1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 * This driver uses the sungem driver (c) David Miller
20 * (davem@redhat.com) as its basis.
22 * The cassini chip has a number of features that distinguish it from
24 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
25 * load balancing (non-VLAN mode)
26 * batching of multiple packets
27 * multiple CPU dispatching
28 * page-based RX descriptor engine with separate completion rings
29 * Gigabit support (GMII and PCS interface)
30 * MIF link up/down detection works
32 * RX is handled by page sized buffers that are attached as fragments to
33 * the skb. here's what's done:
34 * -- driver allocates pages at a time and keeps reference counts
36 * -- the upper protocol layers assume that the header is in the skb
37 * itself. as a result, cassini will copy a small amount (64 bytes)
39 * -- driver appends the rest of the data pages as frags to skbuffs
40 * and increments the reference count
41 * -- on page reclamation, the driver swaps the page with a spare page.
42 * if that page is still in use, it frees its reference to that page,
43 * and allocates a new page for use. otherwise, it just recycles the
46 * NOTE: cassini can parse the header. however, it's not worth it
47 * as long as the network stack requires a header copy.
49 * TX has 4 queues. currently these queues are used in a round-robin
50 * fashion for load balancing. They can also be used for QoS. for that
51 * to work, however, QoS information needs to be exposed down to the driver
52 * level so that subqueues get targeted to particular transmit rings.
53 * alternatively, the queues can be configured via use of the all-purpose
56 * RX DATA: the rx completion ring has all the info, but the rx desc
57 * ring has all of the data. RX can conceivably come in under multiple
58 * interrupts, but the INT# assignment needs to be set up properly by
59 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60 * that. also, the two descriptor rings are designed to distinguish between
61 * encrypted and non-encrypted packets, but we use them for buffering
64 * by default, the selective clear mask is set up to process rx packets.
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/types.h>
72 #include <linux/compiler.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
97 #include <net/checksum.h>
99 #include <linux/atomic.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
104 #define cas_page_map(x) kmap_atomic((x))
105 #define cas_page_unmap(x) kunmap_atomic((x))
106 #define CAS_NCPUS num_online_cpus()
108 #define cas_skb_release(x) netif_rx(x)
110 /* select which firmware to use */
111 #define USE_HP_WORKAROUND
112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
117 #define USE_TX_COMPWB /* use completion writeback registers */
118 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
119 #define USE_RX_BLANK /* hw interrupt mitigation */
120 #undef USE_ENTROPY_DEV /* don't test for entropy device */
122 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
123 * also, we need to make cp->lock finer-grained.
130 #undef USE_VPD_DEBUG /* debug vpd information if defined */
132 /* rx processing options */
133 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
134 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
135 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
136 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
137 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
139 #define DRV_MODULE_NAME "cassini"
140 #define DRV_MODULE_VERSION "1.6"
141 #define DRV_MODULE_RELDATE "21 May 2008"
143 #define CAS_DEF_MSG_ENABLE \
153 /* length of time before we decide the hardware is borked,
154 * and dev->tx_timeout() should be called to fix the problem
156 #define CAS_TX_TIMEOUT (HZ)
157 #define CAS_LINK_TIMEOUT (22*HZ/10)
158 #define CAS_LINK_FAST_TIMEOUT (1)
160 /* timeout values for state changing. these specify the number
161 * of 10us delays to be used before giving up.
163 #define STOP_TRIES_PHY 1000
164 #define STOP_TRIES 5000
166 /* specify a minimum frame size to deal with some fifo issues
167 * max mtu == 2 * page size - ethernet header - 64 - swivel =
168 * 2 * page_size - 0x50
170 #define CAS_MIN_FRAME 97
171 #define CAS_1000MB_MIN_FRAME 255
172 #define CAS_MIN_MTU 60
173 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
177 * Eliminate these and use separate atomic counters for each, to
178 * avoid a race condition.
181 #define CAS_RESET_MTU 1
182 #define CAS_RESET_ALL 2
183 #define CAS_RESET_SPARE 3
186 static char version
[] =
187 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
189 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
190 static int link_mode
;
192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194 MODULE_LICENSE("GPL");
195 MODULE_FIRMWARE("sun/cassini.bin");
196 module_param(cassini_debug
, int, 0);
197 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
198 module_param(link_mode
, int, 0);
199 MODULE_PARM_DESC(link_mode
, "default link mode");
202 * Work around for a PCS bug in which the link goes down due to the chip
203 * being confused and never showing a link status of "up."
205 #define DEFAULT_LINKDOWN_TIMEOUT 5
207 * Value in seconds, for user input.
209 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
210 module_param(linkdown_timeout
, int, 0);
211 MODULE_PARM_DESC(linkdown_timeout
,
212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215 * value in 'ticks' (units used by jiffies). Set when we init the
216 * module because 'HZ' in actually a function call on some flavors of
217 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
219 static int link_transition_timeout
;
223 static u16 link_modes
[] = {
224 BMCR_ANENABLE
, /* 0 : autoneg */
225 0, /* 1 : 10bt half duplex */
226 BMCR_SPEED100
, /* 2 : 100bt half duplex */
227 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
228 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
229 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
232 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl
) = {
233 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
234 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
235 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
236 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
240 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
242 static void cas_set_link_modes(struct cas
*cp
);
244 static inline void cas_lock_tx(struct cas
*cp
)
248 for (i
= 0; i
< N_TX_RINGS
; i
++)
249 spin_lock_nested(&cp
->tx_lock
[i
], i
);
252 static inline void cas_lock_all(struct cas
*cp
)
254 spin_lock_irq(&cp
->lock
);
258 /* WTZ: QA was finding deadlock problems with the previous
259 * versions after long test runs with multiple cards per machine.
260 * See if replacing cas_lock_all with safer versions helps. The
261 * symptoms QA is reporting match those we'd expect if interrupts
262 * aren't being properly restored, and we fixed a previous deadlock
263 * with similar symptoms by using save/restore versions in other
266 #define cas_lock_all_save(cp, flags) \
268 struct cas *xxxcp = (cp); \
269 spin_lock_irqsave(&xxxcp->lock, flags); \
270 cas_lock_tx(xxxcp); \
273 static inline void cas_unlock_tx(struct cas
*cp
)
277 for (i
= N_TX_RINGS
; i
> 0; i
--)
278 spin_unlock(&cp
->tx_lock
[i
- 1]);
281 static inline void cas_unlock_all(struct cas
*cp
)
284 spin_unlock_irq(&cp
->lock
);
287 #define cas_unlock_all_restore(cp, flags) \
289 struct cas *xxxcp = (cp); \
290 cas_unlock_tx(xxxcp); \
291 spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 static void cas_disable_irq(struct cas
*cp
, const int ring
)
296 /* Make sure we won't get any more interrupts */
298 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
302 /* disable completion interrupts and selectively mask */
303 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
315 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
316 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
320 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
321 REG_PLUS_INTRN_MASK(ring
));
327 static inline void cas_mask_intr(struct cas
*cp
)
331 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
332 cas_disable_irq(cp
, i
);
335 static void cas_enable_irq(struct cas
*cp
, const int ring
)
337 if (ring
== 0) { /* all but TX_DONE */
338 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
342 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
354 writel(INTRN_MASK_RX_EN
, cp
->regs
+
355 REG_PLUS_INTRN_MASK(ring
));
364 static inline void cas_unmask_intr(struct cas
*cp
)
368 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
369 cas_enable_irq(cp
, i
);
372 static inline void cas_entropy_gather(struct cas
*cp
)
374 #ifdef USE_ENTROPY_DEV
375 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
378 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
379 readl(cp
->regs
+ REG_ENTROPY_IV
),
384 static inline void cas_entropy_reset(struct cas
*cp
)
386 #ifdef USE_ENTROPY_DEV
387 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
390 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
391 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
392 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
393 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
395 /* if we read back 0x0, we don't have an entropy device */
396 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
397 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
401 /* access to the phy. the following assumes that we've initialized the MIF to
402 * be in frame rather than bit-bang mode
404 static u16
cas_phy_read(struct cas
*cp
, int reg
)
407 int limit
= STOP_TRIES_PHY
;
409 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
410 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
411 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
412 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
413 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
415 /* poll for completion */
416 while (limit
-- > 0) {
418 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
419 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
420 return cmd
& MIF_FRAME_DATA_MASK
;
422 return 0xFFFF; /* -1 */
425 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
427 int limit
= STOP_TRIES_PHY
;
430 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
431 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
432 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
433 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
434 cmd
|= val
& MIF_FRAME_DATA_MASK
;
435 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
437 /* poll for completion */
438 while (limit
-- > 0) {
440 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
441 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
447 static void cas_phy_powerup(struct cas
*cp
)
449 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
451 if ((ctl
& BMCR_PDOWN
) == 0)
454 cas_phy_write(cp
, MII_BMCR
, ctl
);
457 static void cas_phy_powerdown(struct cas
*cp
)
459 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
461 if (ctl
& BMCR_PDOWN
)
464 cas_phy_write(cp
, MII_BMCR
, ctl
);
467 /* cp->lock held. note: the last put_page will free the buffer */
468 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
470 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
472 __free_pages(page
->buffer
, cp
->page_order
);
477 #ifdef RX_COUNT_BUFFERS
478 #define RX_USED_ADD(x, y) ((x)->used += (y))
479 #define RX_USED_SET(x, y) ((x)->used = (y))
481 #define RX_USED_ADD(x, y)
482 #define RX_USED_SET(x, y)
485 /* local page allocation routines for the receive buffers. jumbo pages
486 * require at least 8K contiguous and 8K aligned buffers.
488 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
492 page
= kmalloc(sizeof(cas_page_t
), flags
);
496 INIT_LIST_HEAD(&page
->list
);
497 RX_USED_SET(page
, 0);
498 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
501 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
502 cp
->page_size
, PCI_DMA_FROMDEVICE
);
510 /* initialize spare pool of rx buffers, but allocate during the open */
511 static void cas_spare_init(struct cas
*cp
)
513 spin_lock(&cp
->rx_inuse_lock
);
514 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
515 spin_unlock(&cp
->rx_inuse_lock
);
517 spin_lock(&cp
->rx_spare_lock
);
518 INIT_LIST_HEAD(&cp
->rx_spare_list
);
519 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
520 spin_unlock(&cp
->rx_spare_lock
);
523 /* used on close. free all the spare buffers. */
524 static void cas_spare_free(struct cas
*cp
)
526 struct list_head list
, *elem
, *tmp
;
528 /* free spare buffers */
529 INIT_LIST_HEAD(&list
);
530 spin_lock(&cp
->rx_spare_lock
);
531 list_splice_init(&cp
->rx_spare_list
, &list
);
532 spin_unlock(&cp
->rx_spare_lock
);
533 list_for_each_safe(elem
, tmp
, &list
) {
534 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
537 INIT_LIST_HEAD(&list
);
540 * Looks like Adrian had protected this with a different
541 * lock than used everywhere else to manipulate this list.
543 spin_lock(&cp
->rx_inuse_lock
);
544 list_splice_init(&cp
->rx_inuse_list
, &list
);
545 spin_unlock(&cp
->rx_inuse_lock
);
547 spin_lock(&cp
->rx_spare_lock
);
548 list_splice_init(&cp
->rx_inuse_list
, &list
);
549 spin_unlock(&cp
->rx_spare_lock
);
551 list_for_each_safe(elem
, tmp
, &list
) {
552 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
556 /* replenish spares if needed */
557 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
559 struct list_head list
, *elem
, *tmp
;
562 /* check inuse list. if we don't need any more free buffers,
566 /* make a local copy of the list */
567 INIT_LIST_HEAD(&list
);
568 spin_lock(&cp
->rx_inuse_lock
);
569 list_splice_init(&cp
->rx_inuse_list
, &list
);
570 spin_unlock(&cp
->rx_inuse_lock
);
572 list_for_each_safe(elem
, tmp
, &list
) {
573 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
576 * With the lockless pagecache, cassini buffering scheme gets
577 * slightly less accurate: we might find that a page has an
578 * elevated reference count here, due to a speculative ref,
579 * and skip it as in-use. Ideally we would be able to reclaim
580 * it. However this would be such a rare case, it doesn't
581 * matter too much as we should pick it up the next time round.
583 * Importantly, if we find that the page has a refcount of 1
584 * here (our refcount), then we know it is definitely not inuse
585 * so we can reuse it.
587 if (page_count(page
->buffer
) > 1)
591 spin_lock(&cp
->rx_spare_lock
);
592 if (cp
->rx_spares_needed
> 0) {
593 list_add(elem
, &cp
->rx_spare_list
);
594 cp
->rx_spares_needed
--;
595 spin_unlock(&cp
->rx_spare_lock
);
597 spin_unlock(&cp
->rx_spare_lock
);
598 cas_page_free(cp
, page
);
602 /* put any inuse buffers back on the list */
603 if (!list_empty(&list
)) {
604 spin_lock(&cp
->rx_inuse_lock
);
605 list_splice(&list
, &cp
->rx_inuse_list
);
606 spin_unlock(&cp
->rx_inuse_lock
);
609 spin_lock(&cp
->rx_spare_lock
);
610 needed
= cp
->rx_spares_needed
;
611 spin_unlock(&cp
->rx_spare_lock
);
615 /* we still need spares, so try to allocate some */
616 INIT_LIST_HEAD(&list
);
619 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
622 list_add(&spare
->list
, &list
);
626 spin_lock(&cp
->rx_spare_lock
);
627 list_splice(&list
, &cp
->rx_spare_list
);
628 cp
->rx_spares_needed
-= i
;
629 spin_unlock(&cp
->rx_spare_lock
);
632 /* pull a page from the list. */
633 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
635 struct list_head
*entry
;
638 spin_lock(&cp
->rx_spare_lock
);
639 if (list_empty(&cp
->rx_spare_list
)) {
640 /* try to do a quick recovery */
641 spin_unlock(&cp
->rx_spare_lock
);
642 cas_spare_recover(cp
, GFP_ATOMIC
);
643 spin_lock(&cp
->rx_spare_lock
);
644 if (list_empty(&cp
->rx_spare_list
)) {
645 netif_err(cp
, rx_err
, cp
->dev
,
646 "no spare buffers available\n");
647 spin_unlock(&cp
->rx_spare_lock
);
652 entry
= cp
->rx_spare_list
.next
;
654 recover
= ++cp
->rx_spares_needed
;
655 spin_unlock(&cp
->rx_spare_lock
);
657 /* trigger the timer to do the recovery */
658 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
660 atomic_inc(&cp
->reset_task_pending
);
661 atomic_inc(&cp
->reset_task_pending_spare
);
662 schedule_work(&cp
->reset_task
);
664 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
665 schedule_work(&cp
->reset_task
);
668 return list_entry(entry
, cas_page_t
, list
);
672 static void cas_mif_poll(struct cas
*cp
, const int enable
)
676 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
677 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
679 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
680 cfg
|= MIF_CFG_PHY_SELECT
;
682 /* poll and interrupt on link status change. */
684 cfg
|= MIF_CFG_POLL_EN
;
685 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
686 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
688 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
689 cp
->regs
+ REG_MIF_MASK
);
690 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
693 /* Must be invoked under cp->lock */
694 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
700 int oldstate
= cp
->lstate
;
701 int link_was_not_down
= !(oldstate
== link_down
);
703 /* Setup link parameters */
706 lcntl
= cp
->link_cntl
;
707 if (ep
->autoneg
== AUTONEG_ENABLE
)
708 cp
->link_cntl
= BMCR_ANENABLE
;
710 u32 speed
= ethtool_cmd_speed(ep
);
712 if (speed
== SPEED_100
)
713 cp
->link_cntl
|= BMCR_SPEED100
;
714 else if (speed
== SPEED_1000
)
715 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
716 if (ep
->duplex
== DUPLEX_FULL
)
717 cp
->link_cntl
|= BMCR_FULLDPLX
;
720 changed
= (lcntl
!= cp
->link_cntl
);
723 if (cp
->lstate
== link_up
) {
724 netdev_info(cp
->dev
, "PCS link down\n");
727 netdev_info(cp
->dev
, "link configuration changed\n");
730 cp
->lstate
= link_down
;
731 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
736 * WTZ: If the old state was link_up, we turn off the carrier
737 * to replicate everything we do elsewhere on a link-down
738 * event when we were already in a link-up state..
740 if (oldstate
== link_up
)
741 netif_carrier_off(cp
->dev
);
742 if (changed
&& link_was_not_down
) {
744 * WTZ: This branch will simply schedule a full reset after
745 * we explicitly changed link modes in an ioctl. See if this
746 * fixes the link-problems we were having for forced mode.
748 atomic_inc(&cp
->reset_task_pending
);
749 atomic_inc(&cp
->reset_task_pending_all
);
750 schedule_work(&cp
->reset_task
);
752 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
756 if (cp
->phy_type
& CAS_PHY_SERDES
) {
757 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
759 if (cp
->link_cntl
& BMCR_ANENABLE
) {
760 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
761 cp
->lstate
= link_aneg
;
763 if (cp
->link_cntl
& BMCR_FULLDPLX
)
764 val
|= PCS_MII_CTRL_DUPLEX
;
765 val
&= ~PCS_MII_AUTONEG_EN
;
766 cp
->lstate
= link_force_ok
;
768 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
769 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
773 ctl
= cas_phy_read(cp
, MII_BMCR
);
774 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
775 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
776 ctl
|= cp
->link_cntl
;
777 if (ctl
& BMCR_ANENABLE
) {
778 ctl
|= BMCR_ANRESTART
;
779 cp
->lstate
= link_aneg
;
781 cp
->lstate
= link_force_ok
;
783 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
784 cas_phy_write(cp
, MII_BMCR
, ctl
);
789 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
792 /* Must be invoked under cp->lock. */
793 static int cas_reset_mii_phy(struct cas
*cp
)
795 int limit
= STOP_TRIES_PHY
;
798 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
801 val
= cas_phy_read(cp
, MII_BMCR
);
802 if ((val
& BMCR_RESET
) == 0)
809 static void cas_saturn_firmware_init(struct cas
*cp
)
811 const struct firmware
*fw
;
812 const char fw_name
[] = "sun/cassini.bin";
815 if (PHY_NS_DP83065
!= cp
->phy_id
)
818 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
820 pr_err("Failed to load firmware \"%s\"\n",
825 pr_err("bogus length %zu in \"%s\"\n",
829 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
830 cp
->fw_size
= fw
->size
- 2;
831 cp
->fw_data
= vmalloc(cp
->fw_size
);
834 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
836 release_firmware(fw
);
839 static void cas_saturn_firmware_load(struct cas
*cp
)
846 cas_phy_powerdown(cp
);
848 /* expanded memory access mode */
849 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
851 /* pointer configuration for new firmware */
852 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
853 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
854 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
855 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
856 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
857 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
858 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
859 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
861 /* download new firmware */
862 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
863 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
864 for (i
= 0; i
< cp
->fw_size
; i
++)
865 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
867 /* enable firmware */
868 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
869 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
873 /* phy initialization */
874 static void cas_phy_init(struct cas
*cp
)
878 /* if we're in MII/GMII mode, set up phy */
879 if (CAS_PHY_MII(cp
->phy_type
)) {
880 writel(PCS_DATAPATH_MODE_MII
,
881 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
884 cas_reset_mii_phy(cp
); /* take out of isolate mode */
886 if (PHY_LUCENT_B0
== cp
->phy_id
) {
887 /* workaround link up/down issue with lucent */
888 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
889 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
890 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
892 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
893 /* workarounds for broadcom phy */
894 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
895 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
896 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
897 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
898 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
899 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
900 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
901 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
902 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
903 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
904 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
906 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
907 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
908 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
910 /* link workaround */
911 cas_phy_write(cp
, BROADCOM_MII_REG4
,
915 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
916 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
917 SATURN_PCFG_FSI
: 0x0,
918 cp
->regs
+ REG_SATURN_PCFG
);
920 /* load firmware to address 10Mbps auto-negotiation
921 * issue. NOTE: this will need to be changed if the
922 * default firmware gets fixed.
924 if (PHY_NS_DP83065
== cp
->phy_id
) {
925 cas_saturn_firmware_load(cp
);
930 /* advertise capabilities */
931 val
= cas_phy_read(cp
, MII_BMCR
);
932 val
&= ~BMCR_ANENABLE
;
933 cas_phy_write(cp
, MII_BMCR
, val
);
936 cas_phy_write(cp
, MII_ADVERTISE
,
937 cas_phy_read(cp
, MII_ADVERTISE
) |
938 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
939 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
940 CAS_ADVERTISE_PAUSE
|
941 CAS_ADVERTISE_ASYM_PAUSE
));
943 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
944 /* make sure that we don't advertise half
945 * duplex to avoid a chip issue
947 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
948 val
&= ~CAS_ADVERTISE_1000HALF
;
949 val
|= CAS_ADVERTISE_1000FULL
;
950 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
954 /* reset pcs for serdes */
958 writel(PCS_DATAPATH_MODE_SERDES
,
959 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
961 /* enable serdes pins on saturn */
962 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
963 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
965 /* Reset PCS unit. */
966 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
967 val
|= PCS_MII_RESET
;
968 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
971 while (--limit
> 0) {
973 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
978 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
979 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
981 /* Make sure PCS is disabled while changing advertisement
984 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
986 /* Advertise all capabilities except half-duplex. */
987 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
988 val
&= ~PCS_MII_ADVERT_HD
;
989 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
990 PCS_MII_ADVERT_ASYM_PAUSE
);
991 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
994 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
996 /* pcs workaround: enable sync detect */
997 writel(PCS_SERDES_CTRL_SYNCD_EN
,
998 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1003 static int cas_pcs_link_check(struct cas
*cp
)
1005 u32 stat
, state_machine
;
1008 /* The link status bit latches on zero, so you must
1009 * read it twice in such a case to see a transition
1010 * to the link being up.
1012 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1013 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1014 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1016 /* The remote-fault indication is only valid
1017 * when autoneg has completed.
1019 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1020 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1021 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1022 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1024 /* work around link detection issue by querying the PCS state
1027 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1028 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1029 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1030 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1031 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1034 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1035 if (cp
->lstate
!= link_up
) {
1037 cp
->lstate
= link_up
;
1038 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1040 cas_set_link_modes(cp
);
1041 netif_carrier_on(cp
->dev
);
1044 } else if (cp
->lstate
== link_up
) {
1045 cp
->lstate
= link_down
;
1046 if (link_transition_timeout
!= 0 &&
1047 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1048 !cp
->link_transition_jiffies_valid
) {
1050 * force a reset, as a workaround for the
1051 * link-failure problem. May want to move this to a
1052 * point a bit earlier in the sequence. If we had
1053 * generated a reset a short time ago, we'll wait for
1054 * the link timer to check the status until a
1055 * timer expires (link_transistion_jiffies_valid is
1056 * true when the timer is running.) Instead of using
1057 * a system timer, we just do a check whenever the
1058 * link timer is running - this clears the flag after
1062 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1063 cp
->link_transition_jiffies
= jiffies
;
1064 cp
->link_transition_jiffies_valid
= 1;
1066 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1068 netif_carrier_off(cp
->dev
);
1070 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1072 /* Cassini only: if you force a mode, there can be
1073 * sync problems on link down. to fix that, the following
1074 * things need to be checked:
1075 * 1) read serialink state register
1076 * 2) read pcs status register to verify link down.
1077 * 3) if link down and serial link == 0x03, then you need
1078 * to global reset the chip.
1080 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1081 /* should check to see if we're in a forced mode */
1082 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1086 } else if (cp
->lstate
== link_down
) {
1087 if (link_transition_timeout
!= 0 &&
1088 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1089 !cp
->link_transition_jiffies_valid
) {
1090 /* force a reset, as a workaround for the
1091 * link-failure problem. May want to move
1092 * this to a point a bit earlier in the
1096 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1097 cp
->link_transition_jiffies
= jiffies
;
1098 cp
->link_transition_jiffies_valid
= 1;
1100 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1107 static int cas_pcs_interrupt(struct net_device
*dev
,
1108 struct cas
*cp
, u32 status
)
1110 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1112 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1114 return cas_pcs_link_check(cp
);
1117 static int cas_txmac_interrupt(struct net_device
*dev
,
1118 struct cas
*cp
, u32 status
)
1120 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1125 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1126 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1128 /* Defer timer expiration is quite normal,
1129 * don't even log the event.
1131 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1132 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1135 spin_lock(&cp
->stat_lock
[0]);
1136 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1137 netdev_err(dev
, "TX MAC xmit underrun\n");
1138 cp
->net_stats
[0].tx_fifo_errors
++;
1141 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1142 netdev_err(dev
, "TX MAC max packet size error\n");
1143 cp
->net_stats
[0].tx_errors
++;
1146 /* The rest are all cases of one of the 16-bit TX
1147 * counters expiring.
1149 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1150 cp
->net_stats
[0].collisions
+= 0x10000;
1152 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1153 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1154 cp
->net_stats
[0].collisions
+= 0x10000;
1157 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1158 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1159 cp
->net_stats
[0].collisions
+= 0x10000;
1161 spin_unlock(&cp
->stat_lock
[0]);
1163 /* We do not keep track of MAC_TX_COLL_FIRST and
1164 * MAC_TX_PEAK_ATTEMPTS events.
1169 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1171 cas_hp_inst_t
*inst
;
1176 while ((inst
= firmware
) && inst
->note
) {
1177 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1179 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1180 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1181 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1183 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1184 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1185 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1186 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1187 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1188 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1189 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1190 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1192 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1193 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1194 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1195 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1196 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1202 static void cas_init_rx_dma(struct cas
*cp
)
1204 u64 desc_dma
= cp
->block_dvma
;
1208 /* rx free descriptors */
1209 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1210 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1211 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1212 if ((N_RX_DESC_RINGS
> 1) &&
1213 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1214 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1215 writel(val
, cp
->regs
+ REG_RX_CFG
);
1217 val
= (unsigned long) cp
->init_rxds
[0] -
1218 (unsigned long) cp
->init_block
;
1219 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1220 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1221 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1223 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1224 /* rx desc 2 is for IPSEC packets. however,
1225 * we don't it that for that purpose.
1227 val
= (unsigned long) cp
->init_rxds
[1] -
1228 (unsigned long) cp
->init_block
;
1229 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1230 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1231 REG_PLUS_RX_DB1_LOW
);
1232 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1236 /* rx completion registers */
1237 val
= (unsigned long) cp
->init_rxcs
[0] -
1238 (unsigned long) cp
->init_block
;
1239 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1240 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1242 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1244 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1245 val
= (unsigned long) cp
->init_rxcs
[i
] -
1246 (unsigned long) cp
->init_block
;
1247 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1248 REG_PLUS_RX_CBN_HI(i
));
1249 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1250 REG_PLUS_RX_CBN_LOW(i
));
1254 /* read selective clear regs to prevent spurious interrupts
1255 * on reset because complete == kick.
1256 * selective clear set up to prevent interrupts on resets
1258 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1259 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1260 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1261 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1262 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1264 /* 2 is different from 3 and 4 */
1265 if (N_RX_COMP_RINGS
> 1)
1266 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1267 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1269 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1270 writel(INTR_RX_DONE_ALT
,
1271 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1274 /* set up pause thresholds */
1275 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1276 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1277 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1278 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1279 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1281 /* zero out dma reassembly buffers */
1282 for (i
= 0; i
< 64; i
++) {
1283 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1284 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1285 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1286 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1289 /* make sure address register is 0 for normal operation */
1290 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1291 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1293 /* interrupt mitigation */
1295 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1296 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1297 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1299 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1302 /* interrupt generation as a function of low water marks for
1303 * free desc and completion entries. these are used to trigger
1304 * housekeeping for rx descs. we don't use the free interrupt
1305 * as it's not very useful
1307 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1308 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1309 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1310 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1311 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1312 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1315 /* Random early detect registers. useful for congestion avoidance.
1316 * this should be tunable.
1318 writel(0x0, cp
->regs
+ REG_RX_RED
);
1320 /* receive page sizes. default == 2K (0x800) */
1322 if (cp
->page_size
== 0x1000)
1324 else if (cp
->page_size
== 0x2000)
1326 else if (cp
->page_size
== 0x4000)
1329 /* round mtu + offset. constrain to page size. */
1330 size
= cp
->dev
->mtu
+ 64;
1331 if (size
> cp
->page_size
)
1332 size
= cp
->page_size
;
1336 else if (size
<= 0x800)
1338 else if (size
<= 0x1000)
1343 cp
->mtu_stride
= 1 << (i
+ 10);
1344 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1345 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1346 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1347 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1348 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1350 /* enable the header parser if desired */
1351 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1354 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1355 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1356 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1357 writel(val
, cp
->regs
+ REG_HP_CFG
);
1360 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1362 memset(rxc
, 0, sizeof(*rxc
));
1363 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1366 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1367 * flipping is protected by the fact that the chip will not
1368 * hand back the same page index while it's being processed.
1370 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1372 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1375 if (page_count(page
->buffer
) == 1)
1378 new = cas_page_dequeue(cp
);
1380 spin_lock(&cp
->rx_inuse_lock
);
1381 list_add(&page
->list
, &cp
->rx_inuse_list
);
1382 spin_unlock(&cp
->rx_inuse_lock
);
1387 /* this needs to be changed if we actually use the ENC RX DESC ring */
1388 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1391 cas_page_t
**page0
= cp
->rx_pages
[0];
1392 cas_page_t
**page1
= cp
->rx_pages
[1];
1394 /* swap if buffer is in use */
1395 if (page_count(page0
[index
]->buffer
) > 1) {
1396 cas_page_t
*new = cas_page_spare(cp
, index
);
1398 page1
[index
] = page0
[index
];
1402 RX_USED_SET(page0
[index
], 0);
1403 return page0
[index
];
1406 static void cas_clean_rxds(struct cas
*cp
)
1408 /* only clean ring 0 as ring 1 is used for spare buffers */
1409 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1412 /* release all rx flows */
1413 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1414 struct sk_buff
*skb
;
1415 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1416 cas_skb_release(skb
);
1420 /* initialize descriptors */
1421 size
= RX_DESC_RINGN_SIZE(0);
1422 for (i
= 0; i
< size
; i
++) {
1423 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1424 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1425 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1426 CAS_BASE(RX_INDEX_RING
, 0));
1429 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1431 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1434 static void cas_clean_rxcs(struct cas
*cp
)
1438 /* take ownership of rx comp descriptors */
1439 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1440 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1441 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1442 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1443 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1444 cas_rxc_init(rxc
+ j
);
1450 /* When we get a RX fifo overflow, the RX unit is probably hung
1451 * so we do the following.
1453 * If any part of the reset goes wrong, we return 1 and that causes the
1454 * whole chip to be reset.
1456 static int cas_rxmac_reset(struct cas
*cp
)
1458 struct net_device
*dev
= cp
->dev
;
1462 /* First, reset MAC RX. */
1463 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1464 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1465 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1469 if (limit
== STOP_TRIES
) {
1470 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1474 /* Second, disable RX DMA. */
1475 writel(0, cp
->regs
+ REG_RX_CFG
);
1476 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1477 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1481 if (limit
== STOP_TRIES
) {
1482 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1488 /* Execute RX reset command. */
1489 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1490 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1491 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1495 if (limit
== STOP_TRIES
) {
1496 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1500 /* reset driver rx state */
1504 /* Now, reprogram the rest of RX unit. */
1505 cas_init_rx_dma(cp
);
1508 val
= readl(cp
->regs
+ REG_RX_CFG
);
1509 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1510 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1511 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1512 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1517 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1520 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1525 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1527 /* these are all rollovers */
1528 spin_lock(&cp
->stat_lock
[0]);
1529 if (stat
& MAC_RX_ALIGN_ERR
)
1530 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1532 if (stat
& MAC_RX_CRC_ERR
)
1533 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1535 if (stat
& MAC_RX_LEN_ERR
)
1536 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1538 if (stat
& MAC_RX_OVERFLOW
) {
1539 cp
->net_stats
[0].rx_over_errors
++;
1540 cp
->net_stats
[0].rx_fifo_errors
++;
1543 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1546 spin_unlock(&cp
->stat_lock
[0]);
1550 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1553 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1558 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1559 "mac interrupt, stat: 0x%x\n", stat
);
1561 /* This interrupt is just for pause frame and pause
1562 * tracking. It is useful for diagnostics and debug
1563 * but probably by default we will mask these events.
1565 if (stat
& MAC_CTRL_PAUSE_STATE
)
1566 cp
->pause_entered
++;
1568 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1569 cp
->pause_last_time_recvd
= (stat
>> 16);
1575 /* Must be invoked under cp->lock. */
1576 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1580 switch (cp
->lstate
) {
1581 case link_force_ret
:
1582 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1583 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1584 cp
->timer_ticks
= 5;
1585 cp
->lstate
= link_force_ok
;
1586 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1590 val
= cas_phy_read(cp
, MII_BMCR
);
1592 /* Try forced modes. we try things in the following order:
1593 * 1000 full -> 100 full/half -> 10 half
1595 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1596 val
|= BMCR_FULLDPLX
;
1597 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1598 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1599 cas_phy_write(cp
, MII_BMCR
, val
);
1600 cp
->timer_ticks
= 5;
1601 cp
->lstate
= link_force_try
;
1602 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1605 case link_force_try
:
1606 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1607 val
= cas_phy_read(cp
, MII_BMCR
);
1608 cp
->timer_ticks
= 5;
1609 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1610 val
&= ~CAS_BMCR_SPEED1000
;
1611 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1612 cas_phy_write(cp
, MII_BMCR
, val
);
1616 if (val
& BMCR_SPEED100
) {
1617 if (val
& BMCR_FULLDPLX
) /* fd failed */
1618 val
&= ~BMCR_FULLDPLX
;
1619 else { /* 100Mbps failed */
1620 val
&= ~BMCR_SPEED100
;
1622 cas_phy_write(cp
, MII_BMCR
, val
);
1632 /* must be invoked with cp->lock held */
1633 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1637 if (bmsr
& BMSR_LSTATUS
) {
1638 /* Ok, here we got a link. If we had it due to a forced
1639 * fallback, and we were configured for autoneg, we
1640 * retry a short autoneg pass. If you know your hub is
1641 * broken, use ethtool ;)
1643 if ((cp
->lstate
== link_force_try
) &&
1644 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1645 cp
->lstate
= link_force_ret
;
1646 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1647 cas_mif_poll(cp
, 0);
1648 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1649 cp
->timer_ticks
= 5;
1651 netif_info(cp
, link
, cp
->dev
,
1652 "Got link after fallback, retrying autoneg once...\n");
1653 cas_phy_write(cp
, MII_BMCR
,
1654 cp
->link_fcntl
| BMCR_ANENABLE
|
1656 cas_mif_poll(cp
, 1);
1658 } else if (cp
->lstate
!= link_up
) {
1659 cp
->lstate
= link_up
;
1660 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1663 cas_set_link_modes(cp
);
1664 netif_carrier_on(cp
->dev
);
1670 /* link not up. if the link was previously up, we restart the
1674 if (cp
->lstate
== link_up
) {
1675 cp
->lstate
= link_down
;
1676 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1678 netif_carrier_off(cp
->dev
);
1680 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1683 } else if (++cp
->timer_ticks
> 10)
1684 cas_mdio_link_not_up(cp
);
1689 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1692 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1695 /* check for a link change */
1696 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1699 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1700 return cas_mii_link_check(cp
, bmsr
);
1703 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1706 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1711 netdev_err(dev
, "PCI error [%04x:%04x]",
1712 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1714 /* cassini+ has this reserved */
1715 if ((stat
& PCI_ERR_BADACK
) &&
1716 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1717 pr_cont(" <No ACK64# during ABS64 cycle>");
1719 if (stat
& PCI_ERR_DTRTO
)
1720 pr_cont(" <Delayed transaction timeout>");
1721 if (stat
& PCI_ERR_OTHER
)
1722 pr_cont(" <other>");
1723 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1724 pr_cont(" <BIM DMA 0 write req>");
1725 if (stat
& PCI_ERR_BIM_DMA_READ
)
1726 pr_cont(" <BIM DMA 0 read req>");
1729 if (stat
& PCI_ERR_OTHER
) {
1732 /* Interrogate PCI config space for the
1735 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1736 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1737 if (cfg
& PCI_STATUS_PARITY
)
1738 netdev_err(dev
, "PCI parity error detected\n");
1739 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1740 netdev_err(dev
, "PCI target abort\n");
1741 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1742 netdev_err(dev
, "PCI master acks target abort\n");
1743 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1744 netdev_err(dev
, "PCI master abort\n");
1745 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1746 netdev_err(dev
, "PCI system error SERR#\n");
1747 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1748 netdev_err(dev
, "PCI parity error\n");
1750 /* Write the error bits back to clear them. */
1751 cfg
&= (PCI_STATUS_PARITY
|
1752 PCI_STATUS_SIG_TARGET_ABORT
|
1753 PCI_STATUS_REC_TARGET_ABORT
|
1754 PCI_STATUS_REC_MASTER_ABORT
|
1755 PCI_STATUS_SIG_SYSTEM_ERROR
|
1756 PCI_STATUS_DETECTED_PARITY
);
1757 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1760 /* For all PCI errors, we should reset the chip. */
1764 /* All non-normal interrupt conditions get serviced here.
1765 * Returns non-zero if we should just exit the interrupt
1766 * handler right now (ie. if we reset the card which invalidates
1767 * all of the other original irq status bits).
1769 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1772 if (status
& INTR_RX_TAG_ERROR
) {
1773 /* corrupt RX tag framing */
1774 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1775 "corrupt rx tag framing\n");
1776 spin_lock(&cp
->stat_lock
[0]);
1777 cp
->net_stats
[0].rx_errors
++;
1778 spin_unlock(&cp
->stat_lock
[0]);
1782 if (status
& INTR_RX_LEN_MISMATCH
) {
1783 /* length mismatch. */
1784 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1785 "length mismatch for rx frame\n");
1786 spin_lock(&cp
->stat_lock
[0]);
1787 cp
->net_stats
[0].rx_errors
++;
1788 spin_unlock(&cp
->stat_lock
[0]);
1792 if (status
& INTR_PCS_STATUS
) {
1793 if (cas_pcs_interrupt(dev
, cp
, status
))
1797 if (status
& INTR_TX_MAC_STATUS
) {
1798 if (cas_txmac_interrupt(dev
, cp
, status
))
1802 if (status
& INTR_RX_MAC_STATUS
) {
1803 if (cas_rxmac_interrupt(dev
, cp
, status
))
1807 if (status
& INTR_MAC_CTRL_STATUS
) {
1808 if (cas_mac_interrupt(dev
, cp
, status
))
1812 if (status
& INTR_MIF_STATUS
) {
1813 if (cas_mif_interrupt(dev
, cp
, status
))
1817 if (status
& INTR_PCI_ERROR_STATUS
) {
1818 if (cas_pci_interrupt(dev
, cp
, status
))
1825 atomic_inc(&cp
->reset_task_pending
);
1826 atomic_inc(&cp
->reset_task_pending_all
);
1827 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1828 schedule_work(&cp
->reset_task
);
1830 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1831 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1832 schedule_work(&cp
->reset_task
);
1837 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1838 * determining whether to do a netif_stop/wakeup
1840 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1841 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1842 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1845 unsigned long off
= addr
+ len
;
1847 if (CAS_TABORT(cp
) == 1)
1849 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1851 return TX_TARGET_ABORT_LEN
;
1854 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1856 struct cas_tx_desc
*txds
;
1857 struct sk_buff
**skbs
;
1858 struct net_device
*dev
= cp
->dev
;
1861 spin_lock(&cp
->tx_lock
[ring
]);
1862 txds
= cp
->init_txds
[ring
];
1863 skbs
= cp
->tx_skbs
[ring
];
1864 entry
= cp
->tx_old
[ring
];
1866 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1867 while (entry
!= limit
) {
1868 struct sk_buff
*skb
= skbs
[entry
];
1874 /* this should never occur */
1875 entry
= TX_DESC_NEXT(ring
, entry
);
1879 /* however, we might get only a partial skb release. */
1880 count
-= skb_shinfo(skb
)->nr_frags
+
1881 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1885 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1886 "tx[%d] done, slot %d\n", ring
, entry
);
1889 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1891 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1892 struct cas_tx_desc
*txd
= txds
+ entry
;
1894 daddr
= le64_to_cpu(txd
->buffer
);
1895 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1896 le64_to_cpu(txd
->control
));
1897 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1899 entry
= TX_DESC_NEXT(ring
, entry
);
1901 /* tiny buffer may follow */
1902 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1903 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1904 entry
= TX_DESC_NEXT(ring
, entry
);
1908 spin_lock(&cp
->stat_lock
[ring
]);
1909 cp
->net_stats
[ring
].tx_packets
++;
1910 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1911 spin_unlock(&cp
->stat_lock
[ring
]);
1912 dev_kfree_skb_irq(skb
);
1914 cp
->tx_old
[ring
] = entry
;
1916 /* this is wrong for multiple tx rings. the net device needs
1917 * multiple queues for this to do the right thing. we wait
1918 * for 2*packets to be available when using tiny buffers
1920 if (netif_queue_stopped(dev
) &&
1921 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1922 netif_wake_queue(dev
);
1923 spin_unlock(&cp
->tx_lock
[ring
]);
1926 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1930 #ifdef USE_TX_COMPWB
1931 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1933 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1934 "tx interrupt, status: 0x%x, %llx\n",
1935 status
, (unsigned long long)compwb
);
1936 /* process all the rings */
1937 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1938 #ifdef USE_TX_COMPWB
1939 /* use the completion writeback registers */
1940 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1941 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1942 compwb
= TX_COMPWB_NEXT(compwb
);
1944 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1946 if (cp
->tx_old
[ring
] != limit
)
1947 cas_tx_ringN(cp
, ring
, limit
);
1952 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1953 int entry
, const u64
*words
,
1954 struct sk_buff
**skbref
)
1956 int dlen
, hlen
, len
, i
, alloclen
;
1957 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1958 struct cas_page
*page
;
1959 struct sk_buff
*skb
;
1960 void *addr
, *crcaddr
;
1964 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1965 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1968 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1971 alloclen
= max(hlen
, RX_COPY_MIN
);
1973 skb
= netdev_alloc_skb(cp
->dev
, alloclen
+ swivel
+ cp
->crc_size
);
1978 skb_reserve(skb
, swivel
);
1981 addr
= crcaddr
= NULL
;
1982 if (hlen
) { /* always copy header pages */
1983 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1984 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1985 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1989 if (!dlen
) /* attach FCS */
1991 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1992 PCI_DMA_FROMDEVICE
);
1993 addr
= cas_page_map(page
->buffer
);
1994 memcpy(p
, addr
+ off
, i
);
1995 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
1996 PCI_DMA_FROMDEVICE
);
1997 cas_page_unmap(addr
);
1998 RX_USED_ADD(page
, 0x100);
2004 if (alloclen
< (hlen
+ dlen
)) {
2005 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2007 /* normal or jumbo packets. we use frags */
2008 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2009 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2010 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2012 hlen
= min(cp
->page_size
- off
, dlen
);
2014 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2015 "rx page overflow: %d\n", hlen
);
2016 dev_kfree_skb_irq(skb
);
2020 if (i
== dlen
) /* attach FCS */
2022 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2023 PCI_DMA_FROMDEVICE
);
2025 /* make sure we always copy a header */
2027 if (p
== (char *) skb
->data
) { /* not split */
2028 addr
= cas_page_map(page
->buffer
);
2029 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2030 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2031 PCI_DMA_FROMDEVICE
);
2032 cas_page_unmap(addr
);
2034 swivel
= RX_COPY_MIN
;
2035 RX_USED_ADD(page
, cp
->mtu_stride
);
2037 RX_USED_ADD(page
, hlen
);
2039 skb_put(skb
, alloclen
);
2041 skb_shinfo(skb
)->nr_frags
++;
2042 skb
->data_len
+= hlen
- swivel
;
2043 skb
->truesize
+= hlen
- swivel
;
2044 skb
->len
+= hlen
- swivel
;
2046 __skb_frag_set_page(frag
, page
->buffer
);
2047 __skb_frag_ref(frag
);
2048 frag
->page_offset
= off
;
2049 skb_frag_size_set(frag
, hlen
- swivel
);
2051 /* any more data? */
2052 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2056 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2057 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2058 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2059 hlen
+ cp
->crc_size
,
2060 PCI_DMA_FROMDEVICE
);
2061 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2062 hlen
+ cp
->crc_size
,
2063 PCI_DMA_FROMDEVICE
);
2065 skb_shinfo(skb
)->nr_frags
++;
2066 skb
->data_len
+= hlen
;
2070 __skb_frag_set_page(frag
, page
->buffer
);
2071 __skb_frag_ref(frag
);
2072 frag
->page_offset
= 0;
2073 skb_frag_size_set(frag
, hlen
);
2074 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2078 addr
= cas_page_map(page
->buffer
);
2079 crcaddr
= addr
+ off
+ hlen
;
2083 /* copying packet */
2087 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2088 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2089 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2090 hlen
= min(cp
->page_size
- off
, dlen
);
2092 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2093 "rx page overflow: %d\n", hlen
);
2094 dev_kfree_skb_irq(skb
);
2098 if (i
== dlen
) /* attach FCS */
2100 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2101 PCI_DMA_FROMDEVICE
);
2102 addr
= cas_page_map(page
->buffer
);
2103 memcpy(p
, addr
+ off
, i
);
2104 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2105 PCI_DMA_FROMDEVICE
);
2106 cas_page_unmap(addr
);
2107 if (p
== (char *) skb
->data
) /* not split */
2108 RX_USED_ADD(page
, cp
->mtu_stride
);
2110 RX_USED_ADD(page
, i
);
2112 /* any more data? */
2113 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2115 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2116 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2117 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2118 dlen
+ cp
->crc_size
,
2119 PCI_DMA_FROMDEVICE
);
2120 addr
= cas_page_map(page
->buffer
);
2121 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2122 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2123 dlen
+ cp
->crc_size
,
2124 PCI_DMA_FROMDEVICE
);
2125 cas_page_unmap(addr
);
2126 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2131 crcaddr
= skb
->data
+ alloclen
;
2133 skb_put(skb
, alloclen
);
2136 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2138 /* checksum includes FCS. strip it out. */
2139 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2140 csum_unfold(csum
)));
2142 cas_page_unmap(addr
);
2144 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2145 if (skb
->protocol
== htons(ETH_P_IP
)) {
2146 skb
->csum
= csum_unfold(~csum
);
2147 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2149 skb_checksum_none_assert(skb
);
2154 /* we can handle up to 64 rx flows at a time. we do the same thing
2155 * as nonreassm except that we batch up the buffers.
2156 * NOTE: we currently just treat each flow as a bunch of packets that
2157 * we pass up. a better way would be to coalesce the packets
2158 * into a jumbo packet. to do that, we need to do the following:
2159 * 1) the first packet will have a clean split between header and
2161 * 2) each time the next flow packet comes in, extend the
2162 * data length and merge the checksums.
2163 * 3) on flow release, fix up the header.
2164 * 4) make sure the higher layer doesn't care.
2165 * because packets get coalesced, we shouldn't run into fragment count
2168 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2169 struct sk_buff
*skb
)
2171 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2172 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2174 /* this is protected at a higher layer, so no need to
2175 * do any additional locking here. stick the buffer
2178 __skb_queue_tail(flow
, skb
);
2179 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2180 while ((skb
= __skb_dequeue(flow
))) {
2181 cas_skb_release(skb
);
2186 /* put rx descriptor back on ring. if a buffer is in use by a higher
2187 * layer, this will need to put in a replacement.
2189 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2194 entry
= cp
->rx_old
[ring
];
2196 new = cas_page_swap(cp
, ring
, index
);
2197 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2198 cp
->init_rxds
[ring
][entry
].index
=
2199 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2200 CAS_BASE(RX_INDEX_RING
, ring
));
2202 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2203 cp
->rx_old
[ring
] = entry
;
2209 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2210 else if ((N_RX_DESC_RINGS
> 1) &&
2211 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2212 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2216 /* only when things are bad */
2217 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2219 unsigned int entry
, last
, count
, released
;
2221 cas_page_t
**page
= cp
->rx_pages
[ring
];
2223 entry
= cp
->rx_old
[ring
];
2225 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2226 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2229 count
= entry
& 0x3;
2230 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2232 while (entry
!= last
) {
2233 /* make a new buffer if it's still in use */
2234 if (page_count(page
[entry
]->buffer
) > 1) {
2235 cas_page_t
*new = cas_page_dequeue(cp
);
2237 /* let the timer know that we need to
2240 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2241 if (!timer_pending(&cp
->link_timer
))
2242 mod_timer(&cp
->link_timer
, jiffies
+
2243 CAS_LINK_FAST_TIMEOUT
);
2244 cp
->rx_old
[ring
] = entry
;
2245 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2248 spin_lock(&cp
->rx_inuse_lock
);
2249 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2250 spin_unlock(&cp
->rx_inuse_lock
);
2251 cp
->init_rxds
[ring
][entry
].buffer
=
2252 cpu_to_le64(new->dma_addr
);
2262 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2264 cp
->rx_old
[ring
] = entry
;
2270 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2271 else if ((N_RX_DESC_RINGS
> 1) &&
2272 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2273 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2278 /* process a completion ring. packets are set up in three basic ways:
2279 * small packets: should be copied header + data in single buffer.
2280 * large packets: header and data in a single buffer.
2281 * split packets: header in a separate buffer from data.
2282 * data may be in multiple pages. data may be > 256
2283 * bytes but in a single page.
2285 * NOTE: RX page posting is done in this routine as well. while there's
2286 * the capability of using multiple RX completion rings, it isn't
2287 * really worthwhile due to the fact that the page posting will
2288 * force serialization on the single descriptor ring.
2290 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2292 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2296 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2297 "rx[%d] interrupt, done: %d/%d\n",
2299 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2301 entry
= cp
->rx_new
[ring
];
2304 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2305 struct sk_buff
*uninitialized_var(skb
);
2310 words
[0] = le64_to_cpu(rxc
->word1
);
2311 words
[1] = le64_to_cpu(rxc
->word2
);
2312 words
[2] = le64_to_cpu(rxc
->word3
);
2313 words
[3] = le64_to_cpu(rxc
->word4
);
2315 /* don't touch if still owned by hw */
2316 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2320 /* hw hasn't cleared the zero bit yet */
2321 if (words
[3] & RX_COMP4_ZERO
) {
2325 /* get info on the packet */
2326 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2327 spin_lock(&cp
->stat_lock
[ring
]);
2328 cp
->net_stats
[ring
].rx_errors
++;
2329 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2330 cp
->net_stats
[ring
].rx_length_errors
++;
2331 if (words
[3] & RX_COMP4_BAD
)
2332 cp
->net_stats
[ring
].rx_crc_errors
++;
2333 spin_unlock(&cp
->stat_lock
[ring
]);
2335 /* We'll just return it to Cassini. */
2337 spin_lock(&cp
->stat_lock
[ring
]);
2338 ++cp
->net_stats
[ring
].rx_dropped
;
2339 spin_unlock(&cp
->stat_lock
[ring
]);
2343 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2349 /* see if it's a flow re-assembly or not. the driver
2350 * itself handles release back up.
2352 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2353 /* non-reassm: these always get released */
2354 cas_skb_release(skb
);
2356 cas_rx_flow_pkt(cp
, words
, skb
);
2359 spin_lock(&cp
->stat_lock
[ring
]);
2360 cp
->net_stats
[ring
].rx_packets
++;
2361 cp
->net_stats
[ring
].rx_bytes
+= len
;
2362 spin_unlock(&cp
->stat_lock
[ring
]);
2367 /* should it be released? */
2368 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2369 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2370 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2371 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2372 cas_post_page(cp
, dring
, i
);
2375 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2376 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2377 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2378 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2379 cas_post_page(cp
, dring
, i
);
2382 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2383 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2384 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2385 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2386 cas_post_page(cp
, dring
, i
);
2389 /* skip to the next entry */
2390 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2391 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2393 if (budget
&& (npackets
>= budget
))
2397 cp
->rx_new
[ring
] = entry
;
2400 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2405 /* put completion entries back on the ring */
2406 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2407 struct cas
*cp
, int ring
)
2409 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2412 last
= cp
->rx_cur
[ring
];
2413 entry
= cp
->rx_new
[ring
];
2414 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2415 "rxc[%d] interrupt, done: %d/%d\n",
2416 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2418 /* zero and re-mark descriptors */
2419 while (last
!= entry
) {
2420 cas_rxc_init(rxc
+ last
);
2421 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2423 cp
->rx_cur
[ring
] = last
;
2426 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2427 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2428 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2433 /* cassini can use all four PCI interrupts for the completion ring.
2434 * rings 3 and 4 are identical
2436 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2437 static inline void cas_handle_irqN(struct net_device
*dev
,
2438 struct cas
*cp
, const u32 status
,
2441 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2442 cas_post_rxcs_ringN(dev
, cp
, ring
);
2445 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2447 struct net_device
*dev
= dev_id
;
2448 struct cas
*cp
= netdev_priv(dev
);
2449 unsigned long flags
;
2450 int ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2451 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2453 /* check for shared irq */
2457 spin_lock_irqsave(&cp
->lock
, flags
);
2458 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2461 napi_schedule(&cp
->napi
);
2463 cas_rx_ringN(cp
, ring
, 0);
2465 status
&= ~INTR_RX_DONE_ALT
;
2469 cas_handle_irqN(dev
, cp
, status
, ring
);
2470 spin_unlock_irqrestore(&cp
->lock
, flags
);
2476 /* everything but rx packets */
2477 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2479 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2480 /* Frame arrived, no free RX buffers available.
2481 * NOTE: we can get this on a link transition. */
2482 cas_post_rxds_ringN(cp
, 1, 0);
2483 spin_lock(&cp
->stat_lock
[1]);
2484 cp
->net_stats
[1].rx_dropped
++;
2485 spin_unlock(&cp
->stat_lock
[1]);
2488 if (status
& INTR_RX_BUF_AE_1
)
2489 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2490 RX_AE_FREEN_VAL(1));
2492 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2493 cas_post_rxcs_ringN(cp
, 1);
2496 /* ring 2 handles a few more events than 3 and 4 */
2497 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2499 struct net_device
*dev
= dev_id
;
2500 struct cas
*cp
= netdev_priv(dev
);
2501 unsigned long flags
;
2502 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2504 /* check for shared interrupt */
2508 spin_lock_irqsave(&cp
->lock
, flags
);
2509 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2512 napi_schedule(&cp
->napi
);
2514 cas_rx_ringN(cp
, 1, 0);
2516 status
&= ~INTR_RX_DONE_ALT
;
2519 cas_handle_irq1(cp
, status
);
2520 spin_unlock_irqrestore(&cp
->lock
, flags
);
2525 static inline void cas_handle_irq(struct net_device
*dev
,
2526 struct cas
*cp
, const u32 status
)
2528 /* housekeeping interrupts */
2529 if (status
& INTR_ERROR_MASK
)
2530 cas_abnormal_irq(dev
, cp
, status
);
2532 if (status
& INTR_RX_BUF_UNAVAIL
) {
2533 /* Frame arrived, no free RX buffers available.
2534 * NOTE: we can get this on a link transition.
2536 cas_post_rxds_ringN(cp
, 0, 0);
2537 spin_lock(&cp
->stat_lock
[0]);
2538 cp
->net_stats
[0].rx_dropped
++;
2539 spin_unlock(&cp
->stat_lock
[0]);
2540 } else if (status
& INTR_RX_BUF_AE
) {
2541 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2542 RX_AE_FREEN_VAL(0));
2545 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2546 cas_post_rxcs_ringN(dev
, cp
, 0);
2549 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2551 struct net_device
*dev
= dev_id
;
2552 struct cas
*cp
= netdev_priv(dev
);
2553 unsigned long flags
;
2554 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2559 spin_lock_irqsave(&cp
->lock
, flags
);
2560 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2561 cas_tx(dev
, cp
, status
);
2562 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2565 if (status
& INTR_RX_DONE
) {
2568 napi_schedule(&cp
->napi
);
2570 cas_rx_ringN(cp
, 0, 0);
2572 status
&= ~INTR_RX_DONE
;
2576 cas_handle_irq(dev
, cp
, status
);
2577 spin_unlock_irqrestore(&cp
->lock
, flags
);
2583 static int cas_poll(struct napi_struct
*napi
, int budget
)
2585 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2586 struct net_device
*dev
= cp
->dev
;
2587 int i
, enable_intr
, credits
;
2588 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2589 unsigned long flags
;
2591 spin_lock_irqsave(&cp
->lock
, flags
);
2592 cas_tx(dev
, cp
, status
);
2593 spin_unlock_irqrestore(&cp
->lock
, flags
);
2595 /* NAPI rx packets. we spread the credits across all of the
2598 * to make sure we're fair with the work we loop through each
2599 * ring N_RX_COMP_RING times with a request of
2600 * budget / N_RX_COMP_RINGS
2604 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2606 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2607 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2608 if (credits
>= budget
) {
2616 /* final rx completion */
2617 spin_lock_irqsave(&cp
->lock
, flags
);
2619 cas_handle_irq(dev
, cp
, status
);
2622 if (N_RX_COMP_RINGS
> 1) {
2623 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2625 cas_handle_irq1(dev
, cp
, status
);
2630 if (N_RX_COMP_RINGS
> 2) {
2631 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2633 cas_handle_irqN(dev
, cp
, status
, 2);
2638 if (N_RX_COMP_RINGS
> 3) {
2639 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2641 cas_handle_irqN(dev
, cp
, status
, 3);
2644 spin_unlock_irqrestore(&cp
->lock
, flags
);
2646 napi_complete(napi
);
2647 cas_unmask_intr(cp
);
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 static void cas_netpoll(struct net_device
*dev
)
2656 struct cas
*cp
= netdev_priv(dev
);
2658 cas_disable_irq(cp
, 0);
2659 cas_interrupt(cp
->pdev
->irq
, dev
);
2660 cas_enable_irq(cp
, 0);
2663 if (N_RX_COMP_RINGS
> 1) {
2664 /* cas_interrupt1(); */
2668 if (N_RX_COMP_RINGS
> 2) {
2669 /* cas_interruptN(); */
2673 if (N_RX_COMP_RINGS
> 3) {
2674 /* cas_interruptN(); */
2680 static void cas_tx_timeout(struct net_device
*dev
)
2682 struct cas
*cp
= netdev_priv(dev
);
2684 netdev_err(dev
, "transmit timed out, resetting\n");
2685 if (!cp
->hw_running
) {
2686 netdev_err(dev
, "hrm.. hw not running!\n");
2690 netdev_err(dev
, "MIF_STATE[%08x]\n",
2691 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2693 netdev_err(dev
, "MAC_STATE[%08x]\n",
2694 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2696 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2697 readl(cp
->regs
+ REG_TX_CFG
),
2698 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2699 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2700 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2701 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2702 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2703 readl(cp
->regs
+ REG_TX_SM_1
),
2704 readl(cp
->regs
+ REG_TX_SM_2
));
2706 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2707 readl(cp
->regs
+ REG_RX_CFG
),
2708 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2709 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2711 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2712 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2713 readl(cp
->regs
+ REG_HP_STATUS0
),
2714 readl(cp
->regs
+ REG_HP_STATUS1
),
2715 readl(cp
->regs
+ REG_HP_STATUS2
));
2718 atomic_inc(&cp
->reset_task_pending
);
2719 atomic_inc(&cp
->reset_task_pending_all
);
2720 schedule_work(&cp
->reset_task
);
2722 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2723 schedule_work(&cp
->reset_task
);
2727 static inline int cas_intme(int ring
, int entry
)
2729 /* Algorithm: IRQ every 1/2 of descriptors. */
2730 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2736 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2737 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2739 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2741 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2742 if (cas_intme(ring
, entry
))
2743 ctrl
|= TX_DESC_INTME
;
2745 ctrl
|= TX_DESC_EOF
;
2746 txd
->control
= cpu_to_le64(ctrl
);
2747 txd
->buffer
= cpu_to_le64(mapping
);
2750 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2753 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2756 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2757 const int entry
, const int tentry
)
2759 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2760 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2761 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2764 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2765 struct sk_buff
*skb
)
2767 struct net_device
*dev
= cp
->dev
;
2768 int entry
, nr_frags
, frag
, tabort
, tentry
;
2770 unsigned long flags
;
2774 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2776 /* This is a hard error, log it. */
2777 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2778 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2779 netif_stop_queue(dev
);
2780 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2781 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2786 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2787 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
2788 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2790 ctrl
= TX_DESC_CSUM_EN
|
2791 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2792 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2795 entry
= cp
->tx_new
[ring
];
2796 cp
->tx_skbs
[ring
][entry
] = skb
;
2798 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2799 len
= skb_headlen(skb
);
2800 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2801 offset_in_page(skb
->data
), len
,
2805 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2806 if (unlikely(tabort
)) {
2807 /* NOTE: len is always > tabort */
2808 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2809 ctrl
| TX_DESC_SOF
, 0);
2810 entry
= TX_DESC_NEXT(ring
, entry
);
2812 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2813 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2814 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2815 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2818 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2819 TX_DESC_SOF
, (nr_frags
== 0));
2821 entry
= TX_DESC_NEXT(ring
, entry
);
2823 for (frag
= 0; frag
< nr_frags
; frag
++) {
2824 const skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2826 len
= skb_frag_size(fragp
);
2827 mapping
= skb_frag_dma_map(&cp
->pdev
->dev
, fragp
, 0, len
,
2830 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2831 if (unlikely(tabort
)) {
2834 /* NOTE: len is always > tabort */
2835 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2837 entry
= TX_DESC_NEXT(ring
, entry
);
2839 addr
= cas_page_map(skb_frag_page(fragp
));
2840 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2841 addr
+ fragp
->page_offset
+ len
- tabort
,
2843 cas_page_unmap(addr
);
2844 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2848 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2849 (frag
+ 1 == nr_frags
));
2850 entry
= TX_DESC_NEXT(ring
, entry
);
2853 cp
->tx_new
[ring
] = entry
;
2854 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2855 netif_stop_queue(dev
);
2857 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2858 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2859 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2860 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2861 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2865 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2867 struct cas
*cp
= netdev_priv(dev
);
2869 /* this is only used as a load-balancing hint, so it doesn't
2870 * need to be SMP safe
2874 if (skb_padto(skb
, cp
->min_frame_size
))
2875 return NETDEV_TX_OK
;
2877 /* XXX: we need some higher-level QoS hooks to steer packets to
2878 * individual queues.
2880 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2881 return NETDEV_TX_BUSY
;
2882 return NETDEV_TX_OK
;
2885 static void cas_init_tx_dma(struct cas
*cp
)
2887 u64 desc_dma
= cp
->block_dvma
;
2892 /* set up tx completion writeback registers. must be 8-byte aligned */
2893 #ifdef USE_TX_COMPWB
2894 off
= offsetof(struct cas_init_block
, tx_compwb
);
2895 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2896 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2899 /* enable completion writebacks, enable paced mode,
2900 * disable read pipe, and disable pre-interrupt compwbs
2902 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2903 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2904 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2905 TX_CFG_INTR_COMPWB_DIS
;
2907 /* write out tx ring info and tx desc bases */
2908 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2909 off
= (unsigned long) cp
->init_txds
[i
] -
2910 (unsigned long) cp
->init_block
;
2912 val
|= CAS_TX_RINGN_BASE(i
);
2913 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2914 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2916 /* don't zero out the kick register here as the system
2920 writel(val
, cp
->regs
+ REG_TX_CFG
);
2922 /* program max burst sizes. these numbers should be different
2926 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2927 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2928 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2929 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2931 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2932 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2933 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2934 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2938 /* Must be invoked under cp->lock. */
2939 static inline void cas_init_dma(struct cas
*cp
)
2941 cas_init_tx_dma(cp
);
2942 cas_init_rx_dma(cp
);
2945 static void cas_process_mc_list(struct cas
*cp
)
2949 struct netdev_hw_addr
*ha
;
2952 memset(hash_table
, 0, sizeof(hash_table
));
2953 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2954 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2955 /* use the alternate mac address registers for the
2956 * first 15 multicast addresses
2958 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2959 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2960 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2961 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2962 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2963 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2967 /* use hw hash table for the next series of
2968 * multicast addresses
2970 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2972 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2975 for (i
= 0; i
< 16; i
++)
2976 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2979 /* Must be invoked under cp->lock. */
2980 static u32
cas_setup_multicast(struct cas
*cp
)
2985 if (cp
->dev
->flags
& IFF_PROMISC
) {
2986 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2988 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2989 for (i
=0; i
< 16; i
++)
2990 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2991 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2994 cas_process_mc_list(cp
);
2995 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3001 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3002 static void cas_clear_mac_err(struct cas
*cp
)
3004 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3005 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3006 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3007 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3008 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3009 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3010 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3011 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3012 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3013 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3014 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3018 static void cas_mac_reset(struct cas
*cp
)
3022 /* do both TX and RX reset */
3023 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3024 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3029 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3037 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3042 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3043 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3044 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3045 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3046 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3047 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3051 /* Must be invoked under cp->lock. */
3052 static void cas_init_mac(struct cas
*cp
)
3054 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3058 /* setup core arbitration weight register */
3059 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3061 /* XXX Use pci_dma_burst_advice() */
3062 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3063 /* set the infinite burst register for chips that don't have
3066 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3067 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3070 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3072 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3073 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3074 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3076 /* change later for 802.3z */
3077 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3079 /* min frame + FCS */
3080 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3082 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3083 * specify the maximum frame size to prevent RX tag errors on
3086 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3087 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3088 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3089 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3091 /* NOTE: crc_size is used as a surrogate for half-duplex.
3092 * workaround saturn half-duplex issue by increasing preamble
3095 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3096 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3098 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3099 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3100 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3101 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3103 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3105 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3106 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3107 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3108 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3109 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3111 /* setup mac address in perfect filter array */
3112 for (i
= 0; i
< 45; i
++)
3113 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3115 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3116 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3117 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3119 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3120 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3121 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3123 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3125 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3126 cas_clear_mac_err(cp
);
3127 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3129 /* Setup MAC interrupts. We want to get all of the interesting
3130 * counter expiration events, but we do not want to hear about
3131 * normal rx/tx as the DMA engine tells us that.
3133 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3134 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3136 /* Don't enable even the PAUSE interrupts for now, we
3137 * make no use of those events other than to record them.
3139 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3142 /* Must be invoked under cp->lock. */
3143 static void cas_init_pause_thresholds(struct cas
*cp
)
3145 /* Calculate pause thresholds. Setting the OFF threshold to the
3146 * full RX fifo size effectively disables PAUSE generation
3148 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3149 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3151 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3152 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3153 cp
->rx_pause_off
= 7104;
3154 cp
->rx_pause_on
= 960;
3156 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3157 int on
= off
- max_frame
;
3158 cp
->rx_pause_off
= off
;
3159 cp
->rx_pause_on
= on
;
3164 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3166 int len
= strlen(str
) + 1;
3169 for (i
= 0; i
< len
; i
++) {
3170 if (readb(p
+ i
) != str
[i
])
3177 /* get the mac address by reading the vpd information in the rom.
3178 * also get the phy type and determine if there's an entropy generator.
3179 * NOTE: this is a bit convoluted for the following reasons:
3180 * 1) vpd info has order-dependent mac addresses for multinic cards
3181 * 2) the only way to determine the nic order is to use the slot
3183 * 3) fiber cards don't have bridges, so their slot numbers don't
3185 * 4) we don't actually know we have a fiber card until after
3186 * the mac addresses are parsed.
3188 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3191 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3192 void __iomem
*base
, *kstart
;
3195 #define VPD_FOUND_MAC 0x01
3196 #define VPD_FOUND_PHY 0x02
3198 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3201 #if defined(CONFIG_SPARC)
3202 const unsigned char *addr
;
3205 /* give us access to the PROM */
3206 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3207 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3209 /* check for an expansion rom */
3210 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3211 goto use_random_mac_addr
;
3213 /* search for beginning of vpd */
3215 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3216 /* check for PCIR */
3217 if ((readb(p
+ i
+ 0) == 0x50) &&
3218 (readb(p
+ i
+ 1) == 0x43) &&
3219 (readb(p
+ i
+ 2) == 0x49) &&
3220 (readb(p
+ i
+ 3) == 0x52)) {
3221 base
= p
+ (readb(p
+ i
+ 8) |
3222 (readb(p
+ i
+ 9) << 8));
3227 if (!base
|| (readb(base
) != 0x82))
3228 goto use_random_mac_addr
;
3230 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3231 while (i
< EXPANSION_ROM_SIZE
) {
3232 if (readb(base
+ i
) != 0x90) /* no vpd found */
3233 goto use_random_mac_addr
;
3235 /* found a vpd field */
3236 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3238 /* extract keywords */
3239 kstart
= base
+ i
+ 3;
3241 while ((p
- kstart
) < len
) {
3242 int klen
= readb(p
+ 2);
3248 /* look for the following things:
3249 * -- correct length == 29
3250 * 3 (type) + 2 (size) +
3251 * 18 (strlen("local-mac-address") + 1) +
3253 * -- VPD Instance 'I'
3254 * -- VPD Type Bytes 'B'
3255 * -- VPD data length == 6
3256 * -- property string == local-mac-address
3258 * -- correct length == 24
3259 * 3 (type) + 2 (size) +
3260 * 12 (strlen("entropy-dev") + 1) +
3261 * 7 (strlen("vms110") + 1)
3262 * -- VPD Instance 'I'
3263 * -- VPD Type String 'B'
3264 * -- VPD data length == 7
3265 * -- property string == entropy-dev
3267 * -- correct length == 18
3268 * 3 (type) + 2 (size) +
3269 * 9 (strlen("phy-type") + 1) +
3270 * 4 (strlen("pcs") + 1)
3271 * -- VPD Instance 'I'
3272 * -- VPD Type String 'S'
3273 * -- VPD data length == 4
3274 * -- property string == phy-type
3276 * -- correct length == 23
3277 * 3 (type) + 2 (size) +
3278 * 14 (strlen("phy-interface") + 1) +
3279 * 4 (strlen("pcs") + 1)
3280 * -- VPD Instance 'I'
3281 * -- VPD Type String 'S'
3282 * -- VPD data length == 4
3283 * -- property string == phy-interface
3285 if (readb(p
) != 'I')
3288 /* finally, check string and length */
3289 type
= readb(p
+ 3);
3291 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3292 cas_vpd_match(p
+ 5,
3293 "local-mac-address")) {
3294 if (mac_off
++ > offset
)
3297 /* set mac address */
3298 for (j
= 0; j
< 6; j
++)
3308 #ifdef USE_ENTROPY_DEV
3310 cas_vpd_match(p
+ 5, "entropy-dev") &&
3311 cas_vpd_match(p
+ 17, "vms110")) {
3312 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3317 if (found
& VPD_FOUND_PHY
)
3320 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3321 cas_vpd_match(p
+ 5, "phy-type")) {
3322 if (cas_vpd_match(p
+ 14, "pcs")) {
3323 phy_type
= CAS_PHY_SERDES
;
3328 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3329 cas_vpd_match(p
+ 5, "phy-interface")) {
3330 if (cas_vpd_match(p
+ 19, "pcs")) {
3331 phy_type
= CAS_PHY_SERDES
;
3336 found
|= VPD_FOUND_MAC
;
3340 found
|= VPD_FOUND_PHY
;
3348 use_random_mac_addr
:
3349 if (found
& VPD_FOUND_MAC
)
3352 #if defined(CONFIG_SPARC)
3353 addr
= of_get_property(cp
->of_node
, "local-mac-address", NULL
);
3355 memcpy(dev_addr
, addr
, ETH_ALEN
);
3360 /* Sun MAC prefix then 3 random bytes. */
3361 pr_info("MAC address not found in ROM VPD\n");
3365 get_random_bytes(dev_addr
+ 3, 3);
3368 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3372 /* check pci invariants */
3373 static void cas_check_pci_invariants(struct cas
*cp
)
3375 struct pci_dev
*pdev
= cp
->pdev
;
3378 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3379 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3380 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3381 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3382 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3383 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3385 /* Original Cassini supports HW CSUM, but it's not
3386 * enabled by default as it can trigger TX hangs.
3388 if (pdev
->revision
< CAS_ID_REV2
)
3389 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3391 /* Only sun has original cassini chips. */
3392 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3394 /* We use a flag because the same phy might be externally
3397 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3398 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3399 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3404 static int cas_check_invariants(struct cas
*cp
)
3406 struct pci_dev
*pdev
= cp
->pdev
;
3410 /* get page size for rx buffers. */
3412 #ifdef USE_PAGE_ORDER
3413 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3414 /* see if we can allocate larger pages */
3415 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3416 CAS_JUMBO_PAGE_SHIFT
-
3419 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3420 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3422 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3426 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3428 /* Fetch the FIFO configurations. */
3429 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3430 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3432 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3433 * they're both connected.
3435 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3436 PCI_SLOT(pdev
->devfn
));
3437 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3438 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3439 return 0; /* no more checking needed */
3443 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3444 if (cfg
& MIF_CFG_MDIO_1
) {
3445 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3446 } else if (cfg
& MIF_CFG_MDIO_0
) {
3447 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3450 cas_mif_poll(cp
, 0);
3451 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3453 for (i
= 0; i
< 32; i
++) {
3457 for (j
= 0; j
< 3; j
++) {
3459 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3460 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3461 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3462 cp
->phy_id
= phy_id
;
3467 pr_err("MII phy did not respond [%08x]\n",
3468 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3472 /* see if we can do gigabit */
3473 cfg
= cas_phy_read(cp
, MII_BMSR
);
3474 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3475 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3476 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3480 /* Must be invoked under cp->lock. */
3481 static inline void cas_start_dma(struct cas
*cp
)
3488 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3489 writel(val
, cp
->regs
+ REG_TX_CFG
);
3490 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3491 writel(val
, cp
->regs
+ REG_RX_CFG
);
3493 /* enable the mac */
3494 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3495 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3496 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3497 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3501 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3502 if ((val
& MAC_TX_CFG_EN
))
3506 if (i
< 0) txfailed
= 1;
3509 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3510 if ((val
& MAC_RX_CFG_EN
)) {
3513 "enabling mac failed [tx:%08x:%08x]\n",
3514 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3515 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3517 goto enable_rx_done
;
3521 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3522 (txfailed
? "tx,rx" : "rx"),
3523 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3524 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3527 cas_unmask_intr(cp
); /* enable interrupts */
3528 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3529 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3531 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3532 if (N_RX_DESC_RINGS
> 1)
3533 writel(RX_DESC_RINGN_SIZE(1) - 4,
3534 cp
->regs
+ REG_PLUS_RX_KICK1
);
3536 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3537 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3541 /* Must be invoked under cp->lock. */
3542 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3545 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3546 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3547 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3548 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3553 /* Must be invoked under cp->lock. */
3554 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3563 /* use GMII registers */
3564 val
= cas_phy_read(cp
, MII_LPA
);
3565 if (val
& CAS_LPA_PAUSE
)
3568 if (val
& CAS_LPA_ASYM_PAUSE
)
3571 if (val
& LPA_DUPLEX
)
3576 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3577 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3578 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3580 if (val
& CAS_LPA_1000FULL
)
3585 /* A link-up condition has occurred, initialize and enable the
3588 * Must be invoked under cp->lock.
3590 static void cas_set_link_modes(struct cas
*cp
)
3593 int full_duplex
, speed
, pause
;
3599 if (CAS_PHY_MII(cp
->phy_type
)) {
3600 cas_mif_poll(cp
, 0);
3601 val
= cas_phy_read(cp
, MII_BMCR
);
3602 if (val
& BMCR_ANENABLE
) {
3603 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3606 if (val
& BMCR_FULLDPLX
)
3609 if (val
& BMCR_SPEED100
)
3611 else if (val
& CAS_BMCR_SPEED1000
)
3612 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3615 cas_mif_poll(cp
, 1);
3618 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3619 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3620 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3621 if (val
& PCS_MII_CTRL_DUPLEX
)
3626 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3627 speed
, full_duplex
? "full" : "half");
3629 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3630 if (CAS_PHY_MII(cp
->phy_type
)) {
3631 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3633 val
|= MAC_XIF_DISABLE_ECHO
;
3636 val
|= MAC_XIF_FDPLX_LED
;
3638 val
|= MAC_XIF_GMII_MODE
;
3639 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3641 /* deal with carrier and collision detect. */
3642 val
= MAC_TX_CFG_IPG_EN
;
3644 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3645 val
|= MAC_TX_CFG_IGNORE_COLL
;
3647 #ifndef USE_CSMA_CD_PROTO
3648 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3649 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3652 /* val now set up for REG_MAC_TX_CFG */
3654 /* If gigabit and half-duplex, enable carrier extension
3655 * mode. increase slot time to 512 bytes as well.
3656 * else, disable it and make sure slot time is 64 bytes.
3657 * also activate checksum bug workaround
3659 if ((speed
== 1000) && !full_duplex
) {
3660 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3661 cp
->regs
+ REG_MAC_TX_CFG
);
3663 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3664 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3665 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3666 cp
->regs
+ REG_MAC_RX_CFG
);
3668 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3671 /* minimum size gigabit frame at half duplex */
3672 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3675 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3677 /* checksum bug workaround. don't strip FCS when in
3680 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3682 val
|= MAC_RX_CFG_STRIP_FCS
;
3684 cp
->min_frame_size
= CAS_MIN_MTU
;
3686 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3688 cp
->min_frame_size
= CAS_MIN_FRAME
;
3690 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3691 cp
->regs
+ REG_MAC_RX_CFG
);
3692 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3695 if (netif_msg_link(cp
)) {
3697 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3701 } else if (pause
& 0x10) {
3702 netdev_info(cp
->dev
, "TX pause enabled\n");
3704 netdev_info(cp
->dev
, "Pause is disabled\n");
3708 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3709 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3710 if (pause
) { /* symmetric or asymmetric pause */
3711 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3712 if (pause
& 0x01) { /* symmetric pause */
3713 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3716 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3720 /* Must be invoked under cp->lock. */
3721 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3726 cas_init_pause_thresholds(cp
);
3731 /* Default aneg parameters */
3732 cp
->timer_ticks
= 0;
3733 cas_begin_auto_negotiation(cp
, NULL
);
3734 } else if (cp
->lstate
== link_up
) {
3735 cas_set_link_modes(cp
);
3736 netif_carrier_on(cp
->dev
);
3740 /* Must be invoked under cp->lock. on earlier cassini boards,
3741 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3742 * let it settle out, and then restore pci state.
3744 static void cas_hard_reset(struct cas
*cp
)
3746 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3748 pci_restore_state(cp
->pdev
);
3752 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3756 /* issue a global reset. don't use RSTOUT. */
3757 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3758 /* For PCS, when the blkflag is set, we should set the
3759 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3760 * the last autonegotiation from being cleared. We'll
3761 * need some special handling if the chip is set into a
3764 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3765 cp
->regs
+ REG_SW_RESET
);
3767 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3770 /* need to wait at least 3ms before polling register */
3774 while (limit
-- > 0) {
3775 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3776 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3780 netdev_err(cp
->dev
, "sw reset failed\n");
3783 /* enable various BIM interrupts */
3784 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3785 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3787 /* clear out pci error status mask for handled errors.
3788 * we don't deal with DMA counter overflows as they happen
3791 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3792 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3793 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3794 REG_PCI_ERR_STATUS_MASK
);
3796 /* set up for MII by default to address mac rx reset timeout
3799 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3802 static void cas_reset(struct cas
*cp
, int blkflag
)
3807 cas_global_reset(cp
, blkflag
);
3809 cas_entropy_reset(cp
);
3811 /* disable dma engines. */
3812 val
= readl(cp
->regs
+ REG_TX_CFG
);
3813 val
&= ~TX_CFG_DMA_EN
;
3814 writel(val
, cp
->regs
+ REG_TX_CFG
);
3816 val
= readl(cp
->regs
+ REG_RX_CFG
);
3817 val
&= ~RX_CFG_DMA_EN
;
3818 writel(val
, cp
->regs
+ REG_RX_CFG
);
3820 /* program header parser */
3821 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3822 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3823 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3825 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3828 /* clear out error registers */
3829 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3830 cas_clear_mac_err(cp
);
3831 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3834 /* Shut down the chip, must be called with pm_mutex held. */
3835 static void cas_shutdown(struct cas
*cp
)
3837 unsigned long flags
;
3839 /* Make us not-running to avoid timers respawning */
3842 del_timer_sync(&cp
->link_timer
);
3844 /* Stop the reset task */
3846 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3847 atomic_read(&cp
->reset_task_pending_spare
) ||
3848 atomic_read(&cp
->reset_task_pending_all
))
3852 while (atomic_read(&cp
->reset_task_pending
))
3855 /* Actually stop the chip */
3856 cas_lock_all_save(cp
, flags
);
3858 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3859 cas_phy_powerdown(cp
);
3860 cas_unlock_all_restore(cp
, flags
);
3863 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3865 struct cas
*cp
= netdev_priv(dev
);
3867 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3871 if (!netif_running(dev
) || !netif_device_present(dev
))
3874 /* let the reset task handle it */
3876 atomic_inc(&cp
->reset_task_pending
);
3877 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3878 atomic_inc(&cp
->reset_task_pending_all
);
3880 atomic_inc(&cp
->reset_task_pending_mtu
);
3882 schedule_work(&cp
->reset_task
);
3884 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3885 CAS_RESET_ALL
: CAS_RESET_MTU
);
3886 pr_err("reset called in cas_change_mtu\n");
3887 schedule_work(&cp
->reset_task
);
3890 flush_work(&cp
->reset_task
);
3894 static void cas_clean_txd(struct cas
*cp
, int ring
)
3896 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3897 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3901 size
= TX_DESC_RINGN_SIZE(ring
);
3902 for (i
= 0; i
< size
; i
++) {
3905 if (skbs
[i
] == NULL
)
3911 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3912 int ent
= i
& (size
- 1);
3914 /* first buffer is never a tiny buffer and so
3915 * needs to be unmapped.
3917 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3918 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3919 le64_to_cpu(txd
[ent
].control
));
3920 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3923 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3926 /* next buffer might by a tiny buffer.
3929 ent
= i
& (size
- 1);
3930 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3934 dev_kfree_skb_any(skb
);
3937 /* zero out tiny buf usage */
3938 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3941 /* freed on close */
3942 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3944 cas_page_t
**page
= cp
->rx_pages
[ring
];
3947 size
= RX_DESC_RINGN_SIZE(ring
);
3948 for (i
= 0; i
< size
; i
++) {
3950 cas_page_free(cp
, page
[i
]);
3956 static void cas_free_rxds(struct cas
*cp
)
3960 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3961 cas_free_rx_desc(cp
, i
);
3964 /* Must be invoked under cp->lock. */
3965 static void cas_clean_rings(struct cas
*cp
)
3969 /* need to clean all tx rings */
3970 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3971 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3972 for (i
= 0; i
< N_TX_RINGS
; i
++)
3973 cas_clean_txd(cp
, i
);
3975 /* zero out init block */
3976 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3981 /* allocated on open */
3982 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
3984 cas_page_t
**page
= cp
->rx_pages
[ring
];
3987 size
= RX_DESC_RINGN_SIZE(ring
);
3988 for (i
= 0; i
< size
; i
++) {
3989 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
3995 static int cas_alloc_rxds(struct cas
*cp
)
3999 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4000 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4008 static void cas_reset_task(struct work_struct
*work
)
4010 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4012 int pending
= atomic_read(&cp
->reset_task_pending
);
4014 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4015 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4016 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4018 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4019 /* We can have more tasks scheduled than actually
4022 atomic_dec(&cp
->reset_task_pending
);
4026 /* The link went down, we reset the ring, but keep
4027 * DMA stopped. Use this function for reset
4030 if (cp
->hw_running
) {
4031 unsigned long flags
;
4033 /* Make sure we don't get interrupts or tx packets */
4034 netif_device_detach(cp
->dev
);
4035 cas_lock_all_save(cp
, flags
);
4038 /* We call cas_spare_recover when we call cas_open.
4039 * but we do not initialize the lists cas_spare_recover
4040 * uses until cas_open is called.
4042 cas_spare_recover(cp
, GFP_ATOMIC
);
4045 /* test => only pending_spare set */
4046 if (!pending_all
&& !pending_mtu
)
4049 if (pending
== CAS_RESET_SPARE
)
4052 /* when pending == CAS_RESET_ALL, the following
4053 * call to cas_init_hw will restart auto negotiation.
4054 * Setting the second argument of cas_reset to
4055 * !(pending == CAS_RESET_ALL) will set this argument
4056 * to 1 (avoiding reinitializing the PHY for the normal
4057 * PCS case) when auto negotiation is not restarted.
4060 cas_reset(cp
, !(pending_all
> 0));
4062 cas_clean_rings(cp
);
4063 cas_init_hw(cp
, (pending_all
> 0));
4065 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4067 cas_clean_rings(cp
);
4068 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4072 cas_unlock_all_restore(cp
, flags
);
4073 netif_device_attach(cp
->dev
);
4076 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4077 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4078 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4079 atomic_dec(&cp
->reset_task_pending
);
4081 atomic_set(&cp
->reset_task_pending
, 0);
4085 static void cas_link_timer(unsigned long data
)
4087 struct cas
*cp
= (struct cas
*) data
;
4088 int mask
, pending
= 0, reset
= 0;
4089 unsigned long flags
;
4091 if (link_transition_timeout
!= 0 &&
4092 cp
->link_transition_jiffies_valid
&&
4093 ((jiffies
- cp
->link_transition_jiffies
) >
4094 (link_transition_timeout
))) {
4095 /* One-second counter so link-down workaround doesn't
4096 * cause resets to occur so fast as to fool the switch
4097 * into thinking the link is down.
4099 cp
->link_transition_jiffies_valid
= 0;
4102 if (!cp
->hw_running
)
4105 spin_lock_irqsave(&cp
->lock
, flags
);
4107 cas_entropy_gather(cp
);
4109 /* If the link task is still pending, we just
4110 * reschedule the link timer
4113 if (atomic_read(&cp
->reset_task_pending_all
) ||
4114 atomic_read(&cp
->reset_task_pending_spare
) ||
4115 atomic_read(&cp
->reset_task_pending_mtu
))
4118 if (atomic_read(&cp
->reset_task_pending
))
4122 /* check for rx cleaning */
4123 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4126 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4127 rmask
= CAS_FLAG_RXD_POST(i
);
4128 if ((mask
& rmask
) == 0)
4131 /* post_rxds will do a mod_timer */
4132 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4136 cp
->cas_flags
&= ~rmask
;
4140 if (CAS_PHY_MII(cp
->phy_type
)) {
4142 cas_mif_poll(cp
, 0);
4143 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4144 /* WTZ: Solaris driver reads this twice, but that
4145 * may be due to the PCS case and the use of a
4146 * common implementation. Read it twice here to be
4149 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4150 cas_mif_poll(cp
, 1);
4151 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4152 reset
= cas_mii_link_check(cp
, bmsr
);
4154 reset
= cas_pcs_link_check(cp
);
4160 /* check for tx state machine confusion */
4161 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4162 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4164 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4166 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4167 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4168 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4169 "tx err: MAC_STATE[%08x]\n", val
);
4174 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4175 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4176 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4177 if ((val
== 0) && (wptr
!= rptr
)) {
4178 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4179 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4191 atomic_inc(&cp
->reset_task_pending
);
4192 atomic_inc(&cp
->reset_task_pending_all
);
4193 schedule_work(&cp
->reset_task
);
4195 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4196 pr_err("reset called in cas_link_timer\n");
4197 schedule_work(&cp
->reset_task
);
4202 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4204 spin_unlock_irqrestore(&cp
->lock
, flags
);
4207 /* tiny buffers are used to avoid target abort issues with
4210 static void cas_tx_tiny_free(struct cas
*cp
)
4212 struct pci_dev
*pdev
= cp
->pdev
;
4215 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4216 if (!cp
->tx_tiny_bufs
[i
])
4219 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4220 cp
->tx_tiny_bufs
[i
],
4221 cp
->tx_tiny_dvma
[i
]);
4222 cp
->tx_tiny_bufs
[i
] = NULL
;
4226 static int cas_tx_tiny_alloc(struct cas
*cp
)
4228 struct pci_dev
*pdev
= cp
->pdev
;
4231 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4232 cp
->tx_tiny_bufs
[i
] =
4233 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4234 &cp
->tx_tiny_dvma
[i
]);
4235 if (!cp
->tx_tiny_bufs
[i
]) {
4236 cas_tx_tiny_free(cp
);
4244 static int cas_open(struct net_device
*dev
)
4246 struct cas
*cp
= netdev_priv(dev
);
4248 unsigned long flags
;
4250 mutex_lock(&cp
->pm_mutex
);
4252 hw_was_up
= cp
->hw_running
;
4254 /* The power-management mutex protects the hw_running
4255 * etc. state so it is safe to do this bit without cp->lock
4257 if (!cp
->hw_running
) {
4258 /* Reset the chip */
4259 cas_lock_all_save(cp
, flags
);
4260 /* We set the second arg to cas_reset to zero
4261 * because cas_init_hw below will have its second
4262 * argument set to non-zero, which will force
4263 * autonegotiation to start.
4267 cas_unlock_all_restore(cp
, flags
);
4271 if (cas_tx_tiny_alloc(cp
) < 0)
4274 /* alloc rx descriptors */
4275 if (cas_alloc_rxds(cp
) < 0)
4278 /* allocate spares */
4280 cas_spare_recover(cp
, GFP_KERNEL
);
4282 /* We can now request the interrupt as we know it's masked
4283 * on the controller. cassini+ has up to 4 interrupts
4284 * that can be used, but you need to do explicit pci interrupt
4285 * mapping to expose them
4287 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4288 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4289 netdev_err(cp
->dev
, "failed to request irq !\n");
4295 napi_enable(&cp
->napi
);
4298 cas_lock_all_save(cp
, flags
);
4299 cas_clean_rings(cp
);
4300 cas_init_hw(cp
, !hw_was_up
);
4302 cas_unlock_all_restore(cp
, flags
);
4304 netif_start_queue(dev
);
4305 mutex_unlock(&cp
->pm_mutex
);
4312 cas_tx_tiny_free(cp
);
4314 mutex_unlock(&cp
->pm_mutex
);
4318 static int cas_close(struct net_device
*dev
)
4320 unsigned long flags
;
4321 struct cas
*cp
= netdev_priv(dev
);
4324 napi_disable(&cp
->napi
);
4326 /* Make sure we don't get distracted by suspend/resume */
4327 mutex_lock(&cp
->pm_mutex
);
4329 netif_stop_queue(dev
);
4331 /* Stop traffic, mark us closed */
4332 cas_lock_all_save(cp
, flags
);
4336 cas_begin_auto_negotiation(cp
, NULL
);
4337 cas_clean_rings(cp
);
4338 cas_unlock_all_restore(cp
, flags
);
4340 free_irq(cp
->pdev
->irq
, (void *) dev
);
4343 cas_tx_tiny_free(cp
);
4344 mutex_unlock(&cp
->pm_mutex
);
4349 const char name
[ETH_GSTRING_LEN
];
4350 } ethtool_cassini_statnames
[] = {
4357 {"rx_frame_errors"},
4358 {"rx_length_errors"},
4361 {"tx_aborted_errors"},
4368 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4371 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4372 } ethtool_register_table
[] = {
4387 {REG_PCS_MII_STATUS
},
4388 {REG_PCS_STATE_MACHINE
},
4389 {REG_MAC_COLL_EXCESS
},
4392 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4393 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4395 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4399 unsigned long flags
;
4401 spin_lock_irqsave(&cp
->lock
, flags
);
4402 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4405 if (ethtool_register_table
[i
].offsets
< 0) {
4406 hval
= cas_phy_read(cp
,
4407 -ethtool_register_table
[i
].offsets
);
4410 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4412 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4414 spin_unlock_irqrestore(&cp
->lock
, flags
);
4417 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4419 struct cas
*cp
= netdev_priv(dev
);
4420 struct net_device_stats
*stats
= cp
->net_stats
;
4421 unsigned long flags
;
4425 /* we collate all of the stats into net_stats[N_TX_RING] */
4426 if (!cp
->hw_running
)
4427 return stats
+ N_TX_RINGS
;
4429 /* collect outstanding stats */
4430 /* WTZ: the Cassini spec gives these as 16 bit counters but
4431 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4432 * in case the chip somehow puts any garbage in the other bits.
4433 * Also, counter usage didn't seem to mach what Adrian did
4434 * in the parts of the code that set these quantities. Made
4437 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4438 stats
[N_TX_RINGS
].rx_crc_errors
+=
4439 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4440 stats
[N_TX_RINGS
].rx_frame_errors
+=
4441 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4442 stats
[N_TX_RINGS
].rx_length_errors
+=
4443 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4445 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4446 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4447 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4448 stats
[N_TX_RINGS
].collisions
+=
4449 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4451 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4452 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4453 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4454 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4456 cas_clear_mac_err(cp
);
4458 /* saved bits that are unique to ring 0 */
4459 spin_lock(&cp
->stat_lock
[0]);
4460 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4461 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4462 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4463 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4464 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4465 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4466 spin_unlock(&cp
->stat_lock
[0]);
4468 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4469 spin_lock(&cp
->stat_lock
[i
]);
4470 stats
[N_TX_RINGS
].rx_length_errors
+=
4471 stats
[i
].rx_length_errors
;
4472 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4473 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4474 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4475 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4476 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4477 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4478 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4479 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4480 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4481 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4482 spin_unlock(&cp
->stat_lock
[i
]);
4484 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4485 return stats
+ N_TX_RINGS
;
4489 static void cas_set_multicast(struct net_device
*dev
)
4491 struct cas
*cp
= netdev_priv(dev
);
4492 u32 rxcfg
, rxcfg_new
;
4493 unsigned long flags
;
4494 int limit
= STOP_TRIES
;
4496 if (!cp
->hw_running
)
4499 spin_lock_irqsave(&cp
->lock
, flags
);
4500 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4502 /* disable RX MAC and wait for completion */
4503 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4504 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4510 /* disable hash filter and wait for completion */
4512 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4513 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4514 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4520 /* program hash filters */
4521 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4523 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4524 spin_unlock_irqrestore(&cp
->lock
, flags
);
4527 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4529 struct cas
*cp
= netdev_priv(dev
);
4530 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
4531 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
4532 strlcpy(info
->bus_info
, pci_name(cp
->pdev
), sizeof(info
->bus_info
));
4533 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4534 cp
->casreg_len
: CAS_MAX_REGS
;
4535 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4538 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4540 struct cas
*cp
= netdev_priv(dev
);
4542 int full_duplex
, speed
, pause
;
4543 unsigned long flags
;
4544 enum link_state linkstate
= link_up
;
4546 cmd
->advertising
= 0;
4547 cmd
->supported
= SUPPORTED_Autoneg
;
4548 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4549 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4550 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4553 /* Record PHY settings if HW is on. */
4554 spin_lock_irqsave(&cp
->lock
, flags
);
4556 linkstate
= cp
->lstate
;
4557 if (CAS_PHY_MII(cp
->phy_type
)) {
4558 cmd
->port
= PORT_MII
;
4559 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4560 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4561 cmd
->phy_address
= cp
->phy_addr
;
4562 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4563 ADVERTISED_10baseT_Half
|
4564 ADVERTISED_10baseT_Full
|
4565 ADVERTISED_100baseT_Half
|
4566 ADVERTISED_100baseT_Full
;
4569 (SUPPORTED_10baseT_Half
|
4570 SUPPORTED_10baseT_Full
|
4571 SUPPORTED_100baseT_Half
|
4572 SUPPORTED_100baseT_Full
|
4573 SUPPORTED_TP
| SUPPORTED_MII
);
4575 if (cp
->hw_running
) {
4576 cas_mif_poll(cp
, 0);
4577 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4578 cas_read_mii_link_mode(cp
, &full_duplex
,
4580 cas_mif_poll(cp
, 1);
4584 cmd
->port
= PORT_FIBRE
;
4585 cmd
->transceiver
= XCVR_INTERNAL
;
4586 cmd
->phy_address
= 0;
4587 cmd
->supported
|= SUPPORTED_FIBRE
;
4588 cmd
->advertising
|= ADVERTISED_FIBRE
;
4590 if (cp
->hw_running
) {
4591 /* pcs uses the same bits as mii */
4592 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4593 cas_read_pcs_link_mode(cp
, &full_duplex
,
4597 spin_unlock_irqrestore(&cp
->lock
, flags
);
4599 if (bmcr
& BMCR_ANENABLE
) {
4600 cmd
->advertising
|= ADVERTISED_Autoneg
;
4601 cmd
->autoneg
= AUTONEG_ENABLE
;
4602 ethtool_cmd_speed_set(cmd
, ((speed
== 10) ?
4605 SPEED_1000
: SPEED_100
)));
4606 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4608 cmd
->autoneg
= AUTONEG_DISABLE
;
4609 ethtool_cmd_speed_set(cmd
, ((bmcr
& CAS_BMCR_SPEED1000
) ?
4611 ((bmcr
& BMCR_SPEED100
) ?
4612 SPEED_100
: SPEED_10
)));
4614 (bmcr
& BMCR_FULLDPLX
) ?
4615 DUPLEX_FULL
: DUPLEX_HALF
;
4617 if (linkstate
!= link_up
) {
4618 /* Force these to "unknown" if the link is not up and
4619 * autonogotiation in enabled. We can set the link
4620 * speed to 0, but not cmd->duplex,
4621 * because its legal values are 0 and 1. Ethtool will
4622 * print the value reported in parentheses after the
4623 * word "Unknown" for unrecognized values.
4625 * If in forced mode, we report the speed and duplex
4626 * settings that we configured.
4628 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4629 ethtool_cmd_speed_set(cmd
, 0);
4632 ethtool_cmd_speed_set(cmd
, SPEED_10
);
4633 if (cp
->link_cntl
& BMCR_SPEED100
) {
4634 ethtool_cmd_speed_set(cmd
, SPEED_100
);
4635 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4636 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
4638 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4639 DUPLEX_FULL
: DUPLEX_HALF
;
4645 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4647 struct cas
*cp
= netdev_priv(dev
);
4648 unsigned long flags
;
4649 u32 speed
= ethtool_cmd_speed(cmd
);
4651 /* Verify the settings we care about. */
4652 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4653 cmd
->autoneg
!= AUTONEG_DISABLE
)
4656 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4657 ((speed
!= SPEED_1000
&&
4658 speed
!= SPEED_100
&&
4659 speed
!= SPEED_10
) ||
4660 (cmd
->duplex
!= DUPLEX_HALF
&&
4661 cmd
->duplex
!= DUPLEX_FULL
)))
4664 /* Apply settings and restart link process. */
4665 spin_lock_irqsave(&cp
->lock
, flags
);
4666 cas_begin_auto_negotiation(cp
, cmd
);
4667 spin_unlock_irqrestore(&cp
->lock
, flags
);
4671 static int cas_nway_reset(struct net_device
*dev
)
4673 struct cas
*cp
= netdev_priv(dev
);
4674 unsigned long flags
;
4676 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4679 /* Restart link process. */
4680 spin_lock_irqsave(&cp
->lock
, flags
);
4681 cas_begin_auto_negotiation(cp
, NULL
);
4682 spin_unlock_irqrestore(&cp
->lock
, flags
);
4687 static u32
cas_get_link(struct net_device
*dev
)
4689 struct cas
*cp
= netdev_priv(dev
);
4690 return cp
->lstate
== link_up
;
4693 static u32
cas_get_msglevel(struct net_device
*dev
)
4695 struct cas
*cp
= netdev_priv(dev
);
4696 return cp
->msg_enable
;
4699 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4701 struct cas
*cp
= netdev_priv(dev
);
4702 cp
->msg_enable
= value
;
4705 static int cas_get_regs_len(struct net_device
*dev
)
4707 struct cas
*cp
= netdev_priv(dev
);
4708 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4711 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4714 struct cas
*cp
= netdev_priv(dev
);
4716 /* cas_read_regs handles locks (cp->lock). */
4717 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4720 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4724 return CAS_NUM_STAT_KEYS
;
4730 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4732 memcpy(data
, ðtool_cassini_statnames
,
4733 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4736 static void cas_get_ethtool_stats(struct net_device
*dev
,
4737 struct ethtool_stats
*estats
, u64
*data
)
4739 struct cas
*cp
= netdev_priv(dev
);
4740 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4742 data
[i
++] = stats
->collisions
;
4743 data
[i
++] = stats
->rx_bytes
;
4744 data
[i
++] = stats
->rx_crc_errors
;
4745 data
[i
++] = stats
->rx_dropped
;
4746 data
[i
++] = stats
->rx_errors
;
4747 data
[i
++] = stats
->rx_fifo_errors
;
4748 data
[i
++] = stats
->rx_frame_errors
;
4749 data
[i
++] = stats
->rx_length_errors
;
4750 data
[i
++] = stats
->rx_over_errors
;
4751 data
[i
++] = stats
->rx_packets
;
4752 data
[i
++] = stats
->tx_aborted_errors
;
4753 data
[i
++] = stats
->tx_bytes
;
4754 data
[i
++] = stats
->tx_dropped
;
4755 data
[i
++] = stats
->tx_errors
;
4756 data
[i
++] = stats
->tx_fifo_errors
;
4757 data
[i
++] = stats
->tx_packets
;
4758 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4761 static const struct ethtool_ops cas_ethtool_ops
= {
4762 .get_drvinfo
= cas_get_drvinfo
,
4763 .get_settings
= cas_get_settings
,
4764 .set_settings
= cas_set_settings
,
4765 .nway_reset
= cas_nway_reset
,
4766 .get_link
= cas_get_link
,
4767 .get_msglevel
= cas_get_msglevel
,
4768 .set_msglevel
= cas_set_msglevel
,
4769 .get_regs_len
= cas_get_regs_len
,
4770 .get_regs
= cas_get_regs
,
4771 .get_sset_count
= cas_get_sset_count
,
4772 .get_strings
= cas_get_strings
,
4773 .get_ethtool_stats
= cas_get_ethtool_stats
,
4776 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4778 struct cas
*cp
= netdev_priv(dev
);
4779 struct mii_ioctl_data
*data
= if_mii(ifr
);
4780 unsigned long flags
;
4781 int rc
= -EOPNOTSUPP
;
4783 /* Hold the PM mutex while doing ioctl's or we may collide
4784 * with open/close and power management and oops.
4786 mutex_lock(&cp
->pm_mutex
);
4788 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4789 data
->phy_id
= cp
->phy_addr
;
4790 /* Fallthrough... */
4792 case SIOCGMIIREG
: /* Read MII PHY register. */
4793 spin_lock_irqsave(&cp
->lock
, flags
);
4794 cas_mif_poll(cp
, 0);
4795 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4796 cas_mif_poll(cp
, 1);
4797 spin_unlock_irqrestore(&cp
->lock
, flags
);
4801 case SIOCSMIIREG
: /* Write MII PHY register. */
4802 spin_lock_irqsave(&cp
->lock
, flags
);
4803 cas_mif_poll(cp
, 0);
4804 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4805 cas_mif_poll(cp
, 1);
4806 spin_unlock_irqrestore(&cp
->lock
, flags
);
4812 mutex_unlock(&cp
->pm_mutex
);
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817 * only subordinate device and we can tweak the bridge settings to
4818 * reflect that fact.
4820 static void cas_program_bridge(struct pci_dev
*cas_pdev
)
4822 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4828 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4831 /* Clear bit 10 (Bus Parking Control) in the Secondary
4832 * Arbiter Control/Status Register which lives at offset
4833 * 0x41. Using a 32-bit word read/modify/write at 0x40
4834 * is much simpler so that's how we do this.
4836 pci_read_config_dword(pdev
, 0x40, &val
);
4838 pci_write_config_dword(pdev
, 0x40, val
);
4840 /* Max out the Multi-Transaction Timer settings since
4841 * Cassini is the only device present.
4843 * The register is 16-bit and lives at 0x50. When the
4844 * settings are enabled, it extends the GRANT# signal
4845 * for a requestor after a transaction is complete. This
4846 * allows the next request to run without first needing
4847 * to negotiate the GRANT# signal back.
4849 * Bits 12:10 define the grant duration:
4857 * All other values are illegal.
4859 * Bits 09:00 define which REQ/GNT signal pairs get the
4860 * GRANT# signal treatment. We set them all.
4862 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4864 /* The Read Prefecth Policy register is 16-bit and sits at
4865 * offset 0x52. It enables a "smart" pre-fetch policy. We
4866 * enable it and max out all of the settings since only one
4867 * device is sitting underneath and thus bandwidth sharing is
4870 * The register has several 3 bit fields, which indicates a
4871 * multiplier applied to the base amount of prefetching the
4872 * chip would do. These fields are at:
4874 * 15:13 --- ReRead Primary Bus
4875 * 12:10 --- FirstRead Primary Bus
4876 * 09:07 --- ReRead Secondary Bus
4877 * 06:04 --- FirstRead Secondary Bus
4879 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880 * get enabled on. Bit 3 is a grouped enabler which controls
4881 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4882 * the individual REQ/GNT pairs [2:0].
4884 pci_write_config_word(pdev
, 0x52,
4891 /* Force cacheline size to 0x8 */
4892 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4894 /* Force latency timer to maximum setting so Cassini can
4895 * sit on the bus as long as it likes.
4897 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4900 static const struct net_device_ops cas_netdev_ops
= {
4901 .ndo_open
= cas_open
,
4902 .ndo_stop
= cas_close
,
4903 .ndo_start_xmit
= cas_start_xmit
,
4904 .ndo_get_stats
= cas_get_stats
,
4905 .ndo_set_rx_mode
= cas_set_multicast
,
4906 .ndo_do_ioctl
= cas_ioctl
,
4907 .ndo_tx_timeout
= cas_tx_timeout
,
4908 .ndo_change_mtu
= cas_change_mtu
,
4909 .ndo_set_mac_address
= eth_mac_addr
,
4910 .ndo_validate_addr
= eth_validate_addr
,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912 .ndo_poll_controller
= cas_netpoll
,
4916 static int cas_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4918 static int cas_version_printed
= 0;
4919 unsigned long casreg_len
;
4920 struct net_device
*dev
;
4922 int i
, err
, pci_using_dac
;
4924 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4926 if (cas_version_printed
++ == 0)
4927 pr_info("%s", version
);
4929 err
= pci_enable_device(pdev
);
4931 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4935 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4936 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4937 "base address, aborting\n");
4939 goto err_out_disable_pdev
;
4942 dev
= alloc_etherdev(sizeof(*cp
));
4945 goto err_out_disable_pdev
;
4947 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4949 err
= pci_request_regions(pdev
, dev
->name
);
4951 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4952 goto err_out_free_netdev
;
4954 pci_set_master(pdev
);
4956 /* we must always turn on parity response or else parity
4957 * doesn't get generated properly. disable SERR/PERR as well.
4958 * in addition, we want to turn MWI on.
4960 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4961 pci_cmd
&= ~PCI_COMMAND_SERR
;
4962 pci_cmd
|= PCI_COMMAND_PARITY
;
4963 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4964 if (pci_try_set_mwi(pdev
))
4965 pr_warning("Could not enable MWI for %s\n", pci_name(pdev
));
4967 cas_program_bridge(pdev
);
4970 * On some architectures, the default cache line size set
4971 * by pci_try_set_mwi reduces perforamnce. We have to increase
4972 * it for this case. To start, we'll print some configuration
4976 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4977 &orig_cacheline_size
);
4978 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4979 cas_cacheline_size
=
4980 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4981 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4982 if (pci_write_config_byte(pdev
,
4983 PCI_CACHE_LINE_SIZE
,
4984 cas_cacheline_size
)) {
4985 dev_err(&pdev
->dev
, "Could not set PCI cache "
4987 goto err_write_cacheline
;
4993 /* Configure DMA attributes. */
4994 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4996 err
= pci_set_consistent_dma_mask(pdev
,
4999 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5000 "for consistent allocations\n");
5001 goto err_out_free_res
;
5005 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
5007 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5009 goto err_out_free_res
;
5014 casreg_len
= pci_resource_len(pdev
, 0);
5016 cp
= netdev_priv(dev
);
5019 /* A value of 0 indicates we never explicitly set it */
5020 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5023 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5026 #if defined(CONFIG_SPARC)
5027 cp
->of_node
= pci_device_to_OF_node(pdev
);
5030 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5031 cp
->link_transition_jiffies_valid
= 0;
5033 spin_lock_init(&cp
->lock
);
5034 spin_lock_init(&cp
->rx_inuse_lock
);
5035 spin_lock_init(&cp
->rx_spare_lock
);
5036 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5037 spin_lock_init(&cp
->stat_lock
[i
]);
5038 spin_lock_init(&cp
->tx_lock
[i
]);
5040 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5041 mutex_init(&cp
->pm_mutex
);
5043 init_timer(&cp
->link_timer
);
5044 cp
->link_timer
.function
= cas_link_timer
;
5045 cp
->link_timer
.data
= (unsigned long) cp
;
5048 /* Just in case the implementation of atomic operations
5049 * change so that an explicit initialization is necessary.
5051 atomic_set(&cp
->reset_task_pending
, 0);
5052 atomic_set(&cp
->reset_task_pending_all
, 0);
5053 atomic_set(&cp
->reset_task_pending_spare
, 0);
5054 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5056 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5058 /* Default link parameters */
5059 if (link_mode
>= 0 && link_mode
< 6)
5060 cp
->link_cntl
= link_modes
[link_mode
];
5062 cp
->link_cntl
= BMCR_ANENABLE
;
5063 cp
->lstate
= link_down
;
5064 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5065 netif_carrier_off(cp
->dev
);
5066 cp
->timer_ticks
= 0;
5068 /* give us access to cassini registers */
5069 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5071 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5072 goto err_out_free_res
;
5074 cp
->casreg_len
= casreg_len
;
5076 pci_save_state(pdev
);
5077 cas_check_pci_invariants(cp
);
5080 if (cas_check_invariants(cp
))
5081 goto err_out_iounmap
;
5082 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5083 cas_saturn_firmware_init(cp
);
5085 cp
->init_block
= (struct cas_init_block
*)
5086 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5088 if (!cp
->init_block
) {
5089 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5090 goto err_out_iounmap
;
5093 for (i
= 0; i
< N_TX_RINGS
; i
++)
5094 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5096 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5097 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5099 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5100 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5102 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5103 skb_queue_head_init(&cp
->rx_flows
[i
]);
5105 dev
->netdev_ops
= &cas_netdev_ops
;
5106 dev
->ethtool_ops
= &cas_ethtool_ops
;
5107 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5110 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5112 dev
->irq
= pdev
->irq
;
5115 /* Cassini features. */
5116 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5117 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5120 dev
->features
|= NETIF_F_HIGHDMA
;
5122 if (register_netdev(dev
)) {
5123 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5124 goto err_out_free_consistent
;
5127 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5128 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5129 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5130 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5131 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5132 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5135 pci_set_drvdata(pdev
, dev
);
5137 cas_entropy_reset(cp
);
5139 cas_begin_auto_negotiation(cp
, NULL
);
5142 err_out_free_consistent
:
5143 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5144 cp
->init_block
, cp
->block_dvma
);
5147 mutex_lock(&cp
->pm_mutex
);
5150 mutex_unlock(&cp
->pm_mutex
);
5152 pci_iounmap(pdev
, cp
->regs
);
5156 pci_release_regions(pdev
);
5158 err_write_cacheline
:
5159 /* Try to restore it in case the error occurred after we
5162 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5164 err_out_free_netdev
:
5167 err_out_disable_pdev
:
5168 pci_disable_device(pdev
);
5172 static void cas_remove_one(struct pci_dev
*pdev
)
5174 struct net_device
*dev
= pci_get_drvdata(pdev
);
5179 cp
= netdev_priv(dev
);
5180 unregister_netdev(dev
);
5185 mutex_lock(&cp
->pm_mutex
);
5186 cancel_work_sync(&cp
->reset_task
);
5189 mutex_unlock(&cp
->pm_mutex
);
5192 if (cp
->orig_cacheline_size
) {
5193 /* Restore the cache line size if we had modified
5196 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5197 cp
->orig_cacheline_size
);
5200 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5201 cp
->init_block
, cp
->block_dvma
);
5202 pci_iounmap(pdev
, cp
->regs
);
5204 pci_release_regions(pdev
);
5205 pci_disable_device(pdev
);
5209 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5211 struct net_device
*dev
= pci_get_drvdata(pdev
);
5212 struct cas
*cp
= netdev_priv(dev
);
5213 unsigned long flags
;
5215 mutex_lock(&cp
->pm_mutex
);
5217 /* If the driver is opened, we stop the DMA */
5219 netif_device_detach(dev
);
5221 cas_lock_all_save(cp
, flags
);
5223 /* We can set the second arg of cas_reset to 0
5224 * because on resume, we'll call cas_init_hw with
5225 * its second arg set so that autonegotiation is
5229 cas_clean_rings(cp
);
5230 cas_unlock_all_restore(cp
, flags
);
5235 mutex_unlock(&cp
->pm_mutex
);
5240 static int cas_resume(struct pci_dev
*pdev
)
5242 struct net_device
*dev
= pci_get_drvdata(pdev
);
5243 struct cas
*cp
= netdev_priv(dev
);
5245 netdev_info(dev
, "resuming\n");
5247 mutex_lock(&cp
->pm_mutex
);
5250 unsigned long flags
;
5251 cas_lock_all_save(cp
, flags
);
5254 cas_clean_rings(cp
);
5256 cas_unlock_all_restore(cp
, flags
);
5258 netif_device_attach(dev
);
5260 mutex_unlock(&cp
->pm_mutex
);
5263 #endif /* CONFIG_PM */
5265 static struct pci_driver cas_driver
= {
5266 .name
= DRV_MODULE_NAME
,
5267 .id_table
= cas_pci_tbl
,
5268 .probe
= cas_init_one
,
5269 .remove
= cas_remove_one
,
5271 .suspend
= cas_suspend
,
5272 .resume
= cas_resume
5276 static int __init
cas_init(void)
5278 if (linkdown_timeout
> 0)
5279 link_transition_timeout
= linkdown_timeout
* HZ
;
5281 link_transition_timeout
= 0;
5283 return pci_register_driver(&cas_driver
);
5286 static void __exit
cas_cleanup(void)
5288 pci_unregister_driver(&cas_driver
);
5291 module_init(cas_init
);
5292 module_exit(cas_cleanup
);