2 * SN Platform GRU Driver
4 * KERNEL SERVICES THAT USE THE GRU
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include <linux/export.h>
35 #include <asm/io_apic.h>
38 #include "grutables.h"
39 #include "grukservices.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
46 * The following is an interim algorithm for management of kernel GRU
47 * resources. This will likely be replaced when we better understand the
48 * kernel/user requirements.
50 * Blade percpu resources reserved for kernel use. These resources are
51 * reserved whenever the the kernel context for the blade is loaded. Note
52 * that the kernel context is not guaranteed to be always available. It is
53 * loaded on demand & can be stolen by a user if the user demand exceeds the
54 * kernel demand. The kernel can always reload the kernel context but
55 * a SLEEP may be required!!!.
59 * Each blade has one "kernel context" that owns GRU kernel resources
60 * located on the blade. Kernel drivers use GRU resources in this context
61 * for sending messages, zeroing memory, etc.
63 * The kernel context is dynamically loaded on demand. If it is not in
64 * use by the kernel, the kernel context can be unloaded & given to a user.
65 * The kernel context will be reloaded when needed. This may require that
66 * a context be stolen from a user.
67 * NOTE: frequent unloading/reloading of the kernel context is
68 * expensive. We are depending on batch schedulers, cpusets, sane
69 * drivers or some other mechanism to prevent the need for frequent
72 * The kernel context consists of two parts:
73 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
74 * Each cpu has it's own private resources & does not share them
75 * with other cpus. These resources are used serially, ie,
76 * locked, used & unlocked on each call to a function in
78 * (Now that we have dynamic loading of kernel contexts, I
79 * may rethink this & allow sharing between cpus....)
81 * - Additional resources can be reserved long term & used directly
82 * by UV drivers located in the kernel. Drivers using these GRU
83 * resources can use asynchronous GRU instructions that send
84 * interrupts on completion.
85 * - these resources must be explicitly locked/unlocked
86 * - locked resources prevent (obviously) the kernel
87 * context from being unloaded.
88 * - drivers using these resource directly issue their own
89 * GRU instruction and must wait/check completion.
91 * When these resources are reserved, the caller can optionally
92 * associate a wait_queue with the resources and use asynchronous
93 * GRU instructions. When an async GRU instruction completes, the
94 * driver will do a wakeup on the event.
99 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
100 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
101 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
103 #define GRU_NUM_KERNEL_CBR 1
104 #define GRU_NUM_KERNEL_DSR_BYTES 256
105 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
106 GRU_CACHE_LINE_BYTES)
108 /* GRU instruction attributes for all instructions */
109 #define IMA IMA_CB_DELAY
111 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
112 #define __gru_cacheline_aligned__ \
113 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
115 #define MAGIC 0x1234567887654321UL
117 /* Default retry count for GRU errors on kernel instructions */
118 #define EXCEPTION_RETRY_LIMIT 3
120 /* Status of message queue sections */
125 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
126 /* optimized for x86_64 */
127 struct message_queue
{
128 union gru_mesqhead head __gru_cacheline_aligned__
; /* CL 0 */
129 int qlines
; /* DW 1 */
131 void *next __gru_cacheline_aligned__
;/* CL 1 */
135 char data ____cacheline_aligned
; /* CL 2 */
138 /* First word in every message - used by mesq interface */
139 struct message_header
{
146 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
149 * Reload the blade's kernel context into a GRU chiplet. Called holding
150 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
152 static void gru_load_kernel_context(struct gru_blade_state
*bs
, int blade_id
)
154 struct gru_state
*gru
;
155 struct gru_thread_state
*kgts
;
159 up_read(&bs
->bs_kgts_sema
);
160 down_write(&bs
->bs_kgts_sema
);
163 bs
->bs_kgts
= gru_alloc_gts(NULL
, 0, 0, 0, 0, 0);
164 bs
->bs_kgts
->ts_user_blade_id
= blade_id
;
169 STAT(load_kernel_context
);
170 ncpus
= uv_blade_nr_possible_cpus(blade_id
);
171 kgts
->ts_cbr_au_count
= GRU_CB_COUNT_TO_AU(
172 GRU_NUM_KERNEL_CBR
* ncpus
+ bs
->bs_async_cbrs
);
173 kgts
->ts_dsr_au_count
= GRU_DS_BYTES_TO_AU(
174 GRU_NUM_KERNEL_DSR_BYTES
* ncpus
+
175 bs
->bs_async_dsr_bytes
);
176 while (!gru_assign_gru_context(kgts
)) {
178 gru_steal_context(kgts
);
180 gru_load_context(kgts
);
181 gru
= bs
->bs_kgts
->ts_gru
;
182 vaddr
= gru
->gs_gru_base_vaddr
;
183 ctxnum
= kgts
->ts_ctxnum
;
184 bs
->kernel_cb
= get_gseg_base_address_cb(vaddr
, ctxnum
, 0);
185 bs
->kernel_dsr
= get_gseg_base_address_ds(vaddr
, ctxnum
, 0);
187 downgrade_write(&bs
->bs_kgts_sema
);
191 * Free all kernel contexts that are not currently in use.
192 * Returns 0 if all freed, else number of inuse context.
194 static int gru_free_kernel_contexts(void)
196 struct gru_blade_state
*bs
;
197 struct gru_thread_state
*kgts
;
200 for (bid
= 0; bid
< GRU_MAX_BLADES
; bid
++) {
205 /* Ignore busy contexts. Don't want to block here. */
206 if (down_write_trylock(&bs
->bs_kgts_sema
)) {
208 if (kgts
&& kgts
->ts_gru
)
209 gru_unload_context(kgts
, 0);
211 up_write(&bs
->bs_kgts_sema
);
221 * Lock & load the kernel context for the specified blade.
223 static struct gru_blade_state
*gru_lock_kernel_context(int blade_id
)
225 struct gru_blade_state
*bs
;
228 STAT(lock_kernel_context
);
230 bid
= blade_id
< 0 ? uv_numa_blade_id() : blade_id
;
233 /* Handle the case where migration occurred while waiting for the sema */
234 down_read(&bs
->bs_kgts_sema
);
235 if (blade_id
< 0 && bid
!= uv_numa_blade_id()) {
236 up_read(&bs
->bs_kgts_sema
);
239 if (!bs
->bs_kgts
|| !bs
->bs_kgts
->ts_gru
)
240 gru_load_kernel_context(bs
, bid
);
246 * Unlock the kernel context for the specified blade. Context is not
247 * unloaded but may be stolen before next use.
249 static void gru_unlock_kernel_context(int blade_id
)
251 struct gru_blade_state
*bs
;
253 bs
= gru_base
[blade_id
];
254 up_read(&bs
->bs_kgts_sema
);
255 STAT(unlock_kernel_context
);
259 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
260 * - returns with preemption disabled
262 static int gru_get_cpu_resources(int dsr_bytes
, void **cb
, void **dsr
)
264 struct gru_blade_state
*bs
;
267 BUG_ON(dsr_bytes
> GRU_NUM_KERNEL_DSR_BYTES
);
269 bs
= gru_lock_kernel_context(-1);
270 lcpu
= uv_blade_processor_id();
271 *cb
= bs
->kernel_cb
+ lcpu
* GRU_HANDLE_STRIDE
;
272 *dsr
= bs
->kernel_dsr
+ lcpu
* GRU_NUM_KERNEL_DSR_BYTES
;
277 * Free the current cpus reserved DSR/CBR resources.
279 static void gru_free_cpu_resources(void *cb
, void *dsr
)
281 gru_unlock_kernel_context(uv_numa_blade_id());
286 * Reserve GRU resources to be used asynchronously.
287 * Note: currently supports only 1 reservation per blade.
290 * blade_id - blade on which resources should be reserved
291 * cbrs - number of CBRs
292 * dsr_bytes - number of DSR bytes needed
294 * handle to identify resource
295 * (0 = async resources already reserved)
297 unsigned long gru_reserve_async_resources(int blade_id
, int cbrs
, int dsr_bytes
,
298 struct completion
*cmp
)
300 struct gru_blade_state
*bs
;
301 struct gru_thread_state
*kgts
;
304 bs
= gru_base
[blade_id
];
306 down_write(&bs
->bs_kgts_sema
);
308 /* Verify no resources already reserved */
309 if (bs
->bs_async_dsr_bytes
+ bs
->bs_async_cbrs
)
311 bs
->bs_async_dsr_bytes
= dsr_bytes
;
312 bs
->bs_async_cbrs
= cbrs
;
313 bs
->bs_async_wq
= cmp
;
316 /* Resources changed. Unload context if already loaded */
317 if (kgts
&& kgts
->ts_gru
)
318 gru_unload_context(kgts
, 0);
319 ret
= ASYNC_BID_TO_HAN(blade_id
);
322 up_write(&bs
->bs_kgts_sema
);
327 * Release async resources previously reserved.
330 * han - handle to identify resources
332 void gru_release_async_resources(unsigned long han
)
334 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
336 down_write(&bs
->bs_kgts_sema
);
337 bs
->bs_async_dsr_bytes
= 0;
338 bs
->bs_async_cbrs
= 0;
339 bs
->bs_async_wq
= NULL
;
340 up_write(&bs
->bs_kgts_sema
);
344 * Wait for async GRU instructions to complete.
347 * han - handle to identify resources
349 void gru_wait_async_cbr(unsigned long han
)
351 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
353 wait_for_completion(bs
->bs_async_wq
);
358 * Lock previous reserved async GRU resources
361 * han - handle to identify resources
363 * cb - pointer to first CBR
364 * dsr - pointer to first DSR
366 void gru_lock_async_resource(unsigned long han
, void **cb
, void **dsr
)
368 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
369 int blade_id
= ASYNC_HAN_TO_BID(han
);
372 gru_lock_kernel_context(blade_id
);
373 ncpus
= uv_blade_nr_possible_cpus(blade_id
);
375 *cb
= bs
->kernel_cb
+ ncpus
* GRU_HANDLE_STRIDE
;
377 *dsr
= bs
->kernel_dsr
+ ncpus
* GRU_NUM_KERNEL_DSR_BYTES
;
381 * Unlock previous reserved async GRU resources
384 * han - handle to identify resources
386 void gru_unlock_async_resource(unsigned long han
)
388 int blade_id
= ASYNC_HAN_TO_BID(han
);
390 gru_unlock_kernel_context(blade_id
);
393 /*----------------------------------------------------------------------*/
394 int gru_get_cb_exception_detail(void *cb
,
395 struct control_block_extended_exc_detail
*excdet
)
397 struct gru_control_block_extended
*cbe
;
398 struct gru_thread_state
*kgts
= NULL
;
403 * Locate kgts for cb. This algorithm is SLOW but
404 * this function is rarely called (ie., almost never).
405 * Performance does not matter.
407 for_each_possible_blade(bid
) {
410 kgts
= gru_base
[bid
]->bs_kgts
;
411 if (!kgts
|| !kgts
->ts_gru
)
413 off
= cb
- kgts
->ts_gru
->gs_gru_base_vaddr
;
419 cbrnum
= thread_cbr_number(kgts
, get_cb_number(cb
));
420 cbe
= get_cbe(GRUBASE(cb
), cbrnum
);
421 gru_flush_cache(cbe
); /* CBE not coherent */
423 excdet
->opc
= cbe
->opccpy
;
424 excdet
->exopc
= cbe
->exopccpy
;
425 excdet
->ecause
= cbe
->ecause
;
426 excdet
->exceptdet0
= cbe
->idef1upd
;
427 excdet
->exceptdet1
= cbe
->idef3upd
;
428 gru_flush_cache(cbe
);
432 char *gru_get_cb_exception_detail_str(int ret
, void *cb
,
435 struct gru_control_block_status
*gen
= (void *)cb
;
436 struct control_block_extended_exc_detail excdet
;
438 if (ret
> 0 && gen
->istatus
== CBS_EXCEPTION
) {
439 gru_get_cb_exception_detail(cb
, &excdet
);
441 "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
442 "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
443 gen
, excdet
.opc
, excdet
.exopc
, excdet
.ecause
,
444 excdet
.exceptdet0
, excdet
.exceptdet1
);
446 snprintf(buf
, size
, "No exception");
451 static int gru_wait_idle_or_exception(struct gru_control_block_status
*gen
)
453 while (gen
->istatus
>= CBS_ACTIVE
) {
460 static int gru_retry_exception(void *cb
)
462 struct gru_control_block_status
*gen
= (void *)cb
;
463 struct control_block_extended_exc_detail excdet
;
464 int retry
= EXCEPTION_RETRY_LIMIT
;
467 if (gru_wait_idle_or_exception(gen
) == CBS_IDLE
)
469 if (gru_get_cb_message_queue_substatus(cb
))
470 return CBS_EXCEPTION
;
471 gru_get_cb_exception_detail(cb
, &excdet
);
472 if ((excdet
.ecause
& ~EXCEPTION_RETRY_BITS
) ||
473 (excdet
.cbrexecstatus
& CBR_EXS_ABORT_OCC
))
478 gru_flush_cache(gen
);
480 return CBS_EXCEPTION
;
483 int gru_check_status_proc(void *cb
)
485 struct gru_control_block_status
*gen
= (void *)cb
;
489 if (ret
== CBS_EXCEPTION
)
490 ret
= gru_retry_exception(cb
);
496 int gru_wait_proc(void *cb
)
498 struct gru_control_block_status
*gen
= (void *)cb
;
501 ret
= gru_wait_idle_or_exception(gen
);
502 if (ret
== CBS_EXCEPTION
)
503 ret
= gru_retry_exception(cb
);
508 void gru_abort(int ret
, void *cb
, char *str
)
510 char buf
[GRU_EXC_STR_SIZE
];
512 panic("GRU FATAL ERROR: %s - %s\n", str
,
513 gru_get_cb_exception_detail_str(ret
, cb
, buf
, sizeof(buf
)));
516 void gru_wait_abort_proc(void *cb
)
520 ret
= gru_wait_proc(cb
);
522 gru_abort(ret
, cb
, "gru_wait_abort");
526 /*------------------------------ MESSAGE QUEUES -----------------------------*/
528 /* Internal status . These are NOT returned to the user. */
529 #define MQIE_AGAIN -1 /* try again */
533 * Save/restore the "present" flag that is in the second line of 2-line
536 static inline int get_present2(void *p
)
538 struct message_header
*mhdr
= p
+ GRU_CACHE_LINE_BYTES
;
539 return mhdr
->present
;
542 static inline void restore_present2(void *p
, int val
)
544 struct message_header
*mhdr
= p
+ GRU_CACHE_LINE_BYTES
;
549 * Create a message queue.
550 * qlines - message queue size in cache lines. Includes 2-line header.
552 int gru_create_message_queue(struct gru_message_queue_desc
*mqd
,
553 void *p
, unsigned int bytes
, int nasid
, int vector
, int apicid
)
555 struct message_queue
*mq
= p
;
558 qlines
= bytes
/ GRU_CACHE_LINE_BYTES
- 2;
559 memset(mq
, 0, bytes
);
560 mq
->start
= &mq
->data
;
561 mq
->start2
= &mq
->data
+ (qlines
/ 2 - 1) * GRU_CACHE_LINE_BYTES
;
562 mq
->next
= &mq
->data
;
563 mq
->limit
= &mq
->data
+ (qlines
- 2) * GRU_CACHE_LINE_BYTES
;
567 mq
->head
= gru_mesq_head(2, qlines
/ 2 + 1);
569 mqd
->mq_gpa
= uv_gpa(mq
);
570 mqd
->qlines
= qlines
;
571 mqd
->interrupt_pnode
= nasid
>> 1;
572 mqd
->interrupt_vector
= vector
;
573 mqd
->interrupt_apicid
= apicid
;
576 EXPORT_SYMBOL_GPL(gru_create_message_queue
);
579 * Send a NOOP message to a message queue
581 * 0 - if queue is full after the send. This is the normal case
582 * but various races can change this.
583 * -1 - if mesq sent successfully but queue not full
584 * >0 - unexpected error. MQE_xxx returned
586 static int send_noop_message(void *cb
, struct gru_message_queue_desc
*mqd
,
589 const struct message_header noop_header
= {
590 .present
= MQS_NOOP
, .lines
= 1};
593 struct message_header save_mhdr
, *mhdr
= mesg
;
598 gru_mesq(cb
, mqd
->mq_gpa
, gru_get_tri(mhdr
), 1, IMA
);
602 substatus
= gru_get_cb_message_queue_substatus(cb
);
605 STAT(mesq_noop_unexpected_error
);
606 ret
= MQE_UNEXPECTED_CB_ERR
;
608 case CBSS_LB_OVERFLOWED
:
609 STAT(mesq_noop_lb_overflow
);
610 ret
= MQE_CONGESTION
;
612 case CBSS_QLIMIT_REACHED
:
613 STAT(mesq_noop_qlimit_reached
);
616 case CBSS_AMO_NACKED
:
617 STAT(mesq_noop_amo_nacked
);
618 ret
= MQE_CONGESTION
;
620 case CBSS_PUT_NACKED
:
621 STAT(mesq_noop_put_nacked
);
622 m
= mqd
->mq_gpa
+ (gru_get_amo_value_head(cb
) << 6);
623 gru_vstore(cb
, m
, gru_get_tri(mesg
), XTYPE_CL
, 1, 1,
625 if (gru_wait(cb
) == CBS_IDLE
)
628 ret
= MQE_UNEXPECTED_CB_ERR
;
630 case CBSS_PAGE_OVERFLOW
:
631 STAT(mesq_noop_page_overflow
);
642 * Handle a gru_mesq full.
644 static int send_message_queue_full(void *cb
, struct gru_message_queue_desc
*mqd
,
645 void *mesg
, int lines
)
647 union gru_mesqhead mqh
;
648 unsigned int limit
, head
;
649 unsigned long avalue
;
652 /* Determine if switching to first/second half of q */
653 avalue
= gru_get_amo_value(cb
);
654 head
= gru_get_amo_value_head(cb
);
655 limit
= gru_get_amo_value_limit(cb
);
657 qlines
= mqd
->qlines
;
658 half
= (limit
!= qlines
);
661 mqh
= gru_mesq_head(qlines
/ 2 + 1, qlines
);
663 mqh
= gru_mesq_head(2, qlines
/ 2 + 1);
665 /* Try to get lock for switching head pointer */
666 gru_gamir(cb
, EOP_IR_CLR
, HSTATUS(mqd
->mq_gpa
, half
), XTYPE_DW
, IMA
);
667 if (gru_wait(cb
) != CBS_IDLE
)
669 if (!gru_get_amo_value(cb
)) {
670 STAT(mesq_qf_locked
);
671 return MQE_QUEUE_FULL
;
674 /* Got the lock. Send optional NOP if queue not full, */
676 if (send_noop_message(cb
, mqd
, mesg
)) {
677 gru_gamir(cb
, EOP_IR_INC
, HSTATUS(mqd
->mq_gpa
, half
),
679 if (gru_wait(cb
) != CBS_IDLE
)
681 STAT(mesq_qf_noop_not_full
);
687 /* Then flip queuehead to other half of queue. */
688 gru_gamer(cb
, EOP_ERR_CSWAP
, mqd
->mq_gpa
, XTYPE_DW
, mqh
.val
, avalue
,
690 if (gru_wait(cb
) != CBS_IDLE
)
693 /* If not successfully in swapping queue head, clear the hstatus lock */
694 if (gru_get_amo_value(cb
) != avalue
) {
695 STAT(mesq_qf_switch_head_failed
);
696 gru_gamir(cb
, EOP_IR_INC
, HSTATUS(mqd
->mq_gpa
, half
), XTYPE_DW
,
698 if (gru_wait(cb
) != CBS_IDLE
)
703 STAT(mesq_qf_unexpected_error
);
704 return MQE_UNEXPECTED_CB_ERR
;
708 * Handle a PUT failure. Note: if message was a 2-line message, one of the
709 * lines might have successfully have been written. Before sending the
710 * message, "present" must be cleared in BOTH lines to prevent the receiver
711 * from prematurely seeing the full message.
713 static int send_message_put_nacked(void *cb
, struct gru_message_queue_desc
*mqd
,
714 void *mesg
, int lines
)
716 unsigned long m
, *val
= mesg
, gpa
, save
;
719 m
= mqd
->mq_gpa
+ (gru_get_amo_value_head(cb
) << 6);
721 gru_vset(cb
, m
, 0, XTYPE_CL
, lines
, 1, IMA
);
722 if (gru_wait(cb
) != CBS_IDLE
)
723 return MQE_UNEXPECTED_CB_ERR
;
725 gru_vstore(cb
, m
, gru_get_tri(mesg
), XTYPE_CL
, lines
, 1, IMA
);
726 if (gru_wait(cb
) != CBS_IDLE
)
727 return MQE_UNEXPECTED_CB_ERR
;
729 if (!mqd
->interrupt_vector
)
733 * Send a cross-partition interrupt to the SSI that contains the target
734 * message queue. Normally, the interrupt is automatically delivered by
735 * hardware but some error conditions require explicit delivery.
736 * Use the GRU to deliver the interrupt. Otherwise partition failures
737 * could cause unrecovered errors.
739 gpa
= uv_global_gru_mmr_address(mqd
->interrupt_pnode
, UVH_IPI_INT
);
741 *val
= uv_hub_ipi_value(mqd
->interrupt_apicid
, mqd
->interrupt_vector
,
743 gru_vstore_phys(cb
, gpa
, gru_get_tri(mesg
), IAA_REGISTER
, IMA
);
747 return MQE_UNEXPECTED_CB_ERR
;
752 * Handle a gru_mesq failure. Some of these failures are software recoverable
755 static int send_message_failure(void *cb
, struct gru_message_queue_desc
*mqd
,
756 void *mesg
, int lines
)
758 int substatus
, ret
= 0;
760 substatus
= gru_get_cb_message_queue_substatus(cb
);
763 STAT(mesq_send_unexpected_error
);
764 ret
= MQE_UNEXPECTED_CB_ERR
;
766 case CBSS_LB_OVERFLOWED
:
767 STAT(mesq_send_lb_overflow
);
768 ret
= MQE_CONGESTION
;
770 case CBSS_QLIMIT_REACHED
:
771 STAT(mesq_send_qlimit_reached
);
772 ret
= send_message_queue_full(cb
, mqd
, mesg
, lines
);
774 case CBSS_AMO_NACKED
:
775 STAT(mesq_send_amo_nacked
);
776 ret
= MQE_CONGESTION
;
778 case CBSS_PUT_NACKED
:
779 STAT(mesq_send_put_nacked
);
780 ret
= send_message_put_nacked(cb
, mqd
, mesg
, lines
);
782 case CBSS_PAGE_OVERFLOW
:
783 STAT(mesq_page_overflow
);
792 * Send a message to a message queue
793 * mqd message queue descriptor
794 * mesg message. ust be vaddr within a GSEG
795 * bytes message size (<= 2 CL)
797 int gru_send_message_gpa(struct gru_message_queue_desc
*mqd
, void *mesg
,
800 struct message_header
*mhdr
;
803 int istatus
, clines
, ret
;
806 BUG_ON(bytes
< sizeof(int) || bytes
> 2 * GRU_CACHE_LINE_BYTES
);
808 clines
= DIV_ROUND_UP(bytes
, GRU_CACHE_LINE_BYTES
);
809 if (gru_get_cpu_resources(bytes
, &cb
, &dsr
))
810 return MQE_BUG_NO_RESOURCES
;
811 memcpy(dsr
, mesg
, bytes
);
813 mhdr
->present
= MQS_FULL
;
814 mhdr
->lines
= clines
;
816 mhdr
->present2
= get_present2(mhdr
);
817 restore_present2(mhdr
, MQS_FULL
);
822 gru_mesq(cb
, mqd
->mq_gpa
, gru_get_tri(mhdr
), clines
, IMA
);
823 istatus
= gru_wait(cb
);
824 if (istatus
!= CBS_IDLE
)
825 ret
= send_message_failure(cb
, mqd
, dsr
, clines
);
826 } while (ret
== MQIE_AGAIN
);
827 gru_free_cpu_resources(cb
, dsr
);
830 STAT(mesq_send_failed
);
833 EXPORT_SYMBOL_GPL(gru_send_message_gpa
);
836 * Advance the receive pointer for the queue to the next message.
838 void gru_free_message(struct gru_message_queue_desc
*mqd
, void *mesg
)
840 struct message_queue
*mq
= mqd
->mq
;
841 struct message_header
*mhdr
= mq
->next
;
844 int lines
= mhdr
->lines
;
847 restore_present2(mhdr
, MQS_EMPTY
);
848 mhdr
->present
= MQS_EMPTY
;
851 next
= pnext
+ GRU_CACHE_LINE_BYTES
* lines
;
852 if (next
== mq
->limit
) {
855 } else if (pnext
< mq
->start2
&& next
>= mq
->start2
) {
860 mq
->hstatus
[half
] = 1;
863 EXPORT_SYMBOL_GPL(gru_free_message
);
866 * Get next message from message queue. Return NULL if no message
867 * present. User must call next_message() to move to next message.
870 void *gru_get_next_message(struct gru_message_queue_desc
*mqd
)
872 struct message_queue
*mq
= mqd
->mq
;
873 struct message_header
*mhdr
= mq
->next
;
874 int present
= mhdr
->present
;
876 /* skip NOOP messages */
877 while (present
== MQS_NOOP
) {
878 gru_free_message(mqd
, mhdr
);
880 present
= mhdr
->present
;
883 /* Wait for both halves of 2 line messages */
884 if (present
== MQS_FULL
&& mhdr
->lines
== 2 &&
885 get_present2(mhdr
) == MQS_EMPTY
)
889 STAT(mesq_receive_none
);
893 if (mhdr
->lines
== 2)
894 restore_present2(mhdr
, mhdr
->present2
);
899 EXPORT_SYMBOL_GPL(gru_get_next_message
);
901 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
904 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
906 int gru_read_gpa(unsigned long *value
, unsigned long gpa
)
913 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES
, &cb
, &dsr
))
914 return MQE_BUG_NO_RESOURCES
;
916 gru_vload_phys(cb
, gpa
, gru_get_tri(dsr
), iaa
, IMA
);
919 *value
= *(unsigned long *)dsr
;
920 gru_free_cpu_resources(cb
, dsr
);
923 EXPORT_SYMBOL_GPL(gru_read_gpa
);
927 * Copy a block of data using the GRU resources
929 int gru_copy_gpa(unsigned long dest_gpa
, unsigned long src_gpa
,
937 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES
, &cb
, &dsr
))
938 return MQE_BUG_NO_RESOURCES
;
939 gru_bcopy(cb
, src_gpa
, dest_gpa
, gru_get_tri(dsr
),
940 XTYPE_B
, bytes
, GRU_NUM_KERNEL_DSR_CL
, IMA
);
942 gru_free_cpu_resources(cb
, dsr
);
945 EXPORT_SYMBOL_GPL(gru_copy_gpa
);
947 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
948 /* Temp - will delete after we gain confidence in the GRU */
950 static int quicktest0(unsigned long arg
)
959 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES
, &cb
, &dsr
))
960 return MQE_BUG_NO_RESOURCES
;
965 gru_vload(cb
, uv_gpa(&word0
), gru_get_tri(dsr
), XTYPE_DW
, 1, 1, IMA
);
966 if (gru_wait(cb
) != CBS_IDLE
) {
967 printk(KERN_DEBUG
"GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
972 printk(KERN_DEBUG
"GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p
);
975 gru_vstore(cb
, uv_gpa(&word1
), gru_get_tri(dsr
), XTYPE_DW
, 1, 1, IMA
);
976 if (gru_wait(cb
) != CBS_IDLE
) {
977 printk(KERN_DEBUG
"GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
981 if (word0
!= word1
|| word1
!= MAGIC
) {
983 "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
984 smp_processor_id(), word1
, MAGIC
);
990 gru_free_cpu_resources(cb
, dsr
);
994 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
996 static int quicktest1(unsigned long arg
)
998 struct gru_message_queue_desc mqd
;
1002 char mes
[GRU_CACHE_LINE_BYTES
], *m
;
1004 /* Need 1K cacheline aligned that does not cross page boundary */
1005 p
= kmalloc(4096, 0);
1008 mq
= ALIGNUP(p
, 1024);
1009 memset(mes
, 0xee, sizeof(mes
));
1012 gru_create_message_queue(&mqd
, mq
, 8 * GRU_CACHE_LINE_BYTES
, 0, 0, 0);
1013 for (i
= 0; i
< 6; i
++) {
1016 ret
= gru_send_message_gpa(&mqd
, mes
, sizeof(mes
));
1017 } while (ret
== MQE_CONGESTION
);
1021 if (ret
!= MQE_QUEUE_FULL
|| i
!= 4) {
1022 printk(KERN_DEBUG
"GRU:%d quicktest1: unexpect status %d, i %d\n",
1023 smp_processor_id(), ret
, i
);
1027 for (i
= 0; i
< 6; i
++) {
1028 m
= gru_get_next_message(&mqd
);
1029 if (!m
|| m
[8] != i
)
1031 gru_free_message(&mqd
, m
);
1034 printk(KERN_DEBUG
"GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1035 smp_processor_id(), i
, m
, m
? m
[8] : -1);
1045 static int quicktest2(unsigned long arg
)
1047 static DECLARE_COMPLETION(cmp
);
1054 struct gru_control_block_status
*gen
;
1055 int i
, k
, istatus
, bytes
;
1057 bytes
= numcb
* 4 * 8;
1058 buf
= kmalloc(bytes
, GFP_KERNEL
);
1063 han
= gru_reserve_async_resources(blade_id
, numcb
, 0, &cmp
);
1067 gru_lock_async_resource(han
, &cb0
, NULL
);
1068 memset(buf
, 0xee, bytes
);
1069 for (i
= 0; i
< numcb
; i
++)
1070 gru_vset(cb0
+ i
* GRU_HANDLE_STRIDE
, uv_gpa(&buf
[i
* 4]), 0,
1071 XTYPE_DW
, 4, 1, IMA_INTERRUPT
);
1076 gru_wait_async_cbr(han
);
1077 for (i
= 0; i
< numcb
; i
++) {
1078 cb
= cb0
+ i
* GRU_HANDLE_STRIDE
;
1079 istatus
= gru_check_status(cb
);
1080 if (istatus
!= CBS_ACTIVE
&& istatus
!= CBS_CALL_OS
)
1085 if (istatus
!= CBS_IDLE
) {
1086 printk(KERN_DEBUG
"GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i
);
1088 } else if (buf
[4 * i
] || buf
[4 * i
+ 1] || buf
[4 * i
+ 2] ||
1090 printk(KERN_DEBUG
"GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1091 smp_processor_id(), i
, buf
[4 * i
], buf
[4 * i
+ 1], buf
[4 * i
+ 2], buf
[4 * i
+ 3]);
1096 gen
->istatus
= CBS_CALL_OS
; /* don't handle this CBR again */
1100 gru_unlock_async_resource(han
);
1101 gru_release_async_resources(han
);
1108 static int quicktest3(unsigned long arg
)
1110 char buf1
[BUFSIZE
], buf2
[BUFSIZE
];
1113 memset(buf2
, 0, sizeof(buf2
));
1114 memset(buf1
, get_cycles() & 255, sizeof(buf1
));
1115 gru_copy_gpa(uv_gpa(buf2
), uv_gpa(buf1
), BUFSIZE
);
1116 if (memcmp(buf1
, buf2
, BUFSIZE
)) {
1117 printk(KERN_DEBUG
"GRU:%d quicktest3 error\n", smp_processor_id());
1124 * Debugging only. User hook for various kernel tests
1127 int gru_ktest(unsigned long arg
)
1131 switch (arg
& 0xff) {
1133 ret
= quicktest0(arg
);
1136 ret
= quicktest1(arg
);
1139 ret
= quicktest2(arg
);
1142 ret
= quicktest3(arg
);
1145 ret
= gru_free_kernel_contexts();
1152 int gru_kservices_init(void)
1157 void gru_kservices_exit(void)
1159 if (gru_free_kernel_contexts())