sched: Remove double_rq_lock() from __migrate_task()
[linux/fpc-iii.git] / kernel / kexec.c
blob4b8f0c9258843246e9233b0a01f60455725feba9
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35 #include <linux/compiler.h>
36 #include <linux/hugetlb.h>
38 #include <asm/page.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/sections.h>
43 /* Per cpu memory for storing cpu states in case of system crash. */
44 note_buf_t __percpu *crash_notes;
46 /* vmcoreinfo stuff */
47 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
48 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
49 size_t vmcoreinfo_size;
50 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress = false;
55 /* Location of the reserved area for the crash kernel */
56 struct resource crashk_res = {
57 .name = "Crash kernel",
58 .start = 0,
59 .end = 0,
60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
62 struct resource crashk_low_res = {
63 .name = "Crash kernel",
64 .start = 0,
65 .end = 0,
66 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
69 int kexec_should_crash(struct task_struct *p)
71 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
72 return 1;
73 return 0;
77 * When kexec transitions to the new kernel there is a one-to-one
78 * mapping between physical and virtual addresses. On processors
79 * where you can disable the MMU this is trivial, and easy. For
80 * others it is still a simple predictable page table to setup.
82 * In that environment kexec copies the new kernel to its final
83 * resting place. This means I can only support memory whose
84 * physical address can fit in an unsigned long. In particular
85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
86 * If the assembly stub has more restrictive requirements
87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
88 * defined more restrictively in <asm/kexec.h>.
90 * The code for the transition from the current kernel to the
91 * the new kernel is placed in the control_code_buffer, whose size
92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
93 * page of memory is necessary, but some architectures require more.
94 * Because this memory must be identity mapped in the transition from
95 * virtual to physical addresses it must live in the range
96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
97 * modifiable.
99 * The assembly stub in the control code buffer is passed a linked list
100 * of descriptor pages detailing the source pages of the new kernel,
101 * and the destination addresses of those source pages. As this data
102 * structure is not used in the context of the current OS, it must
103 * be self-contained.
105 * The code has been made to work with highmem pages and will use a
106 * destination page in its final resting place (if it happens
107 * to allocate it). The end product of this is that most of the
108 * physical address space, and most of RAM can be used.
110 * Future directions include:
111 * - allocating a page table with the control code buffer identity
112 * mapped, to simplify machine_kexec and make kexec_on_panic more
113 * reliable.
117 * KIMAGE_NO_DEST is an impossible destination address..., for
118 * allocating pages whose destination address we do not care about.
120 #define KIMAGE_NO_DEST (-1UL)
122 static int kimage_is_destination_range(struct kimage *image,
123 unsigned long start, unsigned long end);
124 static struct page *kimage_alloc_page(struct kimage *image,
125 gfp_t gfp_mask,
126 unsigned long dest);
128 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
129 unsigned long nr_segments,
130 struct kexec_segment __user *segments)
132 size_t segment_bytes;
133 struct kimage *image;
134 unsigned long i;
135 int result;
137 /* Allocate a controlling structure */
138 result = -ENOMEM;
139 image = kzalloc(sizeof(*image), GFP_KERNEL);
140 if (!image)
141 goto out;
143 image->head = 0;
144 image->entry = &image->head;
145 image->last_entry = &image->head;
146 image->control_page = ~0; /* By default this does not apply */
147 image->start = entry;
148 image->type = KEXEC_TYPE_DEFAULT;
150 /* Initialize the list of control pages */
151 INIT_LIST_HEAD(&image->control_pages);
153 /* Initialize the list of destination pages */
154 INIT_LIST_HEAD(&image->dest_pages);
156 /* Initialize the list of unusable pages */
157 INIT_LIST_HEAD(&image->unuseable_pages);
159 /* Read in the segments */
160 image->nr_segments = nr_segments;
161 segment_bytes = nr_segments * sizeof(*segments);
162 result = copy_from_user(image->segment, segments, segment_bytes);
163 if (result) {
164 result = -EFAULT;
165 goto out;
169 * Verify we have good destination addresses. The caller is
170 * responsible for making certain we don't attempt to load
171 * the new image into invalid or reserved areas of RAM. This
172 * just verifies it is an address we can use.
174 * Since the kernel does everything in page size chunks ensure
175 * the destination addresses are page aligned. Too many
176 * special cases crop of when we don't do this. The most
177 * insidious is getting overlapping destination addresses
178 * simply because addresses are changed to page size
179 * granularity.
181 result = -EADDRNOTAVAIL;
182 for (i = 0; i < nr_segments; i++) {
183 unsigned long mstart, mend;
185 mstart = image->segment[i].mem;
186 mend = mstart + image->segment[i].memsz;
187 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
188 goto out;
189 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
190 goto out;
193 /* Verify our destination addresses do not overlap.
194 * If we alloed overlapping destination addresses
195 * through very weird things can happen with no
196 * easy explanation as one segment stops on another.
198 result = -EINVAL;
199 for (i = 0; i < nr_segments; i++) {
200 unsigned long mstart, mend;
201 unsigned long j;
203 mstart = image->segment[i].mem;
204 mend = mstart + image->segment[i].memsz;
205 for (j = 0; j < i; j++) {
206 unsigned long pstart, pend;
207 pstart = image->segment[j].mem;
208 pend = pstart + image->segment[j].memsz;
209 /* Do the segments overlap ? */
210 if ((mend > pstart) && (mstart < pend))
211 goto out;
215 /* Ensure our buffer sizes are strictly less than
216 * our memory sizes. This should always be the case,
217 * and it is easier to check up front than to be surprised
218 * later on.
220 result = -EINVAL;
221 for (i = 0; i < nr_segments; i++) {
222 if (image->segment[i].bufsz > image->segment[i].memsz)
223 goto out;
226 result = 0;
227 out:
228 if (result == 0)
229 *rimage = image;
230 else
231 kfree(image);
233 return result;
237 static void kimage_free_page_list(struct list_head *list);
239 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
240 unsigned long nr_segments,
241 struct kexec_segment __user *segments)
243 int result;
244 struct kimage *image;
246 /* Allocate and initialize a controlling structure */
247 image = NULL;
248 result = do_kimage_alloc(&image, entry, nr_segments, segments);
249 if (result)
250 goto out;
253 * Find a location for the control code buffer, and add it
254 * the vector of segments so that it's pages will also be
255 * counted as destination pages.
257 result = -ENOMEM;
258 image->control_code_page = kimage_alloc_control_pages(image,
259 get_order(KEXEC_CONTROL_PAGE_SIZE));
260 if (!image->control_code_page) {
261 pr_err("Could not allocate control_code_buffer\n");
262 goto out_free;
265 image->swap_page = kimage_alloc_control_pages(image, 0);
266 if (!image->swap_page) {
267 pr_err("Could not allocate swap buffer\n");
268 goto out_free;
271 *rimage = image;
272 return 0;
274 out_free:
275 kimage_free_page_list(&image->control_pages);
276 kfree(image);
277 out:
278 return result;
281 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
282 unsigned long nr_segments,
283 struct kexec_segment __user *segments)
285 int result;
286 struct kimage *image;
287 unsigned long i;
289 image = NULL;
290 /* Verify we have a valid entry point */
291 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
292 result = -EADDRNOTAVAIL;
293 goto out;
296 /* Allocate and initialize a controlling structure */
297 result = do_kimage_alloc(&image, entry, nr_segments, segments);
298 if (result)
299 goto out;
301 /* Enable the special crash kernel control page
302 * allocation policy.
304 image->control_page = crashk_res.start;
305 image->type = KEXEC_TYPE_CRASH;
308 * Verify we have good destination addresses. Normally
309 * the caller is responsible for making certain we don't
310 * attempt to load the new image into invalid or reserved
311 * areas of RAM. But crash kernels are preloaded into a
312 * reserved area of ram. We must ensure the addresses
313 * are in the reserved area otherwise preloading the
314 * kernel could corrupt things.
316 result = -EADDRNOTAVAIL;
317 for (i = 0; i < nr_segments; i++) {
318 unsigned long mstart, mend;
320 mstart = image->segment[i].mem;
321 mend = mstart + image->segment[i].memsz - 1;
322 /* Ensure we are within the crash kernel limits */
323 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
324 goto out_free;
328 * Find a location for the control code buffer, and add
329 * the vector of segments so that it's pages will also be
330 * counted as destination pages.
332 result = -ENOMEM;
333 image->control_code_page = kimage_alloc_control_pages(image,
334 get_order(KEXEC_CONTROL_PAGE_SIZE));
335 if (!image->control_code_page) {
336 pr_err("Could not allocate control_code_buffer\n");
337 goto out_free;
340 *rimage = image;
341 return 0;
343 out_free:
344 kfree(image);
345 out:
346 return result;
349 static int kimage_is_destination_range(struct kimage *image,
350 unsigned long start,
351 unsigned long end)
353 unsigned long i;
355 for (i = 0; i < image->nr_segments; i++) {
356 unsigned long mstart, mend;
358 mstart = image->segment[i].mem;
359 mend = mstart + image->segment[i].memsz;
360 if ((end > mstart) && (start < mend))
361 return 1;
364 return 0;
367 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
369 struct page *pages;
371 pages = alloc_pages(gfp_mask, order);
372 if (pages) {
373 unsigned int count, i;
374 pages->mapping = NULL;
375 set_page_private(pages, order);
376 count = 1 << order;
377 for (i = 0; i < count; i++)
378 SetPageReserved(pages + i);
381 return pages;
384 static void kimage_free_pages(struct page *page)
386 unsigned int order, count, i;
388 order = page_private(page);
389 count = 1 << order;
390 for (i = 0; i < count; i++)
391 ClearPageReserved(page + i);
392 __free_pages(page, order);
395 static void kimage_free_page_list(struct list_head *list)
397 struct list_head *pos, *next;
399 list_for_each_safe(pos, next, list) {
400 struct page *page;
402 page = list_entry(pos, struct page, lru);
403 list_del(&page->lru);
404 kimage_free_pages(page);
408 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
409 unsigned int order)
411 /* Control pages are special, they are the intermediaries
412 * that are needed while we copy the rest of the pages
413 * to their final resting place. As such they must
414 * not conflict with either the destination addresses
415 * or memory the kernel is already using.
417 * The only case where we really need more than one of
418 * these are for architectures where we cannot disable
419 * the MMU and must instead generate an identity mapped
420 * page table for all of the memory.
422 * At worst this runs in O(N) of the image size.
424 struct list_head extra_pages;
425 struct page *pages;
426 unsigned int count;
428 count = 1 << order;
429 INIT_LIST_HEAD(&extra_pages);
431 /* Loop while I can allocate a page and the page allocated
432 * is a destination page.
434 do {
435 unsigned long pfn, epfn, addr, eaddr;
437 pages = kimage_alloc_pages(GFP_KERNEL, order);
438 if (!pages)
439 break;
440 pfn = page_to_pfn(pages);
441 epfn = pfn + count;
442 addr = pfn << PAGE_SHIFT;
443 eaddr = epfn << PAGE_SHIFT;
444 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
445 kimage_is_destination_range(image, addr, eaddr)) {
446 list_add(&pages->lru, &extra_pages);
447 pages = NULL;
449 } while (!pages);
451 if (pages) {
452 /* Remember the allocated page... */
453 list_add(&pages->lru, &image->control_pages);
455 /* Because the page is already in it's destination
456 * location we will never allocate another page at
457 * that address. Therefore kimage_alloc_pages
458 * will not return it (again) and we don't need
459 * to give it an entry in image->segment[].
462 /* Deal with the destination pages I have inadvertently allocated.
464 * Ideally I would convert multi-page allocations into single
465 * page allocations, and add everything to image->dest_pages.
467 * For now it is simpler to just free the pages.
469 kimage_free_page_list(&extra_pages);
471 return pages;
474 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
475 unsigned int order)
477 /* Control pages are special, they are the intermediaries
478 * that are needed while we copy the rest of the pages
479 * to their final resting place. As such they must
480 * not conflict with either the destination addresses
481 * or memory the kernel is already using.
483 * Control pages are also the only pags we must allocate
484 * when loading a crash kernel. All of the other pages
485 * are specified by the segments and we just memcpy
486 * into them directly.
488 * The only case where we really need more than one of
489 * these are for architectures where we cannot disable
490 * the MMU and must instead generate an identity mapped
491 * page table for all of the memory.
493 * Given the low demand this implements a very simple
494 * allocator that finds the first hole of the appropriate
495 * size in the reserved memory region, and allocates all
496 * of the memory up to and including the hole.
498 unsigned long hole_start, hole_end, size;
499 struct page *pages;
501 pages = NULL;
502 size = (1 << order) << PAGE_SHIFT;
503 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
504 hole_end = hole_start + size - 1;
505 while (hole_end <= crashk_res.end) {
506 unsigned long i;
508 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
509 break;
510 /* See if I overlap any of the segments */
511 for (i = 0; i < image->nr_segments; i++) {
512 unsigned long mstart, mend;
514 mstart = image->segment[i].mem;
515 mend = mstart + image->segment[i].memsz - 1;
516 if ((hole_end >= mstart) && (hole_start <= mend)) {
517 /* Advance the hole to the end of the segment */
518 hole_start = (mend + (size - 1)) & ~(size - 1);
519 hole_end = hole_start + size - 1;
520 break;
523 /* If I don't overlap any segments I have found my hole! */
524 if (i == image->nr_segments) {
525 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
526 break;
529 if (pages)
530 image->control_page = hole_end;
532 return pages;
536 struct page *kimage_alloc_control_pages(struct kimage *image,
537 unsigned int order)
539 struct page *pages = NULL;
541 switch (image->type) {
542 case KEXEC_TYPE_DEFAULT:
543 pages = kimage_alloc_normal_control_pages(image, order);
544 break;
545 case KEXEC_TYPE_CRASH:
546 pages = kimage_alloc_crash_control_pages(image, order);
547 break;
550 return pages;
553 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
555 if (*image->entry != 0)
556 image->entry++;
558 if (image->entry == image->last_entry) {
559 kimage_entry_t *ind_page;
560 struct page *page;
562 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
563 if (!page)
564 return -ENOMEM;
566 ind_page = page_address(page);
567 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
568 image->entry = ind_page;
569 image->last_entry = ind_page +
570 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
572 *image->entry = entry;
573 image->entry++;
574 *image->entry = 0;
576 return 0;
579 static int kimage_set_destination(struct kimage *image,
580 unsigned long destination)
582 int result;
584 destination &= PAGE_MASK;
585 result = kimage_add_entry(image, destination | IND_DESTINATION);
586 if (result == 0)
587 image->destination = destination;
589 return result;
593 static int kimage_add_page(struct kimage *image, unsigned long page)
595 int result;
597 page &= PAGE_MASK;
598 result = kimage_add_entry(image, page | IND_SOURCE);
599 if (result == 0)
600 image->destination += PAGE_SIZE;
602 return result;
606 static void kimage_free_extra_pages(struct kimage *image)
608 /* Walk through and free any extra destination pages I may have */
609 kimage_free_page_list(&image->dest_pages);
611 /* Walk through and free any unusable pages I have cached */
612 kimage_free_page_list(&image->unuseable_pages);
615 static void kimage_terminate(struct kimage *image)
617 if (*image->entry != 0)
618 image->entry++;
620 *image->entry = IND_DONE;
623 #define for_each_kimage_entry(image, ptr, entry) \
624 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
625 ptr = (entry & IND_INDIRECTION) ? \
626 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
628 static void kimage_free_entry(kimage_entry_t entry)
630 struct page *page;
632 page = pfn_to_page(entry >> PAGE_SHIFT);
633 kimage_free_pages(page);
636 static void kimage_free(struct kimage *image)
638 kimage_entry_t *ptr, entry;
639 kimage_entry_t ind = 0;
641 if (!image)
642 return;
644 kimage_free_extra_pages(image);
645 for_each_kimage_entry(image, ptr, entry) {
646 if (entry & IND_INDIRECTION) {
647 /* Free the previous indirection page */
648 if (ind & IND_INDIRECTION)
649 kimage_free_entry(ind);
650 /* Save this indirection page until we are
651 * done with it.
653 ind = entry;
654 } else if (entry & IND_SOURCE)
655 kimage_free_entry(entry);
657 /* Free the final indirection page */
658 if (ind & IND_INDIRECTION)
659 kimage_free_entry(ind);
661 /* Handle any machine specific cleanup */
662 machine_kexec_cleanup(image);
664 /* Free the kexec control pages... */
665 kimage_free_page_list(&image->control_pages);
666 kfree(image);
669 static kimage_entry_t *kimage_dst_used(struct kimage *image,
670 unsigned long page)
672 kimage_entry_t *ptr, entry;
673 unsigned long destination = 0;
675 for_each_kimage_entry(image, ptr, entry) {
676 if (entry & IND_DESTINATION)
677 destination = entry & PAGE_MASK;
678 else if (entry & IND_SOURCE) {
679 if (page == destination)
680 return ptr;
681 destination += PAGE_SIZE;
685 return NULL;
688 static struct page *kimage_alloc_page(struct kimage *image,
689 gfp_t gfp_mask,
690 unsigned long destination)
693 * Here we implement safeguards to ensure that a source page
694 * is not copied to its destination page before the data on
695 * the destination page is no longer useful.
697 * To do this we maintain the invariant that a source page is
698 * either its own destination page, or it is not a
699 * destination page at all.
701 * That is slightly stronger than required, but the proof
702 * that no problems will not occur is trivial, and the
703 * implementation is simply to verify.
705 * When allocating all pages normally this algorithm will run
706 * in O(N) time, but in the worst case it will run in O(N^2)
707 * time. If the runtime is a problem the data structures can
708 * be fixed.
710 struct page *page;
711 unsigned long addr;
714 * Walk through the list of destination pages, and see if I
715 * have a match.
717 list_for_each_entry(page, &image->dest_pages, lru) {
718 addr = page_to_pfn(page) << PAGE_SHIFT;
719 if (addr == destination) {
720 list_del(&page->lru);
721 return page;
724 page = NULL;
725 while (1) {
726 kimage_entry_t *old;
728 /* Allocate a page, if we run out of memory give up */
729 page = kimage_alloc_pages(gfp_mask, 0);
730 if (!page)
731 return NULL;
732 /* If the page cannot be used file it away */
733 if (page_to_pfn(page) >
734 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
735 list_add(&page->lru, &image->unuseable_pages);
736 continue;
738 addr = page_to_pfn(page) << PAGE_SHIFT;
740 /* If it is the destination page we want use it */
741 if (addr == destination)
742 break;
744 /* If the page is not a destination page use it */
745 if (!kimage_is_destination_range(image, addr,
746 addr + PAGE_SIZE))
747 break;
750 * I know that the page is someones destination page.
751 * See if there is already a source page for this
752 * destination page. And if so swap the source pages.
754 old = kimage_dst_used(image, addr);
755 if (old) {
756 /* If so move it */
757 unsigned long old_addr;
758 struct page *old_page;
760 old_addr = *old & PAGE_MASK;
761 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
762 copy_highpage(page, old_page);
763 *old = addr | (*old & ~PAGE_MASK);
765 /* The old page I have found cannot be a
766 * destination page, so return it if it's
767 * gfp_flags honor the ones passed in.
769 if (!(gfp_mask & __GFP_HIGHMEM) &&
770 PageHighMem(old_page)) {
771 kimage_free_pages(old_page);
772 continue;
774 addr = old_addr;
775 page = old_page;
776 break;
777 } else {
778 /* Place the page on the destination list I
779 * will use it later.
781 list_add(&page->lru, &image->dest_pages);
785 return page;
788 static int kimage_load_normal_segment(struct kimage *image,
789 struct kexec_segment *segment)
791 unsigned long maddr;
792 size_t ubytes, mbytes;
793 int result;
794 unsigned char __user *buf;
796 result = 0;
797 buf = segment->buf;
798 ubytes = segment->bufsz;
799 mbytes = segment->memsz;
800 maddr = segment->mem;
802 result = kimage_set_destination(image, maddr);
803 if (result < 0)
804 goto out;
806 while (mbytes) {
807 struct page *page;
808 char *ptr;
809 size_t uchunk, mchunk;
811 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
812 if (!page) {
813 result = -ENOMEM;
814 goto out;
816 result = kimage_add_page(image, page_to_pfn(page)
817 << PAGE_SHIFT);
818 if (result < 0)
819 goto out;
821 ptr = kmap(page);
822 /* Start with a clear page */
823 clear_page(ptr);
824 ptr += maddr & ~PAGE_MASK;
825 mchunk = min_t(size_t, mbytes,
826 PAGE_SIZE - (maddr & ~PAGE_MASK));
827 uchunk = min(ubytes, mchunk);
829 result = copy_from_user(ptr, buf, uchunk);
830 kunmap(page);
831 if (result) {
832 result = -EFAULT;
833 goto out;
835 ubytes -= uchunk;
836 maddr += mchunk;
837 buf += mchunk;
838 mbytes -= mchunk;
840 out:
841 return result;
844 static int kimage_load_crash_segment(struct kimage *image,
845 struct kexec_segment *segment)
847 /* For crash dumps kernels we simply copy the data from
848 * user space to it's destination.
849 * We do things a page at a time for the sake of kmap.
851 unsigned long maddr;
852 size_t ubytes, mbytes;
853 int result;
854 unsigned char __user *buf;
856 result = 0;
857 buf = segment->buf;
858 ubytes = segment->bufsz;
859 mbytes = segment->memsz;
860 maddr = segment->mem;
861 while (mbytes) {
862 struct page *page;
863 char *ptr;
864 size_t uchunk, mchunk;
866 page = pfn_to_page(maddr >> PAGE_SHIFT);
867 if (!page) {
868 result = -ENOMEM;
869 goto out;
871 ptr = kmap(page);
872 ptr += maddr & ~PAGE_MASK;
873 mchunk = min_t(size_t, mbytes,
874 PAGE_SIZE - (maddr & ~PAGE_MASK));
875 uchunk = min(ubytes, mchunk);
876 if (mchunk > uchunk) {
877 /* Zero the trailing part of the page */
878 memset(ptr + uchunk, 0, mchunk - uchunk);
880 result = copy_from_user(ptr, buf, uchunk);
881 kexec_flush_icache_page(page);
882 kunmap(page);
883 if (result) {
884 result = -EFAULT;
885 goto out;
887 ubytes -= uchunk;
888 maddr += mchunk;
889 buf += mchunk;
890 mbytes -= mchunk;
892 out:
893 return result;
896 static int kimage_load_segment(struct kimage *image,
897 struct kexec_segment *segment)
899 int result = -ENOMEM;
901 switch (image->type) {
902 case KEXEC_TYPE_DEFAULT:
903 result = kimage_load_normal_segment(image, segment);
904 break;
905 case KEXEC_TYPE_CRASH:
906 result = kimage_load_crash_segment(image, segment);
907 break;
910 return result;
914 * Exec Kernel system call: for obvious reasons only root may call it.
916 * This call breaks up into three pieces.
917 * - A generic part which loads the new kernel from the current
918 * address space, and very carefully places the data in the
919 * allocated pages.
921 * - A generic part that interacts with the kernel and tells all of
922 * the devices to shut down. Preventing on-going dmas, and placing
923 * the devices in a consistent state so a later kernel can
924 * reinitialize them.
926 * - A machine specific part that includes the syscall number
927 * and then copies the image to it's final destination. And
928 * jumps into the image at entry.
930 * kexec does not sync, or unmount filesystems so if you need
931 * that to happen you need to do that yourself.
933 struct kimage *kexec_image;
934 struct kimage *kexec_crash_image;
935 int kexec_load_disabled;
937 static DEFINE_MUTEX(kexec_mutex);
939 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
940 struct kexec_segment __user *, segments, unsigned long, flags)
942 struct kimage **dest_image, *image;
943 int result;
945 /* We only trust the superuser with rebooting the system. */
946 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
947 return -EPERM;
950 * Verify we have a legal set of flags
951 * This leaves us room for future extensions.
953 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
954 return -EINVAL;
956 /* Verify we are on the appropriate architecture */
957 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
958 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
959 return -EINVAL;
961 /* Put an artificial cap on the number
962 * of segments passed to kexec_load.
964 if (nr_segments > KEXEC_SEGMENT_MAX)
965 return -EINVAL;
967 image = NULL;
968 result = 0;
970 /* Because we write directly to the reserved memory
971 * region when loading crash kernels we need a mutex here to
972 * prevent multiple crash kernels from attempting to load
973 * simultaneously, and to prevent a crash kernel from loading
974 * over the top of a in use crash kernel.
976 * KISS: always take the mutex.
978 if (!mutex_trylock(&kexec_mutex))
979 return -EBUSY;
981 dest_image = &kexec_image;
982 if (flags & KEXEC_ON_CRASH)
983 dest_image = &kexec_crash_image;
984 if (nr_segments > 0) {
985 unsigned long i;
987 /* Loading another kernel to reboot into */
988 if ((flags & KEXEC_ON_CRASH) == 0)
989 result = kimage_normal_alloc(&image, entry,
990 nr_segments, segments);
991 /* Loading another kernel to switch to if this one crashes */
992 else if (flags & KEXEC_ON_CRASH) {
993 /* Free any current crash dump kernel before
994 * we corrupt it.
996 kimage_free(xchg(&kexec_crash_image, NULL));
997 result = kimage_crash_alloc(&image, entry,
998 nr_segments, segments);
999 crash_map_reserved_pages();
1001 if (result)
1002 goto out;
1004 if (flags & KEXEC_PRESERVE_CONTEXT)
1005 image->preserve_context = 1;
1006 result = machine_kexec_prepare(image);
1007 if (result)
1008 goto out;
1010 for (i = 0; i < nr_segments; i++) {
1011 result = kimage_load_segment(image, &image->segment[i]);
1012 if (result)
1013 goto out;
1015 kimage_terminate(image);
1016 if (flags & KEXEC_ON_CRASH)
1017 crash_unmap_reserved_pages();
1019 /* Install the new kernel, and Uninstall the old */
1020 image = xchg(dest_image, image);
1022 out:
1023 mutex_unlock(&kexec_mutex);
1024 kimage_free(image);
1026 return result;
1030 * Add and remove page tables for crashkernel memory
1032 * Provide an empty default implementation here -- architecture
1033 * code may override this
1035 void __weak crash_map_reserved_pages(void)
1038 void __weak crash_unmap_reserved_pages(void)
1041 #ifdef CONFIG_COMPAT
1042 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1043 compat_ulong_t, nr_segments,
1044 struct compat_kexec_segment __user *, segments,
1045 compat_ulong_t, flags)
1047 struct compat_kexec_segment in;
1048 struct kexec_segment out, __user *ksegments;
1049 unsigned long i, result;
1051 /* Don't allow clients that don't understand the native
1052 * architecture to do anything.
1054 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1055 return -EINVAL;
1057 if (nr_segments > KEXEC_SEGMENT_MAX)
1058 return -EINVAL;
1060 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1061 for (i = 0; i < nr_segments; i++) {
1062 result = copy_from_user(&in, &segments[i], sizeof(in));
1063 if (result)
1064 return -EFAULT;
1066 out.buf = compat_ptr(in.buf);
1067 out.bufsz = in.bufsz;
1068 out.mem = in.mem;
1069 out.memsz = in.memsz;
1071 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1072 if (result)
1073 return -EFAULT;
1076 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1078 #endif
1080 void crash_kexec(struct pt_regs *regs)
1082 /* Take the kexec_mutex here to prevent sys_kexec_load
1083 * running on one cpu from replacing the crash kernel
1084 * we are using after a panic on a different cpu.
1086 * If the crash kernel was not located in a fixed area
1087 * of memory the xchg(&kexec_crash_image) would be
1088 * sufficient. But since I reuse the memory...
1090 if (mutex_trylock(&kexec_mutex)) {
1091 if (kexec_crash_image) {
1092 struct pt_regs fixed_regs;
1094 crash_setup_regs(&fixed_regs, regs);
1095 crash_save_vmcoreinfo();
1096 machine_crash_shutdown(&fixed_regs);
1097 machine_kexec(kexec_crash_image);
1099 mutex_unlock(&kexec_mutex);
1103 size_t crash_get_memory_size(void)
1105 size_t size = 0;
1106 mutex_lock(&kexec_mutex);
1107 if (crashk_res.end != crashk_res.start)
1108 size = resource_size(&crashk_res);
1109 mutex_unlock(&kexec_mutex);
1110 return size;
1113 void __weak crash_free_reserved_phys_range(unsigned long begin,
1114 unsigned long end)
1116 unsigned long addr;
1118 for (addr = begin; addr < end; addr += PAGE_SIZE)
1119 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1122 int crash_shrink_memory(unsigned long new_size)
1124 int ret = 0;
1125 unsigned long start, end;
1126 unsigned long old_size;
1127 struct resource *ram_res;
1129 mutex_lock(&kexec_mutex);
1131 if (kexec_crash_image) {
1132 ret = -ENOENT;
1133 goto unlock;
1135 start = crashk_res.start;
1136 end = crashk_res.end;
1137 old_size = (end == 0) ? 0 : end - start + 1;
1138 if (new_size >= old_size) {
1139 ret = (new_size == old_size) ? 0 : -EINVAL;
1140 goto unlock;
1143 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1144 if (!ram_res) {
1145 ret = -ENOMEM;
1146 goto unlock;
1149 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1150 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1152 crash_map_reserved_pages();
1153 crash_free_reserved_phys_range(end, crashk_res.end);
1155 if ((start == end) && (crashk_res.parent != NULL))
1156 release_resource(&crashk_res);
1158 ram_res->start = end;
1159 ram_res->end = crashk_res.end;
1160 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1161 ram_res->name = "System RAM";
1163 crashk_res.end = end - 1;
1165 insert_resource(&iomem_resource, ram_res);
1166 crash_unmap_reserved_pages();
1168 unlock:
1169 mutex_unlock(&kexec_mutex);
1170 return ret;
1173 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1174 size_t data_len)
1176 struct elf_note note;
1178 note.n_namesz = strlen(name) + 1;
1179 note.n_descsz = data_len;
1180 note.n_type = type;
1181 memcpy(buf, &note, sizeof(note));
1182 buf += (sizeof(note) + 3)/4;
1183 memcpy(buf, name, note.n_namesz);
1184 buf += (note.n_namesz + 3)/4;
1185 memcpy(buf, data, note.n_descsz);
1186 buf += (note.n_descsz + 3)/4;
1188 return buf;
1191 static void final_note(u32 *buf)
1193 struct elf_note note;
1195 note.n_namesz = 0;
1196 note.n_descsz = 0;
1197 note.n_type = 0;
1198 memcpy(buf, &note, sizeof(note));
1201 void crash_save_cpu(struct pt_regs *regs, int cpu)
1203 struct elf_prstatus prstatus;
1204 u32 *buf;
1206 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1207 return;
1209 /* Using ELF notes here is opportunistic.
1210 * I need a well defined structure format
1211 * for the data I pass, and I need tags
1212 * on the data to indicate what information I have
1213 * squirrelled away. ELF notes happen to provide
1214 * all of that, so there is no need to invent something new.
1216 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1217 if (!buf)
1218 return;
1219 memset(&prstatus, 0, sizeof(prstatus));
1220 prstatus.pr_pid = current->pid;
1221 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1222 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1223 &prstatus, sizeof(prstatus));
1224 final_note(buf);
1227 static int __init crash_notes_memory_init(void)
1229 /* Allocate memory for saving cpu registers. */
1230 crash_notes = alloc_percpu(note_buf_t);
1231 if (!crash_notes) {
1232 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1233 return -ENOMEM;
1235 return 0;
1237 subsys_initcall(crash_notes_memory_init);
1241 * parsing the "crashkernel" commandline
1243 * this code is intended to be called from architecture specific code
1248 * This function parses command lines in the format
1250 * crashkernel=ramsize-range:size[,...][@offset]
1252 * The function returns 0 on success and -EINVAL on failure.
1254 static int __init parse_crashkernel_mem(char *cmdline,
1255 unsigned long long system_ram,
1256 unsigned long long *crash_size,
1257 unsigned long long *crash_base)
1259 char *cur = cmdline, *tmp;
1261 /* for each entry of the comma-separated list */
1262 do {
1263 unsigned long long start, end = ULLONG_MAX, size;
1265 /* get the start of the range */
1266 start = memparse(cur, &tmp);
1267 if (cur == tmp) {
1268 pr_warn("crashkernel: Memory value expected\n");
1269 return -EINVAL;
1271 cur = tmp;
1272 if (*cur != '-') {
1273 pr_warn("crashkernel: '-' expected\n");
1274 return -EINVAL;
1276 cur++;
1278 /* if no ':' is here, than we read the end */
1279 if (*cur != ':') {
1280 end = memparse(cur, &tmp);
1281 if (cur == tmp) {
1282 pr_warn("crashkernel: Memory value expected\n");
1283 return -EINVAL;
1285 cur = tmp;
1286 if (end <= start) {
1287 pr_warn("crashkernel: end <= start\n");
1288 return -EINVAL;
1292 if (*cur != ':') {
1293 pr_warn("crashkernel: ':' expected\n");
1294 return -EINVAL;
1296 cur++;
1298 size = memparse(cur, &tmp);
1299 if (cur == tmp) {
1300 pr_warn("Memory value expected\n");
1301 return -EINVAL;
1303 cur = tmp;
1304 if (size >= system_ram) {
1305 pr_warn("crashkernel: invalid size\n");
1306 return -EINVAL;
1309 /* match ? */
1310 if (system_ram >= start && system_ram < end) {
1311 *crash_size = size;
1312 break;
1314 } while (*cur++ == ',');
1316 if (*crash_size > 0) {
1317 while (*cur && *cur != ' ' && *cur != '@')
1318 cur++;
1319 if (*cur == '@') {
1320 cur++;
1321 *crash_base = memparse(cur, &tmp);
1322 if (cur == tmp) {
1323 pr_warn("Memory value expected after '@'\n");
1324 return -EINVAL;
1329 return 0;
1333 * That function parses "simple" (old) crashkernel command lines like
1335 * crashkernel=size[@offset]
1337 * It returns 0 on success and -EINVAL on failure.
1339 static int __init parse_crashkernel_simple(char *cmdline,
1340 unsigned long long *crash_size,
1341 unsigned long long *crash_base)
1343 char *cur = cmdline;
1345 *crash_size = memparse(cmdline, &cur);
1346 if (cmdline == cur) {
1347 pr_warn("crashkernel: memory value expected\n");
1348 return -EINVAL;
1351 if (*cur == '@')
1352 *crash_base = memparse(cur+1, &cur);
1353 else if (*cur != ' ' && *cur != '\0') {
1354 pr_warn("crashkernel: unrecognized char\n");
1355 return -EINVAL;
1358 return 0;
1361 #define SUFFIX_HIGH 0
1362 #define SUFFIX_LOW 1
1363 #define SUFFIX_NULL 2
1364 static __initdata char *suffix_tbl[] = {
1365 [SUFFIX_HIGH] = ",high",
1366 [SUFFIX_LOW] = ",low",
1367 [SUFFIX_NULL] = NULL,
1371 * That function parses "suffix" crashkernel command lines like
1373 * crashkernel=size,[high|low]
1375 * It returns 0 on success and -EINVAL on failure.
1377 static int __init parse_crashkernel_suffix(char *cmdline,
1378 unsigned long long *crash_size,
1379 unsigned long long *crash_base,
1380 const char *suffix)
1382 char *cur = cmdline;
1384 *crash_size = memparse(cmdline, &cur);
1385 if (cmdline == cur) {
1386 pr_warn("crashkernel: memory value expected\n");
1387 return -EINVAL;
1390 /* check with suffix */
1391 if (strncmp(cur, suffix, strlen(suffix))) {
1392 pr_warn("crashkernel: unrecognized char\n");
1393 return -EINVAL;
1395 cur += strlen(suffix);
1396 if (*cur != ' ' && *cur != '\0') {
1397 pr_warn("crashkernel: unrecognized char\n");
1398 return -EINVAL;
1401 return 0;
1404 static __init char *get_last_crashkernel(char *cmdline,
1405 const char *name,
1406 const char *suffix)
1408 char *p = cmdline, *ck_cmdline = NULL;
1410 /* find crashkernel and use the last one if there are more */
1411 p = strstr(p, name);
1412 while (p) {
1413 char *end_p = strchr(p, ' ');
1414 char *q;
1416 if (!end_p)
1417 end_p = p + strlen(p);
1419 if (!suffix) {
1420 int i;
1422 /* skip the one with any known suffix */
1423 for (i = 0; suffix_tbl[i]; i++) {
1424 q = end_p - strlen(suffix_tbl[i]);
1425 if (!strncmp(q, suffix_tbl[i],
1426 strlen(suffix_tbl[i])))
1427 goto next;
1429 ck_cmdline = p;
1430 } else {
1431 q = end_p - strlen(suffix);
1432 if (!strncmp(q, suffix, strlen(suffix)))
1433 ck_cmdline = p;
1435 next:
1436 p = strstr(p+1, name);
1439 if (!ck_cmdline)
1440 return NULL;
1442 return ck_cmdline;
1445 static int __init __parse_crashkernel(char *cmdline,
1446 unsigned long long system_ram,
1447 unsigned long long *crash_size,
1448 unsigned long long *crash_base,
1449 const char *name,
1450 const char *suffix)
1452 char *first_colon, *first_space;
1453 char *ck_cmdline;
1455 BUG_ON(!crash_size || !crash_base);
1456 *crash_size = 0;
1457 *crash_base = 0;
1459 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1461 if (!ck_cmdline)
1462 return -EINVAL;
1464 ck_cmdline += strlen(name);
1466 if (suffix)
1467 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1468 crash_base, suffix);
1470 * if the commandline contains a ':', then that's the extended
1471 * syntax -- if not, it must be the classic syntax
1473 first_colon = strchr(ck_cmdline, ':');
1474 first_space = strchr(ck_cmdline, ' ');
1475 if (first_colon && (!first_space || first_colon < first_space))
1476 return parse_crashkernel_mem(ck_cmdline, system_ram,
1477 crash_size, crash_base);
1479 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1483 * That function is the entry point for command line parsing and should be
1484 * called from the arch-specific code.
1486 int __init parse_crashkernel(char *cmdline,
1487 unsigned long long system_ram,
1488 unsigned long long *crash_size,
1489 unsigned long long *crash_base)
1491 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1492 "crashkernel=", NULL);
1495 int __init parse_crashkernel_high(char *cmdline,
1496 unsigned long long system_ram,
1497 unsigned long long *crash_size,
1498 unsigned long long *crash_base)
1500 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1501 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1504 int __init parse_crashkernel_low(char *cmdline,
1505 unsigned long long system_ram,
1506 unsigned long long *crash_size,
1507 unsigned long long *crash_base)
1509 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1510 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1513 static void update_vmcoreinfo_note(void)
1515 u32 *buf = vmcoreinfo_note;
1517 if (!vmcoreinfo_size)
1518 return;
1519 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1520 vmcoreinfo_size);
1521 final_note(buf);
1524 void crash_save_vmcoreinfo(void)
1526 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1527 update_vmcoreinfo_note();
1530 void vmcoreinfo_append_str(const char *fmt, ...)
1532 va_list args;
1533 char buf[0x50];
1534 size_t r;
1536 va_start(args, fmt);
1537 r = vscnprintf(buf, sizeof(buf), fmt, args);
1538 va_end(args);
1540 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1542 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1544 vmcoreinfo_size += r;
1548 * provide an empty default implementation here -- architecture
1549 * code may override this
1551 void __weak arch_crash_save_vmcoreinfo(void)
1554 unsigned long __weak paddr_vmcoreinfo_note(void)
1556 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1559 static int __init crash_save_vmcoreinfo_init(void)
1561 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1562 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1564 VMCOREINFO_SYMBOL(init_uts_ns);
1565 VMCOREINFO_SYMBOL(node_online_map);
1566 #ifdef CONFIG_MMU
1567 VMCOREINFO_SYMBOL(swapper_pg_dir);
1568 #endif
1569 VMCOREINFO_SYMBOL(_stext);
1570 VMCOREINFO_SYMBOL(vmap_area_list);
1572 #ifndef CONFIG_NEED_MULTIPLE_NODES
1573 VMCOREINFO_SYMBOL(mem_map);
1574 VMCOREINFO_SYMBOL(contig_page_data);
1575 #endif
1576 #ifdef CONFIG_SPARSEMEM
1577 VMCOREINFO_SYMBOL(mem_section);
1578 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1579 VMCOREINFO_STRUCT_SIZE(mem_section);
1580 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1581 #endif
1582 VMCOREINFO_STRUCT_SIZE(page);
1583 VMCOREINFO_STRUCT_SIZE(pglist_data);
1584 VMCOREINFO_STRUCT_SIZE(zone);
1585 VMCOREINFO_STRUCT_SIZE(free_area);
1586 VMCOREINFO_STRUCT_SIZE(list_head);
1587 VMCOREINFO_SIZE(nodemask_t);
1588 VMCOREINFO_OFFSET(page, flags);
1589 VMCOREINFO_OFFSET(page, _count);
1590 VMCOREINFO_OFFSET(page, mapping);
1591 VMCOREINFO_OFFSET(page, lru);
1592 VMCOREINFO_OFFSET(page, _mapcount);
1593 VMCOREINFO_OFFSET(page, private);
1594 VMCOREINFO_OFFSET(pglist_data, node_zones);
1595 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1596 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1597 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1598 #endif
1599 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1600 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1601 VMCOREINFO_OFFSET(pglist_data, node_id);
1602 VMCOREINFO_OFFSET(zone, free_area);
1603 VMCOREINFO_OFFSET(zone, vm_stat);
1604 VMCOREINFO_OFFSET(zone, spanned_pages);
1605 VMCOREINFO_OFFSET(free_area, free_list);
1606 VMCOREINFO_OFFSET(list_head, next);
1607 VMCOREINFO_OFFSET(list_head, prev);
1608 VMCOREINFO_OFFSET(vmap_area, va_start);
1609 VMCOREINFO_OFFSET(vmap_area, list);
1610 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1611 log_buf_kexec_setup();
1612 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1613 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1614 VMCOREINFO_NUMBER(PG_lru);
1615 VMCOREINFO_NUMBER(PG_private);
1616 VMCOREINFO_NUMBER(PG_swapcache);
1617 VMCOREINFO_NUMBER(PG_slab);
1618 #ifdef CONFIG_MEMORY_FAILURE
1619 VMCOREINFO_NUMBER(PG_hwpoison);
1620 #endif
1621 VMCOREINFO_NUMBER(PG_head_mask);
1622 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1623 #ifdef CONFIG_HUGETLBFS
1624 VMCOREINFO_SYMBOL(free_huge_page);
1625 #endif
1627 arch_crash_save_vmcoreinfo();
1628 update_vmcoreinfo_note();
1630 return 0;
1633 subsys_initcall(crash_save_vmcoreinfo_init);
1636 * Move into place and start executing a preloaded standalone
1637 * executable. If nothing was preloaded return an error.
1639 int kernel_kexec(void)
1641 int error = 0;
1643 if (!mutex_trylock(&kexec_mutex))
1644 return -EBUSY;
1645 if (!kexec_image) {
1646 error = -EINVAL;
1647 goto Unlock;
1650 #ifdef CONFIG_KEXEC_JUMP
1651 if (kexec_image->preserve_context) {
1652 lock_system_sleep();
1653 pm_prepare_console();
1654 error = freeze_processes();
1655 if (error) {
1656 error = -EBUSY;
1657 goto Restore_console;
1659 suspend_console();
1660 error = dpm_suspend_start(PMSG_FREEZE);
1661 if (error)
1662 goto Resume_console;
1663 /* At this point, dpm_suspend_start() has been called,
1664 * but *not* dpm_suspend_end(). We *must* call
1665 * dpm_suspend_end() now. Otherwise, drivers for
1666 * some devices (e.g. interrupt controllers) become
1667 * desynchronized with the actual state of the
1668 * hardware at resume time, and evil weirdness ensues.
1670 error = dpm_suspend_end(PMSG_FREEZE);
1671 if (error)
1672 goto Resume_devices;
1673 error = disable_nonboot_cpus();
1674 if (error)
1675 goto Enable_cpus;
1676 local_irq_disable();
1677 error = syscore_suspend();
1678 if (error)
1679 goto Enable_irqs;
1680 } else
1681 #endif
1683 kexec_in_progress = true;
1684 kernel_restart_prepare(NULL);
1685 migrate_to_reboot_cpu();
1688 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1689 * no further code needs to use CPU hotplug (which is true in
1690 * the reboot case). However, the kexec path depends on using
1691 * CPU hotplug again; so re-enable it here.
1693 cpu_hotplug_enable();
1694 pr_emerg("Starting new kernel\n");
1695 machine_shutdown();
1698 machine_kexec(kexec_image);
1700 #ifdef CONFIG_KEXEC_JUMP
1701 if (kexec_image->preserve_context) {
1702 syscore_resume();
1703 Enable_irqs:
1704 local_irq_enable();
1705 Enable_cpus:
1706 enable_nonboot_cpus();
1707 dpm_resume_start(PMSG_RESTORE);
1708 Resume_devices:
1709 dpm_resume_end(PMSG_RESTORE);
1710 Resume_console:
1711 resume_console();
1712 thaw_processes();
1713 Restore_console:
1714 pm_restore_console();
1715 unlock_system_sleep();
1717 #endif
1719 Unlock:
1720 mutex_unlock(&kexec_mutex);
1721 return error;