_DATA);
2353 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2354 return value;
2357 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2359 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2360 int ret;
2362 if (sd->gspca_dev.usb_err < 0)
2363 return;
2365 ret = usb_control_msg(sd->gspca_dev.dev,
2366 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2367 0x02,
2368 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2369 (u16) value, (u16) reg, NULL, 0, 500);
2371 if (ret < 0) {
2372 PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2373 sd->gspca_dev.usb_err = ret;
2376 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2379 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2381 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2382 int ret;
2384 if (sd->gspca_dev.usb_err < 0)
2385 return -1;
2387 ret = usb_control_msg(sd->gspca_dev.dev,
2388 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2389 0x03,
2390 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2391 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2393 if (ret >= 0) {
2394 ret = sd->gspca_dev.usb_buf[0];
2395 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2396 } else {
2397 PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2398 sd->gspca_dev.usb_err = ret;
2401 return ret;
2404 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2406 if (sd->sensor_reg_cache[reg] == value)
2407 return;
2409 switch (sd->bridge) {
2410 case BRIDGE_OV511:
2411 case BRIDGE_OV511PLUS:
2412 ov511_i2c_w(sd, reg, value);
2413 break;
2414 case BRIDGE_OV518:
2415 case BRIDGE_OV518PLUS:
2416 case BRIDGE_OV519:
2417 ov518_i2c_w(sd, reg, value);
2418 break;
2419 case BRIDGE_OVFX2:
2420 ovfx2_i2c_w(sd, reg, value);
2421 break;
2422 case BRIDGE_W9968CF:
2423 w9968cf_i2c_w(sd, reg, value);
2424 break;
2427 if (sd->gspca_dev.usb_err >= 0) {
2428 /* Up on sensor reset empty the register cache */
2429 if (reg == 0x12 && (value & 0x80))
2430 memset(sd->sensor_reg_cache, -1,
2431 sizeof(sd->sensor_reg_cache));
2432 else
2433 sd->sensor_reg_cache[reg] = value;
2437 static int i2c_r(struct sd *sd, u8 reg)
2439 int ret = -1;
2441 if (sd->sensor_reg_cache[reg] != -1)
2442 return sd->sensor_reg_cache[reg];
2444 switch (sd->bridge) {
2445 case BRIDGE_OV511:
2446 case BRIDGE_OV511PLUS:
2447 ret = ov511_i2c_r(sd, reg);
2448 break;
2449 case BRIDGE_OV518:
2450 case BRIDGE_OV518PLUS:
2451 case BRIDGE_OV519:
2452 ret = ov518_i2c_r(sd, reg);
2453 break;
2454 case BRIDGE_OVFX2:
2455 ret = ovfx2_i2c_r(sd, reg);
2456 break;
2457 case BRIDGE_W9968CF:
2458 ret = w9968cf_i2c_r(sd, reg);
2459 break;
2462 if (ret >= 0)
2463 sd->sensor_reg_cache[reg] = ret;
2465 return ret;
2468 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2469 * the same position as 1's in "mask" are cleared and set to "value". Bits
2470 * that are in the same position as 0's in "mask" are preserved, regardless
2471 * of their respective state in "value".
2473 static void i2c_w_mask(struct sd *sd,
2474 u8 reg,
2475 u8 value,
2476 u8 mask)
2478 int rc;
2479 u8 oldval;
2481 value &= mask; /* Enforce mask on value */
2482 rc = i2c_r(sd, reg);
2483 if (rc < 0)
2484 return;
2485 oldval = rc & ~mask; /* Clear the masked bits */
2486 value |= oldval; /* Set the desired bits */
2487 i2c_w(sd, reg, value);
2490 /* Temporarily stops OV511 from functioning. Must do this before changing
2491 * registers while the camera is streaming */
2492 static inline void ov51x_stop(struct sd *sd)
2494 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2496 PDEBUG(D_STREAM, "stopping");
2497 sd->stopped = 1;
2498 switch (sd->bridge) {
2499 case BRIDGE_OV511:
2500 case BRIDGE_OV511PLUS:
2501 reg_w(sd, R51x_SYS_RESET, 0x3d);
2502 break;
2503 case BRIDGE_OV518:
2504 case BRIDGE_OV518PLUS:
2505 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2506 break;
2507 case BRIDGE_OV519:
2508 reg_w(sd, OV519_R51_RESET1, 0x0f);
2509 reg_w(sd, OV519_R51_RESET1, 0x00);
2510 reg_w(sd, 0x22, 0x00); /* FRAR */
2511 break;
2512 case BRIDGE_OVFX2:
2513 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2514 break;
2515 case BRIDGE_W9968CF:
2516 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2517 break;
2521 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2522 * actually stopped (for performance). */
2523 static inline void ov51x_restart(struct sd *sd)
2525 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2527 PDEBUG(D_STREAM, "restarting");
2528 if (!sd->stopped)
2529 return;
2530 sd->stopped = 0;
2532 /* Reinitialize the stream */
2533 switch (sd->bridge) {
2534 case BRIDGE_OV511:
2535 case BRIDGE_OV511PLUS:
2536 reg_w(sd, R51x_SYS_RESET, 0x00);
2537 break;
2538 case BRIDGE_OV518:
2539 case BRIDGE_OV518PLUS:
2540 reg_w(sd, 0x2f, 0x80);
2541 reg_w(sd, R51x_SYS_RESET, 0x00);
2542 break;
2543 case BRIDGE_OV519:
2544 reg_w(sd, OV519_R51_RESET1, 0x0f);
2545 reg_w(sd, OV519_R51_RESET1, 0x00);
2546 reg_w(sd, 0x22, 0x1d); /* FRAR */
2547 break;
2548 case BRIDGE_OVFX2:
2549 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2550 break;
2551 case BRIDGE_W9968CF:
2552 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2553 break;
2557 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2559 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2560 * is synchronized. Returns <0 on failure.
2562 static int init_ov_sensor(struct sd *sd, u8 slave)
2564 int i;
2565 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2567 ov51x_set_slave_ids(sd, slave);
2569 /* Reset the sensor */
2570 i2c_w(sd, 0x12, 0x80);
2572 /* Wait for it to initialize */
2573 msleep(150);
2575 for (i = 0; i < i2c_detect_tries; i++) {
2576 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2577 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2578 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2579 return 0;
2582 /* Reset the sensor */
2583 i2c_w(sd, 0x12, 0x80);
2585 /* Wait for it to initialize */
2586 msleep(150);
2588 /* Dummy read to sync I2C */
2589 if (i2c_r(sd, 0x00) < 0)
2590 return -1;
2592 return -1;
2595 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2596 * and the read slave will be set to (slave + 1).
2597 * This should not be called from outside the i2c I/O functions.
2598 * Sets I2C read and write slave IDs. Returns <0 for error
2600 static void ov51x_set_slave_ids(struct sd *sd,
2601 u8 slave)
2603 switch (sd->bridge) {
2604 case BRIDGE_OVFX2:
2605 reg_w(sd, OVFX2_I2C_ADDR, slave);
2606 return;
2607 case BRIDGE_W9968CF:
2608 sd->sensor_addr = slave;
2609 return;
2612 reg_w(sd, R51x_I2C_W_SID, slave);
2613 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2616 static void write_regvals(struct sd *sd,
2617 const struct ov_regvals *regvals,
2618 int n)
2620 while (--n >= 0) {
2621 reg_w(sd, regvals->reg, regvals->val);
2622 regvals++;
2626 static void write_i2c_regvals(struct sd *sd,
2627 const struct ov_i2c_regvals *regvals,
2628 int n)
2630 while (--n >= 0) {
2631 i2c_w(sd, regvals->reg, regvals->val);
2632 regvals++;
2636 /****************************************************************************
2638 * OV511 and sensor configuration
2640 ***************************************************************************/
2642 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2643 static void ov_hires_configure(struct sd *sd)
2645 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2646 int high, low;
2648 if (sd->bridge != BRIDGE_OVFX2) {
2649 PERR("error hires sensors only supported with ovfx2\n");
2650 return;
2653 PDEBUG(D_PROBE, "starting ov hires configuration");
2655 /* Detect sensor (sub)type */
2656 high = i2c_r(sd, 0x0a);
2657 low = i2c_r(sd, 0x0b);
2658 /* info("%x, %x", high, low); */
2659 switch (high) {
2660 case 0x96:
2661 switch (low) {
2662 case 0x40:
2663 PDEBUG(D_PROBE, "Sensor is a OV2610");
2664 sd->sensor = SEN_OV2610;
2665 return;
2666 case 0x41:
2667 PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2668 sd->sensor = SEN_OV2610AE;
2669 return;
2670 case 0xb1:
2671 PDEBUG(D_PROBE, "Sensor is a OV9600");
2672 sd->sensor = SEN_OV9600;
2673 return;
2675 break;
2676 case 0x36:
2677 if ((low & 0x0f) == 0x00) {
2678 PDEBUG(D_PROBE, "Sensor is a OV3610");
2679 sd->sensor = SEN_OV3610;
2680 return;
2682 break;
2684 PERR("Error unknown sensor type: %02x%02x\n", high, low);
2687 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2688 * the same register settings as the OV8610, since they are very similar.
2690 static void ov8xx0_configure(struct sd *sd)
2692 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2693 int rc;
2695 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2697 /* Detect sensor (sub)type */
2698 rc = i2c_r(sd, OV7610_REG_COM_I);
2699 if (rc < 0) {
2700 PERR("Error detecting sensor type");
2701 return;
2703 if ((rc & 3) == 1)
2704 sd->sensor = SEN_OV8610;
2705 else
2706 PERR("Unknown image sensor version: %d\n", rc & 3);
2709 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2710 * the same register settings as the OV7610, since they are very similar.
2712 static void ov7xx0_configure(struct sd *sd)
2714 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2715 int rc, high, low;
2717 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2719 /* Detect sensor (sub)type */
2720 rc = i2c_r(sd, OV7610_REG_COM_I);
2722 /* add OV7670 here
2723 * it appears to be wrongly detected as a 7610 by default */
2724 if (rc < 0) {
2725 PERR("Error detecting sensor type\n");
2726 return;
2728 if ((rc & 3) == 3) {
2729 /* quick hack to make OV7670s work */
2730 high = i2c_r(sd, 0x0a);
2731 low = i2c_r(sd, 0x0b);
2732 /* info("%x, %x", high, low); */
2733 if (high == 0x76 && (low & 0xf0) == 0x70) {
2734 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2735 sd->sensor = SEN_OV7670;
2736 } else {
2737 PDEBUG(D_PROBE, "Sensor is an OV7610");
2738 sd->sensor = SEN_OV7610;
2740 } else if ((rc & 3) == 1) {
2741 /* I don't know what's different about the 76BE yet. */
2742 if (i2c_r(sd, 0x15) & 1) {
2743 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2744 sd->sensor = SEN_OV7620AE;
2745 } else {
2746 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2747 sd->sensor = SEN_OV76BE;
2749 } else if ((rc & 3) == 0) {
2750 /* try to read product id registers */
2751 high = i2c_r(sd, 0x0a);
2752 if (high < 0) {
2753 PERR("Error detecting camera chip PID\n");
2754 return;
2756 low = i2c_r(sd, 0x0b);
2757 if (low < 0) {
2758 PERR("Error detecting camera chip VER\n");
2759 return;
2761 if (high == 0x76) {
2762 switch (low) {
2763 case 0x30:
2764 PERR("Sensor is an OV7630/OV7635\n");
2765 PERR("7630 is not supported by this driver\n");
2766 return;
2767 case 0x40:
2768 PDEBUG(D_PROBE, "Sensor is an OV7645");
2769 sd->sensor = SEN_OV7640; /* FIXME */
2770 break;
2771 case 0x45:
2772 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2773 sd->sensor = SEN_OV7640; /* FIXME */
2774 break;
2775 case 0x48:
2776 PDEBUG(D_PROBE, "Sensor is an OV7648");
2777 sd->sensor = SEN_OV7648;
2778 break;
2779 case 0x60:
2780 PDEBUG(D_PROBE, "Sensor is a OV7660");
2781 sd->sensor = SEN_OV7660;
2782 break;
2783 default:
2784 PERR("Unknown sensor: 0x76%02x\n", low);
2785 return;
2787 } else {
2788 PDEBUG(D_PROBE, "Sensor is an OV7620");
2789 sd->sensor = SEN_OV7620;
2791 } else {
2792 PERR("Unknown image sensor version: %d\n", rc & 3);
2796 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2797 static void ov6xx0_configure(struct sd *sd)
2799 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2800 int rc;
2802 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2804 /* Detect sensor (sub)type */
2805 rc = i2c_r(sd, OV7610_REG_COM_I);
2806 if (rc < 0) {
2807 PERR("Error detecting sensor type\n");
2808 return;
2811 /* Ugh. The first two bits are the version bits, but
2812 * the entire register value must be used. I guess OVT
2813 * underestimated how many variants they would make. */
2814 switch (rc) {
2815 case 0x00:
2816 sd->sensor = SEN_OV6630;
2817 pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2818 break;
2819 case 0x01:
2820 sd->sensor = SEN_OV6620;
2821 PDEBUG(D_PROBE, "Sensor is an OV6620");
2822 break;
2823 case 0x02:
2824 sd->sensor = SEN_OV6630;
2825 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2826 break;
2827 case 0x03:
2828 sd->sensor = SEN_OV66308AF;
2829 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2830 break;
2831 case 0x90:
2832 sd->sensor = SEN_OV6630;
2833 pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2834 break;
2835 default:
2836 PERR("FATAL: Unknown sensor version: 0x%02x\n", rc);
2837 return;
2840 /* Set sensor-specific vars */
2841 sd->sif = 1;
2844 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2845 static void ov51x_led_control(struct sd *sd, int on)
2847 if (sd->invert_led)
2848 on = !on;
2850 switch (sd->bridge) {
2851 /* OV511 has no LED control */
2852 case BRIDGE_OV511PLUS:
2853 reg_w(sd, R511_SYS_LED_CTL, on);
2854 break;
2855 case BRIDGE_OV518:
2856 case BRIDGE_OV518PLUS:
2857 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2858 break;
2859 case BRIDGE_OV519:
2860 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2861 break;
2865 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2867 struct sd *sd = (struct sd *) gspca_dev;
2869 if (!sd->snapshot_needs_reset)
2870 return;
2872 /* Note it is important that we clear sd->snapshot_needs_reset,
2873 before actually clearing the snapshot state in the bridge
2874 otherwise we might race with the pkt_scan interrupt handler */
2875 sd->snapshot_needs_reset = 0;
2877 switch (sd->bridge) {
2878 case BRIDGE_OV511:
2879 case BRIDGE_OV511PLUS:
2880 reg_w(sd, R51x_SYS_SNAP, 0x02);
2881 reg_w(sd, R51x_SYS_SNAP, 0x00);
2882 break;
2883 case BRIDGE_OV518:
2884 case BRIDGE_OV518PLUS:
2885 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2886 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2887 break;
2888 case BRIDGE_OV519:
2889 reg_w(sd, R51x_SYS_RESET, 0x40);
2890 reg_w(sd, R51x_SYS_RESET, 0x00);
2891 break;
2895 static void ov51x_upload_quan_tables(struct sd *sd)
2897 const unsigned char yQuanTable511[] = {
2898 0, 1, 1, 2, 2, 3, 3, 4,
2899 1, 1, 1, 2, 2, 3, 4, 4,
2900 1, 1, 2, 2, 3, 4, 4, 4,
2901 2, 2, 2, 3, 4, 4, 4, 4,
2902 2, 2, 3, 4, 4, 5, 5, 5,
2903 3, 3, 4, 4, 5, 5, 5, 5,
2904 3, 4, 4, 4, 5, 5, 5, 5,
2905 4, 4, 4, 4, 5, 5, 5, 5
2908 const unsigned char uvQuanTable511[] = {
2909 0, 2, 2, 3, 4, 4, 4, 4,
2910 2, 2, 2, 4, 4, 4, 4, 4,
2911 2, 2, 3, 4, 4, 4, 4, 4,
2912 3, 4, 4, 4, 4, 4, 4, 4,
2913 4, 4, 4, 4, 4, 4, 4, 4,
2914 4, 4, 4, 4, 4, 4, 4, 4,
2915 4, 4, 4, 4, 4, 4, 4, 4,
2916 4, 4, 4, 4, 4, 4, 4, 4
2919 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2920 const unsigned char yQuanTable518[] = {
2921 5, 4, 5, 6, 6, 7, 7, 7,
2922 5, 5, 5, 5, 6, 7, 7, 7,
2923 6, 6, 6, 6, 7, 7, 7, 8,
2924 7, 7, 6, 7, 7, 7, 8, 8
2926 const unsigned char uvQuanTable518[] = {
2927 6, 6, 6, 7, 7, 7, 7, 7,
2928 6, 6, 6, 7, 7, 7, 7, 7,
2929 6, 6, 6, 7, 7, 7, 7, 8,
2930 7, 7, 7, 7, 7, 7, 8, 8
2933 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2934 const unsigned char *pYTable, *pUVTable;
2935 unsigned char val0, val1;
2936 int i, size, reg = R51x_COMP_LUT_BEGIN;
2938 PDEBUG(D_PROBE, "Uploading quantization tables");
2940 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2941 pYTable = yQuanTable511;
2942 pUVTable = uvQuanTable511;
2943 size = 32;
2944 } else {
2945 pYTable = yQuanTable518;
2946 pUVTable = uvQuanTable518;
2947 size = 16;
2950 for (i = 0; i < size; i++) {
2951 val0 = *pYTable++;
2952 val1 = *pYTable++;
2953 val0 &= 0x0f;
2954 val1 &= 0x0f;
2955 val0 |= val1 << 4;
2956 reg_w(sd, reg, val0);
2958 val0 = *pUVTable++;
2959 val1 = *pUVTable++;
2960 val0 &= 0x0f;
2961 val1 &= 0x0f;
2962 val0 |= val1 << 4;
2963 reg_w(sd, reg + size, val0);
2965 reg++;
2969 /* This initializes the OV511/OV511+ and the sensor */
2970 static void ov511_configure(struct gspca_dev *gspca_dev)
2972 struct sd *sd = (struct sd *) gspca_dev;
2974 /* For 511 and 511+ */
2975 const struct ov_regvals init_511[] = {
2976 { R51x_SYS_RESET, 0x7f },
2977 { R51x_SYS_INIT, 0x01 },
2978 { R51x_SYS_RESET, 0x7f },
2979 { R51x_SYS_INIT, 0x01 },
2980 { R51x_SYS_RESET, 0x3f },
2981 { R51x_SYS_INIT, 0x01 },
2982 { R51x_SYS_RESET, 0x3d },
2985 const struct ov_regvals norm_511[] = {
2986 { R511_DRAM_FLOW_CTL, 0x01 },
2987 { R51x_SYS_SNAP, 0x00 },
2988 { R51x_SYS_SNAP, 0x02 },
2989 { R51x_SYS_SNAP, 0x00 },
2990 { R511_FIFO_OPTS, 0x1f },
2991 { R511_COMP_EN, 0x00 },
2992 { R511_COMP_LUT_EN, 0x03 },
2995 const struct ov_regvals norm_511_p[] = {
2996 { R511_DRAM_FLOW_CTL, 0xff },
2997 { R51x_SYS_SNAP, 0x00 },
2998 { R51x_SYS_SNAP, 0x02 },
2999 { R51x_SYS_SNAP, 0x00 },
3000 { R511_FIFO_OPTS, 0xff },
3001 { R511_COMP_EN, 0x00 },
3002 { R511_COMP_LUT_EN, 0x03 },
3005 const struct ov_regvals compress_511[] = {
3006 { 0x70, 0x1f },
3007 { 0x71, 0x05 },
3008 { 0x72, 0x06 },
3009 { 0x73, 0x06 },
3010 { 0x74, 0x14 },
3011 { 0x75, 0x03 },
3012 { 0x76, 0x04 },
3013 { 0x77, 0x04 },
3016 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3018 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3020 switch (sd->bridge) {
3021 case BRIDGE_OV511:
3022 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3023 break;
3024 case BRIDGE_OV511PLUS:
3025 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3026 break;
3029 /* Init compression */
3030 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3032 ov51x_upload_quan_tables(sd);
3035 /* This initializes the OV518/OV518+ and the sensor */
3036 static void ov518_configure(struct gspca_dev *gspca_dev)
3038 struct sd *sd = (struct sd *) gspca_dev;
3040 /* For 518 and 518+ */
3041 const struct ov_regvals init_518[] = {
3042 { R51x_SYS_RESET, 0x40 },
3043 { R51x_SYS_INIT, 0xe1 },
3044 { R51x_SYS_RESET, 0x3e },
3045 { R51x_SYS_INIT, 0xe1 },
3046 { R51x_SYS_RESET, 0x00 },
3047 { R51x_SYS_INIT, 0xe1 },
3048 { 0x46, 0x00 },
3049 { 0x5d, 0x03 },
3052 const struct ov_regvals norm_518[] = {
3053 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3054 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3055 { 0x31, 0x0f },
3056 { 0x5d, 0x03 },
3057 { 0x24, 0x9f },
3058 { 0x25, 0x90 },
3059 { 0x20, 0x00 },
3060 { 0x51, 0x04 },
3061 { 0x71, 0x19 },
3062 { 0x2f, 0x80 },
3065 const struct ov_regvals norm_518_p[] = {
3066 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3067 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3068 { 0x31, 0x0f },
3069 { 0x5d, 0x03 },
3070 { 0x24, 0x9f },
3071 { 0x25, 0x90 },
3072 { 0x20, 0x60 },
3073 { 0x51, 0x02 },
3074 { 0x71, 0x19 },
3075 { 0x40, 0xff },
3076 { 0x41, 0x42 },
3077 { 0x46, 0x00 },
3078 { 0x33, 0x04 },
3079 { 0x21, 0x19 },
3080 { 0x3f, 0x10 },
3081 { 0x2f, 0x80 },
3084 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3085 sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3086 PDEBUG(D_PROBE, "Device revision %d", sd->revision);
3088 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3090 /* Set LED GPIO pin to output mode */
3091 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3093 switch (sd->bridge) {
3094 case BRIDGE_OV518:
3095 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3096 break;
3097 case BRIDGE_OV518PLUS:
3098 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3099 break;
3102 ov51x_upload_quan_tables(sd);
3104 reg_w(sd, 0x2f, 0x80);
3107 static void ov519_configure(struct sd *sd)
3109 static const struct ov_regvals init_519[] = {
3110 { 0x5a, 0x6d }, /* EnableSystem */
3111 { 0x53, 0x9b }, /* don't enable the microcontroller */
3112 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3113 { 0x5d, 0x03 },
3114 { 0x49, 0x01 },
3115 { 0x48, 0x00 },
3116 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3117 * detection will fail. This deserves further investigation. */
3118 { OV519_GPIO_IO_CTRL0, 0xee },
3119 { OV519_R51_RESET1, 0x0f },
3120 { OV519_R51_RESET1, 0x00 },
3121 { 0x22, 0x00 },
3122 /* windows reads 0x55 at this point*/
3125 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3128 static void ovfx2_configure(struct sd *sd)
3130 static const struct ov_regvals init_fx2[] = {
3131 { 0x00, 0x60 },
3132 { 0x02, 0x01 },
3133 { 0x0f, 0x1d },
3134 { 0xe9, 0x82 },
3135 { 0xea, 0xc7 },
3136 { 0xeb, 0x10 },
3137 { 0xec, 0xf6 },
3140 sd->stopped = 1;
3142 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3145 /* set the mode */
3146 /* This function works for ov7660 only */
3147 static void ov519_set_mode(struct sd *sd)
3149 static const struct ov_regvals bridge_ov7660[2][10] = {
3150 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3151 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3152 {0x25, 0x01}, {0x26, 0x00}},
3153 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3154 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3155 {0x25, 0x03}, {0x26, 0x00}}
3157 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3158 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3159 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3161 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3162 {OV7670_R17_HSTART, 0x13},
3163 {OV7670_R18_HSTOP, 0x01},
3164 {OV7670_R32_HREF, 0x92},
3165 {OV7670_R19_VSTART, 0x02},
3166 {OV7670_R1A_VSTOP, 0x7a},
3167 {OV7670_R03_VREF, 0x00},
3168 /* {0x33, 0x00}, */
3169 /* {0x34, 0x07}, */
3170 /* {0x36, 0x00}, */
3171 /* {0x6b, 0x0a}, */
3174 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3175 ARRAY_SIZE(bridge_ov7660[0]));
3176 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3177 ARRAY_SIZE(sensor_ov7660[0]));
3178 write_i2c_regvals(sd, sensor_ov7660_2,
3179 ARRAY_SIZE(sensor_ov7660_2));
3182 /* set the frame rate */
3183 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3184 static void ov519_set_fr(struct sd *sd)
3186 int fr;
3187 u8 clock;
3188 /* frame rate table with indices:
3189 * - mode = 0: 320x240, 1: 640x480
3190 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3191 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3193 static const u8 fr_tb[2][6][3] = {
3194 {{0x04, 0xff, 0x00},
3195 {0x04, 0x1f, 0x00},
3196 {0x04, 0x1b, 0x00},
3197 {0x04, 0x15, 0x00},
3198 {0x04, 0x09, 0x00},
3199 {0x04, 0x01, 0x00}},
3200 {{0x0c, 0xff, 0x00},
3201 {0x0c, 0x1f, 0x00},
3202 {0x0c, 0x1b, 0x00},
3203 {0x04, 0xff, 0x01},
3204 {0x04, 0x1f, 0x01},
3205 {0x04, 0x1b, 0x01}},
3208 if (frame_rate > 0)
3209 sd->frame_rate = frame_rate;
3210 if (sd->frame_rate >= 30)
3211 fr = 0;
3212 else if (sd->frame_rate >= 25)
3213 fr = 1;
3214 else if (sd->frame_rate >= 20)
3215 fr = 2;
3216 else if (sd->frame_rate >= 15)
3217 fr = 3;
3218 else if (sd->frame_rate >= 10)
3219 fr = 4;
3220 else
3221 fr = 5;
3222 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3223 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3224 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3225 if (sd->sensor == SEN_OV7660)
3226 clock |= 0x80; /* enable double clock */
3227 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3230 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3232 struct sd *sd = (struct sd *) gspca_dev;
3234 i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3237 /* this function is called at probe time */
3238 static int sd_config(struct gspca_dev *gspca_dev,
3239 const struct usb_device_id *id)
3241 struct sd *sd = (struct sd *) gspca_dev;
3242 struct cam *cam = &gspca_dev->cam;
3244 sd->bridge = id->driver_info & BRIDGE_MASK;
3245 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3247 switch (sd->bridge) {
3248 case BRIDGE_OV511:
3249 case BRIDGE_OV511PLUS:
3250 cam->cam_mode = ov511_vga_mode;
3251 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3252 break;
3253 case BRIDGE_OV518:
3254 case BRIDGE_OV518PLUS:
3255 cam->cam_mode = ov518_vga_mode;
3256 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3257 break;
3258 case BRIDGE_OV519:
3259 cam->cam_mode = ov519_vga_mode;
3260 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3261 break;
3262 case BRIDGE_OVFX2:
3263 cam->cam_mode = ov519_vga_mode;
3264 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3265 cam->bulk_size = OVFX2_BULK_SIZE;
3266 cam->bulk_nurbs = MAX_NURBS;
3267 cam->bulk = 1;
3268 break;
3269 case BRIDGE_W9968CF:
3270 cam->cam_mode = w9968cf_vga_mode;
3271 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3272 break;
3275 sd->frame_rate = 15;
3277 return 0;
3280 /* this function is called at probe and resume time */
3281 static int sd_init(struct gspca_dev *gspca_dev)
3283 struct sd *sd = (struct sd *) gspca_dev;
3284 struct cam *cam = &gspca_dev->cam;
3286 switch (sd->bridge) {
3287 case BRIDGE_OV511:
3288 case BRIDGE_OV511PLUS:
3289 ov511_configure(gspca_dev);
3290 break;
3291 case BRIDGE_OV518:
3292 case BRIDGE_OV518PLUS:
3293 ov518_configure(gspca_dev);
3294 break;
3295 case BRIDGE_OV519:
3296 ov519_configure(sd);
3297 break;
3298 case BRIDGE_OVFX2:
3299 ovfx2_configure(sd);
3300 break;
3301 case BRIDGE_W9968CF:
3302 w9968cf_configure(sd);
3303 break;
3306 /* The OV519 must be more aggressive about sensor detection since
3307 * I2C write will never fail if the sensor is not present. We have
3308 * to try to initialize the sensor to detect its presence */
3309 sd->sensor = -1;
3311 /* Test for 76xx */
3312 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3313 ov7xx0_configure(sd);
3315 /* Test for 6xx0 */
3316 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3317 ov6xx0_configure(sd);
3319 /* Test for 8xx0 */
3320 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3321 ov8xx0_configure(sd);
3323 /* Test for 3xxx / 2xxx */
3324 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3325 ov_hires_configure(sd);
3326 } else {
3327 PERR("Can't determine sensor slave IDs\n");
3328 goto error;
3331 if (sd->sensor < 0)
3332 goto error;
3334 ov51x_led_control(sd, 0); /* turn LED off */
3336 switch (sd->bridge) {
3337 case BRIDGE_OV511:
3338 case BRIDGE_OV511PLUS:
3339 if (sd->sif) {
3340 cam->cam_mode = ov511_sif_mode;
3341 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3343 break;
3344 case BRIDGE_OV518:
3345 case BRIDGE_OV518PLUS:
3346 if (sd->sif) {
3347 cam->cam_mode = ov518_sif_mode;
3348 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3350 break;
3351 case BRIDGE_OV519:
3352 if (sd->sif) {
3353 cam->cam_mode = ov519_sif_mode;
3354 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3356 break;
3357 case BRIDGE_OVFX2:
3358 switch (sd->sensor) {
3359 case SEN_OV2610:
3360 case SEN_OV2610AE:
3361 cam->cam_mode = ovfx2_ov2610_mode;
3362 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3363 break;
3364 case SEN_OV3610:
3365 cam->cam_mode = ovfx2_ov3610_mode;
3366 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3367 break;
3368 case SEN_OV9600:
3369 cam->cam_mode = ovfx2_ov9600_mode;
3370 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3371 break;
3372 default:
3373 if (sd->sif) {
3374 cam->cam_mode = ov519_sif_mode;
3375 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3377 break;
3379 break;
3380 case BRIDGE_W9968CF:
3381 if (sd->sif)
3382 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3384 /* w9968cf needs initialisation once the sensor is known */
3385 w9968cf_init(sd);
3386 break;
3389 /* initialize the sensor */
3390 switch (sd->sensor) {
3391 case SEN_OV2610:
3392 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3394 /* Enable autogain, autoexpo, awb, bandfilter */
3395 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3396 break;
3397 case SEN_OV2610AE:
3398 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3400 /* enable autoexpo */
3401 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3402 break;
3403 case SEN_OV3610:
3404 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3406 /* Enable autogain, autoexpo, awb, bandfilter */
3407 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3408 break;
3409 case SEN_OV6620:
3410 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3411 break;
3412 case SEN_OV6630:
3413 case SEN_OV66308AF:
3414 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3415 break;
3416 default:
3417 /* case SEN_OV7610: */
3418 /* case SEN_OV76BE: */
3419 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3420 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3421 break;
3422 case SEN_OV7620:
3423 case SEN_OV7620AE:
3424 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3425 break;
3426 case SEN_OV7640:
3427 case SEN_OV7648:
3428 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3429 break;
3430 case SEN_OV7660:
3431 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3432 msleep(14);
3433 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3434 write_regvals(sd, init_519_ov7660,
3435 ARRAY_SIZE(init_519_ov7660));
3436 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3437 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3438 ov519_set_mode(sd);
3439 ov519_set_fr(sd);
3440 sd_reset_snapshot(gspca_dev);
3441 ov51x_restart(sd);
3442 ov51x_stop(sd); /* not in win traces */
3443 ov51x_led_control(sd, 0);
3444 break;
3445 case SEN_OV7670:
3446 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3447 break;
3448 case SEN_OV8610:
3449 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3450 break;
3451 case SEN_OV9600:
3452 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3454 /* enable autoexpo */
3455 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3456 break;
3458 return gspca_dev->usb_err;
3459 error:
3460 PERR("OV519 Config failed");
3461 return -EINVAL;
3464 /* function called at start time before URB creation */
3465 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3467 struct sd *sd = (struct sd *) gspca_dev;
3469 switch (sd->bridge) {
3470 case BRIDGE_OVFX2:
3471 if (gspca_dev->pixfmt.width != 800)
3472 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3473 else
3474 gspca_dev->cam.bulk_size = 7 * 4096;
3475 break;
3477 return 0;
3480 /* Set up the OV511/OV511+ with the given image parameters.
3482 * Do not put any sensor-specific code in here (including I2C I/O functions)
3484 static void ov511_mode_init_regs(struct sd *sd)
3486 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3487 int hsegs, vsegs, packet_size, fps, needed;
3488 int interlaced = 0;
3489 struct usb_host_interface *alt;
3490 struct usb_interface *intf;
3492 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3493 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3494 if (!alt) {
3495 PERR("Couldn't get altsetting\n");
3496 sd->gspca_dev.usb_err = -EIO;
3497 return;
3500 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3501 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3503 reg_w(sd, R511_CAM_UV_EN, 0x01);
3504 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3505 reg_w(sd, R511_SNAP_OPTS, 0x03);
3507 /* Here I'm assuming that snapshot size == image size.
3508 * I hope that's always true. --claudio
3510 hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3511 vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3513 reg_w(sd, R511_CAM_PXCNT, hsegs);
3514 reg_w(sd, R511_CAM_LNCNT, vsegs);
3515 reg_w(sd, R511_CAM_PXDIV, 0x00);
3516 reg_w(sd, R511_CAM_LNDIV, 0x00);
3518 /* YUV420, low pass filter on */
3519 reg_w(sd, R511_CAM_OPTS, 0x03);
3521 /* Snapshot additions */
3522 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3523 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3524 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3525 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3527 /******** Set the framerate ********/
3528 if (frame_rate > 0)
3529 sd->frame_rate = frame_rate;
3531 switch (sd->sensor) {
3532 case SEN_OV6620:
3533 /* No framerate control, doesn't like higher rates yet */
3534 sd->clockdiv = 3;
3535 break;
3537 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3538 for more sensors we need to do this for them too */
3539 case SEN_OV7620:
3540 case SEN_OV7620AE:
3541 case SEN_OV7640:
3542 case SEN_OV7648:
3543 case SEN_OV76BE:
3544 if (sd->gspca_dev.pixfmt.width == 320)
3545 interlaced = 1;
3546 /* Fall through */
3547 case SEN_OV6630:
3548 case SEN_OV7610:
3549 case SEN_OV7670:
3550 switch (sd->frame_rate) {
3551 case 30:
3552 case 25:
3553 /* Not enough bandwidth to do 640x480 @ 30 fps */
3554 if (sd->gspca_dev.pixfmt.width != 640) {
3555 sd->clockdiv = 0;
3556 break;
3558 /* Fall through for 640x480 case */
3559 default:
3560 /* case 20: */
3561 /* case 15: */
3562 sd->clockdiv = 1;
3563 break;
3564 case 10:
3565 sd->clockdiv = 2;
3566 break;
3567 case 5:
3568 sd->clockdiv = 5;
3569 break;
3571 if (interlaced) {
3572 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3573 /* Higher then 10 does not work */
3574 if (sd->clockdiv > 10)
3575 sd->clockdiv = 10;
3577 break;
3579 case SEN_OV8610:
3580 /* No framerate control ?? */
3581 sd->clockdiv = 0;
3582 break;
3585 /* Check if we have enough bandwidth to disable compression */
3586 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3587 needed = fps * sd->gspca_dev.pixfmt.width *
3588 sd->gspca_dev.pixfmt.height * 3 / 2;
3589 /* 1000 isoc packets/sec */
3590 if (needed > 1000 * packet_size) {
3591 /* Enable Y and UV quantization and compression */
3592 reg_w(sd, R511_COMP_EN, 0x07);
3593 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3594 } else {
3595 reg_w(sd, R511_COMP_EN, 0x06);
3596 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3599 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3600 reg_w(sd, R51x_SYS_RESET, 0);
3603 /* Sets up the OV518/OV518+ with the given image parameters
3605 * OV518 needs a completely different approach, until we can figure out what
3606 * the individual registers do. Also, only 15 FPS is supported now.
3608 * Do not put any sensor-specific code in here (including I2C I/O functions)
3610 static void ov518_mode_init_regs(struct sd *sd)
3612 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3613 int hsegs, vsegs, packet_size;
3614 struct usb_host_interface *alt;
3615 struct usb_interface *intf;
3617 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3618 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3619 if (!alt) {
3620 PERR("Couldn't get altsetting\n");
3621 sd->gspca_dev.usb_err = -EIO;
3622 return;
3625 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3626 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3628 /******** Set the mode ********/
3629 reg_w(sd, 0x2b, 0);
3630 reg_w(sd, 0x2c, 0);
3631 reg_w(sd, 0x2d, 0);
3632 reg_w(sd, 0x2e, 0);
3633 reg_w(sd, 0x3b, 0);
3634 reg_w(sd, 0x3c, 0);
3635 reg_w(sd, 0x3d, 0);
3636 reg_w(sd, 0x3e, 0);
3638 if (sd->bridge == BRIDGE_OV518) {
3639 /* Set 8-bit (YVYU) input format */
3640 reg_w_mask(sd, 0x20, 0x08, 0x08);
3642 /* Set 12-bit (4:2:0) output format */
3643 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3644 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3645 } else {
3646 reg_w(sd, 0x28, 0x80);
3647 reg_w(sd, 0x38, 0x80);
3650 hsegs = sd->gspca_dev.pixfmt.width / 16;
3651 vsegs = sd->gspca_dev.pixfmt.height / 4;
3653 reg_w(sd, 0x29, hsegs);
3654 reg_w(sd, 0x2a, vsegs);
3656 reg_w(sd, 0x39, hsegs);
3657 reg_w(sd, 0x3a, vsegs);
3659 /* Windows driver does this here; who knows why */
3660 reg_w(sd, 0x2f, 0x80);
3662 /******** Set the framerate ********/
3663 if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3664 sd->sensor == SEN_OV7620AE)
3665 sd->clockdiv = 0;
3666 else
3667 sd->clockdiv = 1;
3669 /* Mode independent, but framerate dependent, regs */
3670 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3671 reg_w(sd, 0x51, 0x04);
3672 reg_w(sd, 0x22, 0x18);
3673 reg_w(sd, 0x23, 0xff);
3675 if (sd->bridge == BRIDGE_OV518PLUS) {
3676 switch (sd->sensor) {
3677 case SEN_OV7620AE:
3679 * HdG: 640x480 needs special handling on device
3680 * revision 2, we check for device revison > 0 to
3681 * avoid regressions, as we don't know the correct
3682 * thing todo for revision 1.
3684 * Also this likely means we don't need to
3685 * differentiate between the OV7620 and OV7620AE,
3686 * earlier testing hitting this same problem likely
3687 * happened to be with revision < 2 cams using an
3688 * OV7620 and revision 2 cams using an OV7620AE.
3690 if (sd->revision > 0 &&
3691 sd->gspca_dev.pixfmt.width == 640) {
3692 reg_w(sd, 0x20, 0x60);
3693 reg_w(sd, 0x21, 0x1f);
3694 } else {
3695 reg_w(sd, 0x20, 0x00);
3696 reg_w(sd, 0x21, 0x19);
3698 break;
3699 case SEN_OV7620:
3700 reg_w(sd, 0x20, 0x00);
3701 reg_w(sd, 0x21, 0x19);
3702 break;
3703 default:
3704 reg_w(sd, 0x21, 0x19);
3706 } else
3707 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3709 /* FIXME: Sensor-specific */
3710 /* Bit 5 is what matters here. Of course, it is "reserved" */
3711 i2c_w(sd, 0x54, 0x23);
3713 reg_w(sd, 0x2f, 0x80);
3715 if (sd->bridge == BRIDGE_OV518PLUS) {
3716 reg_w(sd, 0x24, 0x94);
3717 reg_w(sd, 0x25, 0x90);
3718 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3719 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3720 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3721 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3722 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3723 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3724 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3725 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3726 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3727 } else {
3728 reg_w(sd, 0x24, 0x9f);
3729 reg_w(sd, 0x25, 0x90);
3730 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3731 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3732 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3733 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3734 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3735 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3736 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3737 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3738 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3741 reg_w(sd, 0x2f, 0x80);
3744 /* Sets up the OV519 with the given image parameters
3746 * OV519 needs a completely different approach, until we can figure out what
3747 * the individual registers do.
3749 * Do not put any sensor-specific code in here (including I2C I/O functions)
3751 static void ov519_mode_init_regs(struct sd *sd)
3753 static const struct ov_regvals mode_init_519_ov7670[] = {
3754 { 0x5d, 0x03 }, /* Turn off suspend mode */
3755 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3756 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3757 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3758 { 0xa3, 0x18 },
3759 { 0xa4, 0x04 },
3760 { 0xa5, 0x28 },
3761 { 0x37, 0x00 }, /* SetUsbInit */
3762 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3763 /* Enable both fields, YUV Input, disable defect comp (why?) */
3764 { 0x20, 0x0c },
3765 { 0x21, 0x38 },
3766 { 0x22, 0x1d },
3767 { 0x17, 0x50 }, /* undocumented */
3768 { 0x37, 0x00 }, /* undocumented */
3769 { 0x40, 0xff }, /* I2C timeout counter */
3770 { 0x46, 0x00 }, /* I2C clock prescaler */
3771 { 0x59, 0x04 }, /* new from windrv 090403 */
3772 { 0xff, 0x00 }, /* undocumented */
3773 /* windows reads 0x55 at this point, why? */
3776 static const struct ov_regvals mode_init_519[] = {
3777 { 0x5d, 0x03 }, /* Turn off suspend mode */
3778 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3779 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3780 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3781 { 0xa3, 0x18 },
3782 { 0xa4, 0x04 },
3783 { 0xa5, 0x28 },
3784 { 0x37, 0x00 }, /* SetUsbInit */
3785 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3786 /* Enable both fields, YUV Input, disable defect comp (why?) */
3787 { 0x22, 0x1d },
3788 { 0x17, 0x50 }, /* undocumented */
3789 { 0x37, 0x00 }, /* undocumented */
3790 { 0x40, 0xff }, /* I2C timeout counter */
3791 { 0x46, 0x00 }, /* I2C clock prescaler */
3792 { 0x59, 0x04 }, /* new from windrv 090403 */
3793 { 0xff, 0x00 }, /* undocumented */
3794 /* windows reads 0x55 at this point, why? */
3797 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3799 /******** Set the mode ********/
3800 switch (sd->sensor) {
3801 default:
3802 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3803 if (sd->sensor == SEN_OV7640 ||
3804 sd->sensor == SEN_OV7648) {
3805 /* Select 8-bit input mode */
3806 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3808 break;
3809 case SEN_OV7660:
3810 return; /* done by ov519_set_mode/fr() */
3811 case SEN_OV7670:
3812 write_regvals(sd, mode_init_519_ov7670,
3813 ARRAY_SIZE(mode_init_519_ov7670));
3814 break;
3817 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.pixfmt.width >> 4);
3818 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.pixfmt.height >> 3);
3819 if (sd->sensor == SEN_OV7670 &&
3820 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3821 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3822 else if (sd->sensor == SEN_OV7648 &&
3823 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3824 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3825 else
3826 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3827 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3828 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3829 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3830 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3831 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3832 reg_w(sd, 0x26, 0x00); /* Undocumented */
3834 /******** Set the framerate ********/
3835 if (frame_rate > 0)
3836 sd->frame_rate = frame_rate;
3838 /* FIXME: These are only valid at the max resolution. */
3839 sd->clockdiv = 0;
3840 switch (sd->sensor) {
3841 case SEN_OV7640:
3842 case SEN_OV7648:
3843 switch (sd->frame_rate) {
3844 default:
3845 /* case 30: */
3846 reg_w(sd, 0xa4, 0x0c);
3847 reg_w(sd, 0x23, 0xff);
3848 break;
3849 case 25:
3850 reg_w(sd, 0xa4, 0x0c);
3851 reg_w(sd, 0x23, 0x1f);
3852 break;
3853 case 20:
3854 reg_w(sd, 0xa4, 0x0c);
3855 reg_w(sd, 0x23, 0x1b);
3856 break;
3857 case 15:
3858 reg_w(sd, 0xa4, 0x04);
3859 reg_w(sd, 0x23, 0xff);
3860 sd->clockdiv = 1;
3861 break;
3862 case 10:
3863 reg_w(sd, 0xa4, 0x04);
3864 reg_w(sd, 0x23, 0x1f);
3865 sd->clockdiv = 1;
3866 break;
3867 case 5:
3868 reg_w(sd, 0xa4, 0x04);
3869 reg_w(sd, 0x23, 0x1b);
3870 sd->clockdiv = 1;
3871 break;
3873 break;
3874 case SEN_OV8610:
3875 switch (sd->frame_rate) {
3876 default: /* 15 fps */
3877 /* case 15: */
3878 reg_w(sd, 0xa4, 0x06);
3879 reg_w(sd, 0x23, 0xff);
3880 break;
3881 case 10:
3882 reg_w(sd, 0xa4, 0x06);
3883 reg_w(sd, 0x23, 0x1f);
3884 break;
3885 case 5:
3886 reg_w(sd, 0xa4, 0x06);
3887 reg_w(sd, 0x23, 0x1b);
3888 break;
3890 break;
3891 case SEN_OV7670: /* guesses, based on 7640 */
3892 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3893 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3894 reg_w(sd, 0xa4, 0x10);
3895 switch (sd->frame_rate) {
3896 case 30:
3897 reg_w(sd, 0x23, 0xff);
3898 break;
3899 case 20:
3900 reg_w(sd, 0x23, 0x1b);
3901 break;
3902 default:
3903 /* case 15: */
3904 reg_w(sd, 0x23, 0xff);
3905 sd->clockdiv = 1;
3906 break;
3908 break;
3912 static void mode_init_ov_sensor_regs(struct sd *sd)
3914 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3915 int qvga, xstart, xend, ystart, yend;
3916 u8 v;
3918 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3920 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3921 switch (sd->sensor) {
3922 case SEN_OV2610:
3923 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3924 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3925 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3926 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3927 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3928 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3929 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3930 return;
3931 case SEN_OV2610AE: {
3932 u8 v;
3934 /* frame rates:
3935 * 10fps / 5 fps for 1600x1200
3936 * 40fps / 20fps for 800x600
3938 v = 80;
3939 if (qvga) {
3940 if (sd->frame_rate < 25)
3941 v = 0x81;
3942 } else {
3943 if (sd->frame_rate < 10)
3944 v = 0x81;
3946 i2c_w(sd, 0x11, v);
3947 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3948 return;
3950 case SEN_OV3610:
3951 if (qvga) {
3952 xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3953 (0x1f << 4);
3954 ystart = (776 - gspca_dev->pixfmt.height) / 2;
3955 } else {
3956 xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3957 (0x10 << 4);
3958 ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3960 xend = xstart + gspca_dev->pixfmt.width;
3961 yend = ystart + gspca_dev->pixfmt.height;
3962 /* Writing to the COMH register resets the other windowing regs
3963 to their default values, so we must do this first. */
3964 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3965 i2c_w_mask(sd, 0x32,
3966 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3967 0x3f);
3968 i2c_w_mask(sd, 0x03,
3969 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3970 0x0f);
3971 i2c_w(sd, 0x17, xstart >> 4);
3972 i2c_w(sd, 0x18, xend >> 4);
3973 i2c_w(sd, 0x19, ystart >> 3);
3974 i2c_w(sd, 0x1a, yend >> 3);
3975 return;
3976 case SEN_OV8610:
3977 /* For OV8610 qvga means qsvga */
3978 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3979 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3980 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3981 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3982 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3983 break;
3984 case SEN_OV7610:
3985 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3986 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3987 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3988 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3989 break;
3990 case SEN_OV7620:
3991 case SEN_OV7620AE:
3992 case SEN_OV76BE:
3993 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3994 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3995 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3996 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3997 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3998 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3999 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4000 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4001 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4002 if (sd->sensor == SEN_OV76BE)
4003 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4004 break;
4005 case SEN_OV7640:
4006 case SEN_OV7648:
4007 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4008 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4009 /* Setting this undocumented bit in qvga mode removes a very
4010 annoying vertical shaking of the image */
4011 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4012 /* Unknown */
4013 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4014 /* Allow higher automatic gain (to allow higher framerates) */
4015 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4016 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4017 break;
4018 case SEN_OV7670:
4019 /* set COM7_FMT_VGA or COM7_FMT_QVGA
4020 * do we need to set anything else?
4021 * HSTART etc are set in set_ov_sensor_window itself */
4022 i2c_w_mask(sd, OV7670_R12_COM7,
4023 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4024 OV7670_COM7_FMT_MASK);
4025 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4026 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4027 OV7670_COM8_AWB);
4028 if (qvga) { /* QVGA from ov7670.c by
4029 * Jonathan Corbet */
4030 xstart = 164;
4031 xend = 28;
4032 ystart = 14;
4033 yend = 494;
4034 } else { /* VGA */
4035 xstart = 158;
4036 xend = 14;
4037 ystart = 10;
4038 yend = 490;
4040 /* OV7670 hardware window registers are split across
4041 * multiple locations */
4042 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4043 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4044 v = i2c_r(sd, OV7670_R32_HREF);
4045 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4046 msleep(10); /* need to sleep between read and write to
4047 * same reg! */
4048 i2c_w(sd, OV7670_R32_HREF, v);
4050 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4051 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4052 v = i2c_r(sd, OV7670_R03_VREF);
4053 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4054 msleep(10); /* need to sleep between read and write to
4055 * same reg! */
4056 i2c_w(sd, OV7670_R03_VREF, v);
4057 break;
4058 case SEN_OV6620:
4059 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4060 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4061 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4062 break;
4063 case SEN_OV6630:
4064 case SEN_OV66308AF:
4065 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4066 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4067 break;
4068 case SEN_OV9600: {
4069 const struct ov_i2c_regvals *vals;
4070 static const struct ov_i2c_regvals sxga_15[] = {
4071 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4073 static const struct ov_i2c_regvals sxga_7_5[] = {
4074 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4076 static const struct ov_i2c_regvals vga_30[] = {
4077 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4079 static const struct ov_i2c_regvals vga_15[] = {
4080 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4083 /* frame rates:
4084 * 15fps / 7.5 fps for 1280x1024
4085 * 30fps / 15fps for 640x480
4087 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4088 if (qvga)
4089 vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4090 else
4091 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4092 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4093 return;
4095 default:
4096 return;
4099 /******** Clock programming ********/
4100 i2c_w(sd, 0x11, sd->clockdiv);
4103 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4104 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4106 struct sd *sd = (struct sd *) gspca_dev;
4108 if (sd->gspca_dev.streaming)
4109 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4110 i2c_w_mask(sd, OV7670_R1E_MVFP,
4111 OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4112 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4113 if (sd->gspca_dev.streaming)
4114 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4117 static void set_ov_sensor_window(struct sd *sd)
4119 struct gspca_dev *gspca_dev;
4120 int qvga, crop;
4121 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4123 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4124 switch (sd->sensor) {
4125 case SEN_OV2610:
4126 case SEN_OV2610AE:
4127 case SEN_OV3610:
4128 case SEN_OV7670:
4129 case SEN_OV9600:
4130 mode_init_ov_sensor_regs(sd);
4131 return;
4132 case SEN_OV7660:
4133 ov519_set_mode(sd);
4134 ov519_set_fr(sd);
4135 return;
4138 gspca_dev = &sd->gspca_dev;
4139 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4140 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4142 /* The different sensor ICs handle setting up of window differently.
4143 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4144 switch (sd->sensor) {
4145 case SEN_OV8610:
4146 hwsbase = 0x1e;
4147 hwebase = 0x1e;
4148 vwsbase = 0x02;
4149 vwebase = 0x02;
4150 break;
4151 case SEN_OV7610:
4152 case SEN_OV76BE:
4153 hwsbase = 0x38;
4154 hwebase = 0x3a;
4155 vwsbase = vwebase = 0x05;
4156 break;
4157 case SEN_OV6620:
4158 case SEN_OV6630:
4159 case SEN_OV66308AF:
4160 hwsbase = 0x38;
4161 hwebase = 0x3a;
4162 vwsbase = 0x05;
4163 vwebase = 0x06;
4164 if (sd->sensor == SEN_OV66308AF && qvga)
4165 /* HDG: this fixes U and V getting swapped */
4166 hwsbase++;
4167 if (crop) {
4168 hwsbase += 8;
4169 hwebase += 8;
4170 vwsbase += 11;
4171 vwebase += 11;
4173 break;
4174 case SEN_OV7620:
4175 case SEN_OV7620AE:
4176 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4177 hwebase = 0x2f;
4178 vwsbase = vwebase = 0x05;
4179 break;
4180 case SEN_OV7640:
4181 case SEN_OV7648:
4182 hwsbase = 0x1a;
4183 hwebase = 0x1a;
4184 vwsbase = vwebase = 0x03;
4185 break;
4186 default:
4187 return;
4190 switch (sd->sensor) {
4191 case SEN_OV6620:
4192 case SEN_OV6630:
4193 case SEN_OV66308AF:
4194 if (qvga) { /* QCIF */
4195 hwscale = 0;
4196 vwscale = 0;
4197 } else { /* CIF */
4198 hwscale = 1;
4199 vwscale = 1; /* The datasheet says 0;
4200 * it's wrong */
4202 break;
4203 case SEN_OV8610:
4204 if (qvga) { /* QSVGA */
4205 hwscale = 1;
4206 vwscale = 1;
4207 } else { /* SVGA */
4208 hwscale = 2;
4209 vwscale = 2;
4211 break;
4212 default: /* SEN_OV7xx0 */
4213 if (qvga) { /* QVGA */
4214 hwscale = 1;
4215 vwscale = 0;
4216 } else { /* VGA */
4217 hwscale = 2;
4218 vwscale = 1;
4222 mode_init_ov_sensor_regs(sd);
4224 i2c_w(sd, 0x17, hwsbase);
4225 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4226 i2c_w(sd, 0x19, vwsbase);
4227 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4230 /* -- start the camera -- */
4231 static int sd_start(struct gspca_dev *gspca_dev)
4233 struct sd *sd = (struct sd *) gspca_dev;
4235 /* Default for most bridges, allow bridge_mode_init_regs to override */
4236 sd->sensor_width = sd->gspca_dev.pixfmt.width;
4237 sd->sensor_height = sd->gspca_dev.pixfmt.height;
4239 switch (sd->bridge) {
4240 case BRIDGE_OV511:
4241 case BRIDGE_OV511PLUS:
4242 ov511_mode_init_regs(sd);
4243 break;
4244 case BRIDGE_OV518:
4245 case BRIDGE_OV518PLUS:
4246 ov518_mode_init_regs(sd);
4247 break;
4248 case BRIDGE_OV519:
4249 ov519_mode_init_regs(sd);
4250 break;
4251 /* case BRIDGE_OVFX2: nothing to do */
4252 case BRIDGE_W9968CF:
4253 w9968cf_mode_init_regs(sd);
4254 break;
4257 set_ov_sensor_window(sd);
4259 /* Force clear snapshot state in case the snapshot button was
4260 pressed while we weren't streaming */
4261 sd->snapshot_needs_reset = 1;
4262 sd_reset_snapshot(gspca_dev);
4264 sd->first_frame = 3;
4266 ov51x_restart(sd);
4267 ov51x_led_control(sd, 1);
4268 return gspca_dev->usb_err;
4271 static void sd_stopN(struct gspca_dev *gspca_dev)
4273 struct sd *sd = (struct sd *) gspca_dev;
4275 ov51x_stop(sd);
4276 ov51x_led_control(sd, 0);
4279 static void sd_stop0(struct gspca_dev *gspca_dev)
4281 struct sd *sd = (struct sd *) gspca_dev;
4283 if (!sd->gspca_dev.present)
4284 return;
4285 if (sd->bridge == BRIDGE_W9968CF)
4286 w9968cf_stop0(sd);
4288 #if IS_ENABLED(CONFIG_INPUT)
4289 /* If the last button state is pressed, release it now! */
4290 if (sd->snapshot_pressed) {
4291 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4292 input_sync(gspca_dev->input_dev);
4293 sd->snapshot_pressed = 0;
4295 #endif
4296 if (sd->bridge == BRIDGE_OV519)
4297 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4300 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4302 struct sd *sd = (struct sd *) gspca_dev;
4304 if (sd->snapshot_pressed != state) {
4305 #if IS_ENABLED(CONFIG_INPUT)
4306 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4307 input_sync(gspca_dev->input_dev);
4308 #endif
4309 if (state)
4310 sd->snapshot_needs_reset = 1;
4312 sd->snapshot_pressed = state;
4313 } else {
4314 /* On the ov511 / ov519 we need to reset the button state
4315 multiple times, as resetting does not work as long as the
4316 button stays pressed */
4317 switch (sd->bridge) {
4318 case BRIDGE_OV511:
4319 case BRIDGE_OV511PLUS:
4320 case BRIDGE_OV519:
4321 if (state)
4322 sd->snapshot_needs_reset = 1;
4323 break;
4328 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4329 u8 *in, /* isoc packet */
4330 int len) /* iso packet length */
4332 struct sd *sd = (struct sd *) gspca_dev;
4334 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4335 * byte non-zero. The EOF packet has image width/height in the
4336 * 10th and 11th bytes. The 9th byte is given as follows:
4338 * bit 7: EOF
4339 * 6: compression enabled
4340 * 5: 422/420/400 modes
4341 * 4: 422/420/400 modes
4342 * 3: 1
4343 * 2: snapshot button on
4344 * 1: snapshot frame
4345 * 0: even/odd field
4347 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4348 (in[8] & 0x08)) {
4349 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4350 if (in[8] & 0x80) {
4351 /* Frame end */
4352 if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4353 (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4354 PERR("Invalid frame size, got: %dx%d,"
4355 " requested: %dx%d\n",
4356 (in[9] + 1) * 8, (in[10] + 1) * 8,
4357 gspca_dev->pixfmt.width,
4358 gspca_dev->pixfmt.height);
4359 gspca_dev->last_packet_type = DISCARD_PACKET;
4360 return;
4362 /* Add 11 byte footer to frame, might be useful */
4363 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4364 return;
4365 } else {
4366 /* Frame start */
4367 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4368 sd->packet_nr = 0;
4372 /* Ignore the packet number */
4373 len--;
4375 /* intermediate packet */
4376 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4379 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4380 u8 *data, /* isoc packet */
4381 int len) /* iso packet length */
4383 struct sd *sd = (struct sd *) gspca_dev;
4385 /* A false positive here is likely, until OVT gives me
4386 * the definitive SOF/EOF format */
4387 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4388 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4389 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4390 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4391 sd->packet_nr = 0;
4394 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4395 return;
4397 /* Does this device use packet numbers ? */
4398 if (len & 7) {
4399 len--;
4400 if (sd->packet_nr == data[len])
4401 sd->packet_nr++;
4402 /* The last few packets of the frame (which are all 0's
4403 except that they may contain part of the footer), are
4404 numbered 0 */
4405 else if (sd->packet_nr == 0 || data[len]) {
4406 PERR("Invalid packet nr: %d (expect: %d)",
4407 (int)data[len], (int)sd->packet_nr);
4408 gspca_dev->last_packet_type = DISCARD_PACKET;
4409 return;
4413 /* intermediate packet */
4414 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4417 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4418 u8 *data, /* isoc packet */
4419 int len) /* iso packet length */
4421 /* Header of ov519 is 16 bytes:
4422 * Byte Value Description
4423 * 0 0xff magic
4424 * 1 0xff magic
4425 * 2 0xff magic
4426 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4427 * 9 0xXX 0x01 initial frame without data,
4428 * 0x00 standard frame with image
4429 * 14 Lo in EOF: length of image data / 8
4430 * 15 Hi
4433 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4434 switch (data[3]) {
4435 case 0x50: /* start of frame */
4436 /* Don't check the button state here, as the state
4437 usually (always ?) changes at EOF and checking it
4438 here leads to unnecessary snapshot state resets. */
4439 #define HDRSZ 16
4440 data += HDRSZ;
4441 len -= HDRSZ;
4442 #undef HDRSZ
4443 if (data[0] == 0xff || data[1] == 0xd8)
4444 gspca_frame_add(gspca_dev, FIRST_PACKET,
4445 data, len);
4446 else
4447 gspca_dev->last_packet_type = DISCARD_PACKET;
4448 return;
4449 case 0x51: /* end of frame */
4450 ov51x_handle_button(gspca_dev, data[11] & 1);
4451 if (data[9] != 0)
4452 gspca_dev->last_packet_type = DISCARD_PACKET;
4453 gspca_frame_add(gspca_dev, LAST_PACKET,
4454 NULL, 0);
4455 return;
4459 /* intermediate packet */
4460 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4463 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4464 u8 *data, /* isoc packet */
4465 int len) /* iso packet length */
4467 struct sd *sd = (struct sd *) gspca_dev;
4469 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4471 /* A short read signals EOF */
4472 if (len < gspca_dev->cam.bulk_size) {
4473 /* If the frame is short, and it is one of the first ones
4474 the sensor and bridge are still syncing, so drop it. */
4475 if (sd->first_frame) {
4476 sd->first_frame--;
4477 if (gspca_dev->image_len <
4478 sd->gspca_dev.pixfmt.width *
4479 sd->gspca_dev.pixfmt.height)
4480 gspca_dev->last_packet_type = DISCARD_PACKET;
4482 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4483 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4487 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4488 u8 *data, /* isoc packet */
4489 int len) /* iso packet length */
4491 struct sd *sd = (struct sd *) gspca_dev;
4493 switch (sd->bridge) {
4494 case BRIDGE_OV511:
4495 case BRIDGE_OV511PLUS:
4496 ov511_pkt_scan(gspca_dev, data, len);
4497 break;
4498 case BRIDGE_OV518:
4499 case BRIDGE_OV518PLUS:
4500 ov518_pkt_scan(gspca_dev, data, len);
4501 break;
4502 case BRIDGE_OV519:
4503 ov519_pkt_scan(gspca_dev, data, len);
4504 break;
4505 case BRIDGE_OVFX2:
4506 ovfx2_pkt_scan(gspca_dev, data, len);
4507 break;
4508 case BRIDGE_W9968CF:
4509 w9968cf_pkt_scan(gspca_dev, data, len);
4510 break;
4514 /* -- management routines -- */
4516 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4518 struct sd *sd = (struct sd *) gspca_dev;
4519 static const struct ov_i2c_regvals brit_7660[][7] = {
4520 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4521 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4522 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4523 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4524 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4525 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4526 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4527 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4528 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4529 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4530 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4531 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4532 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4533 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4536 switch (sd->sensor) {
4537 case SEN_OV8610:
4538 case SEN_OV7610:
4539 case SEN_OV76BE:
4540 case SEN_OV6620:
4541 case SEN_OV6630:
4542 case SEN_OV66308AF:
4543 case SEN_OV7640:
4544 case SEN_OV7648:
4545 i2c_w(sd, OV7610_REG_BRT, val);
4546 break;
4547 case SEN_OV7620:
4548 case SEN_OV7620AE:
4549 i2c_w(sd, OV7610_REG_BRT, val);
4550 break;
4551 case SEN_OV7660:
4552 write_i2c_regvals(sd, brit_7660[val],
4553 ARRAY_SIZE(brit_7660[0]));
4554 break;
4555 case SEN_OV7670:
4556 /*win trace
4557 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4558 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4559 break;
4563 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4565 struct sd *sd = (struct sd *) gspca_dev;
4566 static const struct ov_i2c_regvals contrast_7660[][31] = {
4567 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4568 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4569 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4570 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4571 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4572 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4573 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4574 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4575 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4576 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4577 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4578 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4579 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4580 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4581 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4582 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4583 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4584 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4585 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4586 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4587 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4588 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4589 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4590 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4591 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4592 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4593 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4594 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4595 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4596 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4597 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4598 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4599 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4600 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4601 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4602 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4603 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4604 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4605 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4606 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4607 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4608 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4609 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4610 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4611 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4612 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4613 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4614 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4615 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4616 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4617 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4618 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4619 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4620 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4621 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4622 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4625 switch (sd->sensor) {
4626 case SEN_OV7610:
4627 case SEN_OV6620:
4628 i2c_w(sd, OV7610_REG_CNT, val);
4629 break;
4630 case SEN_OV6630:
4631 case SEN_OV66308AF:
4632 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4633 break;
4634 case SEN_OV8610: {
4635 static const u8 ctab[] = {
4636 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4639 /* Use Y gamma control instead. Bit 0 enables it. */
4640 i2c_w(sd, 0x64, ctab[val >> 5]);
4641 break;
4643 case SEN_OV7620:
4644 case SEN_OV7620AE: {
4645 static const u8 ctab[] = {
4646 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4647 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4650 /* Use Y gamma control instead. Bit 0 enables it. */
4651 i2c_w(sd, 0x64, ctab[val >> 4]);
4652 break;
4654 case SEN_OV7660:
4655 write_i2c_regvals(sd, contrast_7660[val],
4656 ARRAY_SIZE(contrast_7660[0]));
4657 break;
4658 case SEN_OV7670:
4659 /* check that this isn't just the same as ov7610 */
4660 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4661 break;
4665 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4667 struct sd *sd = (struct sd *) gspca_dev;
4669 i2c_w(sd, 0x10, val);
4672 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4674 struct sd *sd = (struct sd *) gspca_dev;
4675 static const struct ov_i2c_regvals colors_7660[][6] = {
4676 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4677 {0x53, 0x19}, {0x54, 0x23}},
4678 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4679 {0x53, 0x2c}, {0x54, 0x3e}},
4680 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4681 {0x53, 0x40}, {0x54, 0x59}},
4682 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4683 {0x53, 0x53}, {0x54, 0x73}},
4684 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4685 {0x53, 0x66}, {0x54, 0x8e}},
4688 switch (sd->sensor) {
4689 case SEN_OV8610:
4690 case SEN_OV7610:
4691 case SEN_OV76BE:
4692 case SEN_OV6620:
4693 case SEN_OV6630:
4694 case SEN_OV66308AF:
4695 i2c_w(sd, OV7610_REG_SAT, val);
4696 break;
4697 case SEN_OV7620:
4698 case SEN_OV7620AE:
4699 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4700 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4701 if (rc < 0)
4702 goto out; */
4703 i2c_w(sd, OV7610_REG_SAT, val);
4704 break;
4705 case SEN_OV7640:
4706 case SEN_OV7648:
4707 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4708 break;
4709 case SEN_OV7660:
4710 write_i2c_regvals(sd, colors_7660[val],
4711 ARRAY_SIZE(colors_7660[0]));
4712 break;
4713 case SEN_OV7670:
4714 /* supported later once I work out how to do it
4715 * transparently fail now! */
4716 /* set REG_COM13 values for UV sat auto mode */
4717 break;
4721 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4723 struct sd *sd = (struct sd *) gspca_dev;
4725 i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4728 static void setfreq_i(struct sd *sd, s32 val)
4730 if (sd->sensor == SEN_OV7660
4731 || sd->sensor == SEN_OV7670) {
4732 switch (val) {
4733 case 0: /* Banding filter disabled */
4734 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4735 break;
4736 case 1: /* 50 hz */
4737 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4738 OV7670_COM8_BFILT);
4739 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4740 break;
4741 case 2: /* 60 hz */
4742 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4743 OV7670_COM8_BFILT);
4744 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4745 break;
4746 case 3: /* Auto hz - ov7670 only */
4747 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4748 OV7670_COM8_BFILT);
4749 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4750 0x18);
4751 break;
4753 } else {
4754 switch (val) {
4755 case 0: /* Banding filter disabled */
4756 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4757 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4758 break;
4759 case 1: /* 50 hz (filter on and framerate adj) */
4760 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4761 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4762 /* 20 fps -> 16.667 fps */
4763 if (sd->sensor == SEN_OV6620 ||
4764 sd->sensor == SEN_OV6630 ||
4765 sd->sensor == SEN_OV66308AF)
4766 i2c_w(sd, 0x2b, 0x5e);
4767 else
4768 i2c_w(sd, 0x2b, 0xac);
4769 break;
4770 case 2: /* 60 hz (filter on, ...) */
4771 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4772 if (sd->sensor == SEN_OV6620 ||
4773 sd->sensor == SEN_OV6630 ||
4774 sd->sensor == SEN_OV66308AF) {
4775 /* 20 fps -> 15 fps */
4776 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4777 i2c_w(sd, 0x2b, 0xa8);
4778 } else {
4779 /* no framerate adj. */
4780 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4782 break;
4787 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4789 struct sd *sd = (struct sd *) gspca_dev;
4791 setfreq_i(sd, val);
4793 /* Ugly but necessary */
4794 if (sd->bridge == BRIDGE_W9968CF)
4795 w9968cf_set_crop_window(sd);
4798 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4799 struct v4l2_jpegcompression *jcomp)
4801 struct sd *sd = (struct sd *) gspca_dev;
4803 if (sd->bridge != BRIDGE_W9968CF)
4804 return -ENOTTY;
4806 memset(jcomp, 0, sizeof *jcomp);
4807 jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4808 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4809 V4L2_JPEG_MARKER_DRI;
4810 return 0;
4813 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4814 const struct v4l2_jpegcompression *jcomp)
4816 struct sd *sd = (struct sd *) gspca_dev;
4818 if (sd->bridge != BRIDGE_W9968CF)
4819 return -ENOTTY;
4821 v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4822 return 0;
4825 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4827 struct gspca_dev *gspca_dev =
4828 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4829 struct sd *sd = (struct sd *)gspca_dev;
4831 gspca_dev->usb_err = 0;
4833 switch (ctrl->id) {
4834 case V4L2_CID_AUTOGAIN:
4835 gspca_dev->exposure->val = i2c_r(sd, 0x10);
4836 break;
4838 return 0;
4841 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4843 struct gspca_dev *gspca_dev =
4844 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4845 struct sd *sd = (struct sd *)gspca_dev;
4847 gspca_dev->usb_err = 0;
4849 if (!gspca_dev->streaming)
4850 return 0;
4852 switch (ctrl->id) {
4853 case V4L2_CID_BRIGHTNESS:
4854 setbrightness(gspca_dev, ctrl->val);
4855 break;
4856 case V4L2_CID_CONTRAST:
4857 setcontrast(gspca_dev, ctrl->val);
4858 break;
4859 case V4L2_CID_POWER_LINE_FREQUENCY:
4860 setfreq(gspca_dev, ctrl->val);
4861 break;
4862 case V4L2_CID_AUTOBRIGHTNESS:
4863 if (ctrl->is_new)
4864 setautobright(gspca_dev, ctrl->val);
4865 if (!ctrl->val && sd->brightness->is_new)
4866 setbrightness(gspca_dev, sd->brightness->val);
4867 break;
4868 case V4L2_CID_SATURATION:
4869 setcolors(gspca_dev, ctrl->val);
4870 break;
4871 case V4L2_CID_HFLIP:
4872 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4873 break;
4874 case V4L2_CID_AUTOGAIN:
4875 if (ctrl->is_new)
4876 setautogain(gspca_dev, ctrl->val);
4877 if (!ctrl->val && gspca_dev->exposure->is_new)
4878 setexposure(gspca_dev, gspca_dev->exposure->val);
4879 break;
4880 case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4881 return -EBUSY; /* Should never happen, as we grab the ctrl */
4883 return gspca_dev->usb_err;
4886 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4887 .g_volatile_ctrl = sd_g_volatile_ctrl,
4888 .s_ctrl = sd_s_ctrl,
4891 static int sd_init_controls(struct gspca_dev *gspca_dev)
4893 struct sd *sd = (struct sd *)gspca_dev;
4894 struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4896 gspca_dev->vdev.ctrl_handler = hdl;
4897 v4l2_ctrl_handler_init(hdl, 10);
4898 if (valid_controls[sd->sensor].has_brightness)
4899 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4900 V4L2_CID_BRIGHTNESS, 0,
4901 sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4902 sd->sensor == SEN_OV7660 ? 3 : 127);
4903 if (valid_controls[sd->sensor].has_contrast) {
4904 if (sd->sensor == SEN_OV7660)
4905 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4906 V4L2_CID_CONTRAST, 0, 6, 1, 3);
4907 else
4908 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4909 V4L2_CID_CONTRAST, 0, 255, 1,
4910 (sd->sensor == SEN_OV6630 ||
4911 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4913 if (valid_controls[sd->sensor].has_sat)
4914 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4915 V4L2_CID_SATURATION, 0,
4916 sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4917 sd->sensor == SEN_OV7660 ? 2 : 127);
4918 if (valid_controls[sd->sensor].has_exposure)
4919 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4920 V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4921 if (valid_controls[sd->sensor].has_hvflip) {
4922 sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4923 V4L2_CID_HFLIP, 0, 1, 1, 0);
4924 sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4925 V4L2_CID_VFLIP, 0, 1, 1, 0);
4927 if (valid_controls[sd->sensor].has_autobright)
4928 sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4929 V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4930 if (valid_controls[sd->sensor].has_autogain)
4931 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4932 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4933 if (valid_controls[sd->sensor].has_freq) {
4934 if (sd->sensor == SEN_OV7670)
4935 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4936 V4L2_CID_POWER_LINE_FREQUENCY,
4937 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4938 V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4939 else
4940 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4941 V4L2_CID_POWER_LINE_FREQUENCY,
4942 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4944 if (sd->bridge == BRIDGE_W9968CF)
4945 sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4946 V4L2_CID_JPEG_COMPRESSION_QUALITY,
4947 QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4949 if (hdl->error) {
4950 PERR("Could not initialize controls\n");
4951 return hdl->error;
4953 if (gspca_dev->autogain)
4954 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4955 if (sd->autobright)
4956 v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4957 if (sd->hflip)
4958 v4l2_ctrl_cluster(2, &sd->hflip);
4959 return 0;
4962 /* sub-driver description */
4963 static const struct sd_desc sd_desc = {
4964 .name = MODULE_NAME,
4965 .config = sd_config,
4966 .init = sd_init,
4967 .init_controls = sd_init_controls,
4968 .isoc_init = sd_isoc_init,
4969 .start = sd_start,
4970 .stopN = sd_stopN,
4971 .stop0 = sd_stop0,
4972 .pkt_scan = sd_pkt_scan,
4973 .dq_callback = sd_reset_snapshot,
4974 .get_jcomp = sd_get_jcomp,
4975 .set_jcomp = sd_set_jcomp,
4976 #if IS_ENABLED(CONFIG_INPUT)
4977 .other_input = 1,
4978 #endif
4981 /* -- module initialisation -- */
4982 static const struct usb_device_id device_table[] = {
4983 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4984 {USB_DEVICE(0x041e, 0x4052),
4985 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4986 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4987 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4988 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4989 {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4990 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4991 {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4992 {USB_DEVICE(0x045e, 0x028c),
4993 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4994 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4995 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4996 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4997 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4998 {USB_DEVICE(0x05a9, 0x0519),
4999 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5000 {USB_DEVICE(0x05a9, 0x0530),
5001 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5002 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
5003 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
5004 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
5005 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
5006 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
5007 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
5008 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
5009 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
5010 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
5011 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
5015 MODULE_DEVICE_TABLE(usb, device_table);
5017 /* -- device connect -- */
5018 static int sd_probe(struct usb_interface *intf,
5019 const struct usb_device_id *id)
5021 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5022 THIS_MODULE);
5025 static struct usb_driver sd_driver = {
5026 .name = MODULE_NAME,
5027 .id_table = device_table,
5028 .probe = sd_probe,
5029 .disconnect = gspca_disconnect,
5030 #ifdef CONFIG_PM
5031 .suspend = gspca_suspend,
5032 .resume = gspca_resume,
5033 .reset_resume = gspca_resume,
5034 #endif
5037 module_usb_driver(sd_driver);
5039 module_param(frame_rate, int, 0644);
5040 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");