sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / drivers / misc / vmw_vmci / vmci_guest.c
blobe0d5017785e5f4caa1c8b06fae0366adef9e9b2d
1 /*
2 * VMware VMCI Driver
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/moduleparam.h>
19 #include <linux/interrupt.h>
20 #include <linux/highmem.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/smp.h>
29 #include <linux/io.h>
30 #include <linux/vmalloc.h>
32 #include "vmci_datagram.h"
33 #include "vmci_doorbell.h"
34 #include "vmci_context.h"
35 #include "vmci_driver.h"
36 #include "vmci_event.h"
38 #define PCI_VENDOR_ID_VMWARE 0x15AD
39 #define PCI_DEVICE_ID_VMWARE_VMCI 0x0740
41 #define VMCI_UTIL_NUM_RESOURCES 1
43 static bool vmci_disable_msi;
44 module_param_named(disable_msi, vmci_disable_msi, bool, 0);
45 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
47 static bool vmci_disable_msix;
48 module_param_named(disable_msix, vmci_disable_msix, bool, 0);
49 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
51 static u32 ctx_update_sub_id = VMCI_INVALID_ID;
52 static u32 vm_context_id = VMCI_INVALID_ID;
54 struct vmci_guest_device {
55 struct device *dev; /* PCI device we are attached to */
56 void __iomem *iobase;
58 unsigned int irq;
59 unsigned int intr_type;
60 bool exclusive_vectors;
61 struct msix_entry msix_entries[VMCI_MAX_INTRS];
63 struct tasklet_struct datagram_tasklet;
64 struct tasklet_struct bm_tasklet;
66 void *data_buffer;
67 void *notification_bitmap;
68 dma_addr_t notification_base;
71 /* vmci_dev singleton device and supporting data*/
72 struct pci_dev *vmci_pdev;
73 static struct vmci_guest_device *vmci_dev_g;
74 static DEFINE_SPINLOCK(vmci_dev_spinlock);
76 static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
78 bool vmci_guest_code_active(void)
80 return atomic_read(&vmci_num_guest_devices) != 0;
83 u32 vmci_get_vm_context_id(void)
85 if (vm_context_id == VMCI_INVALID_ID) {
86 struct vmci_datagram get_cid_msg;
87 get_cid_msg.dst =
88 vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
89 VMCI_GET_CONTEXT_ID);
90 get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
91 get_cid_msg.payload_size = 0;
92 vm_context_id = vmci_send_datagram(&get_cid_msg);
94 return vm_context_id;
98 * VM to hypervisor call mechanism. We use the standard VMware naming
99 * convention since shared code is calling this function as well.
101 int vmci_send_datagram(struct vmci_datagram *dg)
103 unsigned long flags;
104 int result;
106 /* Check args. */
107 if (dg == NULL)
108 return VMCI_ERROR_INVALID_ARGS;
111 * Need to acquire spinlock on the device because the datagram
112 * data may be spread over multiple pages and the monitor may
113 * interleave device user rpc calls from multiple
114 * VCPUs. Acquiring the spinlock precludes that
115 * possibility. Disabling interrupts to avoid incoming
116 * datagrams during a "rep out" and possibly landing up in
117 * this function.
119 spin_lock_irqsave(&vmci_dev_spinlock, flags);
121 if (vmci_dev_g) {
122 iowrite8_rep(vmci_dev_g->iobase + VMCI_DATA_OUT_ADDR,
123 dg, VMCI_DG_SIZE(dg));
124 result = ioread32(vmci_dev_g->iobase + VMCI_RESULT_LOW_ADDR);
125 } else {
126 result = VMCI_ERROR_UNAVAILABLE;
129 spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
131 return result;
133 EXPORT_SYMBOL_GPL(vmci_send_datagram);
136 * Gets called with the new context id if updated or resumed.
137 * Context id.
139 static void vmci_guest_cid_update(u32 sub_id,
140 const struct vmci_event_data *event_data,
141 void *client_data)
143 const struct vmci_event_payld_ctx *ev_payload =
144 vmci_event_data_const_payload(event_data);
146 if (sub_id != ctx_update_sub_id) {
147 pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
148 return;
151 if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
152 pr_devel("Invalid event data\n");
153 return;
156 pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
157 vm_context_id, ev_payload->context_id, event_data->event);
159 vm_context_id = ev_payload->context_id;
163 * Verify that the host supports the hypercalls we need. If it does not,
164 * try to find fallback hypercalls and use those instead. Returns
165 * true if required hypercalls (or fallback hypercalls) are
166 * supported by the host, false otherwise.
168 static int vmci_check_host_caps(struct pci_dev *pdev)
170 bool result;
171 struct vmci_resource_query_msg *msg;
172 u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
173 VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
174 struct vmci_datagram *check_msg;
176 check_msg = kmalloc(msg_size, GFP_KERNEL);
177 if (!check_msg) {
178 dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
179 return -ENOMEM;
182 check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
183 VMCI_RESOURCES_QUERY);
184 check_msg->src = VMCI_ANON_SRC_HANDLE;
185 check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
186 msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
188 msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
189 msg->resources[0] = VMCI_GET_CONTEXT_ID;
191 /* Checks that hyper calls are supported */
192 result = vmci_send_datagram(check_msg) == 0x01;
193 kfree(check_msg);
195 dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
196 __func__, result ? "PASSED" : "FAILED");
198 /* We need the vector. There are no fallbacks. */
199 return result ? 0 : -ENXIO;
203 * Reads datagrams from the data in port and dispatches them. We
204 * always start reading datagrams into only the first page of the
205 * datagram buffer. If the datagrams don't fit into one page, we
206 * use the maximum datagram buffer size for the remainder of the
207 * invocation. This is a simple heuristic for not penalizing
208 * small datagrams.
210 * This function assumes that it has exclusive access to the data
211 * in port for the duration of the call.
213 static void vmci_dispatch_dgs(unsigned long data)
215 struct vmci_guest_device *vmci_dev = (struct vmci_guest_device *)data;
216 u8 *dg_in_buffer = vmci_dev->data_buffer;
217 struct vmci_datagram *dg;
218 size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
219 size_t current_dg_in_buffer_size = PAGE_SIZE;
220 size_t remaining_bytes;
222 BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
224 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
225 vmci_dev->data_buffer, current_dg_in_buffer_size);
226 dg = (struct vmci_datagram *)dg_in_buffer;
227 remaining_bytes = current_dg_in_buffer_size;
229 while (dg->dst.resource != VMCI_INVALID_ID ||
230 remaining_bytes > PAGE_SIZE) {
231 unsigned dg_in_size;
234 * When the input buffer spans multiple pages, a datagram can
235 * start on any page boundary in the buffer.
237 if (dg->dst.resource == VMCI_INVALID_ID) {
238 dg = (struct vmci_datagram *)roundup(
239 (uintptr_t)dg + 1, PAGE_SIZE);
240 remaining_bytes =
241 (size_t)(dg_in_buffer +
242 current_dg_in_buffer_size -
243 (u8 *)dg);
244 continue;
247 dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
249 if (dg_in_size <= dg_in_buffer_size) {
250 int result;
253 * If the remaining bytes in the datagram
254 * buffer doesn't contain the complete
255 * datagram, we first make sure we have enough
256 * room for it and then we read the reminder
257 * of the datagram and possibly any following
258 * datagrams.
260 if (dg_in_size > remaining_bytes) {
261 if (remaining_bytes !=
262 current_dg_in_buffer_size) {
265 * We move the partial
266 * datagram to the front and
267 * read the reminder of the
268 * datagram and possibly
269 * following calls into the
270 * following bytes.
272 memmove(dg_in_buffer, dg_in_buffer +
273 current_dg_in_buffer_size -
274 remaining_bytes,
275 remaining_bytes);
276 dg = (struct vmci_datagram *)
277 dg_in_buffer;
280 if (current_dg_in_buffer_size !=
281 dg_in_buffer_size)
282 current_dg_in_buffer_size =
283 dg_in_buffer_size;
285 ioread8_rep(vmci_dev->iobase +
286 VMCI_DATA_IN_ADDR,
287 vmci_dev->data_buffer +
288 remaining_bytes,
289 current_dg_in_buffer_size -
290 remaining_bytes);
294 * We special case event datagrams from the
295 * hypervisor.
297 if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
298 dg->dst.resource == VMCI_EVENT_HANDLER) {
299 result = vmci_event_dispatch(dg);
300 } else {
301 result = vmci_datagram_invoke_guest_handler(dg);
303 if (result < VMCI_SUCCESS)
304 dev_dbg(vmci_dev->dev,
305 "Datagram with resource (ID=0x%x) failed (err=%d)\n",
306 dg->dst.resource, result);
308 /* On to the next datagram. */
309 dg = (struct vmci_datagram *)((u8 *)dg +
310 dg_in_size);
311 } else {
312 size_t bytes_to_skip;
315 * Datagram doesn't fit in datagram buffer of maximal
316 * size. We drop it.
318 dev_dbg(vmci_dev->dev,
319 "Failed to receive datagram (size=%u bytes)\n",
320 dg_in_size);
322 bytes_to_skip = dg_in_size - remaining_bytes;
323 if (current_dg_in_buffer_size != dg_in_buffer_size)
324 current_dg_in_buffer_size = dg_in_buffer_size;
326 for (;;) {
327 ioread8_rep(vmci_dev->iobase +
328 VMCI_DATA_IN_ADDR,
329 vmci_dev->data_buffer,
330 current_dg_in_buffer_size);
331 if (bytes_to_skip <= current_dg_in_buffer_size)
332 break;
334 bytes_to_skip -= current_dg_in_buffer_size;
336 dg = (struct vmci_datagram *)(dg_in_buffer +
337 bytes_to_skip);
340 remaining_bytes =
341 (size_t) (dg_in_buffer + current_dg_in_buffer_size -
342 (u8 *)dg);
344 if (remaining_bytes < VMCI_DG_HEADERSIZE) {
345 /* Get the next batch of datagrams. */
347 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
348 vmci_dev->data_buffer,
349 current_dg_in_buffer_size);
350 dg = (struct vmci_datagram *)dg_in_buffer;
351 remaining_bytes = current_dg_in_buffer_size;
357 * Scans the notification bitmap for raised flags, clears them
358 * and handles the notifications.
360 static void vmci_process_bitmap(unsigned long data)
362 struct vmci_guest_device *dev = (struct vmci_guest_device *)data;
364 if (!dev->notification_bitmap) {
365 dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
366 return;
369 vmci_dbell_scan_notification_entries(dev->notification_bitmap);
373 * Enable MSI-X. Try exclusive vectors first, then shared vectors.
375 static int vmci_enable_msix(struct pci_dev *pdev,
376 struct vmci_guest_device *vmci_dev)
378 int i;
379 int result;
381 for (i = 0; i < VMCI_MAX_INTRS; ++i) {
382 vmci_dev->msix_entries[i].entry = i;
383 vmci_dev->msix_entries[i].vector = i;
386 result = pci_enable_msix_exact(pdev,
387 vmci_dev->msix_entries, VMCI_MAX_INTRS);
388 if (result == 0)
389 vmci_dev->exclusive_vectors = true;
390 else if (result == -ENOSPC)
391 result = pci_enable_msix_exact(pdev, vmci_dev->msix_entries, 1);
393 return result;
397 * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
398 * interrupt (vector VMCI_INTR_DATAGRAM).
400 static irqreturn_t vmci_interrupt(int irq, void *_dev)
402 struct vmci_guest_device *dev = _dev;
405 * If we are using MSI-X with exclusive vectors then we simply schedule
406 * the datagram tasklet, since we know the interrupt was meant for us.
407 * Otherwise we must read the ICR to determine what to do.
410 if (dev->intr_type == VMCI_INTR_TYPE_MSIX && dev->exclusive_vectors) {
411 tasklet_schedule(&dev->datagram_tasklet);
412 } else {
413 unsigned int icr;
415 /* Acknowledge interrupt and determine what needs doing. */
416 icr = ioread32(dev->iobase + VMCI_ICR_ADDR);
417 if (icr == 0 || icr == ~0)
418 return IRQ_NONE;
420 if (icr & VMCI_ICR_DATAGRAM) {
421 tasklet_schedule(&dev->datagram_tasklet);
422 icr &= ~VMCI_ICR_DATAGRAM;
425 if (icr & VMCI_ICR_NOTIFICATION) {
426 tasklet_schedule(&dev->bm_tasklet);
427 icr &= ~VMCI_ICR_NOTIFICATION;
430 if (icr != 0)
431 dev_warn(dev->dev,
432 "Ignoring unknown interrupt cause (%d)\n",
433 icr);
436 return IRQ_HANDLED;
440 * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
441 * which is for the notification bitmap. Will only get called if we are
442 * using MSI-X with exclusive vectors.
444 static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
446 struct vmci_guest_device *dev = _dev;
448 /* For MSI-X we can just assume it was meant for us. */
449 tasklet_schedule(&dev->bm_tasklet);
451 return IRQ_HANDLED;
455 * Most of the initialization at module load time is done here.
457 static int vmci_guest_probe_device(struct pci_dev *pdev,
458 const struct pci_device_id *id)
460 struct vmci_guest_device *vmci_dev;
461 void __iomem *iobase;
462 unsigned int capabilities;
463 unsigned long cmd;
464 int vmci_err;
465 int error;
467 dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
469 error = pcim_enable_device(pdev);
470 if (error) {
471 dev_err(&pdev->dev,
472 "Failed to enable VMCI device: %d\n", error);
473 return error;
476 error = pcim_iomap_regions(pdev, 1 << 0, KBUILD_MODNAME);
477 if (error) {
478 dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
479 return error;
482 iobase = pcim_iomap_table(pdev)[0];
484 dev_info(&pdev->dev, "Found VMCI PCI device at %#lx, irq %u\n",
485 (unsigned long)iobase, pdev->irq);
487 vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
488 if (!vmci_dev) {
489 dev_err(&pdev->dev,
490 "Can't allocate memory for VMCI device\n");
491 return -ENOMEM;
494 vmci_dev->dev = &pdev->dev;
495 vmci_dev->intr_type = VMCI_INTR_TYPE_INTX;
496 vmci_dev->exclusive_vectors = false;
497 vmci_dev->iobase = iobase;
499 tasklet_init(&vmci_dev->datagram_tasklet,
500 vmci_dispatch_dgs, (unsigned long)vmci_dev);
501 tasklet_init(&vmci_dev->bm_tasklet,
502 vmci_process_bitmap, (unsigned long)vmci_dev);
504 vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
505 if (!vmci_dev->data_buffer) {
506 dev_err(&pdev->dev,
507 "Can't allocate memory for datagram buffer\n");
508 return -ENOMEM;
511 pci_set_master(pdev); /* To enable queue_pair functionality. */
514 * Verify that the VMCI Device supports the capabilities that
515 * we need. If the device is missing capabilities that we would
516 * like to use, check for fallback capabilities and use those
517 * instead (so we can run a new VM on old hosts). Fail the load if
518 * a required capability is missing and there is no fallback.
520 * Right now, we need datagrams. There are no fallbacks.
522 capabilities = ioread32(vmci_dev->iobase + VMCI_CAPS_ADDR);
523 if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
524 dev_err(&pdev->dev, "Device does not support datagrams\n");
525 error = -ENXIO;
526 goto err_free_data_buffer;
530 * If the hardware supports notifications, we will use that as
531 * well.
533 if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
534 vmci_dev->notification_bitmap = dma_alloc_coherent(
535 &pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
536 GFP_KERNEL);
537 if (!vmci_dev->notification_bitmap) {
538 dev_warn(&pdev->dev,
539 "Unable to allocate notification bitmap\n");
540 } else {
541 memset(vmci_dev->notification_bitmap, 0, PAGE_SIZE);
542 capabilities |= VMCI_CAPS_NOTIFICATIONS;
546 dev_info(&pdev->dev, "Using capabilities 0x%x\n", capabilities);
548 /* Let the host know which capabilities we intend to use. */
549 iowrite32(capabilities, vmci_dev->iobase + VMCI_CAPS_ADDR);
551 /* Set up global device so that we can start sending datagrams */
552 spin_lock_irq(&vmci_dev_spinlock);
553 vmci_dev_g = vmci_dev;
554 vmci_pdev = pdev;
555 spin_unlock_irq(&vmci_dev_spinlock);
558 * Register notification bitmap with device if that capability is
559 * used.
561 if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
562 unsigned long bitmap_ppn =
563 vmci_dev->notification_base >> PAGE_SHIFT;
564 if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
565 dev_warn(&pdev->dev,
566 "VMCI device unable to register notification bitmap with PPN 0x%x\n",
567 (u32) bitmap_ppn);
568 error = -ENXIO;
569 goto err_remove_vmci_dev_g;
573 /* Check host capabilities. */
574 error = vmci_check_host_caps(pdev);
575 if (error)
576 goto err_remove_bitmap;
578 /* Enable device. */
581 * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
582 * update the internal context id when needed.
584 vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
585 vmci_guest_cid_update, NULL,
586 &ctx_update_sub_id);
587 if (vmci_err < VMCI_SUCCESS)
588 dev_warn(&pdev->dev,
589 "Failed to subscribe to event (type=%d): %d\n",
590 VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
593 * Enable interrupts. Try MSI-X first, then MSI, and then fallback on
594 * legacy interrupts.
596 if (!vmci_disable_msix && !vmci_enable_msix(pdev, vmci_dev)) {
597 vmci_dev->intr_type = VMCI_INTR_TYPE_MSIX;
598 vmci_dev->irq = vmci_dev->msix_entries[0].vector;
599 } else if (!vmci_disable_msi && !pci_enable_msi(pdev)) {
600 vmci_dev->intr_type = VMCI_INTR_TYPE_MSI;
601 vmci_dev->irq = pdev->irq;
602 } else {
603 vmci_dev->intr_type = VMCI_INTR_TYPE_INTX;
604 vmci_dev->irq = pdev->irq;
608 * Request IRQ for legacy or MSI interrupts, or for first
609 * MSI-X vector.
611 error = request_irq(vmci_dev->irq, vmci_interrupt, IRQF_SHARED,
612 KBUILD_MODNAME, vmci_dev);
613 if (error) {
614 dev_err(&pdev->dev, "Irq %u in use: %d\n",
615 vmci_dev->irq, error);
616 goto err_disable_msi;
620 * For MSI-X with exclusive vectors we need to request an
621 * interrupt for each vector so that we get a separate
622 * interrupt handler routine. This allows us to distinguish
623 * between the vectors.
625 if (vmci_dev->exclusive_vectors) {
626 error = request_irq(vmci_dev->msix_entries[1].vector,
627 vmci_interrupt_bm, 0, KBUILD_MODNAME,
628 vmci_dev);
629 if (error) {
630 dev_err(&pdev->dev,
631 "Failed to allocate irq %u: %d\n",
632 vmci_dev->msix_entries[1].vector, error);
633 goto err_free_irq;
637 dev_dbg(&pdev->dev, "Registered device\n");
639 atomic_inc(&vmci_num_guest_devices);
641 /* Enable specific interrupt bits. */
642 cmd = VMCI_IMR_DATAGRAM;
643 if (capabilities & VMCI_CAPS_NOTIFICATIONS)
644 cmd |= VMCI_IMR_NOTIFICATION;
645 iowrite32(cmd, vmci_dev->iobase + VMCI_IMR_ADDR);
647 /* Enable interrupts. */
648 iowrite32(VMCI_CONTROL_INT_ENABLE,
649 vmci_dev->iobase + VMCI_CONTROL_ADDR);
651 pci_set_drvdata(pdev, vmci_dev);
652 return 0;
654 err_free_irq:
655 free_irq(vmci_dev->irq, vmci_dev);
656 tasklet_kill(&vmci_dev->datagram_tasklet);
657 tasklet_kill(&vmci_dev->bm_tasklet);
659 err_disable_msi:
660 if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSIX)
661 pci_disable_msix(pdev);
662 else if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSI)
663 pci_disable_msi(pdev);
665 vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
666 if (vmci_err < VMCI_SUCCESS)
667 dev_warn(&pdev->dev,
668 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
669 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
671 err_remove_bitmap:
672 if (vmci_dev->notification_bitmap) {
673 iowrite32(VMCI_CONTROL_RESET,
674 vmci_dev->iobase + VMCI_CONTROL_ADDR);
675 dma_free_coherent(&pdev->dev, PAGE_SIZE,
676 vmci_dev->notification_bitmap,
677 vmci_dev->notification_base);
680 err_remove_vmci_dev_g:
681 spin_lock_irq(&vmci_dev_spinlock);
682 vmci_pdev = NULL;
683 vmci_dev_g = NULL;
684 spin_unlock_irq(&vmci_dev_spinlock);
686 err_free_data_buffer:
687 vfree(vmci_dev->data_buffer);
689 /* The rest are managed resources and will be freed by PCI core */
690 return error;
693 static void vmci_guest_remove_device(struct pci_dev *pdev)
695 struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
696 int vmci_err;
698 dev_dbg(&pdev->dev, "Removing device\n");
700 atomic_dec(&vmci_num_guest_devices);
702 vmci_qp_guest_endpoints_exit();
704 vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
705 if (vmci_err < VMCI_SUCCESS)
706 dev_warn(&pdev->dev,
707 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
708 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
710 spin_lock_irq(&vmci_dev_spinlock);
711 vmci_dev_g = NULL;
712 vmci_pdev = NULL;
713 spin_unlock_irq(&vmci_dev_spinlock);
715 dev_dbg(&pdev->dev, "Resetting vmci device\n");
716 iowrite32(VMCI_CONTROL_RESET, vmci_dev->iobase + VMCI_CONTROL_ADDR);
719 * Free IRQ and then disable MSI/MSI-X as appropriate. For
720 * MSI-X, we might have multiple vectors, each with their own
721 * IRQ, which we must free too.
723 free_irq(vmci_dev->irq, vmci_dev);
724 if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSIX) {
725 if (vmci_dev->exclusive_vectors)
726 free_irq(vmci_dev->msix_entries[1].vector, vmci_dev);
727 pci_disable_msix(pdev);
728 } else if (vmci_dev->intr_type == VMCI_INTR_TYPE_MSI) {
729 pci_disable_msi(pdev);
732 tasklet_kill(&vmci_dev->datagram_tasklet);
733 tasklet_kill(&vmci_dev->bm_tasklet);
735 if (vmci_dev->notification_bitmap) {
737 * The device reset above cleared the bitmap state of the
738 * device, so we can safely free it here.
741 dma_free_coherent(&pdev->dev, PAGE_SIZE,
742 vmci_dev->notification_bitmap,
743 vmci_dev->notification_base);
746 vfree(vmci_dev->data_buffer);
748 /* The rest are managed resources and will be freed by PCI core */
751 static DEFINE_PCI_DEVICE_TABLE(vmci_ids) = {
752 { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
753 { 0 },
755 MODULE_DEVICE_TABLE(pci, vmci_ids);
757 static struct pci_driver vmci_guest_driver = {
758 .name = KBUILD_MODNAME,
759 .id_table = vmci_ids,
760 .probe = vmci_guest_probe_device,
761 .remove = vmci_guest_remove_device,
764 int __init vmci_guest_init(void)
766 return pci_register_driver(&vmci_guest_driver);
769 void __exit vmci_guest_exit(void)
771 pci_unregister_driver(&vmci_guest_driver);