4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
96 smp_mb__before_atomic();
98 EXPORT_SYMBOL(__smp_mb__before_atomic
);
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
104 smp_mb__after_atomic();
106 EXPORT_SYMBOL(__smp_mb__after_atomic
);
109 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
112 ktime_t soft
, hard
, now
;
115 if (hrtimer_active(period_timer
))
118 now
= hrtimer_cb_get_time(period_timer
);
119 hrtimer_forward(period_timer
, now
, period
);
121 soft
= hrtimer_get_softexpires(period_timer
);
122 hard
= hrtimer_get_expires(period_timer
);
123 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
124 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
125 HRTIMER_MODE_ABS_PINNED
, 0);
129 DEFINE_MUTEX(sched_domains_mutex
);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
132 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
134 void update_rq_clock(struct rq
*rq
)
138 if (rq
->skip_clock_update
> 0)
141 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
145 update_rq_clock_task(rq
, delta
);
149 * Debugging: various feature bits
152 #define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
155 const_debug
unsigned int sysctl_sched_features
=
156 #include "features.h"
161 #ifdef CONFIG_SCHED_DEBUG
162 #define SCHED_FEAT(name, enabled) \
165 static const char * const sched_feat_names
[] = {
166 #include "features.h"
171 static int sched_feat_show(struct seq_file
*m
, void *v
)
175 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
176 if (!(sysctl_sched_features
& (1UL << i
)))
178 seq_printf(m
, "%s ", sched_feat_names
[i
]);
185 #ifdef HAVE_JUMP_LABEL
187 #define jump_label_key__true STATIC_KEY_INIT_TRUE
188 #define jump_label_key__false STATIC_KEY_INIT_FALSE
190 #define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
193 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
194 #include "features.h"
199 static void sched_feat_disable(int i
)
201 if (static_key_enabled(&sched_feat_keys
[i
]))
202 static_key_slow_dec(&sched_feat_keys
[i
]);
205 static void sched_feat_enable(int i
)
207 if (!static_key_enabled(&sched_feat_keys
[i
]))
208 static_key_slow_inc(&sched_feat_keys
[i
]);
211 static void sched_feat_disable(int i
) { };
212 static void sched_feat_enable(int i
) { };
213 #endif /* HAVE_JUMP_LABEL */
215 static int sched_feat_set(char *cmp
)
220 if (strncmp(cmp
, "NO_", 3) == 0) {
225 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
226 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
228 sysctl_sched_features
&= ~(1UL << i
);
229 sched_feat_disable(i
);
231 sysctl_sched_features
|= (1UL << i
);
232 sched_feat_enable(i
);
242 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
243 size_t cnt
, loff_t
*ppos
)
253 if (copy_from_user(&buf
, ubuf
, cnt
))
259 /* Ensure the static_key remains in a consistent state */
260 inode
= file_inode(filp
);
261 mutex_lock(&inode
->i_mutex
);
262 i
= sched_feat_set(cmp
);
263 mutex_unlock(&inode
->i_mutex
);
264 if (i
== __SCHED_FEAT_NR
)
272 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
274 return single_open(filp
, sched_feat_show
, NULL
);
277 static const struct file_operations sched_feat_fops
= {
278 .open
= sched_feat_open
,
279 .write
= sched_feat_write
,
282 .release
= single_release
,
285 static __init
int sched_init_debug(void)
287 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
292 late_initcall(sched_init_debug
);
293 #endif /* CONFIG_SCHED_DEBUG */
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
299 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
302 * period over which we average the RT time consumption, measured
307 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
310 * period over which we measure -rt task cpu usage in us.
313 unsigned int sysctl_sched_rt_period
= 1000000;
315 __read_mostly
int scheduler_running
;
318 * part of the period that we allow rt tasks to run in us.
321 int sysctl_sched_rt_runtime
= 950000;
324 * __task_rq_lock - lock the rq @p resides on.
326 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
331 lockdep_assert_held(&p
->pi_lock
);
335 raw_spin_lock(&rq
->lock
);
336 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
)))
338 raw_spin_unlock(&rq
->lock
);
340 while (unlikely(task_on_rq_migrating(p
)))
346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
348 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
349 __acquires(p
->pi_lock
)
355 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
357 raw_spin_lock(&rq
->lock
);
358 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
)))
360 raw_spin_unlock(&rq
->lock
);
361 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
363 while (unlikely(task_on_rq_migrating(p
)))
368 static void __task_rq_unlock(struct rq
*rq
)
371 raw_spin_unlock(&rq
->lock
);
375 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
377 __releases(p
->pi_lock
)
379 raw_spin_unlock(&rq
->lock
);
380 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
384 * this_rq_lock - lock this runqueue and disable interrupts.
386 static struct rq
*this_rq_lock(void)
393 raw_spin_lock(&rq
->lock
);
398 #ifdef CONFIG_SCHED_HRTICK
400 * Use HR-timers to deliver accurate preemption points.
403 static void hrtick_clear(struct rq
*rq
)
405 if (hrtimer_active(&rq
->hrtick_timer
))
406 hrtimer_cancel(&rq
->hrtick_timer
);
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
413 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
415 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
417 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
419 raw_spin_lock(&rq
->lock
);
421 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
422 raw_spin_unlock(&rq
->lock
);
424 return HRTIMER_NORESTART
;
429 static int __hrtick_restart(struct rq
*rq
)
431 struct hrtimer
*timer
= &rq
->hrtick_timer
;
432 ktime_t time
= hrtimer_get_softexpires(timer
);
434 return __hrtimer_start_range_ns(timer
, time
, 0, HRTIMER_MODE_ABS_PINNED
, 0);
438 * called from hardirq (IPI) context
440 static void __hrtick_start(void *arg
)
444 raw_spin_lock(&rq
->lock
);
445 __hrtick_restart(rq
);
446 rq
->hrtick_csd_pending
= 0;
447 raw_spin_unlock(&rq
->lock
);
451 * Called to set the hrtick timer state.
453 * called with rq->lock held and irqs disabled
455 void hrtick_start(struct rq
*rq
, u64 delay
)
457 struct hrtimer
*timer
= &rq
->hrtick_timer
;
458 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
460 hrtimer_set_expires(timer
, time
);
462 if (rq
== this_rq()) {
463 __hrtick_restart(rq
);
464 } else if (!rq
->hrtick_csd_pending
) {
465 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
466 rq
->hrtick_csd_pending
= 1;
471 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
473 int cpu
= (int)(long)hcpu
;
476 case CPU_UP_CANCELED
:
477 case CPU_UP_CANCELED_FROZEN
:
478 case CPU_DOWN_PREPARE
:
479 case CPU_DOWN_PREPARE_FROZEN
:
481 case CPU_DEAD_FROZEN
:
482 hrtick_clear(cpu_rq(cpu
));
489 static __init
void init_hrtick(void)
491 hotcpu_notifier(hotplug_hrtick
, 0);
495 * Called to set the hrtick timer state.
497 * called with rq->lock held and irqs disabled
499 void hrtick_start(struct rq
*rq
, u64 delay
)
501 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
502 HRTIMER_MODE_REL_PINNED
, 0);
505 static inline void init_hrtick(void)
508 #endif /* CONFIG_SMP */
510 static void init_rq_hrtick(struct rq
*rq
)
513 rq
->hrtick_csd_pending
= 0;
515 rq
->hrtick_csd
.flags
= 0;
516 rq
->hrtick_csd
.func
= __hrtick_start
;
517 rq
->hrtick_csd
.info
= rq
;
520 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
521 rq
->hrtick_timer
.function
= hrtick
;
523 #else /* CONFIG_SCHED_HRTICK */
524 static inline void hrtick_clear(struct rq
*rq
)
528 static inline void init_rq_hrtick(struct rq
*rq
)
532 static inline void init_hrtick(void)
535 #endif /* CONFIG_SCHED_HRTICK */
538 * cmpxchg based fetch_or, macro so it works for different integer types
540 #define fetch_or(ptr, val) \
541 ({ typeof(*(ptr)) __old, __val = *(ptr); \
543 __old = cmpxchg((ptr), __val, __val | (val)); \
544 if (__old == __val) \
551 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
553 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
554 * this avoids any races wrt polling state changes and thereby avoids
557 static bool set_nr_and_not_polling(struct task_struct
*p
)
559 struct thread_info
*ti
= task_thread_info(p
);
560 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
564 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
566 * If this returns true, then the idle task promises to call
567 * sched_ttwu_pending() and reschedule soon.
569 static bool set_nr_if_polling(struct task_struct
*p
)
571 struct thread_info
*ti
= task_thread_info(p
);
572 typeof(ti
->flags
) old
, val
= ACCESS_ONCE(ti
->flags
);
575 if (!(val
& _TIF_POLLING_NRFLAG
))
577 if (val
& _TIF_NEED_RESCHED
)
579 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
588 static bool set_nr_and_not_polling(struct task_struct
*p
)
590 set_tsk_need_resched(p
);
595 static bool set_nr_if_polling(struct task_struct
*p
)
603 * resched_curr - mark rq's current task 'to be rescheduled now'.
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
609 void resched_curr(struct rq
*rq
)
611 struct task_struct
*curr
= rq
->curr
;
614 lockdep_assert_held(&rq
->lock
);
616 if (test_tsk_need_resched(curr
))
621 if (cpu
== smp_processor_id()) {
622 set_tsk_need_resched(curr
);
623 set_preempt_need_resched();
627 if (set_nr_and_not_polling(curr
))
628 smp_send_reschedule(cpu
);
630 trace_sched_wake_idle_without_ipi(cpu
);
633 void resched_cpu(int cpu
)
635 struct rq
*rq
= cpu_rq(cpu
);
638 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
641 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
645 #ifdef CONFIG_NO_HZ_COMMON
647 * In the semi idle case, use the nearest busy cpu for migrating timers
648 * from an idle cpu. This is good for power-savings.
650 * We don't do similar optimization for completely idle system, as
651 * selecting an idle cpu will add more delays to the timers than intended
652 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
654 int get_nohz_timer_target(int pinned
)
656 int cpu
= smp_processor_id();
658 struct sched_domain
*sd
;
660 if (pinned
|| !get_sysctl_timer_migration() || !idle_cpu(cpu
))
664 for_each_domain(cpu
, sd
) {
665 for_each_cpu(i
, sched_domain_span(sd
)) {
677 * When add_timer_on() enqueues a timer into the timer wheel of an
678 * idle CPU then this timer might expire before the next timer event
679 * which is scheduled to wake up that CPU. In case of a completely
680 * idle system the next event might even be infinite time into the
681 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
682 * leaves the inner idle loop so the newly added timer is taken into
683 * account when the CPU goes back to idle and evaluates the timer
684 * wheel for the next timer event.
686 static void wake_up_idle_cpu(int cpu
)
688 struct rq
*rq
= cpu_rq(cpu
);
690 if (cpu
== smp_processor_id())
693 if (set_nr_and_not_polling(rq
->idle
))
694 smp_send_reschedule(cpu
);
696 trace_sched_wake_idle_without_ipi(cpu
);
699 static bool wake_up_full_nohz_cpu(int cpu
)
702 * We just need the target to call irq_exit() and re-evaluate
703 * the next tick. The nohz full kick at least implies that.
704 * If needed we can still optimize that later with an
707 if (tick_nohz_full_cpu(cpu
)) {
708 if (cpu
!= smp_processor_id() ||
709 tick_nohz_tick_stopped())
710 tick_nohz_full_kick_cpu(cpu
);
717 void wake_up_nohz_cpu(int cpu
)
719 if (!wake_up_full_nohz_cpu(cpu
))
720 wake_up_idle_cpu(cpu
);
723 static inline bool got_nohz_idle_kick(void)
725 int cpu
= smp_processor_id();
727 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
730 if (idle_cpu(cpu
) && !need_resched())
734 * We can't run Idle Load Balance on this CPU for this time so we
735 * cancel it and clear NOHZ_BALANCE_KICK
737 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
741 #else /* CONFIG_NO_HZ_COMMON */
743 static inline bool got_nohz_idle_kick(void)
748 #endif /* CONFIG_NO_HZ_COMMON */
750 #ifdef CONFIG_NO_HZ_FULL
751 bool sched_can_stop_tick(void)
754 * More than one running task need preemption.
755 * nr_running update is assumed to be visible
756 * after IPI is sent from wakers.
758 if (this_rq()->nr_running
> 1)
763 #endif /* CONFIG_NO_HZ_FULL */
765 void sched_avg_update(struct rq
*rq
)
767 s64 period
= sched_avg_period();
769 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
771 * Inline assembly required to prevent the compiler
772 * optimising this loop into a divmod call.
773 * See __iter_div_u64_rem() for another example of this.
775 asm("" : "+rm" (rq
->age_stamp
));
776 rq
->age_stamp
+= period
;
781 #endif /* CONFIG_SMP */
783 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
784 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
786 * Iterate task_group tree rooted at *from, calling @down when first entering a
787 * node and @up when leaving it for the final time.
789 * Caller must hold rcu_lock or sufficient equivalent.
791 int walk_tg_tree_from(struct task_group
*from
,
792 tg_visitor down
, tg_visitor up
, void *data
)
794 struct task_group
*parent
, *child
;
800 ret
= (*down
)(parent
, data
);
803 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
810 ret
= (*up
)(parent
, data
);
811 if (ret
|| parent
== from
)
815 parent
= parent
->parent
;
822 int tg_nop(struct task_group
*tg
, void *data
)
828 static void set_load_weight(struct task_struct
*p
)
830 int prio
= p
->static_prio
- MAX_RT_PRIO
;
831 struct load_weight
*load
= &p
->se
.load
;
834 * SCHED_IDLE tasks get minimal weight:
836 if (p
->policy
== SCHED_IDLE
) {
837 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
838 load
->inv_weight
= WMULT_IDLEPRIO
;
842 load
->weight
= scale_load(prio_to_weight
[prio
]);
843 load
->inv_weight
= prio_to_wmult
[prio
];
846 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
849 sched_info_queued(rq
, p
);
850 p
->sched_class
->enqueue_task(rq
, p
, flags
);
853 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
856 sched_info_dequeued(rq
, p
);
857 p
->sched_class
->dequeue_task(rq
, p
, flags
);
860 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
862 if (task_contributes_to_load(p
))
863 rq
->nr_uninterruptible
--;
865 enqueue_task(rq
, p
, flags
);
868 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
870 if (task_contributes_to_load(p
))
871 rq
->nr_uninterruptible
++;
873 dequeue_task(rq
, p
, flags
);
876 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
879 * In theory, the compile should just see 0 here, and optimize out the call
880 * to sched_rt_avg_update. But I don't trust it...
882 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
883 s64 steal
= 0, irq_delta
= 0;
885 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
886 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
889 * Since irq_time is only updated on {soft,}irq_exit, we might run into
890 * this case when a previous update_rq_clock() happened inside a
893 * When this happens, we stop ->clock_task and only update the
894 * prev_irq_time stamp to account for the part that fit, so that a next
895 * update will consume the rest. This ensures ->clock_task is
898 * It does however cause some slight miss-attribution of {soft,}irq
899 * time, a more accurate solution would be to update the irq_time using
900 * the current rq->clock timestamp, except that would require using
903 if (irq_delta
> delta
)
906 rq
->prev_irq_time
+= irq_delta
;
909 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
910 if (static_key_false((¶virt_steal_rq_enabled
))) {
911 steal
= paravirt_steal_clock(cpu_of(rq
));
912 steal
-= rq
->prev_steal_time_rq
;
914 if (unlikely(steal
> delta
))
917 rq
->prev_steal_time_rq
+= steal
;
922 rq
->clock_task
+= delta
;
924 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
925 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
926 sched_rt_avg_update(rq
, irq_delta
+ steal
);
930 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
932 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
933 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
937 * Make it appear like a SCHED_FIFO task, its something
938 * userspace knows about and won't get confused about.
940 * Also, it will make PI more or less work without too
941 * much confusion -- but then, stop work should not
942 * rely on PI working anyway.
944 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
946 stop
->sched_class
= &stop_sched_class
;
949 cpu_rq(cpu
)->stop
= stop
;
953 * Reset it back to a normal scheduling class so that
954 * it can die in pieces.
956 old_stop
->sched_class
= &rt_sched_class
;
961 * __normal_prio - return the priority that is based on the static prio
963 static inline int __normal_prio(struct task_struct
*p
)
965 return p
->static_prio
;
969 * Calculate the expected normal priority: i.e. priority
970 * without taking RT-inheritance into account. Might be
971 * boosted by interactivity modifiers. Changes upon fork,
972 * setprio syscalls, and whenever the interactivity
973 * estimator recalculates.
975 static inline int normal_prio(struct task_struct
*p
)
979 if (task_has_dl_policy(p
))
980 prio
= MAX_DL_PRIO
-1;
981 else if (task_has_rt_policy(p
))
982 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
984 prio
= __normal_prio(p
);
989 * Calculate the current priority, i.e. the priority
990 * taken into account by the scheduler. This value might
991 * be boosted by RT tasks, or might be boosted by
992 * interactivity modifiers. Will be RT if the task got
993 * RT-boosted. If not then it returns p->normal_prio.
995 static int effective_prio(struct task_struct
*p
)
997 p
->normal_prio
= normal_prio(p
);
999 * If we are RT tasks or we were boosted to RT priority,
1000 * keep the priority unchanged. Otherwise, update priority
1001 * to the normal priority:
1003 if (!rt_prio(p
->prio
))
1004 return p
->normal_prio
;
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
1012 * Return: 1 if the task is currently executing. 0 otherwise.
1014 inline int task_curr(const struct task_struct
*p
)
1016 return cpu_curr(task_cpu(p
)) == p
;
1019 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1020 const struct sched_class
*prev_class
,
1023 if (prev_class
!= p
->sched_class
) {
1024 if (prev_class
->switched_from
)
1025 prev_class
->switched_from(rq
, p
);
1026 p
->sched_class
->switched_to(rq
, p
);
1027 } else if (oldprio
!= p
->prio
|| dl_task(p
))
1028 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1031 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1033 const struct sched_class
*class;
1035 if (p
->sched_class
== rq
->curr
->sched_class
) {
1036 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1038 for_each_class(class) {
1039 if (class == rq
->curr
->sched_class
)
1041 if (class == p
->sched_class
) {
1049 * A queue event has occurred, and we're going to schedule. In
1050 * this case, we can save a useless back to back clock update.
1052 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
1053 rq
->skip_clock_update
= 1;
1057 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1059 #ifdef CONFIG_SCHED_DEBUG
1061 * We should never call set_task_cpu() on a blocked task,
1062 * ttwu() will sort out the placement.
1064 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1065 !(task_preempt_count(p
) & PREEMPT_ACTIVE
));
1067 #ifdef CONFIG_LOCKDEP
1069 * The caller should hold either p->pi_lock or rq->lock, when changing
1070 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1072 * sched_move_task() holds both and thus holding either pins the cgroup,
1075 * Furthermore, all task_rq users should acquire both locks, see
1078 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1079 lockdep_is_held(&task_rq(p
)->lock
)));
1083 trace_sched_migrate_task(p
, new_cpu
);
1085 if (task_cpu(p
) != new_cpu
) {
1086 if (p
->sched_class
->migrate_task_rq
)
1087 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1088 p
->se
.nr_migrations
++;
1089 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
1092 __set_task_cpu(p
, new_cpu
);
1095 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1097 if (task_on_rq_queued(p
)) {
1098 struct rq
*src_rq
, *dst_rq
;
1100 src_rq
= task_rq(p
);
1101 dst_rq
= cpu_rq(cpu
);
1103 deactivate_task(src_rq
, p
, 0);
1104 set_task_cpu(p
, cpu
);
1105 activate_task(dst_rq
, p
, 0);
1106 check_preempt_curr(dst_rq
, p
, 0);
1109 * Task isn't running anymore; make it appear like we migrated
1110 * it before it went to sleep. This means on wakeup we make the
1111 * previous cpu our targer instead of where it really is.
1117 struct migration_swap_arg
{
1118 struct task_struct
*src_task
, *dst_task
;
1119 int src_cpu
, dst_cpu
;
1122 static int migrate_swap_stop(void *data
)
1124 struct migration_swap_arg
*arg
= data
;
1125 struct rq
*src_rq
, *dst_rq
;
1128 src_rq
= cpu_rq(arg
->src_cpu
);
1129 dst_rq
= cpu_rq(arg
->dst_cpu
);
1131 double_raw_lock(&arg
->src_task
->pi_lock
,
1132 &arg
->dst_task
->pi_lock
);
1133 double_rq_lock(src_rq
, dst_rq
);
1134 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1137 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1140 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1143 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1146 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1147 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1152 double_rq_unlock(src_rq
, dst_rq
);
1153 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1154 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1160 * Cross migrate two tasks
1162 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1164 struct migration_swap_arg arg
;
1167 arg
= (struct migration_swap_arg
){
1169 .src_cpu
= task_cpu(cur
),
1171 .dst_cpu
= task_cpu(p
),
1174 if (arg
.src_cpu
== arg
.dst_cpu
)
1178 * These three tests are all lockless; this is OK since all of them
1179 * will be re-checked with proper locks held further down the line.
1181 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1184 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1187 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1190 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1191 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1197 struct migration_arg
{
1198 struct task_struct
*task
;
1202 static int migration_cpu_stop(void *data
);
1205 * wait_task_inactive - wait for a thread to unschedule.
1207 * If @match_state is nonzero, it's the @p->state value just checked and
1208 * not expected to change. If it changes, i.e. @p might have woken up,
1209 * then return zero. When we succeed in waiting for @p to be off its CPU,
1210 * we return a positive number (its total switch count). If a second call
1211 * a short while later returns the same number, the caller can be sure that
1212 * @p has remained unscheduled the whole time.
1214 * The caller must ensure that the task *will* unschedule sometime soon,
1215 * else this function might spin for a *long* time. This function can't
1216 * be called with interrupts off, or it may introduce deadlock with
1217 * smp_call_function() if an IPI is sent by the same process we are
1218 * waiting to become inactive.
1220 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1222 unsigned long flags
;
1223 int running
, queued
;
1229 * We do the initial early heuristics without holding
1230 * any task-queue locks at all. We'll only try to get
1231 * the runqueue lock when things look like they will
1237 * If the task is actively running on another CPU
1238 * still, just relax and busy-wait without holding
1241 * NOTE! Since we don't hold any locks, it's not
1242 * even sure that "rq" stays as the right runqueue!
1243 * But we don't care, since "task_running()" will
1244 * return false if the runqueue has changed and p
1245 * is actually now running somewhere else!
1247 while (task_running(rq
, p
)) {
1248 if (match_state
&& unlikely(p
->state
!= match_state
))
1254 * Ok, time to look more closely! We need the rq
1255 * lock now, to be *sure*. If we're wrong, we'll
1256 * just go back and repeat.
1258 rq
= task_rq_lock(p
, &flags
);
1259 trace_sched_wait_task(p
);
1260 running
= task_running(rq
, p
);
1261 queued
= task_on_rq_queued(p
);
1263 if (!match_state
|| p
->state
== match_state
)
1264 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1265 task_rq_unlock(rq
, p
, &flags
);
1268 * If it changed from the expected state, bail out now.
1270 if (unlikely(!ncsw
))
1274 * Was it really running after all now that we
1275 * checked with the proper locks actually held?
1277 * Oops. Go back and try again..
1279 if (unlikely(running
)) {
1285 * It's not enough that it's not actively running,
1286 * it must be off the runqueue _entirely_, and not
1289 * So if it was still runnable (but just not actively
1290 * running right now), it's preempted, and we should
1291 * yield - it could be a while.
1293 if (unlikely(queued
)) {
1294 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1296 set_current_state(TASK_UNINTERRUPTIBLE
);
1297 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1302 * Ahh, all good. It wasn't running, and it wasn't
1303 * runnable, which means that it will never become
1304 * running in the future either. We're all done!
1313 * kick_process - kick a running thread to enter/exit the kernel
1314 * @p: the to-be-kicked thread
1316 * Cause a process which is running on another CPU to enter
1317 * kernel-mode, without any delay. (to get signals handled.)
1319 * NOTE: this function doesn't have to take the runqueue lock,
1320 * because all it wants to ensure is that the remote task enters
1321 * the kernel. If the IPI races and the task has been migrated
1322 * to another CPU then no harm is done and the purpose has been
1325 void kick_process(struct task_struct
*p
)
1331 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1332 smp_send_reschedule(cpu
);
1335 EXPORT_SYMBOL_GPL(kick_process
);
1336 #endif /* CONFIG_SMP */
1340 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1342 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1344 int nid
= cpu_to_node(cpu
);
1345 const struct cpumask
*nodemask
= NULL
;
1346 enum { cpuset
, possible
, fail
} state
= cpuset
;
1350 * If the node that the cpu is on has been offlined, cpu_to_node()
1351 * will return -1. There is no cpu on the node, and we should
1352 * select the cpu on the other node.
1355 nodemask
= cpumask_of_node(nid
);
1357 /* Look for allowed, online CPU in same node. */
1358 for_each_cpu(dest_cpu
, nodemask
) {
1359 if (!cpu_online(dest_cpu
))
1361 if (!cpu_active(dest_cpu
))
1363 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1369 /* Any allowed, online CPU? */
1370 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1371 if (!cpu_online(dest_cpu
))
1373 if (!cpu_active(dest_cpu
))
1380 /* No more Mr. Nice Guy. */
1381 cpuset_cpus_allowed_fallback(p
);
1386 do_set_cpus_allowed(p
, cpu_possible_mask
);
1397 if (state
!= cpuset
) {
1399 * Don't tell them about moving exiting tasks or
1400 * kernel threads (both mm NULL), since they never
1403 if (p
->mm
&& printk_ratelimit()) {
1404 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1405 task_pid_nr(p
), p
->comm
, cpu
);
1413 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1416 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1418 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1421 * In order not to call set_task_cpu() on a blocking task we need
1422 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1425 * Since this is common to all placement strategies, this lives here.
1427 * [ this allows ->select_task() to simply return task_cpu(p) and
1428 * not worry about this generic constraint ]
1430 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1432 cpu
= select_fallback_rq(task_cpu(p
), p
);
1437 static void update_avg(u64
*avg
, u64 sample
)
1439 s64 diff
= sample
- *avg
;
1445 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1447 #ifdef CONFIG_SCHEDSTATS
1448 struct rq
*rq
= this_rq();
1451 int this_cpu
= smp_processor_id();
1453 if (cpu
== this_cpu
) {
1454 schedstat_inc(rq
, ttwu_local
);
1455 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1457 struct sched_domain
*sd
;
1459 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1461 for_each_domain(this_cpu
, sd
) {
1462 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1463 schedstat_inc(sd
, ttwu_wake_remote
);
1470 if (wake_flags
& WF_MIGRATED
)
1471 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1473 #endif /* CONFIG_SMP */
1475 schedstat_inc(rq
, ttwu_count
);
1476 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1478 if (wake_flags
& WF_SYNC
)
1479 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1481 #endif /* CONFIG_SCHEDSTATS */
1484 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1486 activate_task(rq
, p
, en_flags
);
1487 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1489 /* if a worker is waking up, notify workqueue */
1490 if (p
->flags
& PF_WQ_WORKER
)
1491 wq_worker_waking_up(p
, cpu_of(rq
));
1495 * Mark the task runnable and perform wakeup-preemption.
1498 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1500 check_preempt_curr(rq
, p
, wake_flags
);
1501 trace_sched_wakeup(p
, true);
1503 p
->state
= TASK_RUNNING
;
1505 if (p
->sched_class
->task_woken
)
1506 p
->sched_class
->task_woken(rq
, p
);
1508 if (rq
->idle_stamp
) {
1509 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1510 u64 max
= 2*rq
->max_idle_balance_cost
;
1512 update_avg(&rq
->avg_idle
, delta
);
1514 if (rq
->avg_idle
> max
)
1523 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1526 if (p
->sched_contributes_to_load
)
1527 rq
->nr_uninterruptible
--;
1530 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1531 ttwu_do_wakeup(rq
, p
, wake_flags
);
1535 * Called in case the task @p isn't fully descheduled from its runqueue,
1536 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1537 * since all we need to do is flip p->state to TASK_RUNNING, since
1538 * the task is still ->on_rq.
1540 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1545 rq
= __task_rq_lock(p
);
1546 if (task_on_rq_queued(p
)) {
1547 /* check_preempt_curr() may use rq clock */
1548 update_rq_clock(rq
);
1549 ttwu_do_wakeup(rq
, p
, wake_flags
);
1552 __task_rq_unlock(rq
);
1558 void sched_ttwu_pending(void)
1560 struct rq
*rq
= this_rq();
1561 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1562 struct task_struct
*p
;
1563 unsigned long flags
;
1568 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1571 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1572 llist
= llist_next(llist
);
1573 ttwu_do_activate(rq
, p
, 0);
1576 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1579 void scheduler_ipi(void)
1582 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1583 * TIF_NEED_RESCHED remotely (for the first time) will also send
1586 preempt_fold_need_resched();
1588 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1592 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1593 * traditionally all their work was done from the interrupt return
1594 * path. Now that we actually do some work, we need to make sure
1597 * Some archs already do call them, luckily irq_enter/exit nest
1600 * Arguably we should visit all archs and update all handlers,
1601 * however a fair share of IPIs are still resched only so this would
1602 * somewhat pessimize the simple resched case.
1605 sched_ttwu_pending();
1608 * Check if someone kicked us for doing the nohz idle load balance.
1610 if (unlikely(got_nohz_idle_kick())) {
1611 this_rq()->idle_balance
= 1;
1612 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1617 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1619 struct rq
*rq
= cpu_rq(cpu
);
1621 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1622 if (!set_nr_if_polling(rq
->idle
))
1623 smp_send_reschedule(cpu
);
1625 trace_sched_wake_idle_without_ipi(cpu
);
1629 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1631 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1633 #endif /* CONFIG_SMP */
1635 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1637 struct rq
*rq
= cpu_rq(cpu
);
1639 #if defined(CONFIG_SMP)
1640 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1641 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1642 ttwu_queue_remote(p
, cpu
);
1647 raw_spin_lock(&rq
->lock
);
1648 ttwu_do_activate(rq
, p
, 0);
1649 raw_spin_unlock(&rq
->lock
);
1653 * try_to_wake_up - wake up a thread
1654 * @p: the thread to be awakened
1655 * @state: the mask of task states that can be woken
1656 * @wake_flags: wake modifier flags (WF_*)
1658 * Put it on the run-queue if it's not already there. The "current"
1659 * thread is always on the run-queue (except when the actual
1660 * re-schedule is in progress), and as such you're allowed to do
1661 * the simpler "current->state = TASK_RUNNING" to mark yourself
1662 * runnable without the overhead of this.
1664 * Return: %true if @p was woken up, %false if it was already running.
1665 * or @state didn't match @p's state.
1668 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1670 unsigned long flags
;
1671 int cpu
, success
= 0;
1674 * If we are going to wake up a thread waiting for CONDITION we
1675 * need to ensure that CONDITION=1 done by the caller can not be
1676 * reordered with p->state check below. This pairs with mb() in
1677 * set_current_state() the waiting thread does.
1679 smp_mb__before_spinlock();
1680 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1681 if (!(p
->state
& state
))
1684 success
= 1; /* we're going to change ->state */
1687 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1692 * If the owning (remote) cpu is still in the middle of schedule() with
1693 * this task as prev, wait until its done referencing the task.
1698 * Pairs with the smp_wmb() in finish_lock_switch().
1702 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1703 p
->state
= TASK_WAKING
;
1705 if (p
->sched_class
->task_waking
)
1706 p
->sched_class
->task_waking(p
);
1708 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
1709 if (task_cpu(p
) != cpu
) {
1710 wake_flags
|= WF_MIGRATED
;
1711 set_task_cpu(p
, cpu
);
1713 #endif /* CONFIG_SMP */
1717 ttwu_stat(p
, cpu
, wake_flags
);
1719 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1725 * try_to_wake_up_local - try to wake up a local task with rq lock held
1726 * @p: the thread to be awakened
1728 * Put @p on the run-queue if it's not already there. The caller must
1729 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1732 static void try_to_wake_up_local(struct task_struct
*p
)
1734 struct rq
*rq
= task_rq(p
);
1736 if (WARN_ON_ONCE(rq
!= this_rq()) ||
1737 WARN_ON_ONCE(p
== current
))
1740 lockdep_assert_held(&rq
->lock
);
1742 if (!raw_spin_trylock(&p
->pi_lock
)) {
1743 raw_spin_unlock(&rq
->lock
);
1744 raw_spin_lock(&p
->pi_lock
);
1745 raw_spin_lock(&rq
->lock
);
1748 if (!(p
->state
& TASK_NORMAL
))
1751 if (!task_on_rq_queued(p
))
1752 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1754 ttwu_do_wakeup(rq
, p
, 0);
1755 ttwu_stat(p
, smp_processor_id(), 0);
1757 raw_spin_unlock(&p
->pi_lock
);
1761 * wake_up_process - Wake up a specific process
1762 * @p: The process to be woken up.
1764 * Attempt to wake up the nominated process and move it to the set of runnable
1767 * Return: 1 if the process was woken up, 0 if it was already running.
1769 * It may be assumed that this function implies a write memory barrier before
1770 * changing the task state if and only if any tasks are woken up.
1772 int wake_up_process(struct task_struct
*p
)
1774 WARN_ON(task_is_stopped_or_traced(p
));
1775 return try_to_wake_up(p
, TASK_NORMAL
, 0);
1777 EXPORT_SYMBOL(wake_up_process
);
1779 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1781 return try_to_wake_up(p
, state
, 0);
1785 * Perform scheduler related setup for a newly forked process p.
1786 * p is forked by current.
1788 * __sched_fork() is basic setup used by init_idle() too:
1790 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1795 p
->se
.exec_start
= 0;
1796 p
->se
.sum_exec_runtime
= 0;
1797 p
->se
.prev_sum_exec_runtime
= 0;
1798 p
->se
.nr_migrations
= 0;
1800 INIT_LIST_HEAD(&p
->se
.group_node
);
1802 #ifdef CONFIG_SCHEDSTATS
1803 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1806 RB_CLEAR_NODE(&p
->dl
.rb_node
);
1807 hrtimer_init(&p
->dl
.dl_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1808 p
->dl
.dl_runtime
= p
->dl
.runtime
= 0;
1809 p
->dl
.dl_deadline
= p
->dl
.deadline
= 0;
1810 p
->dl
.dl_period
= 0;
1813 INIT_LIST_HEAD(&p
->rt
.run_list
);
1815 #ifdef CONFIG_PREEMPT_NOTIFIERS
1816 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1819 #ifdef CONFIG_NUMA_BALANCING
1820 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
1821 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
1822 p
->mm
->numa_scan_seq
= 0;
1825 if (clone_flags
& CLONE_VM
)
1826 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
1828 p
->numa_preferred_nid
= -1;
1830 p
->node_stamp
= 0ULL;
1831 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
1832 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
1833 p
->numa_work
.next
= &p
->numa_work
;
1834 p
->numa_faults_memory
= NULL
;
1835 p
->numa_faults_buffer_memory
= NULL
;
1836 p
->last_task_numa_placement
= 0;
1837 p
->last_sum_exec_runtime
= 0;
1839 INIT_LIST_HEAD(&p
->numa_entry
);
1840 p
->numa_group
= NULL
;
1841 #endif /* CONFIG_NUMA_BALANCING */
1844 #ifdef CONFIG_NUMA_BALANCING
1845 #ifdef CONFIG_SCHED_DEBUG
1846 void set_numabalancing_state(bool enabled
)
1849 sched_feat_set("NUMA");
1851 sched_feat_set("NO_NUMA");
1854 __read_mostly
bool numabalancing_enabled
;
1856 void set_numabalancing_state(bool enabled
)
1858 numabalancing_enabled
= enabled
;
1860 #endif /* CONFIG_SCHED_DEBUG */
1862 #ifdef CONFIG_PROC_SYSCTL
1863 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
1864 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1868 int state
= numabalancing_enabled
;
1870 if (write
&& !capable(CAP_SYS_ADMIN
))
1875 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
1879 set_numabalancing_state(state
);
1886 * fork()/clone()-time setup:
1888 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1890 unsigned long flags
;
1891 int cpu
= get_cpu();
1893 __sched_fork(clone_flags
, p
);
1895 * We mark the process as running here. This guarantees that
1896 * nobody will actually run it, and a signal or other external
1897 * event cannot wake it up and insert it on the runqueue either.
1899 p
->state
= TASK_RUNNING
;
1902 * Make sure we do not leak PI boosting priority to the child.
1904 p
->prio
= current
->normal_prio
;
1907 * Revert to default priority/policy on fork if requested.
1909 if (unlikely(p
->sched_reset_on_fork
)) {
1910 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
1911 p
->policy
= SCHED_NORMAL
;
1912 p
->static_prio
= NICE_TO_PRIO(0);
1914 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1915 p
->static_prio
= NICE_TO_PRIO(0);
1917 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1921 * We don't need the reset flag anymore after the fork. It has
1922 * fulfilled its duty:
1924 p
->sched_reset_on_fork
= 0;
1927 if (dl_prio(p
->prio
)) {
1930 } else if (rt_prio(p
->prio
)) {
1931 p
->sched_class
= &rt_sched_class
;
1933 p
->sched_class
= &fair_sched_class
;
1936 if (p
->sched_class
->task_fork
)
1937 p
->sched_class
->task_fork(p
);
1940 * The child is not yet in the pid-hash so no cgroup attach races,
1941 * and the cgroup is pinned to this child due to cgroup_fork()
1942 * is ran before sched_fork().
1944 * Silence PROVE_RCU.
1946 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1947 set_task_cpu(p
, cpu
);
1948 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1950 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1951 if (likely(sched_info_on()))
1952 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1954 #if defined(CONFIG_SMP)
1957 init_task_preempt_count(p
);
1959 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1960 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
1967 unsigned long to_ratio(u64 period
, u64 runtime
)
1969 if (runtime
== RUNTIME_INF
)
1973 * Doing this here saves a lot of checks in all
1974 * the calling paths, and returning zero seems
1975 * safe for them anyway.
1980 return div64_u64(runtime
<< 20, period
);
1984 inline struct dl_bw
*dl_bw_of(int i
)
1986 return &cpu_rq(i
)->rd
->dl_bw
;
1989 static inline int dl_bw_cpus(int i
)
1991 struct root_domain
*rd
= cpu_rq(i
)->rd
;
1994 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
2000 inline struct dl_bw
*dl_bw_of(int i
)
2002 return &cpu_rq(i
)->dl
.dl_bw
;
2005 static inline int dl_bw_cpus(int i
)
2012 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
2014 dl_b
->total_bw
-= tsk_bw
;
2018 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
2020 dl_b
->total_bw
+= tsk_bw
;
2024 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
2026 return dl_b
->bw
!= -1 &&
2027 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
2031 * We must be sure that accepting a new task (or allowing changing the
2032 * parameters of an existing one) is consistent with the bandwidth
2033 * constraints. If yes, this function also accordingly updates the currently
2034 * allocated bandwidth to reflect the new situation.
2036 * This function is called while holding p's rq->lock.
2038 static int dl_overflow(struct task_struct
*p
, int policy
,
2039 const struct sched_attr
*attr
)
2042 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2043 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2044 u64 runtime
= attr
->sched_runtime
;
2045 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2048 if (new_bw
== p
->dl
.dl_bw
)
2052 * Either if a task, enters, leave, or stays -deadline but changes
2053 * its parameters, we may need to update accordingly the total
2054 * allocated bandwidth of the container.
2056 raw_spin_lock(&dl_b
->lock
);
2057 cpus
= dl_bw_cpus(task_cpu(p
));
2058 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2059 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2060 __dl_add(dl_b
, new_bw
);
2062 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2063 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2064 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2065 __dl_add(dl_b
, new_bw
);
2067 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2068 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2071 raw_spin_unlock(&dl_b
->lock
);
2076 extern void init_dl_bw(struct dl_bw
*dl_b
);
2079 * wake_up_new_task - wake up a newly created task for the first time.
2081 * This function will do some initial scheduler statistics housekeeping
2082 * that must be done for every newly created context, then puts the task
2083 * on the runqueue and wakes it.
2085 void wake_up_new_task(struct task_struct
*p
)
2087 unsigned long flags
;
2090 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2093 * Fork balancing, do it here and not earlier because:
2094 * - cpus_allowed can change in the fork path
2095 * - any previously selected cpu might disappear through hotplug
2097 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2100 /* Initialize new task's runnable average */
2101 init_task_runnable_average(p
);
2102 rq
= __task_rq_lock(p
);
2103 activate_task(rq
, p
, 0);
2104 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2105 trace_sched_wakeup_new(p
, true);
2106 check_preempt_curr(rq
, p
, WF_FORK
);
2108 if (p
->sched_class
->task_woken
)
2109 p
->sched_class
->task_woken(rq
, p
);
2111 task_rq_unlock(rq
, p
, &flags
);
2114 #ifdef CONFIG_PREEMPT_NOTIFIERS
2117 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2118 * @notifier: notifier struct to register
2120 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2122 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2124 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2127 * preempt_notifier_unregister - no longer interested in preemption notifications
2128 * @notifier: notifier struct to unregister
2130 * This is safe to call from within a preemption notifier.
2132 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2134 hlist_del(¬ifier
->link
);
2136 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2138 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2140 struct preempt_notifier
*notifier
;
2142 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2143 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2147 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2148 struct task_struct
*next
)
2150 struct preempt_notifier
*notifier
;
2152 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2153 notifier
->ops
->sched_out(notifier
, next
);
2156 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2158 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2163 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2164 struct task_struct
*next
)
2168 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2171 * prepare_task_switch - prepare to switch tasks
2172 * @rq: the runqueue preparing to switch
2173 * @prev: the current task that is being switched out
2174 * @next: the task we are going to switch to.
2176 * This is called with the rq lock held and interrupts off. It must
2177 * be paired with a subsequent finish_task_switch after the context
2180 * prepare_task_switch sets up locking and calls architecture specific
2184 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2185 struct task_struct
*next
)
2187 trace_sched_switch(prev
, next
);
2188 sched_info_switch(rq
, prev
, next
);
2189 perf_event_task_sched_out(prev
, next
);
2190 fire_sched_out_preempt_notifiers(prev
, next
);
2191 prepare_lock_switch(rq
, next
);
2192 prepare_arch_switch(next
);
2196 * finish_task_switch - clean up after a task-switch
2197 * @rq: runqueue associated with task-switch
2198 * @prev: the thread we just switched away from.
2200 * finish_task_switch must be called after the context switch, paired
2201 * with a prepare_task_switch call before the context switch.
2202 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2203 * and do any other architecture-specific cleanup actions.
2205 * Note that we may have delayed dropping an mm in context_switch(). If
2206 * so, we finish that here outside of the runqueue lock. (Doing it
2207 * with the lock held can cause deadlocks; see schedule() for
2210 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2211 __releases(rq
->lock
)
2213 struct mm_struct
*mm
= rq
->prev_mm
;
2219 * A task struct has one reference for the use as "current".
2220 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2221 * schedule one last time. The schedule call will never return, and
2222 * the scheduled task must drop that reference.
2223 * The test for TASK_DEAD must occur while the runqueue locks are
2224 * still held, otherwise prev could be scheduled on another cpu, die
2225 * there before we look at prev->state, and then the reference would
2227 * Manfred Spraul <manfred@colorfullife.com>
2229 prev_state
= prev
->state
;
2230 vtime_task_switch(prev
);
2231 finish_arch_switch(prev
);
2232 perf_event_task_sched_in(prev
, current
);
2233 finish_lock_switch(rq
, prev
);
2234 finish_arch_post_lock_switch();
2236 fire_sched_in_preempt_notifiers(current
);
2239 if (unlikely(prev_state
== TASK_DEAD
)) {
2240 if (prev
->sched_class
->task_dead
)
2241 prev
->sched_class
->task_dead(prev
);
2244 * Remove function-return probe instances associated with this
2245 * task and put them back on the free list.
2247 kprobe_flush_task(prev
);
2248 put_task_struct(prev
);
2251 tick_nohz_task_switch(current
);
2256 /* rq->lock is NOT held, but preemption is disabled */
2257 static inline void post_schedule(struct rq
*rq
)
2259 if (rq
->post_schedule
) {
2260 unsigned long flags
;
2262 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2263 if (rq
->curr
->sched_class
->post_schedule
)
2264 rq
->curr
->sched_class
->post_schedule(rq
);
2265 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2267 rq
->post_schedule
= 0;
2273 static inline void post_schedule(struct rq
*rq
)
2280 * schedule_tail - first thing a freshly forked thread must call.
2281 * @prev: the thread we just switched away from.
2283 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2284 __releases(rq
->lock
)
2286 struct rq
*rq
= this_rq();
2288 finish_task_switch(rq
, prev
);
2291 * FIXME: do we need to worry about rq being invalidated by the
2296 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2297 /* In this case, finish_task_switch does not reenable preemption */
2300 if (current
->set_child_tid
)
2301 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2305 * context_switch - switch to the new MM and the new
2306 * thread's register state.
2309 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2310 struct task_struct
*next
)
2312 struct mm_struct
*mm
, *oldmm
;
2314 prepare_task_switch(rq
, prev
, next
);
2317 oldmm
= prev
->active_mm
;
2319 * For paravirt, this is coupled with an exit in switch_to to
2320 * combine the page table reload and the switch backend into
2323 arch_start_context_switch(prev
);
2326 next
->active_mm
= oldmm
;
2327 atomic_inc(&oldmm
->mm_count
);
2328 enter_lazy_tlb(oldmm
, next
);
2330 switch_mm(oldmm
, mm
, next
);
2333 prev
->active_mm
= NULL
;
2334 rq
->prev_mm
= oldmm
;
2337 * Since the runqueue lock will be released by the next
2338 * task (which is an invalid locking op but in the case
2339 * of the scheduler it's an obvious special-case), so we
2340 * do an early lockdep release here:
2342 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2343 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2346 context_tracking_task_switch(prev
, next
);
2347 /* Here we just switch the register state and the stack. */
2348 switch_to(prev
, next
, prev
);
2352 * this_rq must be evaluated again because prev may have moved
2353 * CPUs since it called schedule(), thus the 'rq' on its stack
2354 * frame will be invalid.
2356 finish_task_switch(this_rq(), prev
);
2360 * nr_running and nr_context_switches:
2362 * externally visible scheduler statistics: current number of runnable
2363 * threads, total number of context switches performed since bootup.
2365 unsigned long nr_running(void)
2367 unsigned long i
, sum
= 0;
2369 for_each_online_cpu(i
)
2370 sum
+= cpu_rq(i
)->nr_running
;
2375 unsigned long long nr_context_switches(void)
2378 unsigned long long sum
= 0;
2380 for_each_possible_cpu(i
)
2381 sum
+= cpu_rq(i
)->nr_switches
;
2386 unsigned long nr_iowait(void)
2388 unsigned long i
, sum
= 0;
2390 for_each_possible_cpu(i
)
2391 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2396 unsigned long nr_iowait_cpu(int cpu
)
2398 struct rq
*this = cpu_rq(cpu
);
2399 return atomic_read(&this->nr_iowait
);
2405 * sched_exec - execve() is a valuable balancing opportunity, because at
2406 * this point the task has the smallest effective memory and cache footprint.
2408 void sched_exec(void)
2410 struct task_struct
*p
= current
;
2411 unsigned long flags
;
2414 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2415 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2416 if (dest_cpu
== smp_processor_id())
2419 if (likely(cpu_active(dest_cpu
))) {
2420 struct migration_arg arg
= { p
, dest_cpu
};
2422 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2423 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2427 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2432 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2433 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2435 EXPORT_PER_CPU_SYMBOL(kstat
);
2436 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2439 * Return any ns on the sched_clock that have not yet been accounted in
2440 * @p in case that task is currently running.
2442 * Called with task_rq_lock() held on @rq.
2444 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
2449 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2450 * project cycles that may never be accounted to this
2451 * thread, breaking clock_gettime().
2453 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
2454 update_rq_clock(rq
);
2455 ns
= rq_clock_task(rq
) - p
->se
.exec_start
;
2463 unsigned long long task_delta_exec(struct task_struct
*p
)
2465 unsigned long flags
;
2469 rq
= task_rq_lock(p
, &flags
);
2470 ns
= do_task_delta_exec(p
, rq
);
2471 task_rq_unlock(rq
, p
, &flags
);
2477 * Return accounted runtime for the task.
2478 * In case the task is currently running, return the runtime plus current's
2479 * pending runtime that have not been accounted yet.
2481 unsigned long long task_sched_runtime(struct task_struct
*p
)
2483 unsigned long flags
;
2487 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 * 64-bit doesn't need locks to atomically read a 64bit value.
2490 * So we have a optimization chance when the task's delta_exec is 0.
2491 * Reading ->on_cpu is racy, but this is ok.
2493 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2494 * If we race with it entering cpu, unaccounted time is 0. This is
2495 * indistinguishable from the read occurring a few cycles earlier.
2496 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2497 * been accounted, so we're correct here as well.
2499 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
2500 return p
->se
.sum_exec_runtime
;
2503 rq
= task_rq_lock(p
, &flags
);
2504 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
2505 task_rq_unlock(rq
, p
, &flags
);
2511 * This function gets called by the timer code, with HZ frequency.
2512 * We call it with interrupts disabled.
2514 void scheduler_tick(void)
2516 int cpu
= smp_processor_id();
2517 struct rq
*rq
= cpu_rq(cpu
);
2518 struct task_struct
*curr
= rq
->curr
;
2522 raw_spin_lock(&rq
->lock
);
2523 update_rq_clock(rq
);
2524 curr
->sched_class
->task_tick(rq
, curr
, 0);
2525 update_cpu_load_active(rq
);
2526 raw_spin_unlock(&rq
->lock
);
2528 perf_event_task_tick();
2531 rq
->idle_balance
= idle_cpu(cpu
);
2532 trigger_load_balance(rq
);
2534 rq_last_tick_reset(rq
);
2537 #ifdef CONFIG_NO_HZ_FULL
2539 * scheduler_tick_max_deferment
2541 * Keep at least one tick per second when a single
2542 * active task is running because the scheduler doesn't
2543 * yet completely support full dynticks environment.
2545 * This makes sure that uptime, CFS vruntime, load
2546 * balancing, etc... continue to move forward, even
2547 * with a very low granularity.
2549 * Return: Maximum deferment in nanoseconds.
2551 u64
scheduler_tick_max_deferment(void)
2553 struct rq
*rq
= this_rq();
2554 unsigned long next
, now
= ACCESS_ONCE(jiffies
);
2556 next
= rq
->last_sched_tick
+ HZ
;
2558 if (time_before_eq(next
, now
))
2561 return jiffies_to_nsecs(next
- now
);
2565 notrace
unsigned long get_parent_ip(unsigned long addr
)
2567 if (in_lock_functions(addr
)) {
2568 addr
= CALLER_ADDR2
;
2569 if (in_lock_functions(addr
))
2570 addr
= CALLER_ADDR3
;
2575 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2576 defined(CONFIG_PREEMPT_TRACER))
2578 void preempt_count_add(int val
)
2580 #ifdef CONFIG_DEBUG_PREEMPT
2584 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2587 __preempt_count_add(val
);
2588 #ifdef CONFIG_DEBUG_PREEMPT
2590 * Spinlock count overflowing soon?
2592 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2595 if (preempt_count() == val
) {
2596 unsigned long ip
= get_parent_ip(CALLER_ADDR1
);
2597 #ifdef CONFIG_DEBUG_PREEMPT
2598 current
->preempt_disable_ip
= ip
;
2600 trace_preempt_off(CALLER_ADDR0
, ip
);
2603 EXPORT_SYMBOL(preempt_count_add
);
2604 NOKPROBE_SYMBOL(preempt_count_add
);
2606 void preempt_count_sub(int val
)
2608 #ifdef CONFIG_DEBUG_PREEMPT
2612 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2615 * Is the spinlock portion underflowing?
2617 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2618 !(preempt_count() & PREEMPT_MASK
)))
2622 if (preempt_count() == val
)
2623 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2624 __preempt_count_sub(val
);
2626 EXPORT_SYMBOL(preempt_count_sub
);
2627 NOKPROBE_SYMBOL(preempt_count_sub
);
2632 * Print scheduling while atomic bug:
2634 static noinline
void __schedule_bug(struct task_struct
*prev
)
2636 if (oops_in_progress
)
2639 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
2640 prev
->comm
, prev
->pid
, preempt_count());
2642 debug_show_held_locks(prev
);
2644 if (irqs_disabled())
2645 print_irqtrace_events(prev
);
2646 #ifdef CONFIG_DEBUG_PREEMPT
2647 if (in_atomic_preempt_off()) {
2648 pr_err("Preemption disabled at:");
2649 print_ip_sym(current
->preempt_disable_ip
);
2654 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
2658 * Various schedule()-time debugging checks and statistics:
2660 static inline void schedule_debug(struct task_struct
*prev
)
2663 * Test if we are atomic. Since do_exit() needs to call into
2664 * schedule() atomically, we ignore that path. Otherwise whine
2665 * if we are scheduling when we should not.
2667 if (unlikely(in_atomic_preempt_off() && prev
->state
!= TASK_DEAD
))
2668 __schedule_bug(prev
);
2671 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2673 schedstat_inc(this_rq(), sched_count
);
2677 * Pick up the highest-prio task:
2679 static inline struct task_struct
*
2680 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
2682 const struct sched_class
*class = &fair_sched_class
;
2683 struct task_struct
*p
;
2686 * Optimization: we know that if all tasks are in
2687 * the fair class we can call that function directly:
2689 if (likely(prev
->sched_class
== class &&
2690 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
2691 p
= fair_sched_class
.pick_next_task(rq
, prev
);
2692 if (unlikely(p
== RETRY_TASK
))
2695 /* assumes fair_sched_class->next == idle_sched_class */
2697 p
= idle_sched_class
.pick_next_task(rq
, prev
);
2703 for_each_class(class) {
2704 p
= class->pick_next_task(rq
, prev
);
2706 if (unlikely(p
== RETRY_TASK
))
2712 BUG(); /* the idle class will always have a runnable task */
2716 * __schedule() is the main scheduler function.
2718 * The main means of driving the scheduler and thus entering this function are:
2720 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2722 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2723 * paths. For example, see arch/x86/entry_64.S.
2725 * To drive preemption between tasks, the scheduler sets the flag in timer
2726 * interrupt handler scheduler_tick().
2728 * 3. Wakeups don't really cause entry into schedule(). They add a
2729 * task to the run-queue and that's it.
2731 * Now, if the new task added to the run-queue preempts the current
2732 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2733 * called on the nearest possible occasion:
2735 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2737 * - in syscall or exception context, at the next outmost
2738 * preempt_enable(). (this might be as soon as the wake_up()'s
2741 * - in IRQ context, return from interrupt-handler to
2742 * preemptible context
2744 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2747 * - cond_resched() call
2748 * - explicit schedule() call
2749 * - return from syscall or exception to user-space
2750 * - return from interrupt-handler to user-space
2752 static void __sched
__schedule(void)
2754 struct task_struct
*prev
, *next
;
2755 unsigned long *switch_count
;
2761 cpu
= smp_processor_id();
2763 rcu_note_context_switch(cpu
);
2766 schedule_debug(prev
);
2768 if (sched_feat(HRTICK
))
2772 * Make sure that signal_pending_state()->signal_pending() below
2773 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2774 * done by the caller to avoid the race with signal_wake_up().
2776 smp_mb__before_spinlock();
2777 raw_spin_lock_irq(&rq
->lock
);
2779 switch_count
= &prev
->nivcsw
;
2780 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2781 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
2782 prev
->state
= TASK_RUNNING
;
2784 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
2788 * If a worker went to sleep, notify and ask workqueue
2789 * whether it wants to wake up a task to maintain
2792 if (prev
->flags
& PF_WQ_WORKER
) {
2793 struct task_struct
*to_wakeup
;
2795 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
2797 try_to_wake_up_local(to_wakeup
);
2800 switch_count
= &prev
->nvcsw
;
2803 if (task_on_rq_queued(prev
) || rq
->skip_clock_update
< 0)
2804 update_rq_clock(rq
);
2806 next
= pick_next_task(rq
, prev
);
2807 clear_tsk_need_resched(prev
);
2808 clear_preempt_need_resched();
2809 rq
->skip_clock_update
= 0;
2811 if (likely(prev
!= next
)) {
2816 context_switch(rq
, prev
, next
); /* unlocks the rq */
2818 * The context switch have flipped the stack from under us
2819 * and restored the local variables which were saved when
2820 * this task called schedule() in the past. prev == current
2821 * is still correct, but it can be moved to another cpu/rq.
2823 cpu
= smp_processor_id();
2826 raw_spin_unlock_irq(&rq
->lock
);
2830 sched_preempt_enable_no_resched();
2835 static inline void sched_submit_work(struct task_struct
*tsk
)
2837 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
2840 * If we are going to sleep and we have plugged IO queued,
2841 * make sure to submit it to avoid deadlocks.
2843 if (blk_needs_flush_plug(tsk
))
2844 blk_schedule_flush_plug(tsk
);
2847 asmlinkage __visible
void __sched
schedule(void)
2849 struct task_struct
*tsk
= current
;
2851 sched_submit_work(tsk
);
2854 EXPORT_SYMBOL(schedule
);
2856 #ifdef CONFIG_CONTEXT_TRACKING
2857 asmlinkage __visible
void __sched
schedule_user(void)
2860 * If we come here after a random call to set_need_resched(),
2861 * or we have been woken up remotely but the IPI has not yet arrived,
2862 * we haven't yet exited the RCU idle mode. Do it here manually until
2863 * we find a better solution.
2872 * schedule_preempt_disabled - called with preemption disabled
2874 * Returns with preemption disabled. Note: preempt_count must be 1
2876 void __sched
schedule_preempt_disabled(void)
2878 sched_preempt_enable_no_resched();
2883 #ifdef CONFIG_PREEMPT
2885 * this is the entry point to schedule() from in-kernel preemption
2886 * off of preempt_enable. Kernel preemptions off return from interrupt
2887 * occur there and call schedule directly.
2889 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
2892 * If there is a non-zero preempt_count or interrupts are disabled,
2893 * we do not want to preempt the current task. Just return..
2895 if (likely(!preemptible()))
2899 __preempt_count_add(PREEMPT_ACTIVE
);
2901 __preempt_count_sub(PREEMPT_ACTIVE
);
2904 * Check again in case we missed a preemption opportunity
2905 * between schedule and now.
2908 } while (need_resched());
2910 NOKPROBE_SYMBOL(preempt_schedule
);
2911 EXPORT_SYMBOL(preempt_schedule
);
2912 #endif /* CONFIG_PREEMPT */
2915 * this is the entry point to schedule() from kernel preemption
2916 * off of irq context.
2917 * Note, that this is called and return with irqs disabled. This will
2918 * protect us against recursive calling from irq.
2920 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
2922 enum ctx_state prev_state
;
2924 /* Catch callers which need to be fixed */
2925 BUG_ON(preempt_count() || !irqs_disabled());
2927 prev_state
= exception_enter();
2930 __preempt_count_add(PREEMPT_ACTIVE
);
2933 local_irq_disable();
2934 __preempt_count_sub(PREEMPT_ACTIVE
);
2937 * Check again in case we missed a preemption opportunity
2938 * between schedule and now.
2941 } while (need_resched());
2943 exception_exit(prev_state
);
2946 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
2949 return try_to_wake_up(curr
->private, mode
, wake_flags
);
2951 EXPORT_SYMBOL(default_wake_function
);
2953 #ifdef CONFIG_RT_MUTEXES
2956 * rt_mutex_setprio - set the current priority of a task
2958 * @prio: prio value (kernel-internal form)
2960 * This function changes the 'effective' priority of a task. It does
2961 * not touch ->normal_prio like __setscheduler().
2963 * Used by the rt_mutex code to implement priority inheritance
2964 * logic. Call site only calls if the priority of the task changed.
2966 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
2968 int oldprio
, queued
, running
, enqueue_flag
= 0;
2970 const struct sched_class
*prev_class
;
2972 BUG_ON(prio
> MAX_PRIO
);
2974 rq
= __task_rq_lock(p
);
2977 * Idle task boosting is a nono in general. There is one
2978 * exception, when PREEMPT_RT and NOHZ is active:
2980 * The idle task calls get_next_timer_interrupt() and holds
2981 * the timer wheel base->lock on the CPU and another CPU wants
2982 * to access the timer (probably to cancel it). We can safely
2983 * ignore the boosting request, as the idle CPU runs this code
2984 * with interrupts disabled and will complete the lock
2985 * protected section without being interrupted. So there is no
2986 * real need to boost.
2988 if (unlikely(p
== rq
->idle
)) {
2989 WARN_ON(p
!= rq
->curr
);
2990 WARN_ON(p
->pi_blocked_on
);
2994 trace_sched_pi_setprio(p
, prio
);
2996 prev_class
= p
->sched_class
;
2997 queued
= task_on_rq_queued(p
);
2998 running
= task_current(rq
, p
);
3000 dequeue_task(rq
, p
, 0);
3002 p
->sched_class
->put_prev_task(rq
, p
);
3005 * Boosting condition are:
3006 * 1. -rt task is running and holds mutex A
3007 * --> -dl task blocks on mutex A
3009 * 2. -dl task is running and holds mutex A
3010 * --> -dl task blocks on mutex A and could preempt the
3013 if (dl_prio(prio
)) {
3014 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3015 if (!dl_prio(p
->normal_prio
) ||
3016 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3017 p
->dl
.dl_boosted
= 1;
3018 p
->dl
.dl_throttled
= 0;
3019 enqueue_flag
= ENQUEUE_REPLENISH
;
3021 p
->dl
.dl_boosted
= 0;
3022 p
->sched_class
= &dl_sched_class
;
3023 } else if (rt_prio(prio
)) {
3024 if (dl_prio(oldprio
))
3025 p
->dl
.dl_boosted
= 0;
3027 enqueue_flag
= ENQUEUE_HEAD
;
3028 p
->sched_class
= &rt_sched_class
;
3030 if (dl_prio(oldprio
))
3031 p
->dl
.dl_boosted
= 0;
3032 p
->sched_class
= &fair_sched_class
;
3038 p
->sched_class
->set_curr_task(rq
);
3040 enqueue_task(rq
, p
, enqueue_flag
);
3042 check_class_changed(rq
, p
, prev_class
, oldprio
);
3044 __task_rq_unlock(rq
);
3048 void set_user_nice(struct task_struct
*p
, long nice
)
3050 int old_prio
, delta
, queued
;
3051 unsigned long flags
;
3054 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3057 * We have to be careful, if called from sys_setpriority(),
3058 * the task might be in the middle of scheduling on another CPU.
3060 rq
= task_rq_lock(p
, &flags
);
3062 * The RT priorities are set via sched_setscheduler(), but we still
3063 * allow the 'normal' nice value to be set - but as expected
3064 * it wont have any effect on scheduling until the task is
3065 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3067 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3068 p
->static_prio
= NICE_TO_PRIO(nice
);
3071 queued
= task_on_rq_queued(p
);
3073 dequeue_task(rq
, p
, 0);
3075 p
->static_prio
= NICE_TO_PRIO(nice
);
3078 p
->prio
= effective_prio(p
);
3079 delta
= p
->prio
- old_prio
;
3082 enqueue_task(rq
, p
, 0);
3084 * If the task increased its priority or is running and
3085 * lowered its priority, then reschedule its CPU:
3087 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3091 task_rq_unlock(rq
, p
, &flags
);
3093 EXPORT_SYMBOL(set_user_nice
);
3096 * can_nice - check if a task can reduce its nice value
3100 int can_nice(const struct task_struct
*p
, const int nice
)
3102 /* convert nice value [19,-20] to rlimit style value [1,40] */
3103 int nice_rlim
= nice_to_rlimit(nice
);
3105 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3106 capable(CAP_SYS_NICE
));
3109 #ifdef __ARCH_WANT_SYS_NICE
3112 * sys_nice - change the priority of the current process.
3113 * @increment: priority increment
3115 * sys_setpriority is a more generic, but much slower function that
3116 * does similar things.
3118 SYSCALL_DEFINE1(nice
, int, increment
)
3123 * Setpriority might change our priority at the same moment.
3124 * We don't have to worry. Conceptually one call occurs first
3125 * and we have a single winner.
3127 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3128 nice
= task_nice(current
) + increment
;
3130 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3131 if (increment
< 0 && !can_nice(current
, nice
))
3134 retval
= security_task_setnice(current
, nice
);
3138 set_user_nice(current
, nice
);
3145 * task_prio - return the priority value of a given task.
3146 * @p: the task in question.
3148 * Return: The priority value as seen by users in /proc.
3149 * RT tasks are offset by -200. Normal tasks are centered
3150 * around 0, value goes from -16 to +15.
3152 int task_prio(const struct task_struct
*p
)
3154 return p
->prio
- MAX_RT_PRIO
;
3158 * idle_cpu - is a given cpu idle currently?
3159 * @cpu: the processor in question.
3161 * Return: 1 if the CPU is currently idle. 0 otherwise.
3163 int idle_cpu(int cpu
)
3165 struct rq
*rq
= cpu_rq(cpu
);
3167 if (rq
->curr
!= rq
->idle
)
3174 if (!llist_empty(&rq
->wake_list
))
3182 * idle_task - return the idle task for a given cpu.
3183 * @cpu: the processor in question.
3185 * Return: The idle task for the cpu @cpu.
3187 struct task_struct
*idle_task(int cpu
)
3189 return cpu_rq(cpu
)->idle
;
3193 * find_process_by_pid - find a process with a matching PID value.
3194 * @pid: the pid in question.
3196 * The task of @pid, if found. %NULL otherwise.
3198 static struct task_struct
*find_process_by_pid(pid_t pid
)
3200 return pid
? find_task_by_vpid(pid
) : current
;
3204 * This function initializes the sched_dl_entity of a newly becoming
3205 * SCHED_DEADLINE task.
3207 * Only the static values are considered here, the actual runtime and the
3208 * absolute deadline will be properly calculated when the task is enqueued
3209 * for the first time with its new policy.
3212 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3214 struct sched_dl_entity
*dl_se
= &p
->dl
;
3216 init_dl_task_timer(dl_se
);
3217 dl_se
->dl_runtime
= attr
->sched_runtime
;
3218 dl_se
->dl_deadline
= attr
->sched_deadline
;
3219 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3220 dl_se
->flags
= attr
->sched_flags
;
3221 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3222 dl_se
->dl_throttled
= 0;
3224 dl_se
->dl_yielded
= 0;
3228 * sched_setparam() passes in -1 for its policy, to let the functions
3229 * it calls know not to change it.
3231 #define SETPARAM_POLICY -1
3233 static void __setscheduler_params(struct task_struct
*p
,
3234 const struct sched_attr
*attr
)
3236 int policy
= attr
->sched_policy
;
3238 if (policy
== SETPARAM_POLICY
)
3243 if (dl_policy(policy
))
3244 __setparam_dl(p
, attr
);
3245 else if (fair_policy(policy
))
3246 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3249 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3250 * !rt_policy. Always setting this ensures that things like
3251 * getparam()/getattr() don't report silly values for !rt tasks.
3253 p
->rt_priority
= attr
->sched_priority
;
3254 p
->normal_prio
= normal_prio(p
);
3258 /* Actually do priority change: must hold pi & rq lock. */
3259 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3260 const struct sched_attr
*attr
)
3262 __setscheduler_params(p
, attr
);
3265 * If we get here, there was no pi waiters boosting the
3266 * task. It is safe to use the normal prio.
3268 p
->prio
= normal_prio(p
);
3270 if (dl_prio(p
->prio
))
3271 p
->sched_class
= &dl_sched_class
;
3272 else if (rt_prio(p
->prio
))
3273 p
->sched_class
= &rt_sched_class
;
3275 p
->sched_class
= &fair_sched_class
;
3279 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3281 struct sched_dl_entity
*dl_se
= &p
->dl
;
3283 attr
->sched_priority
= p
->rt_priority
;
3284 attr
->sched_runtime
= dl_se
->dl_runtime
;
3285 attr
->sched_deadline
= dl_se
->dl_deadline
;
3286 attr
->sched_period
= dl_se
->dl_period
;
3287 attr
->sched_flags
= dl_se
->flags
;
3291 * This function validates the new parameters of a -deadline task.
3292 * We ask for the deadline not being zero, and greater or equal
3293 * than the runtime, as well as the period of being zero or
3294 * greater than deadline. Furthermore, we have to be sure that
3295 * user parameters are above the internal resolution of 1us (we
3296 * check sched_runtime only since it is always the smaller one) and
3297 * below 2^63 ns (we have to check both sched_deadline and
3298 * sched_period, as the latter can be zero).
3301 __checkparam_dl(const struct sched_attr
*attr
)
3304 if (attr
->sched_deadline
== 0)
3308 * Since we truncate DL_SCALE bits, make sure we're at least
3311 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3315 * Since we use the MSB for wrap-around and sign issues, make
3316 * sure it's not set (mind that period can be equal to zero).
3318 if (attr
->sched_deadline
& (1ULL << 63) ||
3319 attr
->sched_period
& (1ULL << 63))
3322 /* runtime <= deadline <= period (if period != 0) */
3323 if ((attr
->sched_period
!= 0 &&
3324 attr
->sched_period
< attr
->sched_deadline
) ||
3325 attr
->sched_deadline
< attr
->sched_runtime
)
3332 * check the target process has a UID that matches the current process's
3334 static bool check_same_owner(struct task_struct
*p
)
3336 const struct cred
*cred
= current_cred(), *pcred
;
3340 pcred
= __task_cred(p
);
3341 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3342 uid_eq(cred
->euid
, pcred
->uid
));
3347 static int __sched_setscheduler(struct task_struct
*p
,
3348 const struct sched_attr
*attr
,
3351 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3352 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3353 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
3354 int policy
= attr
->sched_policy
;
3355 unsigned long flags
;
3356 const struct sched_class
*prev_class
;
3360 /* may grab non-irq protected spin_locks */
3361 BUG_ON(in_interrupt());
3363 /* double check policy once rq lock held */
3365 reset_on_fork
= p
->sched_reset_on_fork
;
3366 policy
= oldpolicy
= p
->policy
;
3368 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3370 if (policy
!= SCHED_DEADLINE
&&
3371 policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3372 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
3373 policy
!= SCHED_IDLE
)
3377 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3381 * Valid priorities for SCHED_FIFO and SCHED_RR are
3382 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3383 * SCHED_BATCH and SCHED_IDLE is 0.
3385 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3386 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3388 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3389 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3393 * Allow unprivileged RT tasks to decrease priority:
3395 if (user
&& !capable(CAP_SYS_NICE
)) {
3396 if (fair_policy(policy
)) {
3397 if (attr
->sched_nice
< task_nice(p
) &&
3398 !can_nice(p
, attr
->sched_nice
))
3402 if (rt_policy(policy
)) {
3403 unsigned long rlim_rtprio
=
3404 task_rlimit(p
, RLIMIT_RTPRIO
);
3406 /* can't set/change the rt policy */
3407 if (policy
!= p
->policy
&& !rlim_rtprio
)
3410 /* can't increase priority */
3411 if (attr
->sched_priority
> p
->rt_priority
&&
3412 attr
->sched_priority
> rlim_rtprio
)
3417 * Can't set/change SCHED_DEADLINE policy at all for now
3418 * (safest behavior); in the future we would like to allow
3419 * unprivileged DL tasks to increase their relative deadline
3420 * or reduce their runtime (both ways reducing utilization)
3422 if (dl_policy(policy
))
3426 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3427 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3429 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
3430 if (!can_nice(p
, task_nice(p
)))
3434 /* can't change other user's priorities */
3435 if (!check_same_owner(p
))
3438 /* Normal users shall not reset the sched_reset_on_fork flag */
3439 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3444 retval
= security_task_setscheduler(p
);
3450 * make sure no PI-waiters arrive (or leave) while we are
3451 * changing the priority of the task:
3453 * To be able to change p->policy safely, the appropriate
3454 * runqueue lock must be held.
3456 rq
= task_rq_lock(p
, &flags
);
3459 * Changing the policy of the stop threads its a very bad idea
3461 if (p
== rq
->stop
) {
3462 task_rq_unlock(rq
, p
, &flags
);
3467 * If not changing anything there's no need to proceed further,
3468 * but store a possible modification of reset_on_fork.
3470 if (unlikely(policy
== p
->policy
)) {
3471 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
3473 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3475 if (dl_policy(policy
))
3478 p
->sched_reset_on_fork
= reset_on_fork
;
3479 task_rq_unlock(rq
, p
, &flags
);
3485 #ifdef CONFIG_RT_GROUP_SCHED
3487 * Do not allow realtime tasks into groups that have no runtime
3490 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3491 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3492 !task_group_is_autogroup(task_group(p
))) {
3493 task_rq_unlock(rq
, p
, &flags
);
3498 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3499 cpumask_t
*span
= rq
->rd
->span
;
3502 * Don't allow tasks with an affinity mask smaller than
3503 * the entire root_domain to become SCHED_DEADLINE. We
3504 * will also fail if there's no bandwidth available.
3506 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3507 rq
->rd
->dl_bw
.bw
== 0) {
3508 task_rq_unlock(rq
, p
, &flags
);
3515 /* recheck policy now with rq lock held */
3516 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3517 policy
= oldpolicy
= -1;
3518 task_rq_unlock(rq
, p
, &flags
);
3523 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3524 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3527 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3528 task_rq_unlock(rq
, p
, &flags
);
3532 p
->sched_reset_on_fork
= reset_on_fork
;
3536 * Special case for priority boosted tasks.
3538 * If the new priority is lower or equal (user space view)
3539 * than the current (boosted) priority, we just store the new
3540 * normal parameters and do not touch the scheduler class and
3541 * the runqueue. This will be done when the task deboost
3544 if (rt_mutex_check_prio(p
, newprio
)) {
3545 __setscheduler_params(p
, attr
);
3546 task_rq_unlock(rq
, p
, &flags
);
3550 queued
= task_on_rq_queued(p
);
3551 running
= task_current(rq
, p
);
3553 dequeue_task(rq
, p
, 0);
3555 p
->sched_class
->put_prev_task(rq
, p
);
3557 prev_class
= p
->sched_class
;
3558 __setscheduler(rq
, p
, attr
);
3561 p
->sched_class
->set_curr_task(rq
);
3564 * We enqueue to tail when the priority of a task is
3565 * increased (user space view).
3567 enqueue_task(rq
, p
, oldprio
<= p
->prio
? ENQUEUE_HEAD
: 0);
3570 check_class_changed(rq
, p
, prev_class
, oldprio
);
3571 task_rq_unlock(rq
, p
, &flags
);
3573 rt_mutex_adjust_pi(p
);
3578 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
3579 const struct sched_param
*param
, bool check
)
3581 struct sched_attr attr
= {
3582 .sched_policy
= policy
,
3583 .sched_priority
= param
->sched_priority
,
3584 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
3587 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3588 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
3589 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3590 policy
&= ~SCHED_RESET_ON_FORK
;
3591 attr
.sched_policy
= policy
;
3594 return __sched_setscheduler(p
, &attr
, check
);
3597 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3598 * @p: the task in question.
3599 * @policy: new policy.
3600 * @param: structure containing the new RT priority.
3602 * Return: 0 on success. An error code otherwise.
3604 * NOTE that the task may be already dead.
3606 int sched_setscheduler(struct task_struct
*p
, int policy
,
3607 const struct sched_param
*param
)
3609 return _sched_setscheduler(p
, policy
, param
, true);
3611 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3613 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
3615 return __sched_setscheduler(p
, attr
, true);
3617 EXPORT_SYMBOL_GPL(sched_setattr
);
3620 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3621 * @p: the task in question.
3622 * @policy: new policy.
3623 * @param: structure containing the new RT priority.
3625 * Just like sched_setscheduler, only don't bother checking if the
3626 * current context has permission. For example, this is needed in
3627 * stop_machine(): we create temporary high priority worker threads,
3628 * but our caller might not have that capability.
3630 * Return: 0 on success. An error code otherwise.
3632 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
3633 const struct sched_param
*param
)
3635 return _sched_setscheduler(p
, policy
, param
, false);
3639 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3641 struct sched_param lparam
;
3642 struct task_struct
*p
;
3645 if (!param
|| pid
< 0)
3647 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3652 p
= find_process_by_pid(pid
);
3654 retval
= sched_setscheduler(p
, policy
, &lparam
);
3661 * Mimics kernel/events/core.c perf_copy_attr().
3663 static int sched_copy_attr(struct sched_attr __user
*uattr
,
3664 struct sched_attr
*attr
)
3669 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
3673 * zero the full structure, so that a short copy will be nice.
3675 memset(attr
, 0, sizeof(*attr
));
3677 ret
= get_user(size
, &uattr
->size
);
3681 if (size
> PAGE_SIZE
) /* silly large */
3684 if (!size
) /* abi compat */
3685 size
= SCHED_ATTR_SIZE_VER0
;
3687 if (size
< SCHED_ATTR_SIZE_VER0
)
3691 * If we're handed a bigger struct than we know of,
3692 * ensure all the unknown bits are 0 - i.e. new
3693 * user-space does not rely on any kernel feature
3694 * extensions we dont know about yet.
3696 if (size
> sizeof(*attr
)) {
3697 unsigned char __user
*addr
;
3698 unsigned char __user
*end
;
3701 addr
= (void __user
*)uattr
+ sizeof(*attr
);
3702 end
= (void __user
*)uattr
+ size
;
3704 for (; addr
< end
; addr
++) {
3705 ret
= get_user(val
, addr
);
3711 size
= sizeof(*attr
);
3714 ret
= copy_from_user(attr
, uattr
, size
);
3719 * XXX: do we want to be lenient like existing syscalls; or do we want
3720 * to be strict and return an error on out-of-bounds values?
3722 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
3727 put_user(sizeof(*attr
), &uattr
->size
);
3732 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3733 * @pid: the pid in question.
3734 * @policy: new policy.
3735 * @param: structure containing the new RT priority.
3737 * Return: 0 on success. An error code otherwise.
3739 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
3740 struct sched_param __user
*, param
)
3742 /* negative values for policy are not valid */
3746 return do_sched_setscheduler(pid
, policy
, param
);
3750 * sys_sched_setparam - set/change the RT priority of a thread
3751 * @pid: the pid in question.
3752 * @param: structure containing the new RT priority.
3754 * Return: 0 on success. An error code otherwise.
3756 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3758 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
3762 * sys_sched_setattr - same as above, but with extended sched_attr
3763 * @pid: the pid in question.
3764 * @uattr: structure containing the extended parameters.
3765 * @flags: for future extension.
3767 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3768 unsigned int, flags
)
3770 struct sched_attr attr
;
3771 struct task_struct
*p
;
3774 if (!uattr
|| pid
< 0 || flags
)
3777 retval
= sched_copy_attr(uattr
, &attr
);
3781 if ((int)attr
.sched_policy
< 0)
3786 p
= find_process_by_pid(pid
);
3788 retval
= sched_setattr(p
, &attr
);
3795 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3796 * @pid: the pid in question.
3798 * Return: On success, the policy of the thread. Otherwise, a negative error
3801 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
3803 struct task_struct
*p
;
3811 p
= find_process_by_pid(pid
);
3813 retval
= security_task_getscheduler(p
);
3816 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
3823 * sys_sched_getparam - get the RT priority of a thread
3824 * @pid: the pid in question.
3825 * @param: structure containing the RT priority.
3827 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3830 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3832 struct sched_param lp
= { .sched_priority
= 0 };
3833 struct task_struct
*p
;
3836 if (!param
|| pid
< 0)
3840 p
= find_process_by_pid(pid
);
3845 retval
= security_task_getscheduler(p
);
3849 if (task_has_rt_policy(p
))
3850 lp
.sched_priority
= p
->rt_priority
;
3854 * This one might sleep, we cannot do it with a spinlock held ...
3856 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3865 static int sched_read_attr(struct sched_attr __user
*uattr
,
3866 struct sched_attr
*attr
,
3871 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
3875 * If we're handed a smaller struct than we know of,
3876 * ensure all the unknown bits are 0 - i.e. old
3877 * user-space does not get uncomplete information.
3879 if (usize
< sizeof(*attr
)) {
3880 unsigned char *addr
;
3883 addr
= (void *)attr
+ usize
;
3884 end
= (void *)attr
+ sizeof(*attr
);
3886 for (; addr
< end
; addr
++) {
3894 ret
= copy_to_user(uattr
, attr
, attr
->size
);
3902 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3903 * @pid: the pid in question.
3904 * @uattr: structure containing the extended parameters.
3905 * @size: sizeof(attr) for fwd/bwd comp.
3906 * @flags: for future extension.
3908 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3909 unsigned int, size
, unsigned int, flags
)
3911 struct sched_attr attr
= {
3912 .size
= sizeof(struct sched_attr
),
3914 struct task_struct
*p
;
3917 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
3918 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
3922 p
= find_process_by_pid(pid
);
3927 retval
= security_task_getscheduler(p
);
3931 attr
.sched_policy
= p
->policy
;
3932 if (p
->sched_reset_on_fork
)
3933 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3934 if (task_has_dl_policy(p
))
3935 __getparam_dl(p
, &attr
);
3936 else if (task_has_rt_policy(p
))
3937 attr
.sched_priority
= p
->rt_priority
;
3939 attr
.sched_nice
= task_nice(p
);
3943 retval
= sched_read_attr(uattr
, &attr
, size
);
3951 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
3953 cpumask_var_t cpus_allowed
, new_mask
;
3954 struct task_struct
*p
;
3959 p
= find_process_by_pid(pid
);
3965 /* Prevent p going away */
3969 if (p
->flags
& PF_NO_SETAFFINITY
) {
3973 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
3977 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
3979 goto out_free_cpus_allowed
;
3982 if (!check_same_owner(p
)) {
3984 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
3991 retval
= security_task_setscheduler(p
);
3996 cpuset_cpus_allowed(p
, cpus_allowed
);
3997 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4000 * Since bandwidth control happens on root_domain basis,
4001 * if admission test is enabled, we only admit -deadline
4002 * tasks allowed to run on all the CPUs in the task's
4006 if (task_has_dl_policy(p
)) {
4007 const struct cpumask
*span
= task_rq(p
)->rd
->span
;
4009 if (dl_bandwidth_enabled() && !cpumask_subset(span
, new_mask
)) {
4016 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4019 cpuset_cpus_allowed(p
, cpus_allowed
);
4020 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4022 * We must have raced with a concurrent cpuset
4023 * update. Just reset the cpus_allowed to the
4024 * cpuset's cpus_allowed
4026 cpumask_copy(new_mask
, cpus_allowed
);
4031 free_cpumask_var(new_mask
);
4032 out_free_cpus_allowed
:
4033 free_cpumask_var(cpus_allowed
);
4039 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4040 struct cpumask
*new_mask
)
4042 if (len
< cpumask_size())
4043 cpumask_clear(new_mask
);
4044 else if (len
> cpumask_size())
4045 len
= cpumask_size();
4047 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4051 * sys_sched_setaffinity - set the cpu affinity of a process
4052 * @pid: pid of the process
4053 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4054 * @user_mask_ptr: user-space pointer to the new cpu mask
4056 * Return: 0 on success. An error code otherwise.
4058 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4059 unsigned long __user
*, user_mask_ptr
)
4061 cpumask_var_t new_mask
;
4064 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4067 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4069 retval
= sched_setaffinity(pid
, new_mask
);
4070 free_cpumask_var(new_mask
);
4074 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4076 struct task_struct
*p
;
4077 unsigned long flags
;
4083 p
= find_process_by_pid(pid
);
4087 retval
= security_task_getscheduler(p
);
4091 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4092 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4093 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4102 * sys_sched_getaffinity - get the cpu affinity of a process
4103 * @pid: pid of the process
4104 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4105 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4107 * Return: 0 on success. An error code otherwise.
4109 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4110 unsigned long __user
*, user_mask_ptr
)
4115 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4117 if (len
& (sizeof(unsigned long)-1))
4120 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4123 ret
= sched_getaffinity(pid
, mask
);
4125 size_t retlen
= min_t(size_t, len
, cpumask_size());
4127 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4132 free_cpumask_var(mask
);
4138 * sys_sched_yield - yield the current processor to other threads.
4140 * This function yields the current CPU to other tasks. If there are no
4141 * other threads running on this CPU then this function will return.
4145 SYSCALL_DEFINE0(sched_yield
)
4147 struct rq
*rq
= this_rq_lock();
4149 schedstat_inc(rq
, yld_count
);
4150 current
->sched_class
->yield_task(rq
);
4153 * Since we are going to call schedule() anyway, there's
4154 * no need to preempt or enable interrupts:
4156 __release(rq
->lock
);
4157 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4158 do_raw_spin_unlock(&rq
->lock
);
4159 sched_preempt_enable_no_resched();
4166 static void __cond_resched(void)
4168 __preempt_count_add(PREEMPT_ACTIVE
);
4170 __preempt_count_sub(PREEMPT_ACTIVE
);
4173 int __sched
_cond_resched(void)
4175 if (should_resched()) {
4181 EXPORT_SYMBOL(_cond_resched
);
4184 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4185 * call schedule, and on return reacquire the lock.
4187 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4188 * operations here to prevent schedule() from being called twice (once via
4189 * spin_unlock(), once by hand).
4191 int __cond_resched_lock(spinlock_t
*lock
)
4193 int resched
= should_resched();
4196 lockdep_assert_held(lock
);
4198 if (spin_needbreak(lock
) || resched
) {
4209 EXPORT_SYMBOL(__cond_resched_lock
);
4211 int __sched
__cond_resched_softirq(void)
4213 BUG_ON(!in_softirq());
4215 if (should_resched()) {
4223 EXPORT_SYMBOL(__cond_resched_softirq
);
4226 * yield - yield the current processor to other threads.
4228 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4230 * The scheduler is at all times free to pick the calling task as the most
4231 * eligible task to run, if removing the yield() call from your code breaks
4232 * it, its already broken.
4234 * Typical broken usage is:
4239 * where one assumes that yield() will let 'the other' process run that will
4240 * make event true. If the current task is a SCHED_FIFO task that will never
4241 * happen. Never use yield() as a progress guarantee!!
4243 * If you want to use yield() to wait for something, use wait_event().
4244 * If you want to use yield() to be 'nice' for others, use cond_resched().
4245 * If you still want to use yield(), do not!
4247 void __sched
yield(void)
4249 set_current_state(TASK_RUNNING
);
4252 EXPORT_SYMBOL(yield
);
4255 * yield_to - yield the current processor to another thread in
4256 * your thread group, or accelerate that thread toward the
4257 * processor it's on.
4259 * @preempt: whether task preemption is allowed or not
4261 * It's the caller's job to ensure that the target task struct
4262 * can't go away on us before we can do any checks.
4265 * true (>0) if we indeed boosted the target task.
4266 * false (0) if we failed to boost the target.
4267 * -ESRCH if there's no task to yield to.
4269 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4271 struct task_struct
*curr
= current
;
4272 struct rq
*rq
, *p_rq
;
4273 unsigned long flags
;
4276 local_irq_save(flags
);
4282 * If we're the only runnable task on the rq and target rq also
4283 * has only one task, there's absolutely no point in yielding.
4285 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4290 double_rq_lock(rq
, p_rq
);
4291 if (task_rq(p
) != p_rq
) {
4292 double_rq_unlock(rq
, p_rq
);
4296 if (!curr
->sched_class
->yield_to_task
)
4299 if (curr
->sched_class
!= p
->sched_class
)
4302 if (task_running(p_rq
, p
) || p
->state
)
4305 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4307 schedstat_inc(rq
, yld_count
);
4309 * Make p's CPU reschedule; pick_next_entity takes care of
4312 if (preempt
&& rq
!= p_rq
)
4317 double_rq_unlock(rq
, p_rq
);
4319 local_irq_restore(flags
);
4326 EXPORT_SYMBOL_GPL(yield_to
);
4329 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4330 * that process accounting knows that this is a task in IO wait state.
4332 void __sched
io_schedule(void)
4334 struct rq
*rq
= raw_rq();
4336 delayacct_blkio_start();
4337 atomic_inc(&rq
->nr_iowait
);
4338 blk_flush_plug(current
);
4339 current
->in_iowait
= 1;
4341 current
->in_iowait
= 0;
4342 atomic_dec(&rq
->nr_iowait
);
4343 delayacct_blkio_end();
4345 EXPORT_SYMBOL(io_schedule
);
4347 long __sched
io_schedule_timeout(long timeout
)
4349 struct rq
*rq
= raw_rq();
4352 delayacct_blkio_start();
4353 atomic_inc(&rq
->nr_iowait
);
4354 blk_flush_plug(current
);
4355 current
->in_iowait
= 1;
4356 ret
= schedule_timeout(timeout
);
4357 current
->in_iowait
= 0;
4358 atomic_dec(&rq
->nr_iowait
);
4359 delayacct_blkio_end();
4364 * sys_sched_get_priority_max - return maximum RT priority.
4365 * @policy: scheduling class.
4367 * Return: On success, this syscall returns the maximum
4368 * rt_priority that can be used by a given scheduling class.
4369 * On failure, a negative error code is returned.
4371 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4378 ret
= MAX_USER_RT_PRIO
-1;
4380 case SCHED_DEADLINE
:
4391 * sys_sched_get_priority_min - return minimum RT priority.
4392 * @policy: scheduling class.
4394 * Return: On success, this syscall returns the minimum
4395 * rt_priority that can be used by a given scheduling class.
4396 * On failure, a negative error code is returned.
4398 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4407 case SCHED_DEADLINE
:
4417 * sys_sched_rr_get_interval - return the default timeslice of a process.
4418 * @pid: pid of the process.
4419 * @interval: userspace pointer to the timeslice value.
4421 * this syscall writes the default timeslice value of a given process
4422 * into the user-space timespec buffer. A value of '0' means infinity.
4424 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4427 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4428 struct timespec __user
*, interval
)
4430 struct task_struct
*p
;
4431 unsigned int time_slice
;
4432 unsigned long flags
;
4442 p
= find_process_by_pid(pid
);
4446 retval
= security_task_getscheduler(p
);
4450 rq
= task_rq_lock(p
, &flags
);
4452 if (p
->sched_class
->get_rr_interval
)
4453 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4454 task_rq_unlock(rq
, p
, &flags
);
4457 jiffies_to_timespec(time_slice
, &t
);
4458 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4466 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4468 void sched_show_task(struct task_struct
*p
)
4470 unsigned long free
= 0;
4474 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4475 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4476 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4477 #if BITS_PER_LONG == 32
4478 if (state
== TASK_RUNNING
)
4479 printk(KERN_CONT
" running ");
4481 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4483 if (state
== TASK_RUNNING
)
4484 printk(KERN_CONT
" running task ");
4486 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4488 #ifdef CONFIG_DEBUG_STACK_USAGE
4489 free
= stack_not_used(p
);
4492 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4494 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4495 task_pid_nr(p
), ppid
,
4496 (unsigned long)task_thread_info(p
)->flags
);
4498 print_worker_info(KERN_INFO
, p
);
4499 show_stack(p
, NULL
);
4502 void show_state_filter(unsigned long state_filter
)
4504 struct task_struct
*g
, *p
;
4506 #if BITS_PER_LONG == 32
4508 " task PC stack pid father\n");
4511 " task PC stack pid father\n");
4514 for_each_process_thread(g
, p
) {
4516 * reset the NMI-timeout, listing all files on a slow
4517 * console might take a lot of time:
4519 touch_nmi_watchdog();
4520 if (!state_filter
|| (p
->state
& state_filter
))
4524 touch_all_softlockup_watchdogs();
4526 #ifdef CONFIG_SCHED_DEBUG
4527 sysrq_sched_debug_show();
4531 * Only show locks if all tasks are dumped:
4534 debug_show_all_locks();
4537 void init_idle_bootup_task(struct task_struct
*idle
)
4539 idle
->sched_class
= &idle_sched_class
;
4543 * init_idle - set up an idle thread for a given CPU
4544 * @idle: task in question
4545 * @cpu: cpu the idle task belongs to
4547 * NOTE: this function does not set the idle thread's NEED_RESCHED
4548 * flag, to make booting more robust.
4550 void init_idle(struct task_struct
*idle
, int cpu
)
4552 struct rq
*rq
= cpu_rq(cpu
);
4553 unsigned long flags
;
4555 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4557 __sched_fork(0, idle
);
4558 idle
->state
= TASK_RUNNING
;
4559 idle
->se
.exec_start
= sched_clock();
4561 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4563 * We're having a chicken and egg problem, even though we are
4564 * holding rq->lock, the cpu isn't yet set to this cpu so the
4565 * lockdep check in task_group() will fail.
4567 * Similar case to sched_fork(). / Alternatively we could
4568 * use task_rq_lock() here and obtain the other rq->lock.
4573 __set_task_cpu(idle
, cpu
);
4576 rq
->curr
= rq
->idle
= idle
;
4577 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
4578 #if defined(CONFIG_SMP)
4581 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4583 /* Set the preempt count _outside_ the spinlocks! */
4584 init_idle_preempt_count(idle
, cpu
);
4587 * The idle tasks have their own, simple scheduling class:
4589 idle
->sched_class
= &idle_sched_class
;
4590 ftrace_graph_init_idle_task(idle
, cpu
);
4591 vtime_init_idle(idle
, cpu
);
4592 #if defined(CONFIG_SMP)
4593 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4598 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
4600 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
4601 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
4603 cpumask_copy(&p
->cpus_allowed
, new_mask
);
4604 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
4608 * This is how migration works:
4610 * 1) we invoke migration_cpu_stop() on the target CPU using
4612 * 2) stopper starts to run (implicitly forcing the migrated thread
4614 * 3) it checks whether the migrated task is still in the wrong runqueue.
4615 * 4) if it's in the wrong runqueue then the migration thread removes
4616 * it and puts it into the right queue.
4617 * 5) stopper completes and stop_one_cpu() returns and the migration
4622 * Change a given task's CPU affinity. Migrate the thread to a
4623 * proper CPU and schedule it away if the CPU it's executing on
4624 * is removed from the allowed bitmask.
4626 * NOTE: the caller must have a valid reference to the task, the
4627 * task must not exit() & deallocate itself prematurely. The
4628 * call is not atomic; no spinlocks may be held.
4630 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
4632 unsigned long flags
;
4634 unsigned int dest_cpu
;
4637 rq
= task_rq_lock(p
, &flags
);
4639 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
4642 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
4647 do_set_cpus_allowed(p
, new_mask
);
4649 /* Can the task run on the task's current CPU? If so, we're done */
4650 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
4653 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
4654 if (task_on_rq_queued(p
)) {
4655 struct migration_arg arg
= { p
, dest_cpu
};
4656 /* Need help from migration thread: drop lock and wait. */
4657 task_rq_unlock(rq
, p
, &flags
);
4658 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
4659 tlb_migrate_finish(p
->mm
);
4663 task_rq_unlock(rq
, p
, &flags
);
4667 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
4670 * Move (not current) task off this cpu, onto dest cpu. We're doing
4671 * this because either it can't run here any more (set_cpus_allowed()
4672 * away from this CPU, or CPU going down), or because we're
4673 * attempting to rebalance this task on exec (sched_exec).
4675 * So we race with normal scheduler movements, but that's OK, as long
4676 * as the task is no longer on this CPU.
4678 * Returns non-zero if task was successfully migrated.
4680 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4685 if (unlikely(!cpu_active(dest_cpu
)))
4688 rq
= cpu_rq(src_cpu
);
4690 raw_spin_lock(&p
->pi_lock
);
4691 raw_spin_lock(&rq
->lock
);
4692 /* Already moved. */
4693 if (task_cpu(p
) != src_cpu
)
4696 /* Affinity changed (again). */
4697 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
4701 * If we're not on a rq, the next wake-up will ensure we're
4704 if (task_on_rq_queued(p
)) {
4705 dequeue_task(rq
, p
, 0);
4706 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
4707 set_task_cpu(p
, dest_cpu
);
4708 raw_spin_unlock(&rq
->lock
);
4710 rq
= cpu_rq(dest_cpu
);
4711 raw_spin_lock(&rq
->lock
);
4712 BUG_ON(task_rq(p
) != rq
);
4713 p
->on_rq
= TASK_ON_RQ_QUEUED
;
4714 enqueue_task(rq
, p
, 0);
4715 check_preempt_curr(rq
, p
, 0);
4720 raw_spin_unlock(&rq
->lock
);
4721 raw_spin_unlock(&p
->pi_lock
);
4725 #ifdef CONFIG_NUMA_BALANCING
4726 /* Migrate current task p to target_cpu */
4727 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
4729 struct migration_arg arg
= { p
, target_cpu
};
4730 int curr_cpu
= task_cpu(p
);
4732 if (curr_cpu
== target_cpu
)
4735 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
4738 /* TODO: This is not properly updating schedstats */
4740 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
4741 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
4745 * Requeue a task on a given node and accurately track the number of NUMA
4746 * tasks on the runqueues
4748 void sched_setnuma(struct task_struct
*p
, int nid
)
4751 unsigned long flags
;
4752 bool queued
, running
;
4754 rq
= task_rq_lock(p
, &flags
);
4755 queued
= task_on_rq_queued(p
);
4756 running
= task_current(rq
, p
);
4759 dequeue_task(rq
, p
, 0);
4761 p
->sched_class
->put_prev_task(rq
, p
);
4763 p
->numa_preferred_nid
= nid
;
4766 p
->sched_class
->set_curr_task(rq
);
4768 enqueue_task(rq
, p
, 0);
4769 task_rq_unlock(rq
, p
, &flags
);
4774 * migration_cpu_stop - this will be executed by a highprio stopper thread
4775 * and performs thread migration by bumping thread off CPU then
4776 * 'pushing' onto another runqueue.
4778 static int migration_cpu_stop(void *data
)
4780 struct migration_arg
*arg
= data
;
4783 * The original target cpu might have gone down and we might
4784 * be on another cpu but it doesn't matter.
4786 local_irq_disable();
4787 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
4792 #ifdef CONFIG_HOTPLUG_CPU
4795 * Ensures that the idle task is using init_mm right before its cpu goes
4798 void idle_task_exit(void)
4800 struct mm_struct
*mm
= current
->active_mm
;
4802 BUG_ON(cpu_online(smp_processor_id()));
4804 if (mm
!= &init_mm
) {
4805 switch_mm(mm
, &init_mm
, current
);
4806 finish_arch_post_lock_switch();
4812 * Since this CPU is going 'away' for a while, fold any nr_active delta
4813 * we might have. Assumes we're called after migrate_tasks() so that the
4814 * nr_active count is stable.
4816 * Also see the comment "Global load-average calculations".
4818 static void calc_load_migrate(struct rq
*rq
)
4820 long delta
= calc_load_fold_active(rq
);
4822 atomic_long_add(delta
, &calc_load_tasks
);
4825 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
4829 static const struct sched_class fake_sched_class
= {
4830 .put_prev_task
= put_prev_task_fake
,
4833 static struct task_struct fake_task
= {
4835 * Avoid pull_{rt,dl}_task()
4837 .prio
= MAX_PRIO
+ 1,
4838 .sched_class
= &fake_sched_class
,
4842 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4843 * try_to_wake_up()->select_task_rq().
4845 * Called with rq->lock held even though we'er in stop_machine() and
4846 * there's no concurrency possible, we hold the required locks anyway
4847 * because of lock validation efforts.
4849 static void migrate_tasks(unsigned int dead_cpu
)
4851 struct rq
*rq
= cpu_rq(dead_cpu
);
4852 struct task_struct
*next
, *stop
= rq
->stop
;
4856 * Fudge the rq selection such that the below task selection loop
4857 * doesn't get stuck on the currently eligible stop task.
4859 * We're currently inside stop_machine() and the rq is either stuck
4860 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4861 * either way we should never end up calling schedule() until we're
4867 * put_prev_task() and pick_next_task() sched
4868 * class method both need to have an up-to-date
4869 * value of rq->clock[_task]
4871 update_rq_clock(rq
);
4875 * There's this thread running, bail when that's the only
4878 if (rq
->nr_running
== 1)
4881 next
= pick_next_task(rq
, &fake_task
);
4883 next
->sched_class
->put_prev_task(rq
, next
);
4885 /* Find suitable destination for @next, with force if needed. */
4886 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
4887 raw_spin_unlock(&rq
->lock
);
4889 __migrate_task(next
, dead_cpu
, dest_cpu
);
4891 raw_spin_lock(&rq
->lock
);
4897 #endif /* CONFIG_HOTPLUG_CPU */
4899 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4901 static struct ctl_table sd_ctl_dir
[] = {
4903 .procname
= "sched_domain",
4909 static struct ctl_table sd_ctl_root
[] = {
4911 .procname
= "kernel",
4913 .child
= sd_ctl_dir
,
4918 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
4920 struct ctl_table
*entry
=
4921 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
4926 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
4928 struct ctl_table
*entry
;
4931 * In the intermediate directories, both the child directory and
4932 * procname are dynamically allocated and could fail but the mode
4933 * will always be set. In the lowest directory the names are
4934 * static strings and all have proc handlers.
4936 for (entry
= *tablep
; entry
->mode
; entry
++) {
4938 sd_free_ctl_entry(&entry
->child
);
4939 if (entry
->proc_handler
== NULL
)
4940 kfree(entry
->procname
);
4947 static int min_load_idx
= 0;
4948 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
4951 set_table_entry(struct ctl_table
*entry
,
4952 const char *procname
, void *data
, int maxlen
,
4953 umode_t mode
, proc_handler
*proc_handler
,
4956 entry
->procname
= procname
;
4958 entry
->maxlen
= maxlen
;
4960 entry
->proc_handler
= proc_handler
;
4963 entry
->extra1
= &min_load_idx
;
4964 entry
->extra2
= &max_load_idx
;
4968 static struct ctl_table
*
4969 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
4971 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
4976 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
4977 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4978 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
4979 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4980 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
4981 sizeof(int), 0644, proc_dointvec_minmax
, true);
4982 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
4983 sizeof(int), 0644, proc_dointvec_minmax
, true);
4984 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
4985 sizeof(int), 0644, proc_dointvec_minmax
, true);
4986 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
4987 sizeof(int), 0644, proc_dointvec_minmax
, true);
4988 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
4989 sizeof(int), 0644, proc_dointvec_minmax
, true);
4990 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
4991 sizeof(int), 0644, proc_dointvec_minmax
, false);
4992 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
4993 sizeof(int), 0644, proc_dointvec_minmax
, false);
4994 set_table_entry(&table
[9], "cache_nice_tries",
4995 &sd
->cache_nice_tries
,
4996 sizeof(int), 0644, proc_dointvec_minmax
, false);
4997 set_table_entry(&table
[10], "flags", &sd
->flags
,
4998 sizeof(int), 0644, proc_dointvec_minmax
, false);
4999 set_table_entry(&table
[11], "max_newidle_lb_cost",
5000 &sd
->max_newidle_lb_cost
,
5001 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5002 set_table_entry(&table
[12], "name", sd
->name
,
5003 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
5004 /* &table[13] is terminator */
5009 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5011 struct ctl_table
*entry
, *table
;
5012 struct sched_domain
*sd
;
5013 int domain_num
= 0, i
;
5016 for_each_domain(cpu
, sd
)
5018 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5023 for_each_domain(cpu
, sd
) {
5024 snprintf(buf
, 32, "domain%d", i
);
5025 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5027 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5034 static struct ctl_table_header
*sd_sysctl_header
;
5035 static void register_sched_domain_sysctl(void)
5037 int i
, cpu_num
= num_possible_cpus();
5038 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5041 WARN_ON(sd_ctl_dir
[0].child
);
5042 sd_ctl_dir
[0].child
= entry
;
5047 for_each_possible_cpu(i
) {
5048 snprintf(buf
, 32, "cpu%d", i
);
5049 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5051 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5055 WARN_ON(sd_sysctl_header
);
5056 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5059 /* may be called multiple times per register */
5060 static void unregister_sched_domain_sysctl(void)
5062 if (sd_sysctl_header
)
5063 unregister_sysctl_table(sd_sysctl_header
);
5064 sd_sysctl_header
= NULL
;
5065 if (sd_ctl_dir
[0].child
)
5066 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5069 static void register_sched_domain_sysctl(void)
5072 static void unregister_sched_domain_sysctl(void)
5077 static void set_rq_online(struct rq
*rq
)
5080 const struct sched_class
*class;
5082 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5085 for_each_class(class) {
5086 if (class->rq_online
)
5087 class->rq_online(rq
);
5092 static void set_rq_offline(struct rq
*rq
)
5095 const struct sched_class
*class;
5097 for_each_class(class) {
5098 if (class->rq_offline
)
5099 class->rq_offline(rq
);
5102 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5108 * migration_call - callback that gets triggered when a CPU is added.
5109 * Here we can start up the necessary migration thread for the new CPU.
5112 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5114 int cpu
= (long)hcpu
;
5115 unsigned long flags
;
5116 struct rq
*rq
= cpu_rq(cpu
);
5118 switch (action
& ~CPU_TASKS_FROZEN
) {
5120 case CPU_UP_PREPARE
:
5121 rq
->calc_load_update
= calc_load_update
;
5125 /* Update our root-domain */
5126 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5128 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5132 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5135 #ifdef CONFIG_HOTPLUG_CPU
5137 sched_ttwu_pending();
5138 /* Update our root-domain */
5139 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5141 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5145 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5146 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5150 calc_load_migrate(rq
);
5155 update_max_interval();
5161 * Register at high priority so that task migration (migrate_all_tasks)
5162 * happens before everything else. This has to be lower priority than
5163 * the notifier in the perf_event subsystem, though.
5165 static struct notifier_block migration_notifier
= {
5166 .notifier_call
= migration_call
,
5167 .priority
= CPU_PRI_MIGRATION
,
5170 static void __cpuinit
set_cpu_rq_start_time(void)
5172 int cpu
= smp_processor_id();
5173 struct rq
*rq
= cpu_rq(cpu
);
5174 rq
->age_stamp
= sched_clock_cpu(cpu
);
5177 static int sched_cpu_active(struct notifier_block
*nfb
,
5178 unsigned long action
, void *hcpu
)
5180 switch (action
& ~CPU_TASKS_FROZEN
) {
5182 set_cpu_rq_start_time();
5184 case CPU_DOWN_FAILED
:
5185 set_cpu_active((long)hcpu
, true);
5192 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5193 unsigned long action
, void *hcpu
)
5195 unsigned long flags
;
5196 long cpu
= (long)hcpu
;
5198 switch (action
& ~CPU_TASKS_FROZEN
) {
5199 case CPU_DOWN_PREPARE
:
5200 set_cpu_active(cpu
, false);
5202 /* explicitly allow suspend */
5203 if (!(action
& CPU_TASKS_FROZEN
)) {
5204 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
5208 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
5209 cpus
= dl_bw_cpus(cpu
);
5210 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
5211 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
5214 return notifier_from_errno(-EBUSY
);
5222 static int __init
migration_init(void)
5224 void *cpu
= (void *)(long)smp_processor_id();
5227 /* Initialize migration for the boot CPU */
5228 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5229 BUG_ON(err
== NOTIFY_BAD
);
5230 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5231 register_cpu_notifier(&migration_notifier
);
5233 /* Register cpu active notifiers */
5234 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5235 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5239 early_initcall(migration_init
);
5244 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5246 #ifdef CONFIG_SCHED_DEBUG
5248 static __read_mostly
int sched_debug_enabled
;
5250 static int __init
sched_debug_setup(char *str
)
5252 sched_debug_enabled
= 1;
5256 early_param("sched_debug", sched_debug_setup
);
5258 static inline bool sched_debug(void)
5260 return sched_debug_enabled
;
5263 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5264 struct cpumask
*groupmask
)
5266 struct sched_group
*group
= sd
->groups
;
5269 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5270 cpumask_clear(groupmask
);
5272 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5274 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5275 printk("does not load-balance\n");
5277 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5282 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5284 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5285 printk(KERN_ERR
"ERROR: domain->span does not contain "
5288 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5289 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5293 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5297 printk(KERN_ERR
"ERROR: group is NULL\n");
5302 * Even though we initialize ->capacity to something semi-sane,
5303 * we leave capacity_orig unset. This allows us to detect if
5304 * domain iteration is still funny without causing /0 traps.
5306 if (!group
->sgc
->capacity_orig
) {
5307 printk(KERN_CONT
"\n");
5308 printk(KERN_ERR
"ERROR: domain->cpu_capacity not set\n");
5312 if (!cpumask_weight(sched_group_cpus(group
))) {
5313 printk(KERN_CONT
"\n");
5314 printk(KERN_ERR
"ERROR: empty group\n");
5318 if (!(sd
->flags
& SD_OVERLAP
) &&
5319 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5320 printk(KERN_CONT
"\n");
5321 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5325 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5327 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5329 printk(KERN_CONT
" %s", str
);
5330 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
) {
5331 printk(KERN_CONT
" (cpu_capacity = %d)",
5332 group
->sgc
->capacity
);
5335 group
= group
->next
;
5336 } while (group
!= sd
->groups
);
5337 printk(KERN_CONT
"\n");
5339 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5340 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5343 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5344 printk(KERN_ERR
"ERROR: parent span is not a superset "
5345 "of domain->span\n");
5349 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5353 if (!sched_debug_enabled
)
5357 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5361 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5364 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5372 #else /* !CONFIG_SCHED_DEBUG */
5373 # define sched_domain_debug(sd, cpu) do { } while (0)
5374 static inline bool sched_debug(void)
5378 #endif /* CONFIG_SCHED_DEBUG */
5380 static int sd_degenerate(struct sched_domain
*sd
)
5382 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5385 /* Following flags need at least 2 groups */
5386 if (sd
->flags
& (SD_LOAD_BALANCE
|
5387 SD_BALANCE_NEWIDLE
|
5390 SD_SHARE_CPUCAPACITY
|
5391 SD_SHARE_PKG_RESOURCES
|
5392 SD_SHARE_POWERDOMAIN
)) {
5393 if (sd
->groups
!= sd
->groups
->next
)
5397 /* Following flags don't use groups */
5398 if (sd
->flags
& (SD_WAKE_AFFINE
))
5405 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5407 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5409 if (sd_degenerate(parent
))
5412 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5415 /* Flags needing groups don't count if only 1 group in parent */
5416 if (parent
->groups
== parent
->groups
->next
) {
5417 pflags
&= ~(SD_LOAD_BALANCE
|
5418 SD_BALANCE_NEWIDLE
|
5421 SD_SHARE_CPUCAPACITY
|
5422 SD_SHARE_PKG_RESOURCES
|
5424 SD_SHARE_POWERDOMAIN
);
5425 if (nr_node_ids
== 1)
5426 pflags
&= ~SD_SERIALIZE
;
5428 if (~cflags
& pflags
)
5434 static void free_rootdomain(struct rcu_head
*rcu
)
5436 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5438 cpupri_cleanup(&rd
->cpupri
);
5439 cpudl_cleanup(&rd
->cpudl
);
5440 free_cpumask_var(rd
->dlo_mask
);
5441 free_cpumask_var(rd
->rto_mask
);
5442 free_cpumask_var(rd
->online
);
5443 free_cpumask_var(rd
->span
);
5447 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5449 struct root_domain
*old_rd
= NULL
;
5450 unsigned long flags
;
5452 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5457 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5460 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5463 * If we dont want to free the old_rd yet then
5464 * set old_rd to NULL to skip the freeing later
5467 if (!atomic_dec_and_test(&old_rd
->refcount
))
5471 atomic_inc(&rd
->refcount
);
5474 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5475 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5478 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5481 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5484 static int init_rootdomain(struct root_domain
*rd
)
5486 memset(rd
, 0, sizeof(*rd
));
5488 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5490 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5492 if (!alloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5494 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5497 init_dl_bw(&rd
->dl_bw
);
5498 if (cpudl_init(&rd
->cpudl
) != 0)
5501 if (cpupri_init(&rd
->cpupri
) != 0)
5506 free_cpumask_var(rd
->rto_mask
);
5508 free_cpumask_var(rd
->dlo_mask
);
5510 free_cpumask_var(rd
->online
);
5512 free_cpumask_var(rd
->span
);
5518 * By default the system creates a single root-domain with all cpus as
5519 * members (mimicking the global state we have today).
5521 struct root_domain def_root_domain
;
5523 static void init_defrootdomain(void)
5525 init_rootdomain(&def_root_domain
);
5527 atomic_set(&def_root_domain
.refcount
, 1);
5530 static struct root_domain
*alloc_rootdomain(void)
5532 struct root_domain
*rd
;
5534 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5538 if (init_rootdomain(rd
) != 0) {
5546 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
5548 struct sched_group
*tmp
, *first
;
5557 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
5562 } while (sg
!= first
);
5565 static void free_sched_domain(struct rcu_head
*rcu
)
5567 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5570 * If its an overlapping domain it has private groups, iterate and
5573 if (sd
->flags
& SD_OVERLAP
) {
5574 free_sched_groups(sd
->groups
, 1);
5575 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5576 kfree(sd
->groups
->sgc
);
5582 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5584 call_rcu(&sd
->rcu
, free_sched_domain
);
5587 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5589 for (; sd
; sd
= sd
->parent
)
5590 destroy_sched_domain(sd
, cpu
);
5594 * Keep a special pointer to the highest sched_domain that has
5595 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5596 * allows us to avoid some pointer chasing select_idle_sibling().
5598 * Also keep a unique ID per domain (we use the first cpu number in
5599 * the cpumask of the domain), this allows us to quickly tell if
5600 * two cpus are in the same cache domain, see cpus_share_cache().
5602 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5603 DEFINE_PER_CPU(int, sd_llc_size
);
5604 DEFINE_PER_CPU(int, sd_llc_id
);
5605 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
5606 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
5607 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
5609 static void update_top_cache_domain(int cpu
)
5611 struct sched_domain
*sd
;
5612 struct sched_domain
*busy_sd
= NULL
;
5616 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5618 id
= cpumask_first(sched_domain_span(sd
));
5619 size
= cpumask_weight(sched_domain_span(sd
));
5620 busy_sd
= sd
->parent
; /* sd_busy */
5622 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
5624 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5625 per_cpu(sd_llc_size
, cpu
) = size
;
5626 per_cpu(sd_llc_id
, cpu
) = id
;
5628 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
5629 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
5631 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
5632 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
5636 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5637 * hold the hotplug lock.
5640 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5642 struct rq
*rq
= cpu_rq(cpu
);
5643 struct sched_domain
*tmp
;
5645 /* Remove the sched domains which do not contribute to scheduling. */
5646 for (tmp
= sd
; tmp
; ) {
5647 struct sched_domain
*parent
= tmp
->parent
;
5651 if (sd_parent_degenerate(tmp
, parent
)) {
5652 tmp
->parent
= parent
->parent
;
5654 parent
->parent
->child
= tmp
;
5656 * Transfer SD_PREFER_SIBLING down in case of a
5657 * degenerate parent; the spans match for this
5658 * so the property transfers.
5660 if (parent
->flags
& SD_PREFER_SIBLING
)
5661 tmp
->flags
|= SD_PREFER_SIBLING
;
5662 destroy_sched_domain(parent
, cpu
);
5667 if (sd
&& sd_degenerate(sd
)) {
5670 destroy_sched_domain(tmp
, cpu
);
5675 sched_domain_debug(sd
, cpu
);
5677 rq_attach_root(rq
, rd
);
5679 rcu_assign_pointer(rq
->sd
, sd
);
5680 destroy_sched_domains(tmp
, cpu
);
5682 update_top_cache_domain(cpu
);
5685 /* cpus with isolated domains */
5686 static cpumask_var_t cpu_isolated_map
;
5688 /* Setup the mask of cpus configured for isolated domains */
5689 static int __init
isolated_cpu_setup(char *str
)
5691 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5692 cpulist_parse(str
, cpu_isolated_map
);
5696 __setup("isolcpus=", isolated_cpu_setup
);
5699 struct sched_domain
** __percpu sd
;
5700 struct root_domain
*rd
;
5711 * Build an iteration mask that can exclude certain CPUs from the upwards
5714 * Asymmetric node setups can result in situations where the domain tree is of
5715 * unequal depth, make sure to skip domains that already cover the entire
5718 * In that case build_sched_domains() will have terminated the iteration early
5719 * and our sibling sd spans will be empty. Domains should always include the
5720 * cpu they're built on, so check that.
5723 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
5725 const struct cpumask
*span
= sched_domain_span(sd
);
5726 struct sd_data
*sdd
= sd
->private;
5727 struct sched_domain
*sibling
;
5730 for_each_cpu(i
, span
) {
5731 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5732 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5735 cpumask_set_cpu(i
, sched_group_mask(sg
));
5740 * Return the canonical balance cpu for this group, this is the first cpu
5741 * of this group that's also in the iteration mask.
5743 int group_balance_cpu(struct sched_group
*sg
)
5745 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
5749 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
5751 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
5752 const struct cpumask
*span
= sched_domain_span(sd
);
5753 struct cpumask
*covered
= sched_domains_tmpmask
;
5754 struct sd_data
*sdd
= sd
->private;
5755 struct sched_domain
*sibling
;
5758 cpumask_clear(covered
);
5760 for_each_cpu(i
, span
) {
5761 struct cpumask
*sg_span
;
5763 if (cpumask_test_cpu(i
, covered
))
5766 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5768 /* See the comment near build_group_mask(). */
5769 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5772 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
5773 GFP_KERNEL
, cpu_to_node(cpu
));
5778 sg_span
= sched_group_cpus(sg
);
5780 cpumask_copy(sg_span
, sched_domain_span(sibling
->child
));
5782 cpumask_set_cpu(i
, sg_span
);
5784 cpumask_or(covered
, covered
, sg_span
);
5786 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, i
);
5787 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
5788 build_group_mask(sd
, sg
);
5791 * Initialize sgc->capacity such that even if we mess up the
5792 * domains and no possible iteration will get us here, we won't
5795 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
5796 sg
->sgc
->capacity_orig
= sg
->sgc
->capacity
;
5799 * Make sure the first group of this domain contains the
5800 * canonical balance cpu. Otherwise the sched_domain iteration
5801 * breaks. See update_sg_lb_stats().
5803 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
5804 group_balance_cpu(sg
) == cpu
)
5814 sd
->groups
= groups
;
5819 free_sched_groups(first
, 0);
5824 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
5826 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
5827 struct sched_domain
*child
= sd
->child
;
5830 cpu
= cpumask_first(sched_domain_span(child
));
5833 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
5834 (*sg
)->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
5835 atomic_set(&(*sg
)->sgc
->ref
, 1); /* for claim_allocations */
5842 * build_sched_groups will build a circular linked list of the groups
5843 * covered by the given span, and will set each group's ->cpumask correctly,
5844 * and ->cpu_capacity to 0.
5846 * Assumes the sched_domain tree is fully constructed
5849 build_sched_groups(struct sched_domain
*sd
, int cpu
)
5851 struct sched_group
*first
= NULL
, *last
= NULL
;
5852 struct sd_data
*sdd
= sd
->private;
5853 const struct cpumask
*span
= sched_domain_span(sd
);
5854 struct cpumask
*covered
;
5857 get_group(cpu
, sdd
, &sd
->groups
);
5858 atomic_inc(&sd
->groups
->ref
);
5860 if (cpu
!= cpumask_first(span
))
5863 lockdep_assert_held(&sched_domains_mutex
);
5864 covered
= sched_domains_tmpmask
;
5866 cpumask_clear(covered
);
5868 for_each_cpu(i
, span
) {
5869 struct sched_group
*sg
;
5872 if (cpumask_test_cpu(i
, covered
))
5875 group
= get_group(i
, sdd
, &sg
);
5876 cpumask_setall(sched_group_mask(sg
));
5878 for_each_cpu(j
, span
) {
5879 if (get_group(j
, sdd
, NULL
) != group
)
5882 cpumask_set_cpu(j
, covered
);
5883 cpumask_set_cpu(j
, sched_group_cpus(sg
));
5898 * Initialize sched groups cpu_capacity.
5900 * cpu_capacity indicates the capacity of sched group, which is used while
5901 * distributing the load between different sched groups in a sched domain.
5902 * Typically cpu_capacity for all the groups in a sched domain will be same
5903 * unless there are asymmetries in the topology. If there are asymmetries,
5904 * group having more cpu_capacity will pickup more load compared to the
5905 * group having less cpu_capacity.
5907 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
5909 struct sched_group
*sg
= sd
->groups
;
5914 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
5916 } while (sg
!= sd
->groups
);
5918 if (cpu
!= group_balance_cpu(sg
))
5921 update_group_capacity(sd
, cpu
);
5922 atomic_set(&sg
->sgc
->nr_busy_cpus
, sg
->group_weight
);
5926 * Initializers for schedule domains
5927 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5930 static int default_relax_domain_level
= -1;
5931 int sched_domain_level_max
;
5933 static int __init
setup_relax_domain_level(char *str
)
5935 if (kstrtoint(str
, 0, &default_relax_domain_level
))
5936 pr_warn("Unable to set relax_domain_level\n");
5940 __setup("relax_domain_level=", setup_relax_domain_level
);
5942 static void set_domain_attribute(struct sched_domain
*sd
,
5943 struct sched_domain_attr
*attr
)
5947 if (!attr
|| attr
->relax_domain_level
< 0) {
5948 if (default_relax_domain_level
< 0)
5951 request
= default_relax_domain_level
;
5953 request
= attr
->relax_domain_level
;
5954 if (request
< sd
->level
) {
5955 /* turn off idle balance on this domain */
5956 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
5958 /* turn on idle balance on this domain */
5959 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
5963 static void __sdt_free(const struct cpumask
*cpu_map
);
5964 static int __sdt_alloc(const struct cpumask
*cpu_map
);
5966 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
5967 const struct cpumask
*cpu_map
)
5971 if (!atomic_read(&d
->rd
->refcount
))
5972 free_rootdomain(&d
->rd
->rcu
); /* fall through */
5974 free_percpu(d
->sd
); /* fall through */
5976 __sdt_free(cpu_map
); /* fall through */
5982 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
5983 const struct cpumask
*cpu_map
)
5985 memset(d
, 0, sizeof(*d
));
5987 if (__sdt_alloc(cpu_map
))
5988 return sa_sd_storage
;
5989 d
->sd
= alloc_percpu(struct sched_domain
*);
5991 return sa_sd_storage
;
5992 d
->rd
= alloc_rootdomain();
5995 return sa_rootdomain
;
5999 * NULL the sd_data elements we've used to build the sched_domain and
6000 * sched_group structure so that the subsequent __free_domain_allocs()
6001 * will not free the data we're using.
6003 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6005 struct sd_data
*sdd
= sd
->private;
6007 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6008 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6010 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6011 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6013 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
6014 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
6018 static int sched_domains_numa_levels
;
6019 static int *sched_domains_numa_distance
;
6020 static struct cpumask
***sched_domains_numa_masks
;
6021 static int sched_domains_curr_level
;
6025 * SD_flags allowed in topology descriptions.
6027 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6028 * SD_SHARE_PKG_RESOURCES - describes shared caches
6029 * SD_NUMA - describes NUMA topologies
6030 * SD_SHARE_POWERDOMAIN - describes shared power domain
6033 * SD_ASYM_PACKING - describes SMT quirks
6035 #define TOPOLOGY_SD_FLAGS \
6036 (SD_SHARE_CPUCAPACITY | \
6037 SD_SHARE_PKG_RESOURCES | \
6040 SD_SHARE_POWERDOMAIN)
6042 static struct sched_domain
*
6043 sd_init(struct sched_domain_topology_level
*tl
, int cpu
)
6045 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6046 int sd_weight
, sd_flags
= 0;
6050 * Ugly hack to pass state to sd_numa_mask()...
6052 sched_domains_curr_level
= tl
->numa_level
;
6055 sd_weight
= cpumask_weight(tl
->mask(cpu
));
6058 sd_flags
= (*tl
->sd_flags
)();
6059 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
6060 "wrong sd_flags in topology description\n"))
6061 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
6063 *sd
= (struct sched_domain
){
6064 .min_interval
= sd_weight
,
6065 .max_interval
= 2*sd_weight
,
6067 .imbalance_pct
= 125,
6069 .cache_nice_tries
= 0,
6076 .flags
= 1*SD_LOAD_BALANCE
6077 | 1*SD_BALANCE_NEWIDLE
6082 | 0*SD_SHARE_CPUCAPACITY
6083 | 0*SD_SHARE_PKG_RESOURCES
6085 | 0*SD_PREFER_SIBLING
6090 .last_balance
= jiffies
,
6091 .balance_interval
= sd_weight
,
6093 .max_newidle_lb_cost
= 0,
6094 .next_decay_max_lb_cost
= jiffies
,
6095 #ifdef CONFIG_SCHED_DEBUG
6101 * Convert topological properties into behaviour.
6104 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
6105 sd
->imbalance_pct
= 110;
6106 sd
->smt_gain
= 1178; /* ~15% */
6108 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
6109 sd
->imbalance_pct
= 117;
6110 sd
->cache_nice_tries
= 1;
6114 } else if (sd
->flags
& SD_NUMA
) {
6115 sd
->cache_nice_tries
= 2;
6119 sd
->flags
|= SD_SERIALIZE
;
6120 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
6121 sd
->flags
&= ~(SD_BALANCE_EXEC
|
6128 sd
->flags
|= SD_PREFER_SIBLING
;
6129 sd
->cache_nice_tries
= 1;
6134 sd
->private = &tl
->data
;
6140 * Topology list, bottom-up.
6142 static struct sched_domain_topology_level default_topology
[] = {
6143 #ifdef CONFIG_SCHED_SMT
6144 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
6146 #ifdef CONFIG_SCHED_MC
6147 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
6149 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
6153 struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6155 #define for_each_sd_topology(tl) \
6156 for (tl = sched_domain_topology; tl->mask; tl++)
6158 void set_sched_topology(struct sched_domain_topology_level
*tl
)
6160 sched_domain_topology
= tl
;
6165 static const struct cpumask
*sd_numa_mask(int cpu
)
6167 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6170 static void sched_numa_warn(const char *str
)
6172 static int done
= false;
6180 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6182 for (i
= 0; i
< nr_node_ids
; i
++) {
6183 printk(KERN_WARNING
" ");
6184 for (j
= 0; j
< nr_node_ids
; j
++)
6185 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6186 printk(KERN_CONT
"\n");
6188 printk(KERN_WARNING
"\n");
6191 static bool find_numa_distance(int distance
)
6195 if (distance
== node_distance(0, 0))
6198 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6199 if (sched_domains_numa_distance
[i
] == distance
)
6206 static void sched_init_numa(void)
6208 int next_distance
, curr_distance
= node_distance(0, 0);
6209 struct sched_domain_topology_level
*tl
;
6213 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6214 if (!sched_domains_numa_distance
)
6218 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6219 * unique distances in the node_distance() table.
6221 * Assumes node_distance(0,j) includes all distances in
6222 * node_distance(i,j) in order to avoid cubic time.
6224 next_distance
= curr_distance
;
6225 for (i
= 0; i
< nr_node_ids
; i
++) {
6226 for (j
= 0; j
< nr_node_ids
; j
++) {
6227 for (k
= 0; k
< nr_node_ids
; k
++) {
6228 int distance
= node_distance(i
, k
);
6230 if (distance
> curr_distance
&&
6231 (distance
< next_distance
||
6232 next_distance
== curr_distance
))
6233 next_distance
= distance
;
6236 * While not a strong assumption it would be nice to know
6237 * about cases where if node A is connected to B, B is not
6238 * equally connected to A.
6240 if (sched_debug() && node_distance(k
, i
) != distance
)
6241 sched_numa_warn("Node-distance not symmetric");
6243 if (sched_debug() && i
&& !find_numa_distance(distance
))
6244 sched_numa_warn("Node-0 not representative");
6246 if (next_distance
!= curr_distance
) {
6247 sched_domains_numa_distance
[level
++] = next_distance
;
6248 sched_domains_numa_levels
= level
;
6249 curr_distance
= next_distance
;
6254 * In case of sched_debug() we verify the above assumption.
6260 * 'level' contains the number of unique distances, excluding the
6261 * identity distance node_distance(i,i).
6263 * The sched_domains_numa_distance[] array includes the actual distance
6268 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6269 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6270 * the array will contain less then 'level' members. This could be
6271 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6272 * in other functions.
6274 * We reset it to 'level' at the end of this function.
6276 sched_domains_numa_levels
= 0;
6278 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6279 if (!sched_domains_numa_masks
)
6283 * Now for each level, construct a mask per node which contains all
6284 * cpus of nodes that are that many hops away from us.
6286 for (i
= 0; i
< level
; i
++) {
6287 sched_domains_numa_masks
[i
] =
6288 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6289 if (!sched_domains_numa_masks
[i
])
6292 for (j
= 0; j
< nr_node_ids
; j
++) {
6293 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6297 sched_domains_numa_masks
[i
][j
] = mask
;
6299 for (k
= 0; k
< nr_node_ids
; k
++) {
6300 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6303 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6308 /* Compute default topology size */
6309 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
6311 tl
= kzalloc((i
+ level
+ 1) *
6312 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6317 * Copy the default topology bits..
6319 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
6320 tl
[i
] = sched_domain_topology
[i
];
6323 * .. and append 'j' levels of NUMA goodness.
6325 for (j
= 0; j
< level
; i
++, j
++) {
6326 tl
[i
] = (struct sched_domain_topology_level
){
6327 .mask
= sd_numa_mask
,
6328 .sd_flags
= cpu_numa_flags
,
6329 .flags
= SDTL_OVERLAP
,
6335 sched_domain_topology
= tl
;
6337 sched_domains_numa_levels
= level
;
6340 static void sched_domains_numa_masks_set(int cpu
)
6343 int node
= cpu_to_node(cpu
);
6345 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6346 for (j
= 0; j
< nr_node_ids
; j
++) {
6347 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6348 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6353 static void sched_domains_numa_masks_clear(int cpu
)
6356 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6357 for (j
= 0; j
< nr_node_ids
; j
++)
6358 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6363 * Update sched_domains_numa_masks[level][node] array when new cpus
6366 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6367 unsigned long action
,
6370 int cpu
= (long)hcpu
;
6372 switch (action
& ~CPU_TASKS_FROZEN
) {
6374 sched_domains_numa_masks_set(cpu
);
6378 sched_domains_numa_masks_clear(cpu
);
6388 static inline void sched_init_numa(void)
6392 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6393 unsigned long action
,
6398 #endif /* CONFIG_NUMA */
6400 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6402 struct sched_domain_topology_level
*tl
;
6405 for_each_sd_topology(tl
) {
6406 struct sd_data
*sdd
= &tl
->data
;
6408 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6412 sdd
->sg
= alloc_percpu(struct sched_group
*);
6416 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
6420 for_each_cpu(j
, cpu_map
) {
6421 struct sched_domain
*sd
;
6422 struct sched_group
*sg
;
6423 struct sched_group_capacity
*sgc
;
6425 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6426 GFP_KERNEL
, cpu_to_node(j
));
6430 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6432 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6433 GFP_KERNEL
, cpu_to_node(j
));
6439 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6441 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
6442 GFP_KERNEL
, cpu_to_node(j
));
6446 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
6453 static void __sdt_free(const struct cpumask
*cpu_map
)
6455 struct sched_domain_topology_level
*tl
;
6458 for_each_sd_topology(tl
) {
6459 struct sd_data
*sdd
= &tl
->data
;
6461 for_each_cpu(j
, cpu_map
) {
6462 struct sched_domain
*sd
;
6465 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6466 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6467 free_sched_groups(sd
->groups
, 0);
6468 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6472 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6474 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
6476 free_percpu(sdd
->sd
);
6478 free_percpu(sdd
->sg
);
6480 free_percpu(sdd
->sgc
);
6485 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6486 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6487 struct sched_domain
*child
, int cpu
)
6489 struct sched_domain
*sd
= sd_init(tl
, cpu
);
6493 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6495 sd
->level
= child
->level
+ 1;
6496 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6500 if (!cpumask_subset(sched_domain_span(child
),
6501 sched_domain_span(sd
))) {
6502 pr_err("BUG: arch topology borken\n");
6503 #ifdef CONFIG_SCHED_DEBUG
6504 pr_err(" the %s domain not a subset of the %s domain\n",
6505 child
->name
, sd
->name
);
6507 /* Fixup, ensure @sd has at least @child cpus. */
6508 cpumask_or(sched_domain_span(sd
),
6509 sched_domain_span(sd
),
6510 sched_domain_span(child
));
6514 set_domain_attribute(sd
, attr
);
6520 * Build sched domains for a given set of cpus and attach the sched domains
6521 * to the individual cpus
6523 static int build_sched_domains(const struct cpumask
*cpu_map
,
6524 struct sched_domain_attr
*attr
)
6526 enum s_alloc alloc_state
;
6527 struct sched_domain
*sd
;
6529 int i
, ret
= -ENOMEM
;
6531 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6532 if (alloc_state
!= sa_rootdomain
)
6535 /* Set up domains for cpus specified by the cpu_map. */
6536 for_each_cpu(i
, cpu_map
) {
6537 struct sched_domain_topology_level
*tl
;
6540 for_each_sd_topology(tl
) {
6541 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
6542 if (tl
== sched_domain_topology
)
6543 *per_cpu_ptr(d
.sd
, i
) = sd
;
6544 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6545 sd
->flags
|= SD_OVERLAP
;
6546 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6551 /* Build the groups for the domains */
6552 for_each_cpu(i
, cpu_map
) {
6553 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6554 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6555 if (sd
->flags
& SD_OVERLAP
) {
6556 if (build_overlap_sched_groups(sd
, i
))
6559 if (build_sched_groups(sd
, i
))
6565 /* Calculate CPU capacity for physical packages and nodes */
6566 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6567 if (!cpumask_test_cpu(i
, cpu_map
))
6570 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6571 claim_allocations(i
, sd
);
6572 init_sched_groups_capacity(i
, sd
);
6576 /* Attach the domains */
6578 for_each_cpu(i
, cpu_map
) {
6579 sd
= *per_cpu_ptr(d
.sd
, i
);
6580 cpu_attach_domain(sd
, d
.rd
, i
);
6586 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6590 static cpumask_var_t
*doms_cur
; /* current sched domains */
6591 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6592 static struct sched_domain_attr
*dattr_cur
;
6593 /* attribues of custom domains in 'doms_cur' */
6596 * Special case: If a kmalloc of a doms_cur partition (array of
6597 * cpumask) fails, then fallback to a single sched domain,
6598 * as determined by the single cpumask fallback_doms.
6600 static cpumask_var_t fallback_doms
;
6603 * arch_update_cpu_topology lets virtualized architectures update the
6604 * cpu core maps. It is supposed to return 1 if the topology changed
6605 * or 0 if it stayed the same.
6607 int __weak
arch_update_cpu_topology(void)
6612 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6615 cpumask_var_t
*doms
;
6617 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6620 for (i
= 0; i
< ndoms
; i
++) {
6621 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6622 free_sched_domains(doms
, i
);
6629 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6632 for (i
= 0; i
< ndoms
; i
++)
6633 free_cpumask_var(doms
[i
]);
6638 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6639 * For now this just excludes isolated cpus, but could be used to
6640 * exclude other special cases in the future.
6642 static int init_sched_domains(const struct cpumask
*cpu_map
)
6646 arch_update_cpu_topology();
6648 doms_cur
= alloc_sched_domains(ndoms_cur
);
6650 doms_cur
= &fallback_doms
;
6651 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6652 err
= build_sched_domains(doms_cur
[0], NULL
);
6653 register_sched_domain_sysctl();
6659 * Detach sched domains from a group of cpus specified in cpu_map
6660 * These cpus will now be attached to the NULL domain
6662 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6667 for_each_cpu(i
, cpu_map
)
6668 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6672 /* handle null as "default" */
6673 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6674 struct sched_domain_attr
*new, int idx_new
)
6676 struct sched_domain_attr tmp
;
6683 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6684 new ? (new + idx_new
) : &tmp
,
6685 sizeof(struct sched_domain_attr
));
6689 * Partition sched domains as specified by the 'ndoms_new'
6690 * cpumasks in the array doms_new[] of cpumasks. This compares
6691 * doms_new[] to the current sched domain partitioning, doms_cur[].
6692 * It destroys each deleted domain and builds each new domain.
6694 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6695 * The masks don't intersect (don't overlap.) We should setup one
6696 * sched domain for each mask. CPUs not in any of the cpumasks will
6697 * not be load balanced. If the same cpumask appears both in the
6698 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6701 * The passed in 'doms_new' should be allocated using
6702 * alloc_sched_domains. This routine takes ownership of it and will
6703 * free_sched_domains it when done with it. If the caller failed the
6704 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6705 * and partition_sched_domains() will fallback to the single partition
6706 * 'fallback_doms', it also forces the domains to be rebuilt.
6708 * If doms_new == NULL it will be replaced with cpu_online_mask.
6709 * ndoms_new == 0 is a special case for destroying existing domains,
6710 * and it will not create the default domain.
6712 * Call with hotplug lock held
6714 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6715 struct sched_domain_attr
*dattr_new
)
6720 mutex_lock(&sched_domains_mutex
);
6722 /* always unregister in case we don't destroy any domains */
6723 unregister_sched_domain_sysctl();
6725 /* Let architecture update cpu core mappings. */
6726 new_topology
= arch_update_cpu_topology();
6728 n
= doms_new
? ndoms_new
: 0;
6730 /* Destroy deleted domains */
6731 for (i
= 0; i
< ndoms_cur
; i
++) {
6732 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6733 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6734 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6737 /* no match - a current sched domain not in new doms_new[] */
6738 detach_destroy_domains(doms_cur
[i
]);
6744 if (doms_new
== NULL
) {
6746 doms_new
= &fallback_doms
;
6747 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6748 WARN_ON_ONCE(dattr_new
);
6751 /* Build new domains */
6752 for (i
= 0; i
< ndoms_new
; i
++) {
6753 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6754 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6755 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6758 /* no match - add a new doms_new */
6759 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6764 /* Remember the new sched domains */
6765 if (doms_cur
!= &fallback_doms
)
6766 free_sched_domains(doms_cur
, ndoms_cur
);
6767 kfree(dattr_cur
); /* kfree(NULL) is safe */
6768 doms_cur
= doms_new
;
6769 dattr_cur
= dattr_new
;
6770 ndoms_cur
= ndoms_new
;
6772 register_sched_domain_sysctl();
6774 mutex_unlock(&sched_domains_mutex
);
6777 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
6780 * Update cpusets according to cpu_active mask. If cpusets are
6781 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6782 * around partition_sched_domains().
6784 * If we come here as part of a suspend/resume, don't touch cpusets because we
6785 * want to restore it back to its original state upon resume anyway.
6787 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6791 case CPU_ONLINE_FROZEN
:
6792 case CPU_DOWN_FAILED_FROZEN
:
6795 * num_cpus_frozen tracks how many CPUs are involved in suspend
6796 * resume sequence. As long as this is not the last online
6797 * operation in the resume sequence, just build a single sched
6798 * domain, ignoring cpusets.
6801 if (likely(num_cpus_frozen
)) {
6802 partition_sched_domains(1, NULL
, NULL
);
6807 * This is the last CPU online operation. So fall through and
6808 * restore the original sched domains by considering the
6809 * cpuset configurations.
6813 case CPU_DOWN_FAILED
:
6814 cpuset_update_active_cpus(true);
6822 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
6826 case CPU_DOWN_PREPARE
:
6827 cpuset_update_active_cpus(false);
6829 case CPU_DOWN_PREPARE_FROZEN
:
6831 partition_sched_domains(1, NULL
, NULL
);
6839 void __init
sched_init_smp(void)
6841 cpumask_var_t non_isolated_cpus
;
6843 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
6844 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
6849 * There's no userspace yet to cause hotplug operations; hence all the
6850 * cpu masks are stable and all blatant races in the below code cannot
6853 mutex_lock(&sched_domains_mutex
);
6854 init_sched_domains(cpu_active_mask
);
6855 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
6856 if (cpumask_empty(non_isolated_cpus
))
6857 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
6858 mutex_unlock(&sched_domains_mutex
);
6860 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
6861 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
6862 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
6866 /* Move init over to a non-isolated CPU */
6867 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
6869 sched_init_granularity();
6870 free_cpumask_var(non_isolated_cpus
);
6872 init_sched_rt_class();
6873 init_sched_dl_class();
6876 void __init
sched_init_smp(void)
6878 sched_init_granularity();
6880 #endif /* CONFIG_SMP */
6882 const_debug
unsigned int sysctl_timer_migration
= 1;
6884 int in_sched_functions(unsigned long addr
)
6886 return in_lock_functions(addr
) ||
6887 (addr
>= (unsigned long)__sched_text_start
6888 && addr
< (unsigned long)__sched_text_end
);
6891 #ifdef CONFIG_CGROUP_SCHED
6893 * Default task group.
6894 * Every task in system belongs to this group at bootup.
6896 struct task_group root_task_group
;
6897 LIST_HEAD(task_groups
);
6900 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
6902 void __init
sched_init(void)
6905 unsigned long alloc_size
= 0, ptr
;
6907 #ifdef CONFIG_FAIR_GROUP_SCHED
6908 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6910 #ifdef CONFIG_RT_GROUP_SCHED
6911 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6913 #ifdef CONFIG_CPUMASK_OFFSTACK
6914 alloc_size
+= num_possible_cpus() * cpumask_size();
6917 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
6919 #ifdef CONFIG_FAIR_GROUP_SCHED
6920 root_task_group
.se
= (struct sched_entity
**)ptr
;
6921 ptr
+= nr_cpu_ids
* sizeof(void **);
6923 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
6924 ptr
+= nr_cpu_ids
* sizeof(void **);
6926 #endif /* CONFIG_FAIR_GROUP_SCHED */
6927 #ifdef CONFIG_RT_GROUP_SCHED
6928 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
6929 ptr
+= nr_cpu_ids
* sizeof(void **);
6931 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
6932 ptr
+= nr_cpu_ids
* sizeof(void **);
6934 #endif /* CONFIG_RT_GROUP_SCHED */
6935 #ifdef CONFIG_CPUMASK_OFFSTACK
6936 for_each_possible_cpu(i
) {
6937 per_cpu(load_balance_mask
, i
) = (void *)ptr
;
6938 ptr
+= cpumask_size();
6940 #endif /* CONFIG_CPUMASK_OFFSTACK */
6943 init_rt_bandwidth(&def_rt_bandwidth
,
6944 global_rt_period(), global_rt_runtime());
6945 init_dl_bandwidth(&def_dl_bandwidth
,
6946 global_rt_period(), global_rt_runtime());
6949 init_defrootdomain();
6952 #ifdef CONFIG_RT_GROUP_SCHED
6953 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
6954 global_rt_period(), global_rt_runtime());
6955 #endif /* CONFIG_RT_GROUP_SCHED */
6957 #ifdef CONFIG_CGROUP_SCHED
6958 list_add(&root_task_group
.list
, &task_groups
);
6959 INIT_LIST_HEAD(&root_task_group
.children
);
6960 INIT_LIST_HEAD(&root_task_group
.siblings
);
6961 autogroup_init(&init_task
);
6963 #endif /* CONFIG_CGROUP_SCHED */
6965 for_each_possible_cpu(i
) {
6969 raw_spin_lock_init(&rq
->lock
);
6971 rq
->calc_load_active
= 0;
6972 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
6973 init_cfs_rq(&rq
->cfs
);
6974 init_rt_rq(&rq
->rt
, rq
);
6975 init_dl_rq(&rq
->dl
, rq
);
6976 #ifdef CONFIG_FAIR_GROUP_SCHED
6977 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
6978 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6980 * How much cpu bandwidth does root_task_group get?
6982 * In case of task-groups formed thr' the cgroup filesystem, it
6983 * gets 100% of the cpu resources in the system. This overall
6984 * system cpu resource is divided among the tasks of
6985 * root_task_group and its child task-groups in a fair manner,
6986 * based on each entity's (task or task-group's) weight
6987 * (se->load.weight).
6989 * In other words, if root_task_group has 10 tasks of weight
6990 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6991 * then A0's share of the cpu resource is:
6993 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6995 * We achieve this by letting root_task_group's tasks sit
6996 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6998 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
6999 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7000 #endif /* CONFIG_FAIR_GROUP_SCHED */
7002 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7003 #ifdef CONFIG_RT_GROUP_SCHED
7004 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7007 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7008 rq
->cpu_load
[j
] = 0;
7010 rq
->last_load_update_tick
= jiffies
;
7015 rq
->cpu_capacity
= SCHED_CAPACITY_SCALE
;
7016 rq
->post_schedule
= 0;
7017 rq
->active_balance
= 0;
7018 rq
->next_balance
= jiffies
;
7023 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7024 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
7026 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7028 rq_attach_root(rq
, &def_root_domain
);
7029 #ifdef CONFIG_NO_HZ_COMMON
7032 #ifdef CONFIG_NO_HZ_FULL
7033 rq
->last_sched_tick
= 0;
7037 atomic_set(&rq
->nr_iowait
, 0);
7040 set_load_weight(&init_task
);
7042 #ifdef CONFIG_PREEMPT_NOTIFIERS
7043 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7047 * The boot idle thread does lazy MMU switching as well:
7049 atomic_inc(&init_mm
.mm_count
);
7050 enter_lazy_tlb(&init_mm
, current
);
7053 * Make us the idle thread. Technically, schedule() should not be
7054 * called from this thread, however somewhere below it might be,
7055 * but because we are the idle thread, we just pick up running again
7056 * when this runqueue becomes "idle".
7058 init_idle(current
, smp_processor_id());
7060 calc_load_update
= jiffies
+ LOAD_FREQ
;
7063 * During early bootup we pretend to be a normal task:
7065 current
->sched_class
= &fair_sched_class
;
7068 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7069 /* May be allocated at isolcpus cmdline parse time */
7070 if (cpu_isolated_map
== NULL
)
7071 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7072 idle_thread_set_boot_cpu();
7073 set_cpu_rq_start_time();
7075 init_sched_fair_class();
7077 scheduler_running
= 1;
7080 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7081 static inline int preempt_count_equals(int preempt_offset
)
7083 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7085 return (nested
== preempt_offset
);
7088 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7090 static unsigned long prev_jiffy
; /* ratelimiting */
7092 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7093 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7094 !is_idle_task(current
)) ||
7095 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7097 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7099 prev_jiffy
= jiffies
;
7102 "BUG: sleeping function called from invalid context at %s:%d\n",
7105 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7106 in_atomic(), irqs_disabled(),
7107 current
->pid
, current
->comm
);
7109 debug_show_held_locks(current
);
7110 if (irqs_disabled())
7111 print_irqtrace_events(current
);
7112 #ifdef CONFIG_DEBUG_PREEMPT
7113 if (!preempt_count_equals(preempt_offset
)) {
7114 pr_err("Preemption disabled at:");
7115 print_ip_sym(current
->preempt_disable_ip
);
7121 EXPORT_SYMBOL(__might_sleep
);
7124 #ifdef CONFIG_MAGIC_SYSRQ
7125 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7127 const struct sched_class
*prev_class
= p
->sched_class
;
7128 struct sched_attr attr
= {
7129 .sched_policy
= SCHED_NORMAL
,
7131 int old_prio
= p
->prio
;
7134 queued
= task_on_rq_queued(p
);
7136 dequeue_task(rq
, p
, 0);
7137 __setscheduler(rq
, p
, &attr
);
7139 enqueue_task(rq
, p
, 0);
7143 check_class_changed(rq
, p
, prev_class
, old_prio
);
7146 void normalize_rt_tasks(void)
7148 struct task_struct
*g
, *p
;
7149 unsigned long flags
;
7152 read_lock_irqsave(&tasklist_lock
, flags
);
7153 for_each_process_thread(g
, p
) {
7155 * Only normalize user tasks:
7160 p
->se
.exec_start
= 0;
7161 #ifdef CONFIG_SCHEDSTATS
7162 p
->se
.statistics
.wait_start
= 0;
7163 p
->se
.statistics
.sleep_start
= 0;
7164 p
->se
.statistics
.block_start
= 0;
7167 if (!dl_task(p
) && !rt_task(p
)) {
7169 * Renice negative nice level userspace
7172 if (task_nice(p
) < 0 && p
->mm
)
7173 set_user_nice(p
, 0);
7177 raw_spin_lock(&p
->pi_lock
);
7178 rq
= __task_rq_lock(p
);
7180 normalize_task(rq
, p
);
7182 __task_rq_unlock(rq
);
7183 raw_spin_unlock(&p
->pi_lock
);
7185 read_unlock_irqrestore(&tasklist_lock
, flags
);
7188 #endif /* CONFIG_MAGIC_SYSRQ */
7190 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7192 * These functions are only useful for the IA64 MCA handling, or kdb.
7194 * They can only be called when the whole system has been
7195 * stopped - every CPU needs to be quiescent, and no scheduling
7196 * activity can take place. Using them for anything else would
7197 * be a serious bug, and as a result, they aren't even visible
7198 * under any other configuration.
7202 * curr_task - return the current task for a given cpu.
7203 * @cpu: the processor in question.
7205 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7207 * Return: The current task for @cpu.
7209 struct task_struct
*curr_task(int cpu
)
7211 return cpu_curr(cpu
);
7214 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7218 * set_curr_task - set the current task for a given cpu.
7219 * @cpu: the processor in question.
7220 * @p: the task pointer to set.
7222 * Description: This function must only be used when non-maskable interrupts
7223 * are serviced on a separate stack. It allows the architecture to switch the
7224 * notion of the current task on a cpu in a non-blocking manner. This function
7225 * must be called with all CPU's synchronized, and interrupts disabled, the
7226 * and caller must save the original value of the current task (see
7227 * curr_task() above) and restore that value before reenabling interrupts and
7228 * re-starting the system.
7230 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7232 void set_curr_task(int cpu
, struct task_struct
*p
)
7239 #ifdef CONFIG_CGROUP_SCHED
7240 /* task_group_lock serializes the addition/removal of task groups */
7241 static DEFINE_SPINLOCK(task_group_lock
);
7243 static void free_sched_group(struct task_group
*tg
)
7245 free_fair_sched_group(tg
);
7246 free_rt_sched_group(tg
);
7251 /* allocate runqueue etc for a new task group */
7252 struct task_group
*sched_create_group(struct task_group
*parent
)
7254 struct task_group
*tg
;
7256 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7258 return ERR_PTR(-ENOMEM
);
7260 if (!alloc_fair_sched_group(tg
, parent
))
7263 if (!alloc_rt_sched_group(tg
, parent
))
7269 free_sched_group(tg
);
7270 return ERR_PTR(-ENOMEM
);
7273 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7275 unsigned long flags
;
7277 spin_lock_irqsave(&task_group_lock
, flags
);
7278 list_add_rcu(&tg
->list
, &task_groups
);
7280 WARN_ON(!parent
); /* root should already exist */
7282 tg
->parent
= parent
;
7283 INIT_LIST_HEAD(&tg
->children
);
7284 list_add_rcu(&tg
->siblings
, &parent
->children
);
7285 spin_unlock_irqrestore(&task_group_lock
, flags
);
7288 /* rcu callback to free various structures associated with a task group */
7289 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7291 /* now it should be safe to free those cfs_rqs */
7292 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7295 /* Destroy runqueue etc associated with a task group */
7296 void sched_destroy_group(struct task_group
*tg
)
7298 /* wait for possible concurrent references to cfs_rqs complete */
7299 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7302 void sched_offline_group(struct task_group
*tg
)
7304 unsigned long flags
;
7307 /* end participation in shares distribution */
7308 for_each_possible_cpu(i
)
7309 unregister_fair_sched_group(tg
, i
);
7311 spin_lock_irqsave(&task_group_lock
, flags
);
7312 list_del_rcu(&tg
->list
);
7313 list_del_rcu(&tg
->siblings
);
7314 spin_unlock_irqrestore(&task_group_lock
, flags
);
7317 /* change task's runqueue when it moves between groups.
7318 * The caller of this function should have put the task in its new group
7319 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7320 * reflect its new group.
7322 void sched_move_task(struct task_struct
*tsk
)
7324 struct task_group
*tg
;
7325 int queued
, running
;
7326 unsigned long flags
;
7329 rq
= task_rq_lock(tsk
, &flags
);
7331 running
= task_current(rq
, tsk
);
7332 queued
= task_on_rq_queued(tsk
);
7335 dequeue_task(rq
, tsk
, 0);
7336 if (unlikely(running
))
7337 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7339 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
,
7340 lockdep_is_held(&tsk
->sighand
->siglock
)),
7341 struct task_group
, css
);
7342 tg
= autogroup_task_group(tsk
, tg
);
7343 tsk
->sched_task_group
= tg
;
7345 #ifdef CONFIG_FAIR_GROUP_SCHED
7346 if (tsk
->sched_class
->task_move_group
)
7347 tsk
->sched_class
->task_move_group(tsk
, queued
);
7350 set_task_rq(tsk
, task_cpu(tsk
));
7352 if (unlikely(running
))
7353 tsk
->sched_class
->set_curr_task(rq
);
7355 enqueue_task(rq
, tsk
, 0);
7357 task_rq_unlock(rq
, tsk
, &flags
);
7359 #endif /* CONFIG_CGROUP_SCHED */
7361 #ifdef CONFIG_RT_GROUP_SCHED
7363 * Ensure that the real time constraints are schedulable.
7365 static DEFINE_MUTEX(rt_constraints_mutex
);
7367 /* Must be called with tasklist_lock held */
7368 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7370 struct task_struct
*g
, *p
;
7372 for_each_process_thread(g
, p
) {
7373 if (rt_task(p
) && task_rq(p
)->rt
.tg
== tg
)
7380 struct rt_schedulable_data
{
7381 struct task_group
*tg
;
7386 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7388 struct rt_schedulable_data
*d
= data
;
7389 struct task_group
*child
;
7390 unsigned long total
, sum
= 0;
7391 u64 period
, runtime
;
7393 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7394 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7397 period
= d
->rt_period
;
7398 runtime
= d
->rt_runtime
;
7402 * Cannot have more runtime than the period.
7404 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7408 * Ensure we don't starve existing RT tasks.
7410 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7413 total
= to_ratio(period
, runtime
);
7416 * Nobody can have more than the global setting allows.
7418 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7422 * The sum of our children's runtime should not exceed our own.
7424 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7425 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7426 runtime
= child
->rt_bandwidth
.rt_runtime
;
7428 if (child
== d
->tg
) {
7429 period
= d
->rt_period
;
7430 runtime
= d
->rt_runtime
;
7433 sum
+= to_ratio(period
, runtime
);
7442 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7446 struct rt_schedulable_data data
= {
7448 .rt_period
= period
,
7449 .rt_runtime
= runtime
,
7453 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7459 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7460 u64 rt_period
, u64 rt_runtime
)
7464 mutex_lock(&rt_constraints_mutex
);
7465 read_lock(&tasklist_lock
);
7466 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7470 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7471 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7472 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7474 for_each_possible_cpu(i
) {
7475 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7477 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7478 rt_rq
->rt_runtime
= rt_runtime
;
7479 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7481 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7483 read_unlock(&tasklist_lock
);
7484 mutex_unlock(&rt_constraints_mutex
);
7489 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7491 u64 rt_runtime
, rt_period
;
7493 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7494 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7495 if (rt_runtime_us
< 0)
7496 rt_runtime
= RUNTIME_INF
;
7498 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7501 static long sched_group_rt_runtime(struct task_group
*tg
)
7505 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7508 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7509 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7510 return rt_runtime_us
;
7513 static int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7515 u64 rt_runtime
, rt_period
;
7517 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7518 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7523 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7526 static long sched_group_rt_period(struct task_group
*tg
)
7530 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7531 do_div(rt_period_us
, NSEC_PER_USEC
);
7532 return rt_period_us
;
7534 #endif /* CONFIG_RT_GROUP_SCHED */
7536 #ifdef CONFIG_RT_GROUP_SCHED
7537 static int sched_rt_global_constraints(void)
7541 mutex_lock(&rt_constraints_mutex
);
7542 read_lock(&tasklist_lock
);
7543 ret
= __rt_schedulable(NULL
, 0, 0);
7544 read_unlock(&tasklist_lock
);
7545 mutex_unlock(&rt_constraints_mutex
);
7550 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7552 /* Don't accept realtime tasks when there is no way for them to run */
7553 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7559 #else /* !CONFIG_RT_GROUP_SCHED */
7560 static int sched_rt_global_constraints(void)
7562 unsigned long flags
;
7565 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7566 for_each_possible_cpu(i
) {
7567 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7569 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7570 rt_rq
->rt_runtime
= global_rt_runtime();
7571 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7573 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7577 #endif /* CONFIG_RT_GROUP_SCHED */
7579 static int sched_dl_global_constraints(void)
7581 u64 runtime
= global_rt_runtime();
7582 u64 period
= global_rt_period();
7583 u64 new_bw
= to_ratio(period
, runtime
);
7585 unsigned long flags
;
7588 * Here we want to check the bandwidth not being set to some
7589 * value smaller than the currently allocated bandwidth in
7590 * any of the root_domains.
7592 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7593 * cycling on root_domains... Discussion on different/better
7594 * solutions is welcome!
7596 for_each_possible_cpu(cpu
) {
7597 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
7599 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7600 if (new_bw
< dl_b
->total_bw
)
7602 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7611 static void sched_dl_do_global(void)
7615 unsigned long flags
;
7617 def_dl_bandwidth
.dl_period
= global_rt_period();
7618 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
7620 if (global_rt_runtime() != RUNTIME_INF
)
7621 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
7624 * FIXME: As above...
7626 for_each_possible_cpu(cpu
) {
7627 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
7629 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7631 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7635 static int sched_rt_global_validate(void)
7637 if (sysctl_sched_rt_period
<= 0)
7640 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
7641 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
7647 static void sched_rt_do_global(void)
7649 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7650 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
7653 int sched_rt_handler(struct ctl_table
*table
, int write
,
7654 void __user
*buffer
, size_t *lenp
,
7657 int old_period
, old_runtime
;
7658 static DEFINE_MUTEX(mutex
);
7662 old_period
= sysctl_sched_rt_period
;
7663 old_runtime
= sysctl_sched_rt_runtime
;
7665 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7667 if (!ret
&& write
) {
7668 ret
= sched_rt_global_validate();
7672 ret
= sched_rt_global_constraints();
7676 ret
= sched_dl_global_constraints();
7680 sched_rt_do_global();
7681 sched_dl_do_global();
7685 sysctl_sched_rt_period
= old_period
;
7686 sysctl_sched_rt_runtime
= old_runtime
;
7688 mutex_unlock(&mutex
);
7693 int sched_rr_handler(struct ctl_table
*table
, int write
,
7694 void __user
*buffer
, size_t *lenp
,
7698 static DEFINE_MUTEX(mutex
);
7701 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7702 /* make sure that internally we keep jiffies */
7703 /* also, writing zero resets timeslice to default */
7704 if (!ret
&& write
) {
7705 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
7706 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
7708 mutex_unlock(&mutex
);
7712 #ifdef CONFIG_CGROUP_SCHED
7714 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
7716 return css
? container_of(css
, struct task_group
, css
) : NULL
;
7719 static struct cgroup_subsys_state
*
7720 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
7722 struct task_group
*parent
= css_tg(parent_css
);
7723 struct task_group
*tg
;
7726 /* This is early initialization for the top cgroup */
7727 return &root_task_group
.css
;
7730 tg
= sched_create_group(parent
);
7732 return ERR_PTR(-ENOMEM
);
7737 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
7739 struct task_group
*tg
= css_tg(css
);
7740 struct task_group
*parent
= css_tg(css
->parent
);
7743 sched_online_group(tg
, parent
);
7747 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
7749 struct task_group
*tg
= css_tg(css
);
7751 sched_destroy_group(tg
);
7754 static void cpu_cgroup_css_offline(struct cgroup_subsys_state
*css
)
7756 struct task_group
*tg
= css_tg(css
);
7758 sched_offline_group(tg
);
7761 static int cpu_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7762 struct cgroup_taskset
*tset
)
7764 struct task_struct
*task
;
7766 cgroup_taskset_for_each(task
, tset
) {
7767 #ifdef CONFIG_RT_GROUP_SCHED
7768 if (!sched_rt_can_attach(css_tg(css
), task
))
7771 /* We don't support RT-tasks being in separate groups */
7772 if (task
->sched_class
!= &fair_sched_class
)
7779 static void cpu_cgroup_attach(struct cgroup_subsys_state
*css
,
7780 struct cgroup_taskset
*tset
)
7782 struct task_struct
*task
;
7784 cgroup_taskset_for_each(task
, tset
)
7785 sched_move_task(task
);
7788 static void cpu_cgroup_exit(struct cgroup_subsys_state
*css
,
7789 struct cgroup_subsys_state
*old_css
,
7790 struct task_struct
*task
)
7793 * cgroup_exit() is called in the copy_process() failure path.
7794 * Ignore this case since the task hasn't ran yet, this avoids
7795 * trying to poke a half freed task state from generic code.
7797 if (!(task
->flags
& PF_EXITING
))
7800 sched_move_task(task
);
7803 #ifdef CONFIG_FAIR_GROUP_SCHED
7804 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
7805 struct cftype
*cftype
, u64 shareval
)
7807 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
7810 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
7813 struct task_group
*tg
= css_tg(css
);
7815 return (u64
) scale_load_down(tg
->shares
);
7818 #ifdef CONFIG_CFS_BANDWIDTH
7819 static DEFINE_MUTEX(cfs_constraints_mutex
);
7821 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7822 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7824 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7826 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7828 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7829 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7831 if (tg
== &root_task_group
)
7835 * Ensure we have at some amount of bandwidth every period. This is
7836 * to prevent reaching a state of large arrears when throttled via
7837 * entity_tick() resulting in prolonged exit starvation.
7839 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7843 * Likewise, bound things on the otherside by preventing insane quota
7844 * periods. This also allows us to normalize in computing quota
7847 if (period
> max_cfs_quota_period
)
7851 * Prevent race between setting of cfs_rq->runtime_enabled and
7852 * unthrottle_offline_cfs_rqs().
7855 mutex_lock(&cfs_constraints_mutex
);
7856 ret
= __cfs_schedulable(tg
, period
, quota
);
7860 runtime_enabled
= quota
!= RUNTIME_INF
;
7861 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7863 * If we need to toggle cfs_bandwidth_used, off->on must occur
7864 * before making related changes, and on->off must occur afterwards
7866 if (runtime_enabled
&& !runtime_was_enabled
)
7867 cfs_bandwidth_usage_inc();
7868 raw_spin_lock_irq(&cfs_b
->lock
);
7869 cfs_b
->period
= ns_to_ktime(period
);
7870 cfs_b
->quota
= quota
;
7872 __refill_cfs_bandwidth_runtime(cfs_b
);
7873 /* restart the period timer (if active) to handle new period expiry */
7874 if (runtime_enabled
&& cfs_b
->timer_active
) {
7875 /* force a reprogram */
7876 __start_cfs_bandwidth(cfs_b
, true);
7878 raw_spin_unlock_irq(&cfs_b
->lock
);
7880 for_each_online_cpu(i
) {
7881 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
7882 struct rq
*rq
= cfs_rq
->rq
;
7884 raw_spin_lock_irq(&rq
->lock
);
7885 cfs_rq
->runtime_enabled
= runtime_enabled
;
7886 cfs_rq
->runtime_remaining
= 0;
7888 if (cfs_rq
->throttled
)
7889 unthrottle_cfs_rq(cfs_rq
);
7890 raw_spin_unlock_irq(&rq
->lock
);
7892 if (runtime_was_enabled
&& !runtime_enabled
)
7893 cfs_bandwidth_usage_dec();
7895 mutex_unlock(&cfs_constraints_mutex
);
7901 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
7905 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7906 if (cfs_quota_us
< 0)
7907 quota
= RUNTIME_INF
;
7909 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
7911 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7914 long tg_get_cfs_quota(struct task_group
*tg
)
7918 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
7921 quota_us
= tg
->cfs_bandwidth
.quota
;
7922 do_div(quota_us
, NSEC_PER_USEC
);
7927 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
7931 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
7932 quota
= tg
->cfs_bandwidth
.quota
;
7934 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7937 long tg_get_cfs_period(struct task_group
*tg
)
7941 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7942 do_div(cfs_period_us
, NSEC_PER_USEC
);
7944 return cfs_period_us
;
7947 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
7950 return tg_get_cfs_quota(css_tg(css
));
7953 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
7954 struct cftype
*cftype
, s64 cfs_quota_us
)
7956 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
7959 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
7962 return tg_get_cfs_period(css_tg(css
));
7965 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
7966 struct cftype
*cftype
, u64 cfs_period_us
)
7968 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
7971 struct cfs_schedulable_data
{
7972 struct task_group
*tg
;
7977 * normalize group quota/period to be quota/max_period
7978 * note: units are usecs
7980 static u64
normalize_cfs_quota(struct task_group
*tg
,
7981 struct cfs_schedulable_data
*d
)
7989 period
= tg_get_cfs_period(tg
);
7990 quota
= tg_get_cfs_quota(tg
);
7993 /* note: these should typically be equivalent */
7994 if (quota
== RUNTIME_INF
|| quota
== -1)
7997 return to_ratio(period
, quota
);
8000 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
8002 struct cfs_schedulable_data
*d
= data
;
8003 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8004 s64 quota
= 0, parent_quota
= -1;
8007 quota
= RUNTIME_INF
;
8009 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
8011 quota
= normalize_cfs_quota(tg
, d
);
8012 parent_quota
= parent_b
->hierarchal_quota
;
8015 * ensure max(child_quota) <= parent_quota, inherit when no
8018 if (quota
== RUNTIME_INF
)
8019 quota
= parent_quota
;
8020 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
8023 cfs_b
->hierarchal_quota
= quota
;
8028 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
8031 struct cfs_schedulable_data data
= {
8037 if (quota
!= RUNTIME_INF
) {
8038 do_div(data
.period
, NSEC_PER_USEC
);
8039 do_div(data
.quota
, NSEC_PER_USEC
);
8043 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8049 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
8051 struct task_group
*tg
= css_tg(seq_css(sf
));
8052 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8054 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8055 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8056 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8060 #endif /* CONFIG_CFS_BANDWIDTH */
8061 #endif /* CONFIG_FAIR_GROUP_SCHED */
8063 #ifdef CONFIG_RT_GROUP_SCHED
8064 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8065 struct cftype
*cft
, s64 val
)
8067 return sched_group_set_rt_runtime(css_tg(css
), val
);
8070 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8073 return sched_group_rt_runtime(css_tg(css
));
8076 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8077 struct cftype
*cftype
, u64 rt_period_us
)
8079 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8082 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8085 return sched_group_rt_period(css_tg(css
));
8087 #endif /* CONFIG_RT_GROUP_SCHED */
8089 static struct cftype cpu_files
[] = {
8090 #ifdef CONFIG_FAIR_GROUP_SCHED
8093 .read_u64
= cpu_shares_read_u64
,
8094 .write_u64
= cpu_shares_write_u64
,
8097 #ifdef CONFIG_CFS_BANDWIDTH
8099 .name
= "cfs_quota_us",
8100 .read_s64
= cpu_cfs_quota_read_s64
,
8101 .write_s64
= cpu_cfs_quota_write_s64
,
8104 .name
= "cfs_period_us",
8105 .read_u64
= cpu_cfs_period_read_u64
,
8106 .write_u64
= cpu_cfs_period_write_u64
,
8110 .seq_show
= cpu_stats_show
,
8113 #ifdef CONFIG_RT_GROUP_SCHED
8115 .name
= "rt_runtime_us",
8116 .read_s64
= cpu_rt_runtime_read
,
8117 .write_s64
= cpu_rt_runtime_write
,
8120 .name
= "rt_period_us",
8121 .read_u64
= cpu_rt_period_read_uint
,
8122 .write_u64
= cpu_rt_period_write_uint
,
8128 struct cgroup_subsys cpu_cgrp_subsys
= {
8129 .css_alloc
= cpu_cgroup_css_alloc
,
8130 .css_free
= cpu_cgroup_css_free
,
8131 .css_online
= cpu_cgroup_css_online
,
8132 .css_offline
= cpu_cgroup_css_offline
,
8133 .can_attach
= cpu_cgroup_can_attach
,
8134 .attach
= cpu_cgroup_attach
,
8135 .exit
= cpu_cgroup_exit
,
8136 .legacy_cftypes
= cpu_files
,
8140 #endif /* CONFIG_CGROUP_SCHED */
8142 void dump_cpu_task(int cpu
)
8144 pr_info("Task dump for CPU %d:\n", cpu
);
8145 sched_show_task(cpu_curr(cpu
));