sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / kernel / exit.c
blobe5c4668f1799d15ce1d527b1e357d795f3d748ea
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct * tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
110 * If there is any task waiting for the group exit
111 * then notify it:
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
161 static void delayed_put_task_struct(struct rcu_head *rhp)
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
171 void release_task(struct task_struct * p)
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
182 proc_flush_task(p);
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
220 * The caller must hold rcu lock or the tasklist lock.
222 struct pid *session_of_pgrp(struct pid *pgrp)
224 struct task_struct *p;
225 struct pid *sid = NULL;
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
233 return sid;
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
242 * "I ask you, have you ever known what it is to be an orphan?"
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
246 struct task_struct *p;
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 return 1;
262 int is_current_pgrp_orphaned(void)
264 int retval;
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
270 return retval;
273 static bool has_stopped_jobs(struct pid *pgrp)
275 struct task_struct *p;
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
282 return false;
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
305 ignored_task = NULL;
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 #ifdef CONFIG_MEMCG
318 * A task is exiting. If it owned this mm, find a new owner for the mm.
320 void mm_update_next_owner(struct mm_struct *mm)
322 struct task_struct *c, *g, *p = current;
324 retry:
326 * If the exiting or execing task is not the owner, it's
327 * someone else's problem.
329 if (mm->owner != p)
330 return;
332 * The current owner is exiting/execing and there are no other
333 * candidates. Do not leave the mm pointing to a possibly
334 * freed task structure.
336 if (atomic_read(&mm->mm_users) <= 1) {
337 mm->owner = NULL;
338 return;
341 read_lock(&tasklist_lock);
343 * Search in the children
345 list_for_each_entry(c, &p->children, sibling) {
346 if (c->mm == mm)
347 goto assign_new_owner;
351 * Search in the siblings
353 list_for_each_entry(c, &p->real_parent->children, sibling) {
354 if (c->mm == mm)
355 goto assign_new_owner;
359 * Search through everything else, we should not get here often.
361 for_each_process(g) {
362 if (g->flags & PF_KTHREAD)
363 continue;
364 for_each_thread(g, c) {
365 if (c->mm == mm)
366 goto assign_new_owner;
367 if (c->mm)
368 break;
371 read_unlock(&tasklist_lock);
373 * We found no owner yet mm_users > 1: this implies that we are
374 * most likely racing with swapoff (try_to_unuse()) or /proc or
375 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
377 mm->owner = NULL;
378 return;
380 assign_new_owner:
381 BUG_ON(c == p);
382 get_task_struct(c);
384 * The task_lock protects c->mm from changing.
385 * We always want mm->owner->mm == mm
387 task_lock(c);
389 * Delay read_unlock() till we have the task_lock()
390 * to ensure that c does not slip away underneath us
392 read_unlock(&tasklist_lock);
393 if (c->mm != mm) {
394 task_unlock(c);
395 put_task_struct(c);
396 goto retry;
398 mm->owner = c;
399 task_unlock(c);
400 put_task_struct(c);
402 #endif /* CONFIG_MEMCG */
405 * Turn us into a lazy TLB process if we
406 * aren't already..
408 static void exit_mm(struct task_struct * tsk)
410 struct mm_struct *mm = tsk->mm;
411 struct core_state *core_state;
413 mm_release(tsk, mm);
414 if (!mm)
415 return;
416 sync_mm_rss(mm);
418 * Serialize with any possible pending coredump.
419 * We must hold mmap_sem around checking core_state
420 * and clearing tsk->mm. The core-inducing thread
421 * will increment ->nr_threads for each thread in the
422 * group with ->mm != NULL.
424 down_read(&mm->mmap_sem);
425 core_state = mm->core_state;
426 if (core_state) {
427 struct core_thread self;
428 up_read(&mm->mmap_sem);
430 self.task = tsk;
431 self.next = xchg(&core_state->dumper.next, &self);
433 * Implies mb(), the result of xchg() must be visible
434 * to core_state->dumper.
436 if (atomic_dec_and_test(&core_state->nr_threads))
437 complete(&core_state->startup);
439 for (;;) {
440 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
441 if (!self.task) /* see coredump_finish() */
442 break;
443 freezable_schedule();
445 __set_task_state(tsk, TASK_RUNNING);
446 down_read(&mm->mmap_sem);
448 atomic_inc(&mm->mm_count);
449 BUG_ON(mm != tsk->active_mm);
450 /* more a memory barrier than a real lock */
451 task_lock(tsk);
452 tsk->mm = NULL;
453 up_read(&mm->mmap_sem);
454 enter_lazy_tlb(mm, current);
455 task_unlock(tsk);
456 mm_update_next_owner(mm);
457 mmput(mm);
461 * When we die, we re-parent all our children, and try to:
462 * 1. give them to another thread in our thread group, if such a member exists
463 * 2. give it to the first ancestor process which prctl'd itself as a
464 * child_subreaper for its children (like a service manager)
465 * 3. give it to the init process (PID 1) in our pid namespace
467 static struct task_struct *find_new_reaper(struct task_struct *father)
468 __releases(&tasklist_lock)
469 __acquires(&tasklist_lock)
471 struct pid_namespace *pid_ns = task_active_pid_ns(father);
472 struct task_struct *thread;
474 thread = father;
475 while_each_thread(father, thread) {
476 if (thread->flags & PF_EXITING)
477 continue;
478 if (unlikely(pid_ns->child_reaper == father))
479 pid_ns->child_reaper = thread;
480 return thread;
483 if (unlikely(pid_ns->child_reaper == father)) {
484 write_unlock_irq(&tasklist_lock);
485 if (unlikely(pid_ns == &init_pid_ns)) {
486 panic("Attempted to kill init! exitcode=0x%08x\n",
487 father->signal->group_exit_code ?:
488 father->exit_code);
491 zap_pid_ns_processes(pid_ns);
492 write_lock_irq(&tasklist_lock);
493 } else if (father->signal->has_child_subreaper) {
494 struct task_struct *reaper;
497 * Find the first ancestor marked as child_subreaper.
498 * Note that the code below checks same_thread_group(reaper,
499 * pid_ns->child_reaper). This is what we need to DTRT in a
500 * PID namespace. However we still need the check above, see
501 * http://marc.info/?l=linux-kernel&m=131385460420380
503 for (reaper = father->real_parent;
504 reaper != &init_task;
505 reaper = reaper->real_parent) {
506 if (same_thread_group(reaper, pid_ns->child_reaper))
507 break;
508 if (!reaper->signal->is_child_subreaper)
509 continue;
510 thread = reaper;
511 do {
512 if (!(thread->flags & PF_EXITING))
513 return reaper;
514 } while_each_thread(reaper, thread);
518 return pid_ns->child_reaper;
522 * Any that need to be release_task'd are put on the @dead list.
524 static void reparent_leader(struct task_struct *father, struct task_struct *p,
525 struct list_head *dead)
527 list_move_tail(&p->sibling, &p->real_parent->children);
529 if (p->exit_state == EXIT_DEAD)
530 return;
532 * If this is a threaded reparent there is no need to
533 * notify anyone anything has happened.
535 if (same_thread_group(p->real_parent, father))
536 return;
538 /* We don't want people slaying init. */
539 p->exit_signal = SIGCHLD;
541 /* If it has exited notify the new parent about this child's death. */
542 if (!p->ptrace &&
543 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
544 if (do_notify_parent(p, p->exit_signal)) {
545 p->exit_state = EXIT_DEAD;
546 list_move_tail(&p->sibling, dead);
550 kill_orphaned_pgrp(p, father);
553 static void forget_original_parent(struct task_struct *father)
555 struct task_struct *p, *n, *reaper;
556 LIST_HEAD(dead_children);
558 write_lock_irq(&tasklist_lock);
560 * Note that exit_ptrace() and find_new_reaper() might
561 * drop tasklist_lock and reacquire it.
563 exit_ptrace(father);
564 reaper = find_new_reaper(father);
566 list_for_each_entry_safe(p, n, &father->children, sibling) {
567 struct task_struct *t = p;
568 do {
569 t->real_parent = reaper;
570 if (t->parent == father) {
571 BUG_ON(t->ptrace);
572 t->parent = t->real_parent;
574 if (t->pdeath_signal)
575 group_send_sig_info(t->pdeath_signal,
576 SEND_SIG_NOINFO, t);
577 } while_each_thread(p, t);
578 reparent_leader(father, p, &dead_children);
580 write_unlock_irq(&tasklist_lock);
582 BUG_ON(!list_empty(&father->children));
584 list_for_each_entry_safe(p, n, &dead_children, sibling) {
585 list_del_init(&p->sibling);
586 release_task(p);
591 * Send signals to all our closest relatives so that they know
592 * to properly mourn us..
594 static void exit_notify(struct task_struct *tsk, int group_dead)
596 bool autoreap;
599 * This does two things:
601 * A. Make init inherit all the child processes
602 * B. Check to see if any process groups have become orphaned
603 * as a result of our exiting, and if they have any stopped
604 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
606 forget_original_parent(tsk);
608 write_lock_irq(&tasklist_lock);
609 if (group_dead)
610 kill_orphaned_pgrp(tsk->group_leader, NULL);
612 if (unlikely(tsk->ptrace)) {
613 int sig = thread_group_leader(tsk) &&
614 thread_group_empty(tsk) &&
615 !ptrace_reparented(tsk) ?
616 tsk->exit_signal : SIGCHLD;
617 autoreap = do_notify_parent(tsk, sig);
618 } else if (thread_group_leader(tsk)) {
619 autoreap = thread_group_empty(tsk) &&
620 do_notify_parent(tsk, tsk->exit_signal);
621 } else {
622 autoreap = true;
625 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
627 /* mt-exec, de_thread() is waiting for group leader */
628 if (unlikely(tsk->signal->notify_count < 0))
629 wake_up_process(tsk->signal->group_exit_task);
630 write_unlock_irq(&tasklist_lock);
632 /* If the process is dead, release it - nobody will wait for it */
633 if (autoreap)
634 release_task(tsk);
637 #ifdef CONFIG_DEBUG_STACK_USAGE
638 static void check_stack_usage(void)
640 static DEFINE_SPINLOCK(low_water_lock);
641 static int lowest_to_date = THREAD_SIZE;
642 unsigned long free;
644 free = stack_not_used(current);
646 if (free >= lowest_to_date)
647 return;
649 spin_lock(&low_water_lock);
650 if (free < lowest_to_date) {
651 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
652 "%lu bytes left\n",
653 current->comm, task_pid_nr(current), free);
654 lowest_to_date = free;
656 spin_unlock(&low_water_lock);
658 #else
659 static inline void check_stack_usage(void) {}
660 #endif
662 void do_exit(long code)
664 struct task_struct *tsk = current;
665 int group_dead;
667 profile_task_exit(tsk);
669 WARN_ON(blk_needs_flush_plug(tsk));
671 if (unlikely(in_interrupt()))
672 panic("Aiee, killing interrupt handler!");
673 if (unlikely(!tsk->pid))
674 panic("Attempted to kill the idle task!");
677 * If do_exit is called because this processes oopsed, it's possible
678 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
679 * continuing. Amongst other possible reasons, this is to prevent
680 * mm_release()->clear_child_tid() from writing to a user-controlled
681 * kernel address.
683 set_fs(USER_DS);
685 ptrace_event(PTRACE_EVENT_EXIT, code);
687 validate_creds_for_do_exit(tsk);
690 * We're taking recursive faults here in do_exit. Safest is to just
691 * leave this task alone and wait for reboot.
693 if (unlikely(tsk->flags & PF_EXITING)) {
694 printk(KERN_ALERT
695 "Fixing recursive fault but reboot is needed!\n");
697 * We can do this unlocked here. The futex code uses
698 * this flag just to verify whether the pi state
699 * cleanup has been done or not. In the worst case it
700 * loops once more. We pretend that the cleanup was
701 * done as there is no way to return. Either the
702 * OWNER_DIED bit is set by now or we push the blocked
703 * task into the wait for ever nirwana as well.
705 tsk->flags |= PF_EXITPIDONE;
706 set_current_state(TASK_UNINTERRUPTIBLE);
707 schedule();
710 exit_signals(tsk); /* sets PF_EXITING */
712 * tsk->flags are checked in the futex code to protect against
713 * an exiting task cleaning up the robust pi futexes.
715 smp_mb();
716 raw_spin_unlock_wait(&tsk->pi_lock);
718 if (unlikely(in_atomic()))
719 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
720 current->comm, task_pid_nr(current),
721 preempt_count());
723 acct_update_integrals(tsk);
724 /* sync mm's RSS info before statistics gathering */
725 if (tsk->mm)
726 sync_mm_rss(tsk->mm);
727 group_dead = atomic_dec_and_test(&tsk->signal->live);
728 if (group_dead) {
729 hrtimer_cancel(&tsk->signal->real_timer);
730 exit_itimers(tsk->signal);
731 if (tsk->mm)
732 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
734 acct_collect(code, group_dead);
735 if (group_dead)
736 tty_audit_exit();
737 audit_free(tsk);
739 tsk->exit_code = code;
740 taskstats_exit(tsk, group_dead);
742 exit_mm(tsk);
744 if (group_dead)
745 acct_process();
746 trace_sched_process_exit(tsk);
748 exit_sem(tsk);
749 exit_shm(tsk);
750 exit_files(tsk);
751 exit_fs(tsk);
752 if (group_dead)
753 disassociate_ctty(1);
754 exit_task_namespaces(tsk);
755 exit_task_work(tsk);
756 exit_thread();
759 * Flush inherited counters to the parent - before the parent
760 * gets woken up by child-exit notifications.
762 * because of cgroup mode, must be called before cgroup_exit()
764 perf_event_exit_task(tsk);
766 cgroup_exit(tsk);
768 module_put(task_thread_info(tsk)->exec_domain->module);
771 * FIXME: do that only when needed, using sched_exit tracepoint
773 flush_ptrace_hw_breakpoint(tsk);
775 exit_notify(tsk, group_dead);
776 proc_exit_connector(tsk);
777 #ifdef CONFIG_NUMA
778 task_lock(tsk);
779 mpol_put(tsk->mempolicy);
780 tsk->mempolicy = NULL;
781 task_unlock(tsk);
782 #endif
783 #ifdef CONFIG_FUTEX
784 if (unlikely(current->pi_state_cache))
785 kfree(current->pi_state_cache);
786 #endif
788 * Make sure we are holding no locks:
790 debug_check_no_locks_held();
792 * We can do this unlocked here. The futex code uses this flag
793 * just to verify whether the pi state cleanup has been done
794 * or not. In the worst case it loops once more.
796 tsk->flags |= PF_EXITPIDONE;
798 if (tsk->io_context)
799 exit_io_context(tsk);
801 if (tsk->splice_pipe)
802 free_pipe_info(tsk->splice_pipe);
804 if (tsk->task_frag.page)
805 put_page(tsk->task_frag.page);
807 validate_creds_for_do_exit(tsk);
809 check_stack_usage();
810 preempt_disable();
811 if (tsk->nr_dirtied)
812 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
813 exit_rcu();
816 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
817 * when the following two conditions become true.
818 * - There is race condition of mmap_sem (It is acquired by
819 * exit_mm()), and
820 * - SMI occurs before setting TASK_RUNINNG.
821 * (or hypervisor of virtual machine switches to other guest)
822 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
824 * To avoid it, we have to wait for releasing tsk->pi_lock which
825 * is held by try_to_wake_up()
827 smp_mb();
828 raw_spin_unlock_wait(&tsk->pi_lock);
830 /* causes final put_task_struct in finish_task_switch(). */
831 tsk->state = TASK_DEAD;
832 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
833 schedule();
834 BUG();
835 /* Avoid "noreturn function does return". */
836 for (;;)
837 cpu_relax(); /* For when BUG is null */
840 EXPORT_SYMBOL_GPL(do_exit);
842 void complete_and_exit(struct completion *comp, long code)
844 if (comp)
845 complete(comp);
847 do_exit(code);
850 EXPORT_SYMBOL(complete_and_exit);
852 SYSCALL_DEFINE1(exit, int, error_code)
854 do_exit((error_code&0xff)<<8);
858 * Take down every thread in the group. This is called by fatal signals
859 * as well as by sys_exit_group (below).
861 void
862 do_group_exit(int exit_code)
864 struct signal_struct *sig = current->signal;
866 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
868 if (signal_group_exit(sig))
869 exit_code = sig->group_exit_code;
870 else if (!thread_group_empty(current)) {
871 struct sighand_struct *const sighand = current->sighand;
872 spin_lock_irq(&sighand->siglock);
873 if (signal_group_exit(sig))
874 /* Another thread got here before we took the lock. */
875 exit_code = sig->group_exit_code;
876 else {
877 sig->group_exit_code = exit_code;
878 sig->flags = SIGNAL_GROUP_EXIT;
879 zap_other_threads(current);
881 spin_unlock_irq(&sighand->siglock);
884 do_exit(exit_code);
885 /* NOTREACHED */
889 * this kills every thread in the thread group. Note that any externally
890 * wait4()-ing process will get the correct exit code - even if this
891 * thread is not the thread group leader.
893 SYSCALL_DEFINE1(exit_group, int, error_code)
895 do_group_exit((error_code & 0xff) << 8);
896 /* NOTREACHED */
897 return 0;
900 struct wait_opts {
901 enum pid_type wo_type;
902 int wo_flags;
903 struct pid *wo_pid;
905 struct siginfo __user *wo_info;
906 int __user *wo_stat;
907 struct rusage __user *wo_rusage;
909 wait_queue_t child_wait;
910 int notask_error;
913 static inline
914 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
916 if (type != PIDTYPE_PID)
917 task = task->group_leader;
918 return task->pids[type].pid;
921 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
923 return wo->wo_type == PIDTYPE_MAX ||
924 task_pid_type(p, wo->wo_type) == wo->wo_pid;
927 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
929 if (!eligible_pid(wo, p))
930 return 0;
931 /* Wait for all children (clone and not) if __WALL is set;
932 * otherwise, wait for clone children *only* if __WCLONE is
933 * set; otherwise, wait for non-clone children *only*. (Note:
934 * A "clone" child here is one that reports to its parent
935 * using a signal other than SIGCHLD.) */
936 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
937 && !(wo->wo_flags & __WALL))
938 return 0;
940 return 1;
943 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
944 pid_t pid, uid_t uid, int why, int status)
946 struct siginfo __user *infop;
947 int retval = wo->wo_rusage
948 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950 put_task_struct(p);
951 infop = wo->wo_info;
952 if (infop) {
953 if (!retval)
954 retval = put_user(SIGCHLD, &infop->si_signo);
955 if (!retval)
956 retval = put_user(0, &infop->si_errno);
957 if (!retval)
958 retval = put_user((short)why, &infop->si_code);
959 if (!retval)
960 retval = put_user(pid, &infop->si_pid);
961 if (!retval)
962 retval = put_user(uid, &infop->si_uid);
963 if (!retval)
964 retval = put_user(status, &infop->si_status);
966 if (!retval)
967 retval = pid;
968 return retval;
972 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
973 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
974 * the lock and this task is uninteresting. If we return nonzero, we have
975 * released the lock and the system call should return.
977 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 unsigned long state;
980 int retval, status, traced;
981 pid_t pid = task_pid_vnr(p);
982 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
983 struct siginfo __user *infop;
985 if (!likely(wo->wo_flags & WEXITED))
986 return 0;
988 if (unlikely(wo->wo_flags & WNOWAIT)) {
989 int exit_code = p->exit_code;
990 int why;
992 get_task_struct(p);
993 read_unlock(&tasklist_lock);
994 if ((exit_code & 0x7f) == 0) {
995 why = CLD_EXITED;
996 status = exit_code >> 8;
997 } else {
998 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
999 status = exit_code & 0x7f;
1001 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1004 traced = ptrace_reparented(p);
1006 * Move the task's state to DEAD/TRACE, only one thread can do this.
1008 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1009 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1010 return 0;
1012 * It can be ptraced but not reparented, check
1013 * thread_group_leader() to filter out sub-threads.
1015 if (likely(!traced) && thread_group_leader(p)) {
1016 struct signal_struct *psig;
1017 struct signal_struct *sig;
1018 unsigned long maxrss;
1019 cputime_t tgutime, tgstime;
1022 * The resource counters for the group leader are in its
1023 * own task_struct. Those for dead threads in the group
1024 * are in its signal_struct, as are those for the child
1025 * processes it has previously reaped. All these
1026 * accumulate in the parent's signal_struct c* fields.
1028 * We don't bother to take a lock here to protect these
1029 * p->signal fields, because they are only touched by
1030 * __exit_signal, which runs with tasklist_lock
1031 * write-locked anyway, and so is excluded here. We do
1032 * need to protect the access to parent->signal fields,
1033 * as other threads in the parent group can be right
1034 * here reaping other children at the same time.
1036 * We use thread_group_cputime_adjusted() to get times for the thread
1037 * group, which consolidates times for all threads in the
1038 * group including the group leader.
1040 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1041 spin_lock_irq(&p->real_parent->sighand->siglock);
1042 psig = p->real_parent->signal;
1043 sig = p->signal;
1044 psig->cutime += tgutime + sig->cutime;
1045 psig->cstime += tgstime + sig->cstime;
1046 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1047 psig->cmin_flt +=
1048 p->min_flt + sig->min_flt + sig->cmin_flt;
1049 psig->cmaj_flt +=
1050 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1051 psig->cnvcsw +=
1052 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1053 psig->cnivcsw +=
1054 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1055 psig->cinblock +=
1056 task_io_get_inblock(p) +
1057 sig->inblock + sig->cinblock;
1058 psig->coublock +=
1059 task_io_get_oublock(p) +
1060 sig->oublock + sig->coublock;
1061 maxrss = max(sig->maxrss, sig->cmaxrss);
1062 if (psig->cmaxrss < maxrss)
1063 psig->cmaxrss = maxrss;
1064 task_io_accounting_add(&psig->ioac, &p->ioac);
1065 task_io_accounting_add(&psig->ioac, &sig->ioac);
1066 spin_unlock_irq(&p->real_parent->sighand->siglock);
1070 * Now we are sure this task is interesting, and no other
1071 * thread can reap it because we its state == DEAD/TRACE.
1073 read_unlock(&tasklist_lock);
1075 retval = wo->wo_rusage
1076 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1077 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1078 ? p->signal->group_exit_code : p->exit_code;
1079 if (!retval && wo->wo_stat)
1080 retval = put_user(status, wo->wo_stat);
1082 infop = wo->wo_info;
1083 if (!retval && infop)
1084 retval = put_user(SIGCHLD, &infop->si_signo);
1085 if (!retval && infop)
1086 retval = put_user(0, &infop->si_errno);
1087 if (!retval && infop) {
1088 int why;
1090 if ((status & 0x7f) == 0) {
1091 why = CLD_EXITED;
1092 status >>= 8;
1093 } else {
1094 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1095 status &= 0x7f;
1097 retval = put_user((short)why, &infop->si_code);
1098 if (!retval)
1099 retval = put_user(status, &infop->si_status);
1101 if (!retval && infop)
1102 retval = put_user(pid, &infop->si_pid);
1103 if (!retval && infop)
1104 retval = put_user(uid, &infop->si_uid);
1105 if (!retval)
1106 retval = pid;
1108 if (state == EXIT_TRACE) {
1109 write_lock_irq(&tasklist_lock);
1110 /* We dropped tasklist, ptracer could die and untrace */
1111 ptrace_unlink(p);
1113 /* If parent wants a zombie, don't release it now */
1114 state = EXIT_ZOMBIE;
1115 if (do_notify_parent(p, p->exit_signal))
1116 state = EXIT_DEAD;
1117 p->exit_state = state;
1118 write_unlock_irq(&tasklist_lock);
1120 if (state == EXIT_DEAD)
1121 release_task(p);
1123 return retval;
1126 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 if (ptrace) {
1129 if (task_is_stopped_or_traced(p) &&
1130 !(p->jobctl & JOBCTL_LISTENING))
1131 return &p->exit_code;
1132 } else {
1133 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1134 return &p->signal->group_exit_code;
1136 return NULL;
1140 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1141 * @wo: wait options
1142 * @ptrace: is the wait for ptrace
1143 * @p: task to wait for
1145 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147 * CONTEXT:
1148 * read_lock(&tasklist_lock), which is released if return value is
1149 * non-zero. Also, grabs and releases @p->sighand->siglock.
1151 * RETURNS:
1152 * 0 if wait condition didn't exist and search for other wait conditions
1153 * should continue. Non-zero return, -errno on failure and @p's pid on
1154 * success, implies that tasklist_lock is released and wait condition
1155 * search should terminate.
1157 static int wait_task_stopped(struct wait_opts *wo,
1158 int ptrace, struct task_struct *p)
1160 struct siginfo __user *infop;
1161 int retval, exit_code, *p_code, why;
1162 uid_t uid = 0; /* unneeded, required by compiler */
1163 pid_t pid;
1166 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1169 return 0;
1171 if (!task_stopped_code(p, ptrace))
1172 return 0;
1174 exit_code = 0;
1175 spin_lock_irq(&p->sighand->siglock);
1177 p_code = task_stopped_code(p, ptrace);
1178 if (unlikely(!p_code))
1179 goto unlock_sig;
1181 exit_code = *p_code;
1182 if (!exit_code)
1183 goto unlock_sig;
1185 if (!unlikely(wo->wo_flags & WNOWAIT))
1186 *p_code = 0;
1188 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1189 unlock_sig:
1190 spin_unlock_irq(&p->sighand->siglock);
1191 if (!exit_code)
1192 return 0;
1195 * Now we are pretty sure this task is interesting.
1196 * Make sure it doesn't get reaped out from under us while we
1197 * give up the lock and then examine it below. We don't want to
1198 * keep holding onto the tasklist_lock while we call getrusage and
1199 * possibly take page faults for user memory.
1201 get_task_struct(p);
1202 pid = task_pid_vnr(p);
1203 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1204 read_unlock(&tasklist_lock);
1206 if (unlikely(wo->wo_flags & WNOWAIT))
1207 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1209 retval = wo->wo_rusage
1210 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1211 if (!retval && wo->wo_stat)
1212 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1214 infop = wo->wo_info;
1215 if (!retval && infop)
1216 retval = put_user(SIGCHLD, &infop->si_signo);
1217 if (!retval && infop)
1218 retval = put_user(0, &infop->si_errno);
1219 if (!retval && infop)
1220 retval = put_user((short)why, &infop->si_code);
1221 if (!retval && infop)
1222 retval = put_user(exit_code, &infop->si_status);
1223 if (!retval && infop)
1224 retval = put_user(pid, &infop->si_pid);
1225 if (!retval && infop)
1226 retval = put_user(uid, &infop->si_uid);
1227 if (!retval)
1228 retval = pid;
1229 put_task_struct(p);
1231 BUG_ON(!retval);
1232 return retval;
1236 * Handle do_wait work for one task in a live, non-stopped state.
1237 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1238 * the lock and this task is uninteresting. If we return nonzero, we have
1239 * released the lock and the system call should return.
1241 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1243 int retval;
1244 pid_t pid;
1245 uid_t uid;
1247 if (!unlikely(wo->wo_flags & WCONTINUED))
1248 return 0;
1250 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1251 return 0;
1253 spin_lock_irq(&p->sighand->siglock);
1254 /* Re-check with the lock held. */
1255 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1256 spin_unlock_irq(&p->sighand->siglock);
1257 return 0;
1259 if (!unlikely(wo->wo_flags & WNOWAIT))
1260 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1261 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1262 spin_unlock_irq(&p->sighand->siglock);
1264 pid = task_pid_vnr(p);
1265 get_task_struct(p);
1266 read_unlock(&tasklist_lock);
1268 if (!wo->wo_info) {
1269 retval = wo->wo_rusage
1270 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1271 put_task_struct(p);
1272 if (!retval && wo->wo_stat)
1273 retval = put_user(0xffff, wo->wo_stat);
1274 if (!retval)
1275 retval = pid;
1276 } else {
1277 retval = wait_noreap_copyout(wo, p, pid, uid,
1278 CLD_CONTINUED, SIGCONT);
1279 BUG_ON(retval == 0);
1282 return retval;
1286 * Consider @p for a wait by @parent.
1288 * -ECHILD should be in ->notask_error before the first call.
1289 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1290 * Returns zero if the search for a child should continue;
1291 * then ->notask_error is 0 if @p is an eligible child,
1292 * or another error from security_task_wait(), or still -ECHILD.
1294 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1295 struct task_struct *p)
1297 int ret;
1299 if (unlikely(p->exit_state == EXIT_DEAD))
1300 return 0;
1302 ret = eligible_child(wo, p);
1303 if (!ret)
1304 return ret;
1306 ret = security_task_wait(p);
1307 if (unlikely(ret < 0)) {
1309 * If we have not yet seen any eligible child,
1310 * then let this error code replace -ECHILD.
1311 * A permission error will give the user a clue
1312 * to look for security policy problems, rather
1313 * than for mysterious wait bugs.
1315 if (wo->notask_error)
1316 wo->notask_error = ret;
1317 return 0;
1320 if (unlikely(p->exit_state == EXIT_TRACE)) {
1322 * ptrace == 0 means we are the natural parent. In this case
1323 * we should clear notask_error, debugger will notify us.
1325 if (likely(!ptrace))
1326 wo->notask_error = 0;
1327 return 0;
1330 if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 * If it is traced by its real parent's group, just pretend
1333 * the caller is ptrace_do_wait() and reap this child if it
1334 * is zombie.
1336 * This also hides group stop state from real parent; otherwise
1337 * a single stop can be reported twice as group and ptrace stop.
1338 * If a ptracer wants to distinguish these two events for its
1339 * own children it should create a separate process which takes
1340 * the role of real parent.
1342 if (!ptrace_reparented(p))
1343 ptrace = 1;
1346 /* slay zombie? */
1347 if (p->exit_state == EXIT_ZOMBIE) {
1348 /* we don't reap group leaders with subthreads */
1349 if (!delay_group_leader(p)) {
1351 * A zombie ptracee is only visible to its ptracer.
1352 * Notification and reaping will be cascaded to the
1353 * real parent when the ptracer detaches.
1355 if (unlikely(ptrace) || likely(!p->ptrace))
1356 return wait_task_zombie(wo, p);
1360 * Allow access to stopped/continued state via zombie by
1361 * falling through. Clearing of notask_error is complex.
1363 * When !@ptrace:
1365 * If WEXITED is set, notask_error should naturally be
1366 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1367 * so, if there are live subthreads, there are events to
1368 * wait for. If all subthreads are dead, it's still safe
1369 * to clear - this function will be called again in finite
1370 * amount time once all the subthreads are released and
1371 * will then return without clearing.
1373 * When @ptrace:
1375 * Stopped state is per-task and thus can't change once the
1376 * target task dies. Only continued and exited can happen.
1377 * Clear notask_error if WCONTINUED | WEXITED.
1379 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1380 wo->notask_error = 0;
1381 } else {
1383 * @p is alive and it's gonna stop, continue or exit, so
1384 * there always is something to wait for.
1386 wo->notask_error = 0;
1390 * Wait for stopped. Depending on @ptrace, different stopped state
1391 * is used and the two don't interact with each other.
1393 ret = wait_task_stopped(wo, ptrace, p);
1394 if (ret)
1395 return ret;
1398 * Wait for continued. There's only one continued state and the
1399 * ptracer can consume it which can confuse the real parent. Don't
1400 * use WCONTINUED from ptracer. You don't need or want it.
1402 return wait_task_continued(wo, p);
1406 * Do the work of do_wait() for one thread in the group, @tsk.
1408 * -ECHILD should be in ->notask_error before the first call.
1409 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1410 * Returns zero if the search for a child should continue; then
1411 * ->notask_error is 0 if there were any eligible children,
1412 * or another error from security_task_wait(), or still -ECHILD.
1414 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416 struct task_struct *p;
1418 list_for_each_entry(p, &tsk->children, sibling) {
1419 int ret = wait_consider_task(wo, 0, p);
1420 if (ret)
1421 return ret;
1424 return 0;
1427 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1429 struct task_struct *p;
1431 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1432 int ret = wait_consider_task(wo, 1, p);
1433 if (ret)
1434 return ret;
1437 return 0;
1440 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1441 int sync, void *key)
1443 struct wait_opts *wo = container_of(wait, struct wait_opts,
1444 child_wait);
1445 struct task_struct *p = key;
1447 if (!eligible_pid(wo, p))
1448 return 0;
1450 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1451 return 0;
1453 return default_wake_function(wait, mode, sync, key);
1456 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1458 __wake_up_sync_key(&parent->signal->wait_chldexit,
1459 TASK_INTERRUPTIBLE, 1, p);
1462 static long do_wait(struct wait_opts *wo)
1464 struct task_struct *tsk;
1465 int retval;
1467 trace_sched_process_wait(wo->wo_pid);
1469 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1470 wo->child_wait.private = current;
1471 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1472 repeat:
1474 * If there is nothing that can match our critiera just get out.
1475 * We will clear ->notask_error to zero if we see any child that
1476 * might later match our criteria, even if we are not able to reap
1477 * it yet.
1479 wo->notask_error = -ECHILD;
1480 if ((wo->wo_type < PIDTYPE_MAX) &&
1481 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1482 goto notask;
1484 set_current_state(TASK_INTERRUPTIBLE);
1485 read_lock(&tasklist_lock);
1486 tsk = current;
1487 do {
1488 retval = do_wait_thread(wo, tsk);
1489 if (retval)
1490 goto end;
1492 retval = ptrace_do_wait(wo, tsk);
1493 if (retval)
1494 goto end;
1496 if (wo->wo_flags & __WNOTHREAD)
1497 break;
1498 } while_each_thread(current, tsk);
1499 read_unlock(&tasklist_lock);
1501 notask:
1502 retval = wo->notask_error;
1503 if (!retval && !(wo->wo_flags & WNOHANG)) {
1504 retval = -ERESTARTSYS;
1505 if (!signal_pending(current)) {
1506 schedule();
1507 goto repeat;
1510 end:
1511 __set_current_state(TASK_RUNNING);
1512 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513 return retval;
1516 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1517 infop, int, options, struct rusage __user *, ru)
1519 struct wait_opts wo;
1520 struct pid *pid = NULL;
1521 enum pid_type type;
1522 long ret;
1524 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1525 return -EINVAL;
1526 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1527 return -EINVAL;
1529 switch (which) {
1530 case P_ALL:
1531 type = PIDTYPE_MAX;
1532 break;
1533 case P_PID:
1534 type = PIDTYPE_PID;
1535 if (upid <= 0)
1536 return -EINVAL;
1537 break;
1538 case P_PGID:
1539 type = PIDTYPE_PGID;
1540 if (upid <= 0)
1541 return -EINVAL;
1542 break;
1543 default:
1544 return -EINVAL;
1547 if (type < PIDTYPE_MAX)
1548 pid = find_get_pid(upid);
1550 wo.wo_type = type;
1551 wo.wo_pid = pid;
1552 wo.wo_flags = options;
1553 wo.wo_info = infop;
1554 wo.wo_stat = NULL;
1555 wo.wo_rusage = ru;
1556 ret = do_wait(&wo);
1558 if (ret > 0) {
1559 ret = 0;
1560 } else if (infop) {
1562 * For a WNOHANG return, clear out all the fields
1563 * we would set so the user can easily tell the
1564 * difference.
1566 if (!ret)
1567 ret = put_user(0, &infop->si_signo);
1568 if (!ret)
1569 ret = put_user(0, &infop->si_errno);
1570 if (!ret)
1571 ret = put_user(0, &infop->si_code);
1572 if (!ret)
1573 ret = put_user(0, &infop->si_pid);
1574 if (!ret)
1575 ret = put_user(0, &infop->si_uid);
1576 if (!ret)
1577 ret = put_user(0, &infop->si_status);
1580 put_pid(pid);
1581 return ret;
1584 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1585 int, options, struct rusage __user *, ru)
1587 struct wait_opts wo;
1588 struct pid *pid = NULL;
1589 enum pid_type type;
1590 long ret;
1592 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1593 __WNOTHREAD|__WCLONE|__WALL))
1594 return -EINVAL;
1596 if (upid == -1)
1597 type = PIDTYPE_MAX;
1598 else if (upid < 0) {
1599 type = PIDTYPE_PGID;
1600 pid = find_get_pid(-upid);
1601 } else if (upid == 0) {
1602 type = PIDTYPE_PGID;
1603 pid = get_task_pid(current, PIDTYPE_PGID);
1604 } else /* upid > 0 */ {
1605 type = PIDTYPE_PID;
1606 pid = find_get_pid(upid);
1609 wo.wo_type = type;
1610 wo.wo_pid = pid;
1611 wo.wo_flags = options | WEXITED;
1612 wo.wo_info = NULL;
1613 wo.wo_stat = stat_addr;
1614 wo.wo_rusage = ru;
1615 ret = do_wait(&wo);
1616 put_pid(pid);
1618 return ret;
1621 #ifdef __ARCH_WANT_SYS_WAITPID
1624 * sys_waitpid() remains for compatibility. waitpid() should be
1625 * implemented by calling sys_wait4() from libc.a.
1627 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1629 return sys_wait4(pid, stat_addr, options, NULL);
1632 #endif