2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
64 struct btrfs_iget_args
{
65 struct btrfs_key
*location
;
66 struct btrfs_root
*root
;
69 static const struct inode_operations btrfs_dir_inode_operations
;
70 static const struct inode_operations btrfs_symlink_inode_operations
;
71 static const struct inode_operations btrfs_dir_ro_inode_operations
;
72 static const struct inode_operations btrfs_special_inode_operations
;
73 static const struct inode_operations btrfs_file_inode_operations
;
74 static const struct address_space_operations btrfs_aops
;
75 static const struct address_space_operations btrfs_symlink_aops
;
76 static const struct file_operations btrfs_dir_file_operations
;
77 static struct extent_io_ops btrfs_extent_io_ops
;
79 static struct kmem_cache
*btrfs_inode_cachep
;
80 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
81 struct kmem_cache
*btrfs_trans_handle_cachep
;
82 struct kmem_cache
*btrfs_transaction_cachep
;
83 struct kmem_cache
*btrfs_path_cachep
;
84 struct kmem_cache
*btrfs_free_space_cachep
;
87 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
88 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
89 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
90 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
91 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
92 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
93 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
94 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
97 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
98 static int btrfs_truncate(struct inode
*inode
);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
100 static noinline
int cow_file_range(struct inode
*inode
,
101 struct page
*locked_page
,
102 u64 start
, u64 end
, int *page_started
,
103 unsigned long *nr_written
, int unlock
);
104 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
105 u64 len
, u64 orig_start
,
106 u64 block_start
, u64 block_len
,
107 u64 orig_block_len
, u64 ram_bytes
,
110 static int btrfs_dirty_inode(struct inode
*inode
);
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode
*inode
)
115 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
119 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
120 struct inode
*inode
, struct inode
*dir
,
121 const struct qstr
*qstr
)
125 err
= btrfs_init_acl(trans
, inode
, dir
);
127 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
136 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
137 struct btrfs_path
*path
, int extent_inserted
,
138 struct btrfs_root
*root
, struct inode
*inode
,
139 u64 start
, size_t size
, size_t compressed_size
,
141 struct page
**compressed_pages
)
143 struct extent_buffer
*leaf
;
144 struct page
*page
= NULL
;
147 struct btrfs_file_extent_item
*ei
;
150 size_t cur_size
= size
;
151 unsigned long offset
;
153 if (compressed_size
&& compressed_pages
)
154 cur_size
= compressed_size
;
156 inode_add_bytes(inode
, size
);
158 if (!extent_inserted
) {
159 struct btrfs_key key
;
162 key
.objectid
= btrfs_ino(inode
);
164 key
.type
= BTRFS_EXTENT_DATA_KEY
;
166 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
167 path
->leave_spinning
= 1;
168 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
175 leaf
= path
->nodes
[0];
176 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
177 struct btrfs_file_extent_item
);
178 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
179 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
180 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
181 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
182 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
183 ptr
= btrfs_file_extent_inline_start(ei
);
185 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
188 while (compressed_size
> 0) {
189 cpage
= compressed_pages
[i
];
190 cur_size
= min_t(unsigned long, compressed_size
,
193 kaddr
= kmap_atomic(cpage
);
194 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
195 kunmap_atomic(kaddr
);
199 compressed_size
-= cur_size
;
201 btrfs_set_file_extent_compression(leaf
, ei
,
204 page
= find_get_page(inode
->i_mapping
,
205 start
>> PAGE_CACHE_SHIFT
);
206 btrfs_set_file_extent_compression(leaf
, ei
, 0);
207 kaddr
= kmap_atomic(page
);
208 offset
= start
& (PAGE_CACHE_SIZE
- 1);
209 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
210 kunmap_atomic(kaddr
);
211 page_cache_release(page
);
213 btrfs_mark_buffer_dirty(leaf
);
214 btrfs_release_path(path
);
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
225 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
226 ret
= btrfs_update_inode(trans
, root
, inode
);
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
239 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
240 struct inode
*inode
, u64 start
,
241 u64 end
, size_t compressed_size
,
243 struct page
**compressed_pages
)
245 struct btrfs_trans_handle
*trans
;
246 u64 isize
= i_size_read(inode
);
247 u64 actual_end
= min(end
+ 1, isize
);
248 u64 inline_len
= actual_end
- start
;
249 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
250 u64 data_len
= inline_len
;
252 struct btrfs_path
*path
;
253 int extent_inserted
= 0;
254 u32 extent_item_size
;
257 data_len
= compressed_size
;
260 actual_end
> PAGE_CACHE_SIZE
||
261 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
263 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
265 data_len
> root
->fs_info
->max_inline
) {
269 path
= btrfs_alloc_path();
273 trans
= btrfs_join_transaction(root
);
275 btrfs_free_path(path
);
276 return PTR_ERR(trans
);
278 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
280 if (compressed_size
&& compressed_pages
)
281 extent_item_size
= btrfs_file_extent_calc_inline_size(
284 extent_item_size
= btrfs_file_extent_calc_inline_size(
287 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
288 start
, aligned_end
, NULL
,
289 1, 1, extent_item_size
, &extent_inserted
);
291 btrfs_abort_transaction(trans
, root
, ret
);
295 if (isize
> actual_end
)
296 inline_len
= min_t(u64
, isize
, actual_end
);
297 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
299 inline_len
, compressed_size
,
300 compress_type
, compressed_pages
);
301 if (ret
&& ret
!= -ENOSPC
) {
302 btrfs_abort_transaction(trans
, root
, ret
);
304 } else if (ret
== -ENOSPC
) {
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
310 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
311 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
313 btrfs_free_path(path
);
314 btrfs_end_transaction(trans
, root
);
318 struct async_extent
{
323 unsigned long nr_pages
;
325 struct list_head list
;
330 struct btrfs_root
*root
;
331 struct page
*locked_page
;
334 struct list_head extents
;
335 struct btrfs_work work
;
338 static noinline
int add_async_extent(struct async_cow
*cow
,
339 u64 start
, u64 ram_size
,
342 unsigned long nr_pages
,
345 struct async_extent
*async_extent
;
347 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
348 BUG_ON(!async_extent
); /* -ENOMEM */
349 async_extent
->start
= start
;
350 async_extent
->ram_size
= ram_size
;
351 async_extent
->compressed_size
= compressed_size
;
352 async_extent
->pages
= pages
;
353 async_extent
->nr_pages
= nr_pages
;
354 async_extent
->compress_type
= compress_type
;
355 list_add_tail(&async_extent
->list
, &cow
->extents
);
359 static inline int inode_need_compress(struct inode
*inode
)
361 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
364 if (btrfs_test_opt(root
, FORCE_COMPRESS
))
366 /* bad compression ratios */
367 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
369 if (btrfs_test_opt(root
, COMPRESS
) ||
370 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
371 BTRFS_I(inode
)->force_compress
)
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
393 static noinline
void compress_file_range(struct inode
*inode
,
394 struct page
*locked_page
,
396 struct async_cow
*async_cow
,
399 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
401 u64 blocksize
= root
->sectorsize
;
403 u64 isize
= i_size_read(inode
);
405 struct page
**pages
= NULL
;
406 unsigned long nr_pages
;
407 unsigned long nr_pages_ret
= 0;
408 unsigned long total_compressed
= 0;
409 unsigned long total_in
= 0;
410 unsigned long max_compressed
= 128 * 1024;
411 unsigned long max_uncompressed
= 128 * 1024;
414 int compress_type
= root
->fs_info
->compress_type
;
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end
- start
+ 1) < 16 * 1024 &&
419 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
420 btrfs_add_inode_defrag(NULL
, inode
);
422 actual_end
= min_t(u64
, isize
, end
+ 1);
425 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
426 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
438 if (actual_end
<= start
)
439 goto cleanup_and_bail_uncompressed
;
441 total_compressed
= actual_end
- start
;
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
447 if (total_compressed
<= blocksize
&&
448 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
449 goto cleanup_and_bail_uncompressed
;
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
461 total_compressed
= min(total_compressed
, max_uncompressed
);
462 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
463 num_bytes
= max(blocksize
, num_bytes
);
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
472 if (inode_need_compress(inode
)) {
474 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
476 /* just bail out to the uncompressed code */
480 if (BTRFS_I(inode
)->force_compress
)
481 compress_type
= BTRFS_I(inode
)->force_compress
;
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
492 extent_range_clear_dirty_for_io(inode
, start
, end
);
494 ret
= btrfs_compress_pages(compress_type
,
495 inode
->i_mapping
, start
,
496 total_compressed
, pages
,
497 nr_pages
, &nr_pages_ret
,
503 unsigned long offset
= total_compressed
&
504 (PAGE_CACHE_SIZE
- 1);
505 struct page
*page
= pages
[nr_pages_ret
- 1];
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
512 kaddr
= kmap_atomic(page
);
513 memset(kaddr
+ offset
, 0,
514 PAGE_CACHE_SIZE
- offset
);
515 kunmap_atomic(kaddr
);
522 /* lets try to make an inline extent */
523 if (ret
|| total_in
< (actual_end
- start
)) {
524 /* we didn't compress the entire range, try
525 * to make an uncompressed inline extent.
527 ret
= cow_file_range_inline(root
, inode
, start
, end
,
530 /* try making a compressed inline extent */
531 ret
= cow_file_range_inline(root
, inode
, start
, end
,
533 compress_type
, pages
);
536 unsigned long clear_flags
= EXTENT_DELALLOC
|
538 unsigned long page_error_op
;
540 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
541 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
548 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
549 clear_flags
, PAGE_UNLOCK
|
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
564 total_compressed
= ALIGN(total_compressed
, blocksize
);
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
570 total_in
= ALIGN(total_in
, PAGE_CACHE_SIZE
);
571 if (total_compressed
>= total_in
) {
574 num_bytes
= total_in
;
577 if (!will_compress
&& pages
) {
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
582 for (i
= 0; i
< nr_pages_ret
; i
++) {
583 WARN_ON(pages
[i
]->mapping
);
584 page_cache_release(pages
[i
]);
588 total_compressed
= 0;
591 /* flag the file so we don't compress in the future */
592 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
593 !(BTRFS_I(inode
)->force_compress
)) {
594 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
604 add_async_extent(async_cow
, start
, num_bytes
,
605 total_compressed
, pages
, nr_pages_ret
,
608 if (start
+ num_bytes
< end
) {
615 cleanup_and_bail_uncompressed
:
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
623 if (page_offset(locked_page
) >= start
&&
624 page_offset(locked_page
) <= end
) {
625 __set_page_dirty_nobuffers(locked_page
);
626 /* unlocked later on in the async handlers */
629 extent_range_redirty_for_io(inode
, start
, end
);
630 add_async_extent(async_cow
, start
, end
- start
+ 1,
631 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
638 for (i
= 0; i
< nr_pages_ret
; i
++) {
639 WARN_ON(pages
[i
]->mapping
);
640 page_cache_release(pages
[i
]);
645 static void free_async_extent_pages(struct async_extent
*async_extent
)
649 if (!async_extent
->pages
)
652 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
653 WARN_ON(async_extent
->pages
[i
]->mapping
);
654 page_cache_release(async_extent
->pages
[i
]);
656 kfree(async_extent
->pages
);
657 async_extent
->nr_pages
= 0;
658 async_extent
->pages
= NULL
;
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
667 static noinline
void submit_compressed_extents(struct inode
*inode
,
668 struct async_cow
*async_cow
)
670 struct async_extent
*async_extent
;
672 struct btrfs_key ins
;
673 struct extent_map
*em
;
674 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
675 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
676 struct extent_io_tree
*io_tree
;
680 while (!list_empty(&async_cow
->extents
)) {
681 async_extent
= list_entry(async_cow
->extents
.next
,
682 struct async_extent
, list
);
683 list_del(&async_extent
->list
);
685 io_tree
= &BTRFS_I(inode
)->io_tree
;
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent
->pages
) {
690 int page_started
= 0;
691 unsigned long nr_written
= 0;
693 lock_extent(io_tree
, async_extent
->start
,
694 async_extent
->start
+
695 async_extent
->ram_size
- 1);
697 /* allocate blocks */
698 ret
= cow_file_range(inode
, async_cow
->locked_page
,
700 async_extent
->start
+
701 async_extent
->ram_size
- 1,
702 &page_started
, &nr_written
, 0);
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
712 if (!page_started
&& !ret
)
713 extent_write_locked_range(io_tree
,
714 inode
, async_extent
->start
,
715 async_extent
->start
+
716 async_extent
->ram_size
- 1,
720 unlock_page(async_cow
->locked_page
);
726 lock_extent(io_tree
, async_extent
->start
,
727 async_extent
->start
+ async_extent
->ram_size
- 1);
729 ret
= btrfs_reserve_extent(root
,
730 async_extent
->compressed_size
,
731 async_extent
->compressed_size
,
732 0, alloc_hint
, &ins
, 1, 1);
734 free_async_extent_pages(async_extent
);
736 if (ret
== -ENOSPC
) {
737 unlock_extent(io_tree
, async_extent
->start
,
738 async_extent
->start
+
739 async_extent
->ram_size
- 1);
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
747 extent_range_redirty_for_io(inode
,
749 async_extent
->start
+
750 async_extent
->ram_size
- 1);
757 * here we're doing allocation and writeback of the
760 btrfs_drop_extent_cache(inode
, async_extent
->start
,
761 async_extent
->start
+
762 async_extent
->ram_size
- 1, 0);
764 em
= alloc_extent_map();
767 goto out_free_reserve
;
769 em
->start
= async_extent
->start
;
770 em
->len
= async_extent
->ram_size
;
771 em
->orig_start
= em
->start
;
772 em
->mod_start
= em
->start
;
773 em
->mod_len
= em
->len
;
775 em
->block_start
= ins
.objectid
;
776 em
->block_len
= ins
.offset
;
777 em
->orig_block_len
= ins
.offset
;
778 em
->ram_bytes
= async_extent
->ram_size
;
779 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
780 em
->compress_type
= async_extent
->compress_type
;
781 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
782 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
786 write_lock(&em_tree
->lock
);
787 ret
= add_extent_mapping(em_tree
, em
, 1);
788 write_unlock(&em_tree
->lock
);
789 if (ret
!= -EEXIST
) {
793 btrfs_drop_extent_cache(inode
, async_extent
->start
,
794 async_extent
->start
+
795 async_extent
->ram_size
- 1, 0);
799 goto out_free_reserve
;
801 ret
= btrfs_add_ordered_extent_compress(inode
,
804 async_extent
->ram_size
,
806 BTRFS_ORDERED_COMPRESSED
,
807 async_extent
->compress_type
);
809 btrfs_drop_extent_cache(inode
, async_extent
->start
,
810 async_extent
->start
+
811 async_extent
->ram_size
- 1, 0);
812 goto out_free_reserve
;
816 * clear dirty, set writeback and unlock the pages.
818 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
819 async_extent
->start
+
820 async_extent
->ram_size
- 1,
821 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
822 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
824 ret
= btrfs_submit_compressed_write(inode
,
826 async_extent
->ram_size
,
828 ins
.offset
, async_extent
->pages
,
829 async_extent
->nr_pages
);
831 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
832 struct page
*p
= async_extent
->pages
[0];
833 const u64 start
= async_extent
->start
;
834 const u64 end
= start
+ async_extent
->ram_size
- 1;
836 p
->mapping
= inode
->i_mapping
;
837 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
840 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
, 0,
843 free_async_extent_pages(async_extent
);
845 alloc_hint
= ins
.objectid
+ ins
.offset
;
851 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
853 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
854 async_extent
->start
+
855 async_extent
->ram_size
- 1,
856 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
857 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
858 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
859 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
861 free_async_extent_pages(async_extent
);
866 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
869 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
870 struct extent_map
*em
;
873 read_lock(&em_tree
->lock
);
874 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
881 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
883 em
= search_extent_mapping(em_tree
, 0, 0);
884 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
885 alloc_hint
= em
->block_start
;
889 alloc_hint
= em
->block_start
;
893 read_unlock(&em_tree
->lock
);
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
911 static noinline
int cow_file_range(struct inode
*inode
,
912 struct page
*locked_page
,
913 u64 start
, u64 end
, int *page_started
,
914 unsigned long *nr_written
,
917 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
920 unsigned long ram_size
;
923 u64 blocksize
= root
->sectorsize
;
924 struct btrfs_key ins
;
925 struct extent_map
*em
;
926 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
929 if (btrfs_is_free_space_inode(inode
)) {
935 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
936 num_bytes
= max(blocksize
, num_bytes
);
937 disk_num_bytes
= num_bytes
;
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes
< 64 * 1024 &&
941 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
942 btrfs_add_inode_defrag(NULL
, inode
);
945 /* lets try to make an inline extent */
946 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
949 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
950 EXTENT_LOCKED
| EXTENT_DELALLOC
|
951 EXTENT_DEFRAG
, PAGE_UNLOCK
|
952 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
955 *nr_written
= *nr_written
+
956 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
959 } else if (ret
< 0) {
964 BUG_ON(disk_num_bytes
>
965 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
967 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
968 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
970 while (disk_num_bytes
> 0) {
973 cur_alloc_size
= disk_num_bytes
;
974 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
975 root
->sectorsize
, 0, alloc_hint
,
980 em
= alloc_extent_map();
986 em
->orig_start
= em
->start
;
987 ram_size
= ins
.offset
;
988 em
->len
= ins
.offset
;
989 em
->mod_start
= em
->start
;
990 em
->mod_len
= em
->len
;
992 em
->block_start
= ins
.objectid
;
993 em
->block_len
= ins
.offset
;
994 em
->orig_block_len
= ins
.offset
;
995 em
->ram_bytes
= ram_size
;
996 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
997 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1001 write_lock(&em_tree
->lock
);
1002 ret
= add_extent_mapping(em_tree
, em
, 1);
1003 write_unlock(&em_tree
->lock
);
1004 if (ret
!= -EEXIST
) {
1005 free_extent_map(em
);
1008 btrfs_drop_extent_cache(inode
, start
,
1009 start
+ ram_size
- 1, 0);
1014 cur_alloc_size
= ins
.offset
;
1015 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1016 ram_size
, cur_alloc_size
, 0);
1018 goto out_drop_extent_cache
;
1020 if (root
->root_key
.objectid
==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1022 ret
= btrfs_reloc_clone_csums(inode
, start
,
1025 goto out_drop_extent_cache
;
1028 if (disk_num_bytes
< cur_alloc_size
)
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1038 op
= unlock
? PAGE_UNLOCK
: 0;
1039 op
|= PAGE_SET_PRIVATE2
;
1041 extent_clear_unlock_delalloc(inode
, start
,
1042 start
+ ram_size
- 1, locked_page
,
1043 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1045 disk_num_bytes
-= cur_alloc_size
;
1046 num_bytes
-= cur_alloc_size
;
1047 alloc_hint
= ins
.objectid
+ ins
.offset
;
1048 start
+= cur_alloc_size
;
1053 out_drop_extent_cache
:
1054 btrfs_drop_extent_cache(inode
, start
, start
+ ram_size
- 1, 0);
1056 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
1058 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1059 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
1060 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
1061 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1062 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1067 * work queue call back to started compression on a file and pages
1069 static noinline
void async_cow_start(struct btrfs_work
*work
)
1071 struct async_cow
*async_cow
;
1073 async_cow
= container_of(work
, struct async_cow
, work
);
1075 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1076 async_cow
->start
, async_cow
->end
, async_cow
,
1078 if (num_added
== 0) {
1079 btrfs_add_delayed_iput(async_cow
->inode
);
1080 async_cow
->inode
= NULL
;
1085 * work queue call back to submit previously compressed pages
1087 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1089 struct async_cow
*async_cow
;
1090 struct btrfs_root
*root
;
1091 unsigned long nr_pages
;
1093 async_cow
= container_of(work
, struct async_cow
, work
);
1095 root
= async_cow
->root
;
1096 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1099 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1101 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1102 wake_up(&root
->fs_info
->async_submit_wait
);
1104 if (async_cow
->inode
)
1105 submit_compressed_extents(async_cow
->inode
, async_cow
);
1108 static noinline
void async_cow_free(struct btrfs_work
*work
)
1110 struct async_cow
*async_cow
;
1111 async_cow
= container_of(work
, struct async_cow
, work
);
1112 if (async_cow
->inode
)
1113 btrfs_add_delayed_iput(async_cow
->inode
);
1117 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1118 u64 start
, u64 end
, int *page_started
,
1119 unsigned long *nr_written
)
1121 struct async_cow
*async_cow
;
1122 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1123 unsigned long nr_pages
;
1125 int limit
= 10 * 1024 * 1024;
1127 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1128 1, 0, NULL
, GFP_NOFS
);
1129 while (start
< end
) {
1130 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1131 BUG_ON(!async_cow
); /* -ENOMEM */
1132 async_cow
->inode
= igrab(inode
);
1133 async_cow
->root
= root
;
1134 async_cow
->locked_page
= locked_page
;
1135 async_cow
->start
= start
;
1137 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1138 !btrfs_test_opt(root
, FORCE_COMPRESS
))
1141 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1143 async_cow
->end
= cur_end
;
1144 INIT_LIST_HEAD(&async_cow
->extents
);
1146 btrfs_init_work(&async_cow
->work
,
1147 btrfs_delalloc_helper
,
1148 async_cow_start
, async_cow_submit
,
1151 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1153 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1155 btrfs_queue_work(root
->fs_info
->delalloc_workers
,
1158 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1159 wait_event(root
->fs_info
->async_submit_wait
,
1160 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1164 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1165 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1166 wait_event(root
->fs_info
->async_submit_wait
,
1167 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1171 *nr_written
+= nr_pages
;
1172 start
= cur_end
+ 1;
1178 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1179 u64 bytenr
, u64 num_bytes
)
1182 struct btrfs_ordered_sum
*sums
;
1185 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1186 bytenr
+ num_bytes
- 1, &list
, 0);
1187 if (ret
== 0 && list_empty(&list
))
1190 while (!list_empty(&list
)) {
1191 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1192 list_del(&sums
->list
);
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1202 * If no cow copies or snapshots exist, we write directly to the existing
1205 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1206 struct page
*locked_page
,
1207 u64 start
, u64 end
, int *page_started
, int force
,
1208 unsigned long *nr_written
)
1210 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1211 struct btrfs_trans_handle
*trans
;
1212 struct extent_buffer
*leaf
;
1213 struct btrfs_path
*path
;
1214 struct btrfs_file_extent_item
*fi
;
1215 struct btrfs_key found_key
;
1230 u64 ino
= btrfs_ino(inode
);
1232 path
= btrfs_alloc_path();
1234 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1235 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1236 EXTENT_DO_ACCOUNTING
|
1237 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1239 PAGE_SET_WRITEBACK
|
1240 PAGE_END_WRITEBACK
);
1244 nolock
= btrfs_is_free_space_inode(inode
);
1247 trans
= btrfs_join_transaction_nolock(root
);
1249 trans
= btrfs_join_transaction(root
);
1251 if (IS_ERR(trans
)) {
1252 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1253 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1254 EXTENT_DO_ACCOUNTING
|
1255 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1257 PAGE_SET_WRITEBACK
|
1258 PAGE_END_WRITEBACK
);
1259 btrfs_free_path(path
);
1260 return PTR_ERR(trans
);
1263 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1265 cow_start
= (u64
)-1;
1268 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1272 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1273 leaf
= path
->nodes
[0];
1274 btrfs_item_key_to_cpu(leaf
, &found_key
,
1275 path
->slots
[0] - 1);
1276 if (found_key
.objectid
== ino
&&
1277 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1282 leaf
= path
->nodes
[0];
1283 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1284 ret
= btrfs_next_leaf(root
, path
);
1289 leaf
= path
->nodes
[0];
1295 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1297 if (found_key
.objectid
> ino
||
1298 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1299 found_key
.offset
> end
)
1302 if (found_key
.offset
> cur_offset
) {
1303 extent_end
= found_key
.offset
;
1308 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1309 struct btrfs_file_extent_item
);
1310 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1312 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1313 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1314 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1315 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1316 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1317 extent_end
= found_key
.offset
+
1318 btrfs_file_extent_num_bytes(leaf
, fi
);
1320 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1321 if (extent_end
<= start
) {
1325 if (disk_bytenr
== 0)
1327 if (btrfs_file_extent_compression(leaf
, fi
) ||
1328 btrfs_file_extent_encryption(leaf
, fi
) ||
1329 btrfs_file_extent_other_encoding(leaf
, fi
))
1331 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1333 if (btrfs_extent_readonly(root
, disk_bytenr
))
1335 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1337 extent_offset
, disk_bytenr
))
1339 disk_bytenr
+= extent_offset
;
1340 disk_bytenr
+= cur_offset
- found_key
.offset
;
1341 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1343 * if there are pending snapshots for this root,
1344 * we fall into common COW way.
1347 err
= btrfs_start_write_no_snapshoting(root
);
1352 * force cow if csum exists in the range.
1353 * this ensure that csum for a given extent are
1354 * either valid or do not exist.
1356 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1359 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1360 extent_end
= found_key
.offset
+
1361 btrfs_file_extent_inline_len(leaf
,
1362 path
->slots
[0], fi
);
1363 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1368 if (extent_end
<= start
) {
1370 if (!nolock
&& nocow
)
1371 btrfs_end_write_no_snapshoting(root
);
1375 if (cow_start
== (u64
)-1)
1376 cow_start
= cur_offset
;
1377 cur_offset
= extent_end
;
1378 if (cur_offset
> end
)
1384 btrfs_release_path(path
);
1385 if (cow_start
!= (u64
)-1) {
1386 ret
= cow_file_range(inode
, locked_page
,
1387 cow_start
, found_key
.offset
- 1,
1388 page_started
, nr_written
, 1);
1390 if (!nolock
&& nocow
)
1391 btrfs_end_write_no_snapshoting(root
);
1394 cow_start
= (u64
)-1;
1397 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1398 struct extent_map
*em
;
1399 struct extent_map_tree
*em_tree
;
1400 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1401 em
= alloc_extent_map();
1402 BUG_ON(!em
); /* -ENOMEM */
1403 em
->start
= cur_offset
;
1404 em
->orig_start
= found_key
.offset
- extent_offset
;
1405 em
->len
= num_bytes
;
1406 em
->block_len
= num_bytes
;
1407 em
->block_start
= disk_bytenr
;
1408 em
->orig_block_len
= disk_num_bytes
;
1409 em
->ram_bytes
= ram_bytes
;
1410 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1411 em
->mod_start
= em
->start
;
1412 em
->mod_len
= em
->len
;
1413 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1414 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1415 em
->generation
= -1;
1417 write_lock(&em_tree
->lock
);
1418 ret
= add_extent_mapping(em_tree
, em
, 1);
1419 write_unlock(&em_tree
->lock
);
1420 if (ret
!= -EEXIST
) {
1421 free_extent_map(em
);
1424 btrfs_drop_extent_cache(inode
, em
->start
,
1425 em
->start
+ em
->len
- 1, 0);
1427 type
= BTRFS_ORDERED_PREALLOC
;
1429 type
= BTRFS_ORDERED_NOCOW
;
1432 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1433 num_bytes
, num_bytes
, type
);
1434 BUG_ON(ret
); /* -ENOMEM */
1436 if (root
->root_key
.objectid
==
1437 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1438 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1441 if (!nolock
&& nocow
)
1442 btrfs_end_write_no_snapshoting(root
);
1447 extent_clear_unlock_delalloc(inode
, cur_offset
,
1448 cur_offset
+ num_bytes
- 1,
1449 locked_page
, EXTENT_LOCKED
|
1450 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1452 if (!nolock
&& nocow
)
1453 btrfs_end_write_no_snapshoting(root
);
1454 cur_offset
= extent_end
;
1455 if (cur_offset
> end
)
1458 btrfs_release_path(path
);
1460 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1461 cow_start
= cur_offset
;
1465 if (cow_start
!= (u64
)-1) {
1466 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1467 page_started
, nr_written
, 1);
1473 err
= btrfs_end_transaction(trans
, root
);
1477 if (ret
&& cur_offset
< end
)
1478 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1479 locked_page
, EXTENT_LOCKED
|
1480 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1481 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1483 PAGE_SET_WRITEBACK
|
1484 PAGE_END_WRITEBACK
);
1485 btrfs_free_path(path
);
1489 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1492 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1493 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1497 * @defrag_bytes is a hint value, no spinlock held here,
1498 * if is not zero, it means the file is defragging.
1499 * Force cow if given extent needs to be defragged.
1501 if (BTRFS_I(inode
)->defrag_bytes
&&
1502 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1503 EXTENT_DEFRAG
, 0, NULL
))
1510 * extent_io.c call back to do delayed allocation processing
1512 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1513 u64 start
, u64 end
, int *page_started
,
1514 unsigned long *nr_written
)
1517 int force_cow
= need_force_cow(inode
, start
, end
);
1519 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1520 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1521 page_started
, 1, nr_written
);
1522 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1523 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1524 page_started
, 0, nr_written
);
1525 } else if (!inode_need_compress(inode
)) {
1526 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1527 page_started
, nr_written
, 1);
1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1530 &BTRFS_I(inode
)->runtime_flags
);
1531 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1532 page_started
, nr_written
);
1537 static void btrfs_split_extent_hook(struct inode
*inode
,
1538 struct extent_state
*orig
, u64 split
)
1542 /* not delalloc, ignore it */
1543 if (!(orig
->state
& EXTENT_DELALLOC
))
1546 size
= orig
->end
- orig
->start
+ 1;
1547 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1552 * See the explanation in btrfs_merge_extent_hook, the same
1553 * applies here, just in reverse.
1555 new_size
= orig
->end
- split
+ 1;
1556 num_extents
= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1557 BTRFS_MAX_EXTENT_SIZE
);
1558 new_size
= split
- orig
->start
;
1559 num_extents
+= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1560 BTRFS_MAX_EXTENT_SIZE
);
1561 if (div64_u64(size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1562 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1566 spin_lock(&BTRFS_I(inode
)->lock
);
1567 BTRFS_I(inode
)->outstanding_extents
++;
1568 spin_unlock(&BTRFS_I(inode
)->lock
);
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1577 static void btrfs_merge_extent_hook(struct inode
*inode
,
1578 struct extent_state
*new,
1579 struct extent_state
*other
)
1581 u64 new_size
, old_size
;
1584 /* not delalloc, ignore it */
1585 if (!(other
->state
& EXTENT_DELALLOC
))
1588 if (new->start
> other
->start
)
1589 new_size
= new->end
- other
->start
+ 1;
1591 new_size
= other
->end
- new->start
+ 1;
1593 /* we're not bigger than the max, unreserve the space and go */
1594 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1595 spin_lock(&BTRFS_I(inode
)->lock
);
1596 BTRFS_I(inode
)->outstanding_extents
--;
1597 spin_unlock(&BTRFS_I(inode
)->lock
);
1602 * We have to add up either side to figure out how many extents were
1603 * accounted for before we merged into one big extent. If the number of
1604 * extents we accounted for is <= the amount we need for the new range
1605 * then we can return, otherwise drop. Think of it like this
1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 * need 2 outstanding extents, on one side we have 1 and the other side
1611 * we have 1 so they are == and we can return. But in this case
1613 * [MAX_SIZE+4k][MAX_SIZE+4k]
1615 * Each range on their own accounts for 2 extents, but merged together
1616 * they are only 3 extents worth of accounting, so we need to drop in
1619 old_size
= other
->end
- other
->start
+ 1;
1620 num_extents
= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1621 BTRFS_MAX_EXTENT_SIZE
);
1622 old_size
= new->end
- new->start
+ 1;
1623 num_extents
+= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1624 BTRFS_MAX_EXTENT_SIZE
);
1626 if (div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1627 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1630 spin_lock(&BTRFS_I(inode
)->lock
);
1631 BTRFS_I(inode
)->outstanding_extents
--;
1632 spin_unlock(&BTRFS_I(inode
)->lock
);
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1636 struct inode
*inode
)
1638 spin_lock(&root
->delalloc_lock
);
1639 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1640 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1641 &root
->delalloc_inodes
);
1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1643 &BTRFS_I(inode
)->runtime_flags
);
1644 root
->nr_delalloc_inodes
++;
1645 if (root
->nr_delalloc_inodes
== 1) {
1646 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1647 BUG_ON(!list_empty(&root
->delalloc_root
));
1648 list_add_tail(&root
->delalloc_root
,
1649 &root
->fs_info
->delalloc_roots
);
1650 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1653 spin_unlock(&root
->delalloc_lock
);
1656 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1657 struct inode
*inode
)
1659 spin_lock(&root
->delalloc_lock
);
1660 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1661 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1663 &BTRFS_I(inode
)->runtime_flags
);
1664 root
->nr_delalloc_inodes
--;
1665 if (!root
->nr_delalloc_inodes
) {
1666 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1667 BUG_ON(list_empty(&root
->delalloc_root
));
1668 list_del_init(&root
->delalloc_root
);
1669 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1672 spin_unlock(&root
->delalloc_lock
);
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1680 static void btrfs_set_bit_hook(struct inode
*inode
,
1681 struct extent_state
*state
, unsigned *bits
)
1684 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1687 * set_bit and clear bit hooks normally require _irqsave/restore
1688 * but in this case, we are only testing for the DELALLOC
1689 * bit, which is only set or cleared with irqs on
1691 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1692 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1693 u64 len
= state
->end
+ 1 - state
->start
;
1694 bool do_list
= !btrfs_is_free_space_inode(inode
);
1696 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1697 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1699 spin_lock(&BTRFS_I(inode
)->lock
);
1700 BTRFS_I(inode
)->outstanding_extents
++;
1701 spin_unlock(&BTRFS_I(inode
)->lock
);
1704 /* For sanity tests */
1705 if (btrfs_test_is_dummy_root(root
))
1708 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1709 root
->fs_info
->delalloc_batch
);
1710 spin_lock(&BTRFS_I(inode
)->lock
);
1711 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1712 if (*bits
& EXTENT_DEFRAG
)
1713 BTRFS_I(inode
)->defrag_bytes
+= len
;
1714 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1715 &BTRFS_I(inode
)->runtime_flags
))
1716 btrfs_add_delalloc_inodes(root
, inode
);
1717 spin_unlock(&BTRFS_I(inode
)->lock
);
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1724 static void btrfs_clear_bit_hook(struct inode
*inode
,
1725 struct extent_state
*state
,
1728 u64 len
= state
->end
+ 1 - state
->start
;
1729 u64 num_extents
= div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
-1,
1730 BTRFS_MAX_EXTENT_SIZE
);
1732 spin_lock(&BTRFS_I(inode
)->lock
);
1733 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
))
1734 BTRFS_I(inode
)->defrag_bytes
-= len
;
1735 spin_unlock(&BTRFS_I(inode
)->lock
);
1738 * set_bit and clear bit hooks normally require _irqsave/restore
1739 * but in this case, we are only testing for the DELALLOC
1740 * bit, which is only set or cleared with irqs on
1742 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1743 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1744 bool do_list
= !btrfs_is_free_space_inode(inode
);
1746 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1747 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1748 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1749 spin_lock(&BTRFS_I(inode
)->lock
);
1750 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
1751 spin_unlock(&BTRFS_I(inode
)->lock
);
1755 * We don't reserve metadata space for space cache inodes so we
1756 * don't need to call dellalloc_release_metadata if there is an
1759 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1760 root
!= root
->fs_info
->tree_root
)
1761 btrfs_delalloc_release_metadata(inode
, len
);
1763 /* For sanity tests. */
1764 if (btrfs_test_is_dummy_root(root
))
1767 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1768 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1769 btrfs_free_reserved_data_space(inode
, len
);
1771 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1772 root
->fs_info
->delalloc_batch
);
1773 spin_lock(&BTRFS_I(inode
)->lock
);
1774 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1775 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1777 &BTRFS_I(inode
)->runtime_flags
))
1778 btrfs_del_delalloc_inode(root
, inode
);
1779 spin_unlock(&BTRFS_I(inode
)->lock
);
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1787 int btrfs_merge_bio_hook(int rw
, struct page
*page
, unsigned long offset
,
1788 size_t size
, struct bio
*bio
,
1789 unsigned long bio_flags
)
1791 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1792 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1797 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1800 length
= bio
->bi_iter
.bi_size
;
1801 map_length
= length
;
1802 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
,
1803 &map_length
, NULL
, 0);
1804 /* Will always return 0 with map_multi == NULL */
1806 if (map_length
< length
+ size
)
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time. All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1819 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1820 struct bio
*bio
, int mirror_num
,
1821 unsigned long bio_flags
,
1824 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1827 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1828 BUG_ON(ret
); /* -ENOMEM */
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time. All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1840 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1841 int mirror_num
, unsigned long bio_flags
,
1844 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1847 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1849 bio_endio(bio
, ret
);
1854 * extent_io.c submission hook. This does the right thing for csum calculation
1855 * on write, or reading the csums from the tree before a read
1857 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1858 int mirror_num
, unsigned long bio_flags
,
1861 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1865 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1867 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1869 if (btrfs_is_free_space_inode(inode
))
1872 if (!(rw
& REQ_WRITE
)) {
1873 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1877 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1878 ret
= btrfs_submit_compressed_read(inode
, bio
,
1882 } else if (!skip_sum
) {
1883 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1888 } else if (async
&& !skip_sum
) {
1889 /* csum items have already been cloned */
1890 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1892 /* we're doing a write, do the async checksumming */
1893 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1894 inode
, rw
, bio
, mirror_num
,
1895 bio_flags
, bio_offset
,
1896 __btrfs_submit_bio_start
,
1897 __btrfs_submit_bio_done
);
1899 } else if (!skip_sum
) {
1900 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1906 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1910 bio_endio(bio
, ret
);
1915 * given a list of ordered sums record them in the inode. This happens
1916 * at IO completion time based on sums calculated at bio submission time.
1918 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1919 struct inode
*inode
, u64 file_offset
,
1920 struct list_head
*list
)
1922 struct btrfs_ordered_sum
*sum
;
1924 list_for_each_entry(sum
, list
, list
) {
1925 trans
->adding_csums
= 1;
1926 btrfs_csum_file_blocks(trans
,
1927 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1928 trans
->adding_csums
= 0;
1933 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1934 struct extent_state
**cached_state
)
1936 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1937 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1938 cached_state
, GFP_NOFS
);
1941 /* see btrfs_writepage_start_hook for details on why this is required */
1942 struct btrfs_writepage_fixup
{
1944 struct btrfs_work work
;
1947 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1949 struct btrfs_writepage_fixup
*fixup
;
1950 struct btrfs_ordered_extent
*ordered
;
1951 struct extent_state
*cached_state
= NULL
;
1953 struct inode
*inode
;
1958 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1962 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1963 ClearPageChecked(page
);
1967 inode
= page
->mapping
->host
;
1968 page_start
= page_offset(page
);
1969 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1971 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1974 /* already ordered? We're done */
1975 if (PagePrivate2(page
))
1978 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1980 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1981 page_end
, &cached_state
, GFP_NOFS
);
1983 btrfs_start_ordered_extent(inode
, ordered
, 1);
1984 btrfs_put_ordered_extent(ordered
);
1988 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1990 mapping_set_error(page
->mapping
, ret
);
1991 end_extent_writepage(page
, ret
, page_start
, page_end
);
1992 ClearPageChecked(page
);
1996 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1997 ClearPageChecked(page
);
1998 set_page_dirty(page
);
2000 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2001 &cached_state
, GFP_NOFS
);
2004 page_cache_release(page
);
2009 * There are a few paths in the higher layers of the kernel that directly
2010 * set the page dirty bit without asking the filesystem if it is a
2011 * good idea. This causes problems because we want to make sure COW
2012 * properly happens and the data=ordered rules are followed.
2014 * In our case any range that doesn't have the ORDERED bit set
2015 * hasn't been properly setup for IO. We kick off an async process
2016 * to fix it up. The async helper will wait for ordered extents, set
2017 * the delalloc bit and make it safe to write the page.
2019 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2021 struct inode
*inode
= page
->mapping
->host
;
2022 struct btrfs_writepage_fixup
*fixup
;
2023 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2025 /* this page is properly in the ordered list */
2026 if (TestClearPagePrivate2(page
))
2029 if (PageChecked(page
))
2032 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2036 SetPageChecked(page
);
2037 page_cache_get(page
);
2038 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2039 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2041 btrfs_queue_work(root
->fs_info
->fixup_workers
, &fixup
->work
);
2045 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2046 struct inode
*inode
, u64 file_pos
,
2047 u64 disk_bytenr
, u64 disk_num_bytes
,
2048 u64 num_bytes
, u64 ram_bytes
,
2049 u8 compression
, u8 encryption
,
2050 u16 other_encoding
, int extent_type
)
2052 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2053 struct btrfs_file_extent_item
*fi
;
2054 struct btrfs_path
*path
;
2055 struct extent_buffer
*leaf
;
2056 struct btrfs_key ins
;
2057 int extent_inserted
= 0;
2060 path
= btrfs_alloc_path();
2065 * we may be replacing one extent in the tree with another.
2066 * The new extent is pinned in the extent map, and we don't want
2067 * to drop it from the cache until it is completely in the btree.
2069 * So, tell btrfs_drop_extents to leave this extent in the cache.
2070 * the caller is expected to unpin it and allow it to be merged
2073 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2074 file_pos
+ num_bytes
, NULL
, 0,
2075 1, sizeof(*fi
), &extent_inserted
);
2079 if (!extent_inserted
) {
2080 ins
.objectid
= btrfs_ino(inode
);
2081 ins
.offset
= file_pos
;
2082 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2084 path
->leave_spinning
= 1;
2085 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2090 leaf
= path
->nodes
[0];
2091 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2092 struct btrfs_file_extent_item
);
2093 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2094 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2095 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2096 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2097 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2098 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2099 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2100 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2101 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2102 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2104 btrfs_mark_buffer_dirty(leaf
);
2105 btrfs_release_path(path
);
2107 inode_add_bytes(inode
, num_bytes
);
2109 ins
.objectid
= disk_bytenr
;
2110 ins
.offset
= disk_num_bytes
;
2111 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2112 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2113 root
->root_key
.objectid
,
2114 btrfs_ino(inode
), file_pos
, &ins
);
2116 btrfs_free_path(path
);
2121 /* snapshot-aware defrag */
2122 struct sa_defrag_extent_backref
{
2123 struct rb_node node
;
2124 struct old_sa_defrag_extent
*old
;
2133 struct old_sa_defrag_extent
{
2134 struct list_head list
;
2135 struct new_sa_defrag_extent
*new;
2144 struct new_sa_defrag_extent
{
2145 struct rb_root root
;
2146 struct list_head head
;
2147 struct btrfs_path
*path
;
2148 struct inode
*inode
;
2156 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2157 struct sa_defrag_extent_backref
*b2
)
2159 if (b1
->root_id
< b2
->root_id
)
2161 else if (b1
->root_id
> b2
->root_id
)
2164 if (b1
->inum
< b2
->inum
)
2166 else if (b1
->inum
> b2
->inum
)
2169 if (b1
->file_pos
< b2
->file_pos
)
2171 else if (b1
->file_pos
> b2
->file_pos
)
2175 * [------------------------------] ===> (a range of space)
2176 * |<--->| |<---->| =============> (fs/file tree A)
2177 * |<---------------------------->| ===> (fs/file tree B)
2179 * A range of space can refer to two file extents in one tree while
2180 * refer to only one file extent in another tree.
2182 * So we may process a disk offset more than one time(two extents in A)
2183 * and locate at the same extent(one extent in B), then insert two same
2184 * backrefs(both refer to the extent in B).
2189 static void backref_insert(struct rb_root
*root
,
2190 struct sa_defrag_extent_backref
*backref
)
2192 struct rb_node
**p
= &root
->rb_node
;
2193 struct rb_node
*parent
= NULL
;
2194 struct sa_defrag_extent_backref
*entry
;
2199 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2201 ret
= backref_comp(backref
, entry
);
2205 p
= &(*p
)->rb_right
;
2208 rb_link_node(&backref
->node
, parent
, p
);
2209 rb_insert_color(&backref
->node
, root
);
2213 * Note the backref might has changed, and in this case we just return 0.
2215 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2218 struct btrfs_file_extent_item
*extent
;
2219 struct btrfs_fs_info
*fs_info
;
2220 struct old_sa_defrag_extent
*old
= ctx
;
2221 struct new_sa_defrag_extent
*new = old
->new;
2222 struct btrfs_path
*path
= new->path
;
2223 struct btrfs_key key
;
2224 struct btrfs_root
*root
;
2225 struct sa_defrag_extent_backref
*backref
;
2226 struct extent_buffer
*leaf
;
2227 struct inode
*inode
= new->inode
;
2233 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2234 inum
== btrfs_ino(inode
))
2237 key
.objectid
= root_id
;
2238 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2239 key
.offset
= (u64
)-1;
2241 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2242 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2244 if (PTR_ERR(root
) == -ENOENT
)
2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248 inum
, offset
, root_id
);
2249 return PTR_ERR(root
);
2252 key
.objectid
= inum
;
2253 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2254 if (offset
> (u64
)-1 << 32)
2257 key
.offset
= offset
;
2259 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2260 if (WARN_ON(ret
< 0))
2267 leaf
= path
->nodes
[0];
2268 slot
= path
->slots
[0];
2270 if (slot
>= btrfs_header_nritems(leaf
)) {
2271 ret
= btrfs_next_leaf(root
, path
);
2274 } else if (ret
> 0) {
2283 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2285 if (key
.objectid
> inum
)
2288 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2291 extent
= btrfs_item_ptr(leaf
, slot
,
2292 struct btrfs_file_extent_item
);
2294 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2298 * 'offset' refers to the exact key.offset,
2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300 * (key.offset - extent_offset).
2302 if (key
.offset
!= offset
)
2305 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2306 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2308 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2309 old
->len
|| extent_offset
+ num_bytes
<=
2310 old
->extent_offset
+ old
->offset
)
2315 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2321 backref
->root_id
= root_id
;
2322 backref
->inum
= inum
;
2323 backref
->file_pos
= offset
;
2324 backref
->num_bytes
= num_bytes
;
2325 backref
->extent_offset
= extent_offset
;
2326 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2328 backref_insert(&new->root
, backref
);
2331 btrfs_release_path(path
);
2336 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2337 struct new_sa_defrag_extent
*new)
2339 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2340 struct old_sa_defrag_extent
*old
, *tmp
;
2345 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2346 ret
= iterate_inodes_from_logical(old
->bytenr
+
2347 old
->extent_offset
, fs_info
,
2348 path
, record_one_backref
,
2350 if (ret
< 0 && ret
!= -ENOENT
)
2353 /* no backref to be processed for this extent */
2355 list_del(&old
->list
);
2360 if (list_empty(&new->head
))
2366 static int relink_is_mergable(struct extent_buffer
*leaf
,
2367 struct btrfs_file_extent_item
*fi
,
2368 struct new_sa_defrag_extent
*new)
2370 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2373 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2376 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2379 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2380 btrfs_file_extent_other_encoding(leaf
, fi
))
2387 * Note the backref might has changed, and in this case we just return 0.
2389 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2390 struct sa_defrag_extent_backref
*prev
,
2391 struct sa_defrag_extent_backref
*backref
)
2393 struct btrfs_file_extent_item
*extent
;
2394 struct btrfs_file_extent_item
*item
;
2395 struct btrfs_ordered_extent
*ordered
;
2396 struct btrfs_trans_handle
*trans
;
2397 struct btrfs_fs_info
*fs_info
;
2398 struct btrfs_root
*root
;
2399 struct btrfs_key key
;
2400 struct extent_buffer
*leaf
;
2401 struct old_sa_defrag_extent
*old
= backref
->old
;
2402 struct new_sa_defrag_extent
*new = old
->new;
2403 struct inode
*src_inode
= new->inode
;
2404 struct inode
*inode
;
2405 struct extent_state
*cached
= NULL
;
2414 if (prev
&& prev
->root_id
== backref
->root_id
&&
2415 prev
->inum
== backref
->inum
&&
2416 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2419 /* step 1: get root */
2420 key
.objectid
= backref
->root_id
;
2421 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2422 key
.offset
= (u64
)-1;
2424 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2425 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2427 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2429 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2430 if (PTR_ERR(root
) == -ENOENT
)
2432 return PTR_ERR(root
);
2435 if (btrfs_root_readonly(root
)) {
2436 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2440 /* step 2: get inode */
2441 key
.objectid
= backref
->inum
;
2442 key
.type
= BTRFS_INODE_ITEM_KEY
;
2445 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2446 if (IS_ERR(inode
)) {
2447 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2451 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2453 /* step 3: relink backref */
2454 lock_start
= backref
->file_pos
;
2455 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2456 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2459 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2461 btrfs_put_ordered_extent(ordered
);
2465 trans
= btrfs_join_transaction(root
);
2466 if (IS_ERR(trans
)) {
2467 ret
= PTR_ERR(trans
);
2471 key
.objectid
= backref
->inum
;
2472 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2473 key
.offset
= backref
->file_pos
;
2475 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2478 } else if (ret
> 0) {
2483 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2484 struct btrfs_file_extent_item
);
2486 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2487 backref
->generation
)
2490 btrfs_release_path(path
);
2492 start
= backref
->file_pos
;
2493 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2494 start
+= old
->extent_offset
+ old
->offset
-
2495 backref
->extent_offset
;
2497 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2498 old
->extent_offset
+ old
->offset
+ old
->len
);
2499 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2501 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2506 key
.objectid
= btrfs_ino(inode
);
2507 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2510 path
->leave_spinning
= 1;
2512 struct btrfs_file_extent_item
*fi
;
2514 struct btrfs_key found_key
;
2516 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2521 leaf
= path
->nodes
[0];
2522 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2524 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2525 struct btrfs_file_extent_item
);
2526 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2528 if (extent_len
+ found_key
.offset
== start
&&
2529 relink_is_mergable(leaf
, fi
, new)) {
2530 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2532 btrfs_mark_buffer_dirty(leaf
);
2533 inode_add_bytes(inode
, len
);
2539 btrfs_release_path(path
);
2544 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2547 btrfs_abort_transaction(trans
, root
, ret
);
2551 leaf
= path
->nodes
[0];
2552 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2553 struct btrfs_file_extent_item
);
2554 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2555 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2556 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2557 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2558 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2559 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2560 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2561 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2562 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2563 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2565 btrfs_mark_buffer_dirty(leaf
);
2566 inode_add_bytes(inode
, len
);
2567 btrfs_release_path(path
);
2569 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2571 backref
->root_id
, backref
->inum
,
2572 new->file_pos
, 0); /* start - extent_offset */
2574 btrfs_abort_transaction(trans
, root
, ret
);
2580 btrfs_release_path(path
);
2581 path
->leave_spinning
= 0;
2582 btrfs_end_transaction(trans
, root
);
2584 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2592 struct old_sa_defrag_extent
*old
, *tmp
;
2597 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2598 list_del(&old
->list
);
2604 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2606 struct btrfs_path
*path
;
2607 struct sa_defrag_extent_backref
*backref
;
2608 struct sa_defrag_extent_backref
*prev
= NULL
;
2609 struct inode
*inode
;
2610 struct btrfs_root
*root
;
2611 struct rb_node
*node
;
2615 root
= BTRFS_I(inode
)->root
;
2617 path
= btrfs_alloc_path();
2621 if (!record_extent_backrefs(path
, new)) {
2622 btrfs_free_path(path
);
2625 btrfs_release_path(path
);
2628 node
= rb_first(&new->root
);
2631 rb_erase(node
, &new->root
);
2633 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2635 ret
= relink_extent_backref(path
, prev
, backref
);
2648 btrfs_free_path(path
);
2650 free_sa_defrag_extent(new);
2652 atomic_dec(&root
->fs_info
->defrag_running
);
2653 wake_up(&root
->fs_info
->transaction_wait
);
2656 static struct new_sa_defrag_extent
*
2657 record_old_file_extents(struct inode
*inode
,
2658 struct btrfs_ordered_extent
*ordered
)
2660 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2661 struct btrfs_path
*path
;
2662 struct btrfs_key key
;
2663 struct old_sa_defrag_extent
*old
;
2664 struct new_sa_defrag_extent
*new;
2667 new = kmalloc(sizeof(*new), GFP_NOFS
);
2672 new->file_pos
= ordered
->file_offset
;
2673 new->len
= ordered
->len
;
2674 new->bytenr
= ordered
->start
;
2675 new->disk_len
= ordered
->disk_len
;
2676 new->compress_type
= ordered
->compress_type
;
2677 new->root
= RB_ROOT
;
2678 INIT_LIST_HEAD(&new->head
);
2680 path
= btrfs_alloc_path();
2684 key
.objectid
= btrfs_ino(inode
);
2685 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2686 key
.offset
= new->file_pos
;
2688 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2691 if (ret
> 0 && path
->slots
[0] > 0)
2694 /* find out all the old extents for the file range */
2696 struct btrfs_file_extent_item
*extent
;
2697 struct extent_buffer
*l
;
2706 slot
= path
->slots
[0];
2708 if (slot
>= btrfs_header_nritems(l
)) {
2709 ret
= btrfs_next_leaf(root
, path
);
2717 btrfs_item_key_to_cpu(l
, &key
, slot
);
2719 if (key
.objectid
!= btrfs_ino(inode
))
2721 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2723 if (key
.offset
>= new->file_pos
+ new->len
)
2726 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2728 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2729 if (key
.offset
+ num_bytes
< new->file_pos
)
2732 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2736 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2738 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2742 offset
= max(new->file_pos
, key
.offset
);
2743 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2745 old
->bytenr
= disk_bytenr
;
2746 old
->extent_offset
= extent_offset
;
2747 old
->offset
= offset
- key
.offset
;
2748 old
->len
= end
- offset
;
2751 list_add_tail(&old
->list
, &new->head
);
2757 btrfs_free_path(path
);
2758 atomic_inc(&root
->fs_info
->defrag_running
);
2763 btrfs_free_path(path
);
2765 free_sa_defrag_extent(new);
2769 static void btrfs_release_delalloc_bytes(struct btrfs_root
*root
,
2772 struct btrfs_block_group_cache
*cache
;
2774 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
2777 spin_lock(&cache
->lock
);
2778 cache
->delalloc_bytes
-= len
;
2779 spin_unlock(&cache
->lock
);
2781 btrfs_put_block_group(cache
);
2784 /* as ordered data IO finishes, this gets called so we can finish
2785 * an ordered extent if the range of bytes in the file it covers are
2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2790 struct inode
*inode
= ordered_extent
->inode
;
2791 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2792 struct btrfs_trans_handle
*trans
= NULL
;
2793 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2794 struct extent_state
*cached_state
= NULL
;
2795 struct new_sa_defrag_extent
*new = NULL
;
2796 int compress_type
= 0;
2798 u64 logical_len
= ordered_extent
->len
;
2800 bool truncated
= false;
2802 nolock
= btrfs_is_free_space_inode(inode
);
2804 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2809 btrfs_free_io_failure_record(inode
, ordered_extent
->file_offset
,
2810 ordered_extent
->file_offset
+
2811 ordered_extent
->len
- 1);
2813 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2815 logical_len
= ordered_extent
->truncated_len
;
2816 /* Truncated the entire extent, don't bother adding */
2821 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2822 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2823 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2825 trans
= btrfs_join_transaction_nolock(root
);
2827 trans
= btrfs_join_transaction(root
);
2828 if (IS_ERR(trans
)) {
2829 ret
= PTR_ERR(trans
);
2833 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2834 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2835 if (ret
) /* -ENOMEM or corruption */
2836 btrfs_abort_transaction(trans
, root
, ret
);
2840 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2841 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2844 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2845 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2846 EXTENT_DEFRAG
, 1, cached_state
);
2848 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2849 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2850 /* the inode is shared */
2851 new = record_old_file_extents(inode
, ordered_extent
);
2853 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2854 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2855 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2859 trans
= btrfs_join_transaction_nolock(root
);
2861 trans
= btrfs_join_transaction(root
);
2862 if (IS_ERR(trans
)) {
2863 ret
= PTR_ERR(trans
);
2868 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2870 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2871 compress_type
= ordered_extent
->compress_type
;
2872 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2873 BUG_ON(compress_type
);
2874 ret
= btrfs_mark_extent_written(trans
, inode
,
2875 ordered_extent
->file_offset
,
2876 ordered_extent
->file_offset
+
2879 BUG_ON(root
== root
->fs_info
->tree_root
);
2880 ret
= insert_reserved_file_extent(trans
, inode
,
2881 ordered_extent
->file_offset
,
2882 ordered_extent
->start
,
2883 ordered_extent
->disk_len
,
2884 logical_len
, logical_len
,
2885 compress_type
, 0, 0,
2886 BTRFS_FILE_EXTENT_REG
);
2888 btrfs_release_delalloc_bytes(root
,
2889 ordered_extent
->start
,
2890 ordered_extent
->disk_len
);
2892 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2893 ordered_extent
->file_offset
, ordered_extent
->len
,
2896 btrfs_abort_transaction(trans
, root
, ret
);
2900 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2901 &ordered_extent
->list
);
2903 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2904 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2905 if (ret
) { /* -ENOMEM or corruption */
2906 btrfs_abort_transaction(trans
, root
, ret
);
2911 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2912 ordered_extent
->file_offset
+
2913 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2915 if (root
!= root
->fs_info
->tree_root
)
2916 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2918 btrfs_end_transaction(trans
, root
);
2920 if (ret
|| truncated
) {
2924 start
= ordered_extent
->file_offset
+ logical_len
;
2926 start
= ordered_extent
->file_offset
;
2927 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2928 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2930 /* Drop the cache for the part of the extent we didn't write. */
2931 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2934 * If the ordered extent had an IOERR or something else went
2935 * wrong we need to return the space for this ordered extent
2936 * back to the allocator. We only free the extent in the
2937 * truncated case if we didn't write out the extent at all.
2939 if ((ret
|| !logical_len
) &&
2940 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2941 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
2942 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
2943 ordered_extent
->disk_len
, 1);
2948 * This needs to be done to make sure anybody waiting knows we are done
2949 * updating everything for this ordered extent.
2951 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2953 /* for snapshot-aware defrag */
2956 free_sa_defrag_extent(new);
2957 atomic_dec(&root
->fs_info
->defrag_running
);
2959 relink_file_extents(new);
2964 btrfs_put_ordered_extent(ordered_extent
);
2965 /* once for the tree */
2966 btrfs_put_ordered_extent(ordered_extent
);
2971 static void finish_ordered_fn(struct btrfs_work
*work
)
2973 struct btrfs_ordered_extent
*ordered_extent
;
2974 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2975 btrfs_finish_ordered_io(ordered_extent
);
2978 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2979 struct extent_state
*state
, int uptodate
)
2981 struct inode
*inode
= page
->mapping
->host
;
2982 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2983 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2984 struct btrfs_workqueue
*wq
;
2985 btrfs_work_func_t func
;
2987 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2989 ClearPagePrivate2(page
);
2990 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2991 end
- start
+ 1, uptodate
))
2994 if (btrfs_is_free_space_inode(inode
)) {
2995 wq
= root
->fs_info
->endio_freespace_worker
;
2996 func
= btrfs_freespace_write_helper
;
2998 wq
= root
->fs_info
->endio_write_workers
;
2999 func
= btrfs_endio_write_helper
;
3002 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3004 btrfs_queue_work(wq
, &ordered_extent
->work
);
3009 static int __readpage_endio_check(struct inode
*inode
,
3010 struct btrfs_io_bio
*io_bio
,
3011 int icsum
, struct page
*page
,
3012 int pgoff
, u64 start
, size_t len
)
3017 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3018 DEFAULT_RATELIMIT_BURST
);
3020 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3022 kaddr
= kmap_atomic(page
);
3023 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3024 btrfs_csum_final(csum
, (char *)&csum
);
3025 if (csum
!= csum_expected
)
3028 kunmap_atomic(kaddr
);
3031 if (__ratelimit(&_rs
))
3032 btrfs_warn(BTRFS_I(inode
)->root
->fs_info
,
3033 "csum failed ino %llu off %llu csum %u expected csum %u",
3034 btrfs_ino(inode
), start
, csum
, csum_expected
);
3035 memset(kaddr
+ pgoff
, 1, len
);
3036 flush_dcache_page(page
);
3037 kunmap_atomic(kaddr
);
3038 if (csum_expected
== 0)
3044 * when reads are done, we need to check csums to verify the data is correct
3045 * if there's a match, we allow the bio to finish. If not, the code in
3046 * extent_io.c will try to find good copies for us.
3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3049 u64 phy_offset
, struct page
*page
,
3050 u64 start
, u64 end
, int mirror
)
3052 size_t offset
= start
- page_offset(page
);
3053 struct inode
*inode
= page
->mapping
->host
;
3054 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3055 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3057 if (PageChecked(page
)) {
3058 ClearPageChecked(page
);
3062 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3065 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3066 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3067 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
3072 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3073 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3074 start
, (size_t)(end
- start
+ 1));
3077 struct delayed_iput
{
3078 struct list_head list
;
3079 struct inode
*inode
;
3082 /* JDM: If this is fs-wide, why can't we add a pointer to
3083 * btrfs_inode instead and avoid the allocation? */
3084 void btrfs_add_delayed_iput(struct inode
*inode
)
3086 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
3087 struct delayed_iput
*delayed
;
3089 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3092 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
3093 delayed
->inode
= inode
;
3095 spin_lock(&fs_info
->delayed_iput_lock
);
3096 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
3097 spin_unlock(&fs_info
->delayed_iput_lock
);
3100 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
3103 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3104 struct delayed_iput
*delayed
;
3107 spin_lock(&fs_info
->delayed_iput_lock
);
3108 empty
= list_empty(&fs_info
->delayed_iputs
);
3109 spin_unlock(&fs_info
->delayed_iput_lock
);
3113 down_read(&fs_info
->delayed_iput_sem
);
3115 spin_lock(&fs_info
->delayed_iput_lock
);
3116 list_splice_init(&fs_info
->delayed_iputs
, &list
);
3117 spin_unlock(&fs_info
->delayed_iput_lock
);
3119 while (!list_empty(&list
)) {
3120 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
3121 list_del(&delayed
->list
);
3122 iput(delayed
->inode
);
3126 up_read(&root
->fs_info
->delayed_iput_sem
);
3130 * This is called in transaction commit time. If there are no orphan
3131 * files in the subvolume, it removes orphan item and frees block_rsv
3134 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3135 struct btrfs_root
*root
)
3137 struct btrfs_block_rsv
*block_rsv
;
3140 if (atomic_read(&root
->orphan_inodes
) ||
3141 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3144 spin_lock(&root
->orphan_lock
);
3145 if (atomic_read(&root
->orphan_inodes
)) {
3146 spin_unlock(&root
->orphan_lock
);
3150 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3151 spin_unlock(&root
->orphan_lock
);
3155 block_rsv
= root
->orphan_block_rsv
;
3156 root
->orphan_block_rsv
= NULL
;
3157 spin_unlock(&root
->orphan_lock
);
3159 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3160 btrfs_root_refs(&root
->root_item
) > 0) {
3161 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
3162 root
->root_key
.objectid
);
3164 btrfs_abort_transaction(trans
, root
, ret
);
3166 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3171 WARN_ON(block_rsv
->size
> 0);
3172 btrfs_free_block_rsv(root
, block_rsv
);
3177 * This creates an orphan entry for the given inode in case something goes
3178 * wrong in the middle of an unlink/truncate.
3180 * NOTE: caller of this function should reserve 5 units of metadata for
3183 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
3185 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3186 struct btrfs_block_rsv
*block_rsv
= NULL
;
3191 if (!root
->orphan_block_rsv
) {
3192 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3197 spin_lock(&root
->orphan_lock
);
3198 if (!root
->orphan_block_rsv
) {
3199 root
->orphan_block_rsv
= block_rsv
;
3200 } else if (block_rsv
) {
3201 btrfs_free_block_rsv(root
, block_rsv
);
3205 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3206 &BTRFS_I(inode
)->runtime_flags
)) {
3209 * For proper ENOSPC handling, we should do orphan
3210 * cleanup when mounting. But this introduces backward
3211 * compatibility issue.
3213 if (!xchg(&root
->orphan_item_inserted
, 1))
3219 atomic_inc(&root
->orphan_inodes
);
3222 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3223 &BTRFS_I(inode
)->runtime_flags
))
3225 spin_unlock(&root
->orphan_lock
);
3227 /* grab metadata reservation from transaction handle */
3229 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3230 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
3233 /* insert an orphan item to track this unlinked/truncated file */
3235 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3237 atomic_dec(&root
->orphan_inodes
);
3239 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3240 &BTRFS_I(inode
)->runtime_flags
);
3241 btrfs_orphan_release_metadata(inode
);
3243 if (ret
!= -EEXIST
) {
3244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3245 &BTRFS_I(inode
)->runtime_flags
);
3246 btrfs_abort_transaction(trans
, root
, ret
);
3253 /* insert an orphan item to track subvolume contains orphan files */
3255 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3256 root
->root_key
.objectid
);
3257 if (ret
&& ret
!= -EEXIST
) {
3258 btrfs_abort_transaction(trans
, root
, ret
);
3266 * We have done the truncate/delete so we can go ahead and remove the orphan
3267 * item for this particular inode.
3269 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3270 struct inode
*inode
)
3272 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3273 int delete_item
= 0;
3274 int release_rsv
= 0;
3277 spin_lock(&root
->orphan_lock
);
3278 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3279 &BTRFS_I(inode
)->runtime_flags
))
3282 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3283 &BTRFS_I(inode
)->runtime_flags
))
3285 spin_unlock(&root
->orphan_lock
);
3288 atomic_dec(&root
->orphan_inodes
);
3290 ret
= btrfs_del_orphan_item(trans
, root
,
3295 btrfs_orphan_release_metadata(inode
);
3301 * this cleans up any orphans that may be left on the list from the last use
3304 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3306 struct btrfs_path
*path
;
3307 struct extent_buffer
*leaf
;
3308 struct btrfs_key key
, found_key
;
3309 struct btrfs_trans_handle
*trans
;
3310 struct inode
*inode
;
3311 u64 last_objectid
= 0;
3312 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3314 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3317 path
= btrfs_alloc_path();
3324 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3325 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3326 key
.offset
= (u64
)-1;
3329 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3334 * if ret == 0 means we found what we were searching for, which
3335 * is weird, but possible, so only screw with path if we didn't
3336 * find the key and see if we have stuff that matches
3340 if (path
->slots
[0] == 0)
3345 /* pull out the item */
3346 leaf
= path
->nodes
[0];
3347 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3349 /* make sure the item matches what we want */
3350 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3352 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3355 /* release the path since we're done with it */
3356 btrfs_release_path(path
);
3359 * this is where we are basically btrfs_lookup, without the
3360 * crossing root thing. we store the inode number in the
3361 * offset of the orphan item.
3364 if (found_key
.offset
== last_objectid
) {
3365 btrfs_err(root
->fs_info
,
3366 "Error removing orphan entry, stopping orphan cleanup");
3371 last_objectid
= found_key
.offset
;
3373 found_key
.objectid
= found_key
.offset
;
3374 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3375 found_key
.offset
= 0;
3376 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3377 ret
= PTR_ERR_OR_ZERO(inode
);
3378 if (ret
&& ret
!= -ESTALE
)
3381 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
3382 struct btrfs_root
*dead_root
;
3383 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3384 int is_dead_root
= 0;
3387 * this is an orphan in the tree root. Currently these
3388 * could come from 2 sources:
3389 * a) a snapshot deletion in progress
3390 * b) a free space cache inode
3391 * We need to distinguish those two, as the snapshot
3392 * orphan must not get deleted.
3393 * find_dead_roots already ran before us, so if this
3394 * is a snapshot deletion, we should find the root
3395 * in the dead_roots list
3397 spin_lock(&fs_info
->trans_lock
);
3398 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3400 if (dead_root
->root_key
.objectid
==
3401 found_key
.objectid
) {
3406 spin_unlock(&fs_info
->trans_lock
);
3408 /* prevent this orphan from being found again */
3409 key
.offset
= found_key
.objectid
- 1;
3414 * Inode is already gone but the orphan item is still there,
3415 * kill the orphan item.
3417 if (ret
== -ESTALE
) {
3418 trans
= btrfs_start_transaction(root
, 1);
3419 if (IS_ERR(trans
)) {
3420 ret
= PTR_ERR(trans
);
3423 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3424 found_key
.objectid
);
3425 ret
= btrfs_del_orphan_item(trans
, root
,
3426 found_key
.objectid
);
3427 btrfs_end_transaction(trans
, root
);
3434 * add this inode to the orphan list so btrfs_orphan_del does
3435 * the proper thing when we hit it
3437 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3438 &BTRFS_I(inode
)->runtime_flags
);
3439 atomic_inc(&root
->orphan_inodes
);
3441 /* if we have links, this was a truncate, lets do that */
3442 if (inode
->i_nlink
) {
3443 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3449 /* 1 for the orphan item deletion. */
3450 trans
= btrfs_start_transaction(root
, 1);
3451 if (IS_ERR(trans
)) {
3453 ret
= PTR_ERR(trans
);
3456 ret
= btrfs_orphan_add(trans
, inode
);
3457 btrfs_end_transaction(trans
, root
);
3463 ret
= btrfs_truncate(inode
);
3465 btrfs_orphan_del(NULL
, inode
);
3470 /* this will do delete_inode and everything for us */
3475 /* release the path since we're done with it */
3476 btrfs_release_path(path
);
3478 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3480 if (root
->orphan_block_rsv
)
3481 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3484 if (root
->orphan_block_rsv
||
3485 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3486 trans
= btrfs_join_transaction(root
);
3488 btrfs_end_transaction(trans
, root
);
3492 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3494 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3498 btrfs_err(root
->fs_info
,
3499 "could not do orphan cleanup %d", ret
);
3500 btrfs_free_path(path
);
3505 * very simple check to peek ahead in the leaf looking for xattrs. If we
3506 * don't find any xattrs, we know there can't be any acls.
3508 * slot is the slot the inode is in, objectid is the objectid of the inode
3510 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3511 int slot
, u64 objectid
,
3512 int *first_xattr_slot
)
3514 u32 nritems
= btrfs_header_nritems(leaf
);
3515 struct btrfs_key found_key
;
3516 static u64 xattr_access
= 0;
3517 static u64 xattr_default
= 0;
3520 if (!xattr_access
) {
3521 xattr_access
= btrfs_name_hash(POSIX_ACL_XATTR_ACCESS
,
3522 strlen(POSIX_ACL_XATTR_ACCESS
));
3523 xattr_default
= btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT
,
3524 strlen(POSIX_ACL_XATTR_DEFAULT
));
3528 *first_xattr_slot
= -1;
3529 while (slot
< nritems
) {
3530 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3532 /* we found a different objectid, there must not be acls */
3533 if (found_key
.objectid
!= objectid
)
3536 /* we found an xattr, assume we've got an acl */
3537 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3538 if (*first_xattr_slot
== -1)
3539 *first_xattr_slot
= slot
;
3540 if (found_key
.offset
== xattr_access
||
3541 found_key
.offset
== xattr_default
)
3546 * we found a key greater than an xattr key, there can't
3547 * be any acls later on
3549 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3556 * it goes inode, inode backrefs, xattrs, extents,
3557 * so if there are a ton of hard links to an inode there can
3558 * be a lot of backrefs. Don't waste time searching too hard,
3559 * this is just an optimization
3564 /* we hit the end of the leaf before we found an xattr or
3565 * something larger than an xattr. We have to assume the inode
3568 if (*first_xattr_slot
== -1)
3569 *first_xattr_slot
= slot
;
3574 * read an inode from the btree into the in-memory inode
3576 static void btrfs_read_locked_inode(struct inode
*inode
)
3578 struct btrfs_path
*path
;
3579 struct extent_buffer
*leaf
;
3580 struct btrfs_inode_item
*inode_item
;
3581 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3582 struct btrfs_key location
;
3587 bool filled
= false;
3588 int first_xattr_slot
;
3590 ret
= btrfs_fill_inode(inode
, &rdev
);
3594 path
= btrfs_alloc_path();
3598 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3600 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3604 leaf
= path
->nodes
[0];
3609 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3610 struct btrfs_inode_item
);
3611 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3612 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3613 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3614 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3615 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3617 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3618 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3620 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3621 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3623 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3624 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3626 BTRFS_I(inode
)->i_otime
.tv_sec
=
3627 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3628 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3629 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3631 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3632 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3633 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3635 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3636 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3638 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3640 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3641 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3645 * If we were modified in the current generation and evicted from memory
3646 * and then re-read we need to do a full sync since we don't have any
3647 * idea about which extents were modified before we were evicted from
3650 * This is required for both inode re-read from disk and delayed inode
3651 * in delayed_nodes_tree.
3653 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3655 &BTRFS_I(inode
)->runtime_flags
);
3658 if (inode
->i_nlink
!= 1 ||
3659 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3662 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3663 if (location
.objectid
!= btrfs_ino(inode
))
3666 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3667 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3668 struct btrfs_inode_ref
*ref
;
3670 ref
= (struct btrfs_inode_ref
*)ptr
;
3671 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3672 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3673 struct btrfs_inode_extref
*extref
;
3675 extref
= (struct btrfs_inode_extref
*)ptr
;
3676 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3681 * try to precache a NULL acl entry for files that don't have
3682 * any xattrs or acls
3684 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3685 btrfs_ino(inode
), &first_xattr_slot
);
3686 if (first_xattr_slot
!= -1) {
3687 path
->slots
[0] = first_xattr_slot
;
3688 ret
= btrfs_load_inode_props(inode
, path
);
3690 btrfs_err(root
->fs_info
,
3691 "error loading props for ino %llu (root %llu): %d",
3693 root
->root_key
.objectid
, ret
);
3695 btrfs_free_path(path
);
3698 cache_no_acl(inode
);
3700 switch (inode
->i_mode
& S_IFMT
) {
3702 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3703 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3704 inode
->i_fop
= &btrfs_file_operations
;
3705 inode
->i_op
= &btrfs_file_inode_operations
;
3708 inode
->i_fop
= &btrfs_dir_file_operations
;
3709 if (root
== root
->fs_info
->tree_root
)
3710 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3712 inode
->i_op
= &btrfs_dir_inode_operations
;
3715 inode
->i_op
= &btrfs_symlink_inode_operations
;
3716 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3719 inode
->i_op
= &btrfs_special_inode_operations
;
3720 init_special_inode(inode
, inode
->i_mode
, rdev
);
3724 btrfs_update_iflags(inode
);
3728 btrfs_free_path(path
);
3729 make_bad_inode(inode
);
3733 * given a leaf and an inode, copy the inode fields into the leaf
3735 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3736 struct extent_buffer
*leaf
,
3737 struct btrfs_inode_item
*item
,
3738 struct inode
*inode
)
3740 struct btrfs_map_token token
;
3742 btrfs_init_map_token(&token
);
3744 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3745 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3746 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3748 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3749 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3751 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3752 inode
->i_atime
.tv_sec
, &token
);
3753 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3754 inode
->i_atime
.tv_nsec
, &token
);
3756 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3757 inode
->i_mtime
.tv_sec
, &token
);
3758 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3759 inode
->i_mtime
.tv_nsec
, &token
);
3761 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3762 inode
->i_ctime
.tv_sec
, &token
);
3763 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3764 inode
->i_ctime
.tv_nsec
, &token
);
3766 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3767 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3768 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3769 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3771 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3773 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3775 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3776 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3777 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3778 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3779 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3783 * copy everything in the in-memory inode into the btree.
3785 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3786 struct btrfs_root
*root
, struct inode
*inode
)
3788 struct btrfs_inode_item
*inode_item
;
3789 struct btrfs_path
*path
;
3790 struct extent_buffer
*leaf
;
3793 path
= btrfs_alloc_path();
3797 path
->leave_spinning
= 1;
3798 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3806 leaf
= path
->nodes
[0];
3807 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3808 struct btrfs_inode_item
);
3810 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3811 btrfs_mark_buffer_dirty(leaf
);
3812 btrfs_set_inode_last_trans(trans
, inode
);
3815 btrfs_free_path(path
);
3820 * copy everything in the in-memory inode into the btree.
3822 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3823 struct btrfs_root
*root
, struct inode
*inode
)
3828 * If the inode is a free space inode, we can deadlock during commit
3829 * if we put it into the delayed code.
3831 * The data relocation inode should also be directly updated
3834 if (!btrfs_is_free_space_inode(inode
)
3835 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3836 && !root
->fs_info
->log_root_recovering
) {
3837 btrfs_update_root_times(trans
, root
);
3839 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3841 btrfs_set_inode_last_trans(trans
, inode
);
3845 return btrfs_update_inode_item(trans
, root
, inode
);
3848 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3849 struct btrfs_root
*root
,
3850 struct inode
*inode
)
3854 ret
= btrfs_update_inode(trans
, root
, inode
);
3856 return btrfs_update_inode_item(trans
, root
, inode
);
3861 * unlink helper that gets used here in inode.c and in the tree logging
3862 * recovery code. It remove a link in a directory with a given name, and
3863 * also drops the back refs in the inode to the directory
3865 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3866 struct btrfs_root
*root
,
3867 struct inode
*dir
, struct inode
*inode
,
3868 const char *name
, int name_len
)
3870 struct btrfs_path
*path
;
3872 struct extent_buffer
*leaf
;
3873 struct btrfs_dir_item
*di
;
3874 struct btrfs_key key
;
3876 u64 ino
= btrfs_ino(inode
);
3877 u64 dir_ino
= btrfs_ino(dir
);
3879 path
= btrfs_alloc_path();
3885 path
->leave_spinning
= 1;
3886 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3887 name
, name_len
, -1);
3896 leaf
= path
->nodes
[0];
3897 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3898 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3901 btrfs_release_path(path
);
3904 * If we don't have dir index, we have to get it by looking up
3905 * the inode ref, since we get the inode ref, remove it directly,
3906 * it is unnecessary to do delayed deletion.
3908 * But if we have dir index, needn't search inode ref to get it.
3909 * Since the inode ref is close to the inode item, it is better
3910 * that we delay to delete it, and just do this deletion when
3911 * we update the inode item.
3913 if (BTRFS_I(inode
)->dir_index
) {
3914 ret
= btrfs_delayed_delete_inode_ref(inode
);
3916 index
= BTRFS_I(inode
)->dir_index
;
3921 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3924 btrfs_info(root
->fs_info
,
3925 "failed to delete reference to %.*s, inode %llu parent %llu",
3926 name_len
, name
, ino
, dir_ino
);
3927 btrfs_abort_transaction(trans
, root
, ret
);
3931 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3933 btrfs_abort_transaction(trans
, root
, ret
);
3937 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
3939 if (ret
!= 0 && ret
!= -ENOENT
) {
3940 btrfs_abort_transaction(trans
, root
, ret
);
3944 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
3949 btrfs_abort_transaction(trans
, root
, ret
);
3951 btrfs_free_path(path
);
3955 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3956 inode_inc_iversion(inode
);
3957 inode_inc_iversion(dir
);
3958 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3959 ret
= btrfs_update_inode(trans
, root
, dir
);
3964 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3965 struct btrfs_root
*root
,
3966 struct inode
*dir
, struct inode
*inode
,
3967 const char *name
, int name_len
)
3970 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3973 ret
= btrfs_update_inode(trans
, root
, inode
);
3979 * helper to start transaction for unlink and rmdir.
3981 * unlink and rmdir are special in btrfs, they do not always free space, so
3982 * if we cannot make our reservations the normal way try and see if there is
3983 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3984 * allow the unlink to occur.
3986 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3988 struct btrfs_trans_handle
*trans
;
3989 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3993 * 1 for the possible orphan item
3994 * 1 for the dir item
3995 * 1 for the dir index
3996 * 1 for the inode ref
3999 trans
= btrfs_start_transaction(root
, 5);
4000 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
4003 if (PTR_ERR(trans
) == -ENOSPC
) {
4004 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
4006 trans
= btrfs_start_transaction(root
, 0);
4009 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
4010 &root
->fs_info
->trans_block_rsv
,
4013 btrfs_end_transaction(trans
, root
);
4014 return ERR_PTR(ret
);
4016 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4017 trans
->bytes_reserved
= num_bytes
;
4022 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4024 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4025 struct btrfs_trans_handle
*trans
;
4026 struct inode
*inode
= d_inode(dentry
);
4029 trans
= __unlink_start_trans(dir
);
4031 return PTR_ERR(trans
);
4033 btrfs_record_unlink_dir(trans
, dir
, d_inode(dentry
), 0);
4035 ret
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4036 dentry
->d_name
.name
, dentry
->d_name
.len
);
4040 if (inode
->i_nlink
== 0) {
4041 ret
= btrfs_orphan_add(trans
, inode
);
4047 btrfs_end_transaction(trans
, root
);
4048 btrfs_btree_balance_dirty(root
);
4052 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4053 struct btrfs_root
*root
,
4054 struct inode
*dir
, u64 objectid
,
4055 const char *name
, int name_len
)
4057 struct btrfs_path
*path
;
4058 struct extent_buffer
*leaf
;
4059 struct btrfs_dir_item
*di
;
4060 struct btrfs_key key
;
4063 u64 dir_ino
= btrfs_ino(dir
);
4065 path
= btrfs_alloc_path();
4069 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4070 name
, name_len
, -1);
4071 if (IS_ERR_OR_NULL(di
)) {
4079 leaf
= path
->nodes
[0];
4080 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4081 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4082 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4084 btrfs_abort_transaction(trans
, root
, ret
);
4087 btrfs_release_path(path
);
4089 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4090 objectid
, root
->root_key
.objectid
,
4091 dir_ino
, &index
, name
, name_len
);
4093 if (ret
!= -ENOENT
) {
4094 btrfs_abort_transaction(trans
, root
, ret
);
4097 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4099 if (IS_ERR_OR_NULL(di
)) {
4104 btrfs_abort_transaction(trans
, root
, ret
);
4108 leaf
= path
->nodes
[0];
4109 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4110 btrfs_release_path(path
);
4113 btrfs_release_path(path
);
4115 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
4117 btrfs_abort_transaction(trans
, root
, ret
);
4121 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4122 inode_inc_iversion(dir
);
4123 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
4124 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4126 btrfs_abort_transaction(trans
, root
, ret
);
4128 btrfs_free_path(path
);
4132 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4134 struct inode
*inode
= d_inode(dentry
);
4136 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4137 struct btrfs_trans_handle
*trans
;
4139 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4141 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
4144 trans
= __unlink_start_trans(dir
);
4146 return PTR_ERR(trans
);
4148 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4149 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4150 BTRFS_I(inode
)->location
.objectid
,
4151 dentry
->d_name
.name
,
4152 dentry
->d_name
.len
);
4156 err
= btrfs_orphan_add(trans
, inode
);
4160 /* now the directory is empty */
4161 err
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4162 dentry
->d_name
.name
, dentry
->d_name
.len
);
4164 btrfs_i_size_write(inode
, 0);
4166 btrfs_end_transaction(trans
, root
);
4167 btrfs_btree_balance_dirty(root
);
4172 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4173 struct btrfs_root
*root
,
4178 bytes_deleted
= btrfs_csum_bytes_to_leaves(root
, bytes_deleted
);
4179 ret
= btrfs_block_rsv_add(root
, &root
->fs_info
->trans_block_rsv
,
4180 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4182 trans
->bytes_reserved
+= bytes_deleted
;
4188 * this can truncate away extent items, csum items and directory items.
4189 * It starts at a high offset and removes keys until it can't find
4190 * any higher than new_size
4192 * csum items that cross the new i_size are truncated to the new size
4195 * min_type is the minimum key type to truncate down to. If set to 0, this
4196 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4198 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4199 struct btrfs_root
*root
,
4200 struct inode
*inode
,
4201 u64 new_size
, u32 min_type
)
4203 struct btrfs_path
*path
;
4204 struct extent_buffer
*leaf
;
4205 struct btrfs_file_extent_item
*fi
;
4206 struct btrfs_key key
;
4207 struct btrfs_key found_key
;
4208 u64 extent_start
= 0;
4209 u64 extent_num_bytes
= 0;
4210 u64 extent_offset
= 0;
4212 u64 last_size
= (u64
)-1;
4213 u32 found_type
= (u8
)-1;
4216 int pending_del_nr
= 0;
4217 int pending_del_slot
= 0;
4218 int extent_type
= -1;
4221 u64 ino
= btrfs_ino(inode
);
4222 u64 bytes_deleted
= 0;
4224 bool should_throttle
= 0;
4225 bool should_end
= 0;
4227 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4230 * for non-free space inodes and ref cows, we want to back off from
4233 if (!btrfs_is_free_space_inode(inode
) &&
4234 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4237 path
= btrfs_alloc_path();
4243 * We want to drop from the next block forward in case this new size is
4244 * not block aligned since we will be keeping the last block of the
4245 * extent just the way it is.
4247 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4248 root
== root
->fs_info
->tree_root
)
4249 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4250 root
->sectorsize
), (u64
)-1, 0);
4253 * This function is also used to drop the items in the log tree before
4254 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4255 * it is used to drop the loged items. So we shouldn't kill the delayed
4258 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4259 btrfs_kill_delayed_inode_items(inode
);
4262 key
.offset
= (u64
)-1;
4267 * with a 16K leaf size and 128MB extents, you can actually queue
4268 * up a huge file in a single leaf. Most of the time that
4269 * bytes_deleted is > 0, it will be huge by the time we get here
4271 if (be_nice
&& bytes_deleted
> 32 * 1024 * 1024) {
4272 if (btrfs_should_end_transaction(trans
, root
)) {
4279 path
->leave_spinning
= 1;
4280 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4287 /* there are no items in the tree for us to truncate, we're
4290 if (path
->slots
[0] == 0)
4297 leaf
= path
->nodes
[0];
4298 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4299 found_type
= found_key
.type
;
4301 if (found_key
.objectid
!= ino
)
4304 if (found_type
< min_type
)
4307 item_end
= found_key
.offset
;
4308 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4309 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4310 struct btrfs_file_extent_item
);
4311 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4312 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4314 btrfs_file_extent_num_bytes(leaf
, fi
);
4315 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4316 item_end
+= btrfs_file_extent_inline_len(leaf
,
4317 path
->slots
[0], fi
);
4321 if (found_type
> min_type
) {
4324 if (item_end
< new_size
)
4326 if (found_key
.offset
>= new_size
)
4332 /* FIXME, shrink the extent if the ref count is only 1 */
4333 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4337 last_size
= found_key
.offset
;
4339 last_size
= new_size
;
4341 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4343 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4345 u64 orig_num_bytes
=
4346 btrfs_file_extent_num_bytes(leaf
, fi
);
4347 extent_num_bytes
= ALIGN(new_size
-
4350 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4352 num_dec
= (orig_num_bytes
-
4354 if (test_bit(BTRFS_ROOT_REF_COWS
,
4357 inode_sub_bytes(inode
, num_dec
);
4358 btrfs_mark_buffer_dirty(leaf
);
4361 btrfs_file_extent_disk_num_bytes(leaf
,
4363 extent_offset
= found_key
.offset
-
4364 btrfs_file_extent_offset(leaf
, fi
);
4366 /* FIXME blocksize != 4096 */
4367 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4368 if (extent_start
!= 0) {
4370 if (test_bit(BTRFS_ROOT_REF_COWS
,
4372 inode_sub_bytes(inode
, num_dec
);
4375 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4377 * we can't truncate inline items that have had
4381 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
4382 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4383 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4384 u32 size
= new_size
- found_key
.offset
;
4386 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4387 inode_sub_bytes(inode
, item_end
+ 1 -
4391 * update the ram bytes to properly reflect
4392 * the new size of our item
4394 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4396 btrfs_file_extent_calc_inline_size(size
);
4397 btrfs_truncate_item(root
, path
, size
, 1);
4398 } else if (test_bit(BTRFS_ROOT_REF_COWS
,
4400 inode_sub_bytes(inode
, item_end
+ 1 -
4406 if (!pending_del_nr
) {
4407 /* no pending yet, add ourselves */
4408 pending_del_slot
= path
->slots
[0];
4410 } else if (pending_del_nr
&&
4411 path
->slots
[0] + 1 == pending_del_slot
) {
4412 /* hop on the pending chunk */
4414 pending_del_slot
= path
->slots
[0];
4421 should_throttle
= 0;
4424 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4425 root
== root
->fs_info
->tree_root
)) {
4426 btrfs_set_path_blocking(path
);
4427 bytes_deleted
+= extent_num_bytes
;
4428 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4429 extent_num_bytes
, 0,
4430 btrfs_header_owner(leaf
),
4431 ino
, extent_offset
, 0);
4433 if (btrfs_should_throttle_delayed_refs(trans
, root
))
4434 btrfs_async_run_delayed_refs(root
,
4435 trans
->delayed_ref_updates
* 2, 0);
4437 if (truncate_space_check(trans
, root
,
4438 extent_num_bytes
)) {
4441 if (btrfs_should_throttle_delayed_refs(trans
,
4443 should_throttle
= 1;
4448 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4451 if (path
->slots
[0] == 0 ||
4452 path
->slots
[0] != pending_del_slot
||
4453 should_throttle
|| should_end
) {
4454 if (pending_del_nr
) {
4455 ret
= btrfs_del_items(trans
, root
, path
,
4459 btrfs_abort_transaction(trans
,
4465 btrfs_release_path(path
);
4466 if (should_throttle
) {
4467 unsigned long updates
= trans
->delayed_ref_updates
;
4469 trans
->delayed_ref_updates
= 0;
4470 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4476 * if we failed to refill our space rsv, bail out
4477 * and let the transaction restart
4489 if (pending_del_nr
) {
4490 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4493 btrfs_abort_transaction(trans
, root
, ret
);
4496 if (last_size
!= (u64
)-1 &&
4497 root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4498 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4500 btrfs_free_path(path
);
4502 if (be_nice
&& bytes_deleted
> 32 * 1024 * 1024) {
4503 unsigned long updates
= trans
->delayed_ref_updates
;
4505 trans
->delayed_ref_updates
= 0;
4506 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4515 * btrfs_truncate_page - read, zero a chunk and write a page
4516 * @inode - inode that we're zeroing
4517 * @from - the offset to start zeroing
4518 * @len - the length to zero, 0 to zero the entire range respective to the
4520 * @front - zero up to the offset instead of from the offset on
4522 * This will find the page for the "from" offset and cow the page and zero the
4523 * part we want to zero. This is used with truncate and hole punching.
4525 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
4528 struct address_space
*mapping
= inode
->i_mapping
;
4529 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4530 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4531 struct btrfs_ordered_extent
*ordered
;
4532 struct extent_state
*cached_state
= NULL
;
4534 u32 blocksize
= root
->sectorsize
;
4535 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
4536 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4538 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4543 if ((offset
& (blocksize
- 1)) == 0 &&
4544 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4546 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
4551 page
= find_or_create_page(mapping
, index
, mask
);
4553 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4558 page_start
= page_offset(page
);
4559 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4561 if (!PageUptodate(page
)) {
4562 ret
= btrfs_readpage(NULL
, page
);
4564 if (page
->mapping
!= mapping
) {
4566 page_cache_release(page
);
4569 if (!PageUptodate(page
)) {
4574 wait_on_page_writeback(page
);
4576 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
4577 set_page_extent_mapped(page
);
4579 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4581 unlock_extent_cached(io_tree
, page_start
, page_end
,
4582 &cached_state
, GFP_NOFS
);
4584 page_cache_release(page
);
4585 btrfs_start_ordered_extent(inode
, ordered
, 1);
4586 btrfs_put_ordered_extent(ordered
);
4590 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
4591 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4592 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4593 0, 0, &cached_state
, GFP_NOFS
);
4595 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
4598 unlock_extent_cached(io_tree
, page_start
, page_end
,
4599 &cached_state
, GFP_NOFS
);
4603 if (offset
!= PAGE_CACHE_SIZE
) {
4605 len
= PAGE_CACHE_SIZE
- offset
;
4608 memset(kaddr
, 0, offset
);
4610 memset(kaddr
+ offset
, 0, len
);
4611 flush_dcache_page(page
);
4614 ClearPageChecked(page
);
4615 set_page_dirty(page
);
4616 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
4621 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4623 page_cache_release(page
);
4628 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4629 u64 offset
, u64 len
)
4631 struct btrfs_trans_handle
*trans
;
4635 * Still need to make sure the inode looks like it's been updated so
4636 * that any holes get logged if we fsync.
4638 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
)) {
4639 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
4640 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4641 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4646 * 1 - for the one we're dropping
4647 * 1 - for the one we're adding
4648 * 1 - for updating the inode.
4650 trans
= btrfs_start_transaction(root
, 3);
4652 return PTR_ERR(trans
);
4654 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4656 btrfs_abort_transaction(trans
, root
, ret
);
4657 btrfs_end_transaction(trans
, root
);
4661 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4662 0, 0, len
, 0, len
, 0, 0, 0);
4664 btrfs_abort_transaction(trans
, root
, ret
);
4666 btrfs_update_inode(trans
, root
, inode
);
4667 btrfs_end_transaction(trans
, root
);
4672 * This function puts in dummy file extents for the area we're creating a hole
4673 * for. So if we are truncating this file to a larger size we need to insert
4674 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4675 * the range between oldsize and size
4677 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4679 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4680 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4681 struct extent_map
*em
= NULL
;
4682 struct extent_state
*cached_state
= NULL
;
4683 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4684 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4685 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4692 * If our size started in the middle of a page we need to zero out the
4693 * rest of the page before we expand the i_size, otherwise we could
4694 * expose stale data.
4696 err
= btrfs_truncate_page(inode
, oldsize
, 0, 0);
4700 if (size
<= hole_start
)
4704 struct btrfs_ordered_extent
*ordered
;
4706 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
4708 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4709 block_end
- hole_start
);
4712 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4713 &cached_state
, GFP_NOFS
);
4714 btrfs_start_ordered_extent(inode
, ordered
, 1);
4715 btrfs_put_ordered_extent(ordered
);
4718 cur_offset
= hole_start
;
4720 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4721 block_end
- cur_offset
, 0);
4727 last_byte
= min(extent_map_end(em
), block_end
);
4728 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4729 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4730 struct extent_map
*hole_em
;
4731 hole_size
= last_byte
- cur_offset
;
4733 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4737 btrfs_drop_extent_cache(inode
, cur_offset
,
4738 cur_offset
+ hole_size
- 1, 0);
4739 hole_em
= alloc_extent_map();
4741 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4742 &BTRFS_I(inode
)->runtime_flags
);
4745 hole_em
->start
= cur_offset
;
4746 hole_em
->len
= hole_size
;
4747 hole_em
->orig_start
= cur_offset
;
4749 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4750 hole_em
->block_len
= 0;
4751 hole_em
->orig_block_len
= 0;
4752 hole_em
->ram_bytes
= hole_size
;
4753 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4754 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4755 hole_em
->generation
= root
->fs_info
->generation
;
4758 write_lock(&em_tree
->lock
);
4759 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4760 write_unlock(&em_tree
->lock
);
4763 btrfs_drop_extent_cache(inode
, cur_offset
,
4767 free_extent_map(hole_em
);
4770 free_extent_map(em
);
4772 cur_offset
= last_byte
;
4773 if (cur_offset
>= block_end
)
4776 free_extent_map(em
);
4777 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4782 static int wait_snapshoting_atomic_t(atomic_t
*a
)
4788 static void wait_for_snapshot_creation(struct btrfs_root
*root
)
4793 ret
= btrfs_start_write_no_snapshoting(root
);
4796 wait_on_atomic_t(&root
->will_be_snapshoted
,
4797 wait_snapshoting_atomic_t
,
4798 TASK_UNINTERRUPTIBLE
);
4802 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4804 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4805 struct btrfs_trans_handle
*trans
;
4806 loff_t oldsize
= i_size_read(inode
);
4807 loff_t newsize
= attr
->ia_size
;
4808 int mask
= attr
->ia_valid
;
4812 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4813 * special case where we need to update the times despite not having
4814 * these flags set. For all other operations the VFS set these flags
4815 * explicitly if it wants a timestamp update.
4817 if (newsize
!= oldsize
) {
4818 inode_inc_iversion(inode
);
4819 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4820 inode
->i_ctime
= inode
->i_mtime
=
4821 current_fs_time(inode
->i_sb
);
4824 if (newsize
> oldsize
) {
4825 truncate_pagecache(inode
, newsize
);
4827 * Don't do an expanding truncate while snapshoting is ongoing.
4828 * This is to ensure the snapshot captures a fully consistent
4829 * state of this file - if the snapshot captures this expanding
4830 * truncation, it must capture all writes that happened before
4833 wait_for_snapshot_creation(root
);
4834 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4836 btrfs_end_write_no_snapshoting(root
);
4840 trans
= btrfs_start_transaction(root
, 1);
4841 if (IS_ERR(trans
)) {
4842 btrfs_end_write_no_snapshoting(root
);
4843 return PTR_ERR(trans
);
4846 i_size_write(inode
, newsize
);
4847 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4848 ret
= btrfs_update_inode(trans
, root
, inode
);
4849 btrfs_end_write_no_snapshoting(root
);
4850 btrfs_end_transaction(trans
, root
);
4854 * We're truncating a file that used to have good data down to
4855 * zero. Make sure it gets into the ordered flush list so that
4856 * any new writes get down to disk quickly.
4859 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4860 &BTRFS_I(inode
)->runtime_flags
);
4863 * 1 for the orphan item we're going to add
4864 * 1 for the orphan item deletion.
4866 trans
= btrfs_start_transaction(root
, 2);
4868 return PTR_ERR(trans
);
4871 * We need to do this in case we fail at _any_ point during the
4872 * actual truncate. Once we do the truncate_setsize we could
4873 * invalidate pages which forces any outstanding ordered io to
4874 * be instantly completed which will give us extents that need
4875 * to be truncated. If we fail to get an orphan inode down we
4876 * could have left over extents that were never meant to live,
4877 * so we need to garuntee from this point on that everything
4878 * will be consistent.
4880 ret
= btrfs_orphan_add(trans
, inode
);
4881 btrfs_end_transaction(trans
, root
);
4885 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4886 truncate_setsize(inode
, newsize
);
4888 /* Disable nonlocked read DIO to avoid the end less truncate */
4889 btrfs_inode_block_unlocked_dio(inode
);
4890 inode_dio_wait(inode
);
4891 btrfs_inode_resume_unlocked_dio(inode
);
4893 ret
= btrfs_truncate(inode
);
4894 if (ret
&& inode
->i_nlink
) {
4898 * failed to truncate, disk_i_size is only adjusted down
4899 * as we remove extents, so it should represent the true
4900 * size of the inode, so reset the in memory size and
4901 * delete our orphan entry.
4903 trans
= btrfs_join_transaction(root
);
4904 if (IS_ERR(trans
)) {
4905 btrfs_orphan_del(NULL
, inode
);
4908 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4909 err
= btrfs_orphan_del(trans
, inode
);
4911 btrfs_abort_transaction(trans
, root
, err
);
4912 btrfs_end_transaction(trans
, root
);
4919 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4921 struct inode
*inode
= d_inode(dentry
);
4922 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4925 if (btrfs_root_readonly(root
))
4928 err
= inode_change_ok(inode
, attr
);
4932 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4933 err
= btrfs_setsize(inode
, attr
);
4938 if (attr
->ia_valid
) {
4939 setattr_copy(inode
, attr
);
4940 inode_inc_iversion(inode
);
4941 err
= btrfs_dirty_inode(inode
);
4943 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4944 err
= posix_acl_chmod(inode
, inode
->i_mode
);
4951 * While truncating the inode pages during eviction, we get the VFS calling
4952 * btrfs_invalidatepage() against each page of the inode. This is slow because
4953 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4954 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4955 * extent_state structures over and over, wasting lots of time.
4957 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4958 * those expensive operations on a per page basis and do only the ordered io
4959 * finishing, while we release here the extent_map and extent_state structures,
4960 * without the excessive merging and splitting.
4962 static void evict_inode_truncate_pages(struct inode
*inode
)
4964 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4965 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
4966 struct rb_node
*node
;
4968 ASSERT(inode
->i_state
& I_FREEING
);
4969 truncate_inode_pages_final(&inode
->i_data
);
4971 write_lock(&map_tree
->lock
);
4972 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
4973 struct extent_map
*em
;
4975 node
= rb_first(&map_tree
->map
);
4976 em
= rb_entry(node
, struct extent_map
, rb_node
);
4977 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
4978 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4979 remove_extent_mapping(map_tree
, em
);
4980 free_extent_map(em
);
4981 if (need_resched()) {
4982 write_unlock(&map_tree
->lock
);
4984 write_lock(&map_tree
->lock
);
4987 write_unlock(&map_tree
->lock
);
4989 spin_lock(&io_tree
->lock
);
4990 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
4991 struct extent_state
*state
;
4992 struct extent_state
*cached_state
= NULL
;
4994 node
= rb_first(&io_tree
->state
);
4995 state
= rb_entry(node
, struct extent_state
, rb_node
);
4996 atomic_inc(&state
->refs
);
4997 spin_unlock(&io_tree
->lock
);
4999 lock_extent_bits(io_tree
, state
->start
, state
->end
,
5001 clear_extent_bit(io_tree
, state
->start
, state
->end
,
5002 EXTENT_LOCKED
| EXTENT_DIRTY
|
5003 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5004 EXTENT_DEFRAG
, 1, 1,
5005 &cached_state
, GFP_NOFS
);
5006 free_extent_state(state
);
5009 spin_lock(&io_tree
->lock
);
5011 spin_unlock(&io_tree
->lock
);
5014 void btrfs_evict_inode(struct inode
*inode
)
5016 struct btrfs_trans_handle
*trans
;
5017 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5018 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5019 int steal_from_global
= 0;
5020 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
5023 trace_btrfs_inode_evict(inode
);
5025 evict_inode_truncate_pages(inode
);
5027 if (inode
->i_nlink
&&
5028 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5029 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5030 btrfs_is_free_space_inode(inode
)))
5033 if (is_bad_inode(inode
)) {
5034 btrfs_orphan_del(NULL
, inode
);
5037 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5038 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5040 btrfs_free_io_failure_record(inode
, 0, (u64
)-1);
5042 if (root
->fs_info
->log_root_recovering
) {
5043 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5044 &BTRFS_I(inode
)->runtime_flags
));
5048 if (inode
->i_nlink
> 0) {
5049 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5050 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5054 ret
= btrfs_commit_inode_delayed_inode(inode
);
5056 btrfs_orphan_del(NULL
, inode
);
5060 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
5062 btrfs_orphan_del(NULL
, inode
);
5065 rsv
->size
= min_size
;
5067 global_rsv
= &root
->fs_info
->global_block_rsv
;
5069 btrfs_i_size_write(inode
, 0);
5072 * This is a bit simpler than btrfs_truncate since we've already
5073 * reserved our space for our orphan item in the unlink, so we just
5074 * need to reserve some slack space in case we add bytes and update
5075 * inode item when doing the truncate.
5078 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5079 BTRFS_RESERVE_FLUSH_LIMIT
);
5082 * Try and steal from the global reserve since we will
5083 * likely not use this space anyway, we want to try as
5084 * hard as possible to get this to work.
5087 steal_from_global
++;
5089 steal_from_global
= 0;
5093 * steal_from_global == 0: we reserved stuff, hooray!
5094 * steal_from_global == 1: we didn't reserve stuff, boo!
5095 * steal_from_global == 2: we've committed, still not a lot of
5096 * room but maybe we'll have room in the global reserve this
5098 * steal_from_global == 3: abandon all hope!
5100 if (steal_from_global
> 2) {
5101 btrfs_warn(root
->fs_info
,
5102 "Could not get space for a delete, will truncate on mount %d",
5104 btrfs_orphan_del(NULL
, inode
);
5105 btrfs_free_block_rsv(root
, rsv
);
5109 trans
= btrfs_join_transaction(root
);
5110 if (IS_ERR(trans
)) {
5111 btrfs_orphan_del(NULL
, inode
);
5112 btrfs_free_block_rsv(root
, rsv
);
5117 * We can't just steal from the global reserve, we need tomake
5118 * sure there is room to do it, if not we need to commit and try
5121 if (steal_from_global
) {
5122 if (!btrfs_check_space_for_delayed_refs(trans
, root
))
5123 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5130 * Couldn't steal from the global reserve, we have too much
5131 * pending stuff built up, commit the transaction and try it
5135 ret
= btrfs_commit_transaction(trans
, root
);
5137 btrfs_orphan_del(NULL
, inode
);
5138 btrfs_free_block_rsv(root
, rsv
);
5143 steal_from_global
= 0;
5146 trans
->block_rsv
= rsv
;
5148 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5149 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5152 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5153 btrfs_end_transaction(trans
, root
);
5155 btrfs_btree_balance_dirty(root
);
5158 btrfs_free_block_rsv(root
, rsv
);
5161 * Errors here aren't a big deal, it just means we leave orphan items
5162 * in the tree. They will be cleaned up on the next mount.
5165 trans
->block_rsv
= root
->orphan_block_rsv
;
5166 btrfs_orphan_del(trans
, inode
);
5168 btrfs_orphan_del(NULL
, inode
);
5171 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5172 if (!(root
== root
->fs_info
->tree_root
||
5173 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5174 btrfs_return_ino(root
, btrfs_ino(inode
));
5176 btrfs_end_transaction(trans
, root
);
5177 btrfs_btree_balance_dirty(root
);
5179 btrfs_remove_delayed_node(inode
);
5185 * this returns the key found in the dir entry in the location pointer.
5186 * If no dir entries were found, location->objectid is 0.
5188 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5189 struct btrfs_key
*location
)
5191 const char *name
= dentry
->d_name
.name
;
5192 int namelen
= dentry
->d_name
.len
;
5193 struct btrfs_dir_item
*di
;
5194 struct btrfs_path
*path
;
5195 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5198 path
= btrfs_alloc_path();
5202 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
5207 if (IS_ERR_OR_NULL(di
))
5210 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5212 btrfs_free_path(path
);
5215 location
->objectid
= 0;
5220 * when we hit a tree root in a directory, the btrfs part of the inode
5221 * needs to be changed to reflect the root directory of the tree root. This
5222 * is kind of like crossing a mount point.
5224 static int fixup_tree_root_location(struct btrfs_root
*root
,
5226 struct dentry
*dentry
,
5227 struct btrfs_key
*location
,
5228 struct btrfs_root
**sub_root
)
5230 struct btrfs_path
*path
;
5231 struct btrfs_root
*new_root
;
5232 struct btrfs_root_ref
*ref
;
5233 struct extent_buffer
*leaf
;
5234 struct btrfs_key key
;
5238 path
= btrfs_alloc_path();
5245 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5246 key
.type
= BTRFS_ROOT_REF_KEY
;
5247 key
.offset
= location
->objectid
;
5249 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
, &key
, path
,
5257 leaf
= path
->nodes
[0];
5258 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5259 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
5260 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5263 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5264 (unsigned long)(ref
+ 1),
5265 dentry
->d_name
.len
);
5269 btrfs_release_path(path
);
5271 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
5272 if (IS_ERR(new_root
)) {
5273 err
= PTR_ERR(new_root
);
5277 *sub_root
= new_root
;
5278 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5279 location
->type
= BTRFS_INODE_ITEM_KEY
;
5280 location
->offset
= 0;
5283 btrfs_free_path(path
);
5287 static void inode_tree_add(struct inode
*inode
)
5289 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5290 struct btrfs_inode
*entry
;
5292 struct rb_node
*parent
;
5293 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5294 u64 ino
= btrfs_ino(inode
);
5296 if (inode_unhashed(inode
))
5299 spin_lock(&root
->inode_lock
);
5300 p
= &root
->inode_tree
.rb_node
;
5303 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5305 if (ino
< btrfs_ino(&entry
->vfs_inode
))
5306 p
= &parent
->rb_left
;
5307 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
5308 p
= &parent
->rb_right
;
5310 WARN_ON(!(entry
->vfs_inode
.i_state
&
5311 (I_WILL_FREE
| I_FREEING
)));
5312 rb_replace_node(parent
, new, &root
->inode_tree
);
5313 RB_CLEAR_NODE(parent
);
5314 spin_unlock(&root
->inode_lock
);
5318 rb_link_node(new, parent
, p
);
5319 rb_insert_color(new, &root
->inode_tree
);
5320 spin_unlock(&root
->inode_lock
);
5323 static void inode_tree_del(struct inode
*inode
)
5325 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5328 spin_lock(&root
->inode_lock
);
5329 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5330 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5331 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5332 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5334 spin_unlock(&root
->inode_lock
);
5336 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5337 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
5338 spin_lock(&root
->inode_lock
);
5339 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5340 spin_unlock(&root
->inode_lock
);
5342 btrfs_add_dead_root(root
);
5346 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5348 struct rb_node
*node
;
5349 struct rb_node
*prev
;
5350 struct btrfs_inode
*entry
;
5351 struct inode
*inode
;
5354 if (!test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
5355 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5357 spin_lock(&root
->inode_lock
);
5359 node
= root
->inode_tree
.rb_node
;
5363 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5365 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
5366 node
= node
->rb_left
;
5367 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
5368 node
= node
->rb_right
;
5374 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5375 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
5379 prev
= rb_next(prev
);
5383 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5384 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
5385 inode
= igrab(&entry
->vfs_inode
);
5387 spin_unlock(&root
->inode_lock
);
5388 if (atomic_read(&inode
->i_count
) > 1)
5389 d_prune_aliases(inode
);
5391 * btrfs_drop_inode will have it removed from
5392 * the inode cache when its usage count
5397 spin_lock(&root
->inode_lock
);
5401 if (cond_resched_lock(&root
->inode_lock
))
5404 node
= rb_next(node
);
5406 spin_unlock(&root
->inode_lock
);
5409 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5411 struct btrfs_iget_args
*args
= p
;
5412 inode
->i_ino
= args
->location
->objectid
;
5413 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5414 sizeof(*args
->location
));
5415 BTRFS_I(inode
)->root
= args
->root
;
5419 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5421 struct btrfs_iget_args
*args
= opaque
;
5422 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5423 args
->root
== BTRFS_I(inode
)->root
;
5426 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5427 struct btrfs_key
*location
,
5428 struct btrfs_root
*root
)
5430 struct inode
*inode
;
5431 struct btrfs_iget_args args
;
5432 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5434 args
.location
= location
;
5437 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5438 btrfs_init_locked_inode
,
5443 /* Get an inode object given its location and corresponding root.
5444 * Returns in *is_new if the inode was read from disk
5446 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5447 struct btrfs_root
*root
, int *new)
5449 struct inode
*inode
;
5451 inode
= btrfs_iget_locked(s
, location
, root
);
5453 return ERR_PTR(-ENOMEM
);
5455 if (inode
->i_state
& I_NEW
) {
5456 btrfs_read_locked_inode(inode
);
5457 if (!is_bad_inode(inode
)) {
5458 inode_tree_add(inode
);
5459 unlock_new_inode(inode
);
5463 unlock_new_inode(inode
);
5465 inode
= ERR_PTR(-ESTALE
);
5472 static struct inode
*new_simple_dir(struct super_block
*s
,
5473 struct btrfs_key
*key
,
5474 struct btrfs_root
*root
)
5476 struct inode
*inode
= new_inode(s
);
5479 return ERR_PTR(-ENOMEM
);
5481 BTRFS_I(inode
)->root
= root
;
5482 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5483 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5485 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5486 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5487 inode
->i_fop
= &simple_dir_operations
;
5488 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5489 inode
->i_mtime
= CURRENT_TIME
;
5490 inode
->i_atime
= inode
->i_mtime
;
5491 inode
->i_ctime
= inode
->i_mtime
;
5492 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5497 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5499 struct inode
*inode
;
5500 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5501 struct btrfs_root
*sub_root
= root
;
5502 struct btrfs_key location
;
5506 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5507 return ERR_PTR(-ENAMETOOLONG
);
5509 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5511 return ERR_PTR(ret
);
5513 if (location
.objectid
== 0)
5514 return ERR_PTR(-ENOENT
);
5516 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5517 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5521 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5523 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
5524 ret
= fixup_tree_root_location(root
, dir
, dentry
,
5525 &location
, &sub_root
);
5528 inode
= ERR_PTR(ret
);
5530 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5532 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5534 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
5536 if (!IS_ERR(inode
) && root
!= sub_root
) {
5537 down_read(&root
->fs_info
->cleanup_work_sem
);
5538 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5539 ret
= btrfs_orphan_cleanup(sub_root
);
5540 up_read(&root
->fs_info
->cleanup_work_sem
);
5543 inode
= ERR_PTR(ret
);
5550 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5552 struct btrfs_root
*root
;
5553 struct inode
*inode
= d_inode(dentry
);
5555 if (!inode
&& !IS_ROOT(dentry
))
5556 inode
= d_inode(dentry
->d_parent
);
5559 root
= BTRFS_I(inode
)->root
;
5560 if (btrfs_root_refs(&root
->root_item
) == 0)
5563 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5569 static void btrfs_dentry_release(struct dentry
*dentry
)
5571 kfree(dentry
->d_fsdata
);
5574 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5577 struct inode
*inode
;
5579 inode
= btrfs_lookup_dentry(dir
, dentry
);
5580 if (IS_ERR(inode
)) {
5581 if (PTR_ERR(inode
) == -ENOENT
)
5584 return ERR_CAST(inode
);
5587 return d_splice_alias(inode
, dentry
);
5590 unsigned char btrfs_filetype_table
[] = {
5591 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5594 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5596 struct inode
*inode
= file_inode(file
);
5597 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5598 struct btrfs_item
*item
;
5599 struct btrfs_dir_item
*di
;
5600 struct btrfs_key key
;
5601 struct btrfs_key found_key
;
5602 struct btrfs_path
*path
;
5603 struct list_head ins_list
;
5604 struct list_head del_list
;
5606 struct extent_buffer
*leaf
;
5608 unsigned char d_type
;
5613 int key_type
= BTRFS_DIR_INDEX_KEY
;
5617 int is_curr
= 0; /* ctx->pos points to the current index? */
5619 /* FIXME, use a real flag for deciding about the key type */
5620 if (root
->fs_info
->tree_root
== root
)
5621 key_type
= BTRFS_DIR_ITEM_KEY
;
5623 if (!dir_emit_dots(file
, ctx
))
5626 path
= btrfs_alloc_path();
5632 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5633 INIT_LIST_HEAD(&ins_list
);
5634 INIT_LIST_HEAD(&del_list
);
5635 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
5638 key
.type
= key_type
;
5639 key
.offset
= ctx
->pos
;
5640 key
.objectid
= btrfs_ino(inode
);
5642 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5647 leaf
= path
->nodes
[0];
5648 slot
= path
->slots
[0];
5649 if (slot
>= btrfs_header_nritems(leaf
)) {
5650 ret
= btrfs_next_leaf(root
, path
);
5658 item
= btrfs_item_nr(slot
);
5659 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5661 if (found_key
.objectid
!= key
.objectid
)
5663 if (found_key
.type
!= key_type
)
5665 if (found_key
.offset
< ctx
->pos
)
5667 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5668 btrfs_should_delete_dir_index(&del_list
,
5672 ctx
->pos
= found_key
.offset
;
5675 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5677 di_total
= btrfs_item_size(leaf
, item
);
5679 while (di_cur
< di_total
) {
5680 struct btrfs_key location
;
5682 if (verify_dir_item(root
, leaf
, di
))
5685 name_len
= btrfs_dir_name_len(leaf
, di
);
5686 if (name_len
<= sizeof(tmp_name
)) {
5687 name_ptr
= tmp_name
;
5689 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
5695 read_extent_buffer(leaf
, name_ptr
,
5696 (unsigned long)(di
+ 1), name_len
);
5698 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5699 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5702 /* is this a reference to our own snapshot? If so
5705 * In contrast to old kernels, we insert the snapshot's
5706 * dir item and dir index after it has been created, so
5707 * we won't find a reference to our own snapshot. We
5708 * still keep the following code for backward
5711 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5712 location
.objectid
== root
->root_key
.objectid
) {
5716 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5717 location
.objectid
, d_type
);
5720 if (name_ptr
!= tmp_name
)
5725 di_len
= btrfs_dir_name_len(leaf
, di
) +
5726 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5728 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5734 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5737 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5742 /* Reached end of directory/root. Bump pos past the last item. */
5746 * Stop new entries from being returned after we return the last
5749 * New directory entries are assigned a strictly increasing
5750 * offset. This means that new entries created during readdir
5751 * are *guaranteed* to be seen in the future by that readdir.
5752 * This has broken buggy programs which operate on names as
5753 * they're returned by readdir. Until we re-use freed offsets
5754 * we have this hack to stop new entries from being returned
5755 * under the assumption that they'll never reach this huge
5758 * This is being careful not to overflow 32bit loff_t unless the
5759 * last entry requires it because doing so has broken 32bit apps
5762 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5763 if (ctx
->pos
>= INT_MAX
)
5764 ctx
->pos
= LLONG_MAX
;
5771 if (key_type
== BTRFS_DIR_INDEX_KEY
)
5772 btrfs_put_delayed_items(&ins_list
, &del_list
);
5773 btrfs_free_path(path
);
5777 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5779 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5780 struct btrfs_trans_handle
*trans
;
5782 bool nolock
= false;
5784 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5787 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5790 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5792 trans
= btrfs_join_transaction_nolock(root
);
5794 trans
= btrfs_join_transaction(root
);
5796 return PTR_ERR(trans
);
5797 ret
= btrfs_commit_transaction(trans
, root
);
5803 * This is somewhat expensive, updating the tree every time the
5804 * inode changes. But, it is most likely to find the inode in cache.
5805 * FIXME, needs more benchmarking...there are no reasons other than performance
5806 * to keep or drop this code.
5808 static int btrfs_dirty_inode(struct inode
*inode
)
5810 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5811 struct btrfs_trans_handle
*trans
;
5814 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5817 trans
= btrfs_join_transaction(root
);
5819 return PTR_ERR(trans
);
5821 ret
= btrfs_update_inode(trans
, root
, inode
);
5822 if (ret
&& ret
== -ENOSPC
) {
5823 /* whoops, lets try again with the full transaction */
5824 btrfs_end_transaction(trans
, root
);
5825 trans
= btrfs_start_transaction(root
, 1);
5827 return PTR_ERR(trans
);
5829 ret
= btrfs_update_inode(trans
, root
, inode
);
5831 btrfs_end_transaction(trans
, root
);
5832 if (BTRFS_I(inode
)->delayed_node
)
5833 btrfs_balance_delayed_items(root
);
5839 * This is a copy of file_update_time. We need this so we can return error on
5840 * ENOSPC for updating the inode in the case of file write and mmap writes.
5842 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
5845 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5847 if (btrfs_root_readonly(root
))
5850 if (flags
& S_VERSION
)
5851 inode_inc_iversion(inode
);
5852 if (flags
& S_CTIME
)
5853 inode
->i_ctime
= *now
;
5854 if (flags
& S_MTIME
)
5855 inode
->i_mtime
= *now
;
5856 if (flags
& S_ATIME
)
5857 inode
->i_atime
= *now
;
5858 return btrfs_dirty_inode(inode
);
5862 * find the highest existing sequence number in a directory
5863 * and then set the in-memory index_cnt variable to reflect
5864 * free sequence numbers
5866 static int btrfs_set_inode_index_count(struct inode
*inode
)
5868 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5869 struct btrfs_key key
, found_key
;
5870 struct btrfs_path
*path
;
5871 struct extent_buffer
*leaf
;
5874 key
.objectid
= btrfs_ino(inode
);
5875 key
.type
= BTRFS_DIR_INDEX_KEY
;
5876 key
.offset
= (u64
)-1;
5878 path
= btrfs_alloc_path();
5882 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5885 /* FIXME: we should be able to handle this */
5891 * MAGIC NUMBER EXPLANATION:
5892 * since we search a directory based on f_pos we have to start at 2
5893 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5894 * else has to start at 2
5896 if (path
->slots
[0] == 0) {
5897 BTRFS_I(inode
)->index_cnt
= 2;
5903 leaf
= path
->nodes
[0];
5904 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5906 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5907 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
5908 BTRFS_I(inode
)->index_cnt
= 2;
5912 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
5914 btrfs_free_path(path
);
5919 * helper to find a free sequence number in a given directory. This current
5920 * code is very simple, later versions will do smarter things in the btree
5922 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
5926 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
5927 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5929 ret
= btrfs_set_inode_index_count(dir
);
5935 *index
= BTRFS_I(dir
)->index_cnt
;
5936 BTRFS_I(dir
)->index_cnt
++;
5941 static int btrfs_insert_inode_locked(struct inode
*inode
)
5943 struct btrfs_iget_args args
;
5944 args
.location
= &BTRFS_I(inode
)->location
;
5945 args
.root
= BTRFS_I(inode
)->root
;
5947 return insert_inode_locked4(inode
,
5948 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
5949 btrfs_find_actor
, &args
);
5952 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5953 struct btrfs_root
*root
,
5955 const char *name
, int name_len
,
5956 u64 ref_objectid
, u64 objectid
,
5957 umode_t mode
, u64
*index
)
5959 struct inode
*inode
;
5960 struct btrfs_inode_item
*inode_item
;
5961 struct btrfs_key
*location
;
5962 struct btrfs_path
*path
;
5963 struct btrfs_inode_ref
*ref
;
5964 struct btrfs_key key
[2];
5966 int nitems
= name
? 2 : 1;
5970 path
= btrfs_alloc_path();
5972 return ERR_PTR(-ENOMEM
);
5974 inode
= new_inode(root
->fs_info
->sb
);
5976 btrfs_free_path(path
);
5977 return ERR_PTR(-ENOMEM
);
5981 * O_TMPFILE, set link count to 0, so that after this point,
5982 * we fill in an inode item with the correct link count.
5985 set_nlink(inode
, 0);
5988 * we have to initialize this early, so we can reclaim the inode
5989 * number if we fail afterwards in this function.
5991 inode
->i_ino
= objectid
;
5994 trace_btrfs_inode_request(dir
);
5996 ret
= btrfs_set_inode_index(dir
, index
);
5998 btrfs_free_path(path
);
6000 return ERR_PTR(ret
);
6006 * index_cnt is ignored for everything but a dir,
6007 * btrfs_get_inode_index_count has an explanation for the magic
6010 BTRFS_I(inode
)->index_cnt
= 2;
6011 BTRFS_I(inode
)->dir_index
= *index
;
6012 BTRFS_I(inode
)->root
= root
;
6013 BTRFS_I(inode
)->generation
= trans
->transid
;
6014 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6017 * We could have gotten an inode number from somebody who was fsynced
6018 * and then removed in this same transaction, so let's just set full
6019 * sync since it will be a full sync anyway and this will blow away the
6020 * old info in the log.
6022 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6024 key
[0].objectid
= objectid
;
6025 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6028 sizes
[0] = sizeof(struct btrfs_inode_item
);
6032 * Start new inodes with an inode_ref. This is slightly more
6033 * efficient for small numbers of hard links since they will
6034 * be packed into one item. Extended refs will kick in if we
6035 * add more hard links than can fit in the ref item.
6037 key
[1].objectid
= objectid
;
6038 key
[1].type
= BTRFS_INODE_REF_KEY
;
6039 key
[1].offset
= ref_objectid
;
6041 sizes
[1] = name_len
+ sizeof(*ref
);
6044 location
= &BTRFS_I(inode
)->location
;
6045 location
->objectid
= objectid
;
6046 location
->offset
= 0;
6047 location
->type
= BTRFS_INODE_ITEM_KEY
;
6049 ret
= btrfs_insert_inode_locked(inode
);
6053 path
->leave_spinning
= 1;
6054 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6058 inode_init_owner(inode
, dir
, mode
);
6059 inode_set_bytes(inode
, 0);
6061 inode
->i_mtime
= CURRENT_TIME
;
6062 inode
->i_atime
= inode
->i_mtime
;
6063 inode
->i_ctime
= inode
->i_mtime
;
6064 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6066 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6067 struct btrfs_inode_item
);
6068 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
6069 sizeof(*inode_item
));
6070 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6073 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6074 struct btrfs_inode_ref
);
6075 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6076 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6077 ptr
= (unsigned long)(ref
+ 1);
6078 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6081 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6082 btrfs_free_path(path
);
6084 btrfs_inherit_iflags(inode
, dir
);
6086 if (S_ISREG(mode
)) {
6087 if (btrfs_test_opt(root
, NODATASUM
))
6088 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6089 if (btrfs_test_opt(root
, NODATACOW
))
6090 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6091 BTRFS_INODE_NODATASUM
;
6094 inode_tree_add(inode
);
6096 trace_btrfs_inode_new(inode
);
6097 btrfs_set_inode_last_trans(trans
, inode
);
6099 btrfs_update_root_times(trans
, root
);
6101 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6103 btrfs_err(root
->fs_info
,
6104 "error inheriting props for ino %llu (root %llu): %d",
6105 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
6110 unlock_new_inode(inode
);
6113 BTRFS_I(dir
)->index_cnt
--;
6114 btrfs_free_path(path
);
6116 return ERR_PTR(ret
);
6119 static inline u8
btrfs_inode_type(struct inode
*inode
)
6121 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6125 * utility function to add 'inode' into 'parent_inode' with
6126 * a give name and a given sequence number.
6127 * if 'add_backref' is true, also insert a backref from the
6128 * inode to the parent directory.
6130 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6131 struct inode
*parent_inode
, struct inode
*inode
,
6132 const char *name
, int name_len
, int add_backref
, u64 index
)
6135 struct btrfs_key key
;
6136 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
6137 u64 ino
= btrfs_ino(inode
);
6138 u64 parent_ino
= btrfs_ino(parent_inode
);
6140 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6141 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
6144 key
.type
= BTRFS_INODE_ITEM_KEY
;
6148 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6149 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
6150 key
.objectid
, root
->root_key
.objectid
,
6151 parent_ino
, index
, name
, name_len
);
6152 } else if (add_backref
) {
6153 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6157 /* Nothing to clean up yet */
6161 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6163 btrfs_inode_type(inode
), index
);
6164 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6167 btrfs_abort_transaction(trans
, root
, ret
);
6171 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
6173 inode_inc_iversion(parent_inode
);
6174 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
6175 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
6177 btrfs_abort_transaction(trans
, root
, ret
);
6181 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6184 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
6185 key
.objectid
, root
->root_key
.objectid
,
6186 parent_ino
, &local_index
, name
, name_len
);
6188 } else if (add_backref
) {
6192 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6193 ino
, parent_ino
, &local_index
);
6198 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6199 struct inode
*dir
, struct dentry
*dentry
,
6200 struct inode
*inode
, int backref
, u64 index
)
6202 int err
= btrfs_add_link(trans
, dir
, inode
,
6203 dentry
->d_name
.name
, dentry
->d_name
.len
,
6210 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6211 umode_t mode
, dev_t rdev
)
6213 struct btrfs_trans_handle
*trans
;
6214 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6215 struct inode
*inode
= NULL
;
6221 if (!new_valid_dev(rdev
))
6225 * 2 for inode item and ref
6227 * 1 for xattr if selinux is on
6229 trans
= btrfs_start_transaction(root
, 5);
6231 return PTR_ERR(trans
);
6233 err
= btrfs_find_free_ino(root
, &objectid
);
6237 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6238 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6240 if (IS_ERR(inode
)) {
6241 err
= PTR_ERR(inode
);
6246 * If the active LSM wants to access the inode during
6247 * d_instantiate it needs these. Smack checks to see
6248 * if the filesystem supports xattrs by looking at the
6251 inode
->i_op
= &btrfs_special_inode_operations
;
6252 init_special_inode(inode
, inode
->i_mode
, rdev
);
6254 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6256 goto out_unlock_inode
;
6258 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6260 goto out_unlock_inode
;
6262 btrfs_update_inode(trans
, root
, inode
);
6263 unlock_new_inode(inode
);
6264 d_instantiate(dentry
, inode
);
6268 btrfs_end_transaction(trans
, root
);
6269 btrfs_balance_delayed_items(root
);
6270 btrfs_btree_balance_dirty(root
);
6272 inode_dec_link_count(inode
);
6279 unlock_new_inode(inode
);
6284 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6285 umode_t mode
, bool excl
)
6287 struct btrfs_trans_handle
*trans
;
6288 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6289 struct inode
*inode
= NULL
;
6290 int drop_inode_on_err
= 0;
6296 * 2 for inode item and ref
6298 * 1 for xattr if selinux is on
6300 trans
= btrfs_start_transaction(root
, 5);
6302 return PTR_ERR(trans
);
6304 err
= btrfs_find_free_ino(root
, &objectid
);
6308 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6309 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6311 if (IS_ERR(inode
)) {
6312 err
= PTR_ERR(inode
);
6315 drop_inode_on_err
= 1;
6317 * If the active LSM wants to access the inode during
6318 * d_instantiate it needs these. Smack checks to see
6319 * if the filesystem supports xattrs by looking at the
6322 inode
->i_fop
= &btrfs_file_operations
;
6323 inode
->i_op
= &btrfs_file_inode_operations
;
6324 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6326 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6328 goto out_unlock_inode
;
6330 err
= btrfs_update_inode(trans
, root
, inode
);
6332 goto out_unlock_inode
;
6334 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6336 goto out_unlock_inode
;
6338 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6339 unlock_new_inode(inode
);
6340 d_instantiate(dentry
, inode
);
6343 btrfs_end_transaction(trans
, root
);
6344 if (err
&& drop_inode_on_err
) {
6345 inode_dec_link_count(inode
);
6348 btrfs_balance_delayed_items(root
);
6349 btrfs_btree_balance_dirty(root
);
6353 unlock_new_inode(inode
);
6358 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6359 struct dentry
*dentry
)
6361 struct btrfs_trans_handle
*trans
;
6362 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6363 struct inode
*inode
= d_inode(old_dentry
);
6368 /* do not allow sys_link's with other subvols of the same device */
6369 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6372 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6375 err
= btrfs_set_inode_index(dir
, &index
);
6380 * 2 items for inode and inode ref
6381 * 2 items for dir items
6382 * 1 item for parent inode
6384 trans
= btrfs_start_transaction(root
, 5);
6385 if (IS_ERR(trans
)) {
6386 err
= PTR_ERR(trans
);
6390 /* There are several dir indexes for this inode, clear the cache. */
6391 BTRFS_I(inode
)->dir_index
= 0ULL;
6393 inode_inc_iversion(inode
);
6394 inode
->i_ctime
= CURRENT_TIME
;
6396 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6398 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
6403 struct dentry
*parent
= dentry
->d_parent
;
6404 err
= btrfs_update_inode(trans
, root
, inode
);
6407 if (inode
->i_nlink
== 1) {
6409 * If new hard link count is 1, it's a file created
6410 * with open(2) O_TMPFILE flag.
6412 err
= btrfs_orphan_del(trans
, inode
);
6416 d_instantiate(dentry
, inode
);
6417 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
6420 btrfs_end_transaction(trans
, root
);
6421 btrfs_balance_delayed_items(root
);
6424 inode_dec_link_count(inode
);
6427 btrfs_btree_balance_dirty(root
);
6431 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6433 struct inode
*inode
= NULL
;
6434 struct btrfs_trans_handle
*trans
;
6435 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6437 int drop_on_err
= 0;
6442 * 2 items for inode and ref
6443 * 2 items for dir items
6444 * 1 for xattr if selinux is on
6446 trans
= btrfs_start_transaction(root
, 5);
6448 return PTR_ERR(trans
);
6450 err
= btrfs_find_free_ino(root
, &objectid
);
6454 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6455 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6456 S_IFDIR
| mode
, &index
);
6457 if (IS_ERR(inode
)) {
6458 err
= PTR_ERR(inode
);
6463 /* these must be set before we unlock the inode */
6464 inode
->i_op
= &btrfs_dir_inode_operations
;
6465 inode
->i_fop
= &btrfs_dir_file_operations
;
6467 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6469 goto out_fail_inode
;
6471 btrfs_i_size_write(inode
, 0);
6472 err
= btrfs_update_inode(trans
, root
, inode
);
6474 goto out_fail_inode
;
6476 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
6477 dentry
->d_name
.len
, 0, index
);
6479 goto out_fail_inode
;
6481 d_instantiate(dentry
, inode
);
6483 * mkdir is special. We're unlocking after we call d_instantiate
6484 * to avoid a race with nfsd calling d_instantiate.
6486 unlock_new_inode(inode
);
6490 btrfs_end_transaction(trans
, root
);
6492 inode_dec_link_count(inode
);
6495 btrfs_balance_delayed_items(root
);
6496 btrfs_btree_balance_dirty(root
);
6500 unlock_new_inode(inode
);
6504 /* Find next extent map of a given extent map, caller needs to ensure locks */
6505 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6507 struct rb_node
*next
;
6509 next
= rb_next(&em
->rb_node
);
6512 return container_of(next
, struct extent_map
, rb_node
);
6515 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6517 struct rb_node
*prev
;
6519 prev
= rb_prev(&em
->rb_node
);
6522 return container_of(prev
, struct extent_map
, rb_node
);
6525 /* helper for btfs_get_extent. Given an existing extent in the tree,
6526 * the existing extent is the nearest extent to map_start,
6527 * and an extent that you want to insert, deal with overlap and insert
6528 * the best fitted new extent into the tree.
6530 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6531 struct extent_map
*existing
,
6532 struct extent_map
*em
,
6535 struct extent_map
*prev
;
6536 struct extent_map
*next
;
6541 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6543 if (existing
->start
> map_start
) {
6545 prev
= prev_extent_map(next
);
6548 next
= next_extent_map(prev
);
6551 start
= prev
? extent_map_end(prev
) : em
->start
;
6552 start
= max_t(u64
, start
, em
->start
);
6553 end
= next
? next
->start
: extent_map_end(em
);
6554 end
= min_t(u64
, end
, extent_map_end(em
));
6555 start_diff
= start
- em
->start
;
6557 em
->len
= end
- start
;
6558 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6559 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6560 em
->block_start
+= start_diff
;
6561 em
->block_len
-= start_diff
;
6563 return add_extent_mapping(em_tree
, em
, 0);
6566 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6567 struct inode
*inode
, struct page
*page
,
6568 size_t pg_offset
, u64 extent_offset
,
6569 struct btrfs_file_extent_item
*item
)
6572 struct extent_buffer
*leaf
= path
->nodes
[0];
6575 unsigned long inline_size
;
6579 WARN_ON(pg_offset
!= 0);
6580 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6581 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6582 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6583 btrfs_item_nr(path
->slots
[0]));
6584 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6587 ptr
= btrfs_file_extent_inline_start(item
);
6589 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6591 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
6592 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6593 extent_offset
, inline_size
, max_size
);
6599 * a bit scary, this does extent mapping from logical file offset to the disk.
6600 * the ugly parts come from merging extents from the disk with the in-ram
6601 * representation. This gets more complex because of the data=ordered code,
6602 * where the in-ram extents might be locked pending data=ordered completion.
6604 * This also copies inline extents directly into the page.
6607 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6608 size_t pg_offset
, u64 start
, u64 len
,
6613 u64 extent_start
= 0;
6615 u64 objectid
= btrfs_ino(inode
);
6617 struct btrfs_path
*path
= NULL
;
6618 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6619 struct btrfs_file_extent_item
*item
;
6620 struct extent_buffer
*leaf
;
6621 struct btrfs_key found_key
;
6622 struct extent_map
*em
= NULL
;
6623 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6624 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6625 struct btrfs_trans_handle
*trans
= NULL
;
6626 const bool new_inline
= !page
|| create
;
6629 read_lock(&em_tree
->lock
);
6630 em
= lookup_extent_mapping(em_tree
, start
, len
);
6632 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6633 read_unlock(&em_tree
->lock
);
6636 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6637 free_extent_map(em
);
6638 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6639 free_extent_map(em
);
6643 em
= alloc_extent_map();
6648 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6649 em
->start
= EXTENT_MAP_HOLE
;
6650 em
->orig_start
= EXTENT_MAP_HOLE
;
6652 em
->block_len
= (u64
)-1;
6655 path
= btrfs_alloc_path();
6661 * Chances are we'll be called again, so go ahead and do
6667 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6668 objectid
, start
, trans
!= NULL
);
6675 if (path
->slots
[0] == 0)
6680 leaf
= path
->nodes
[0];
6681 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6682 struct btrfs_file_extent_item
);
6683 /* are we inside the extent that was found? */
6684 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6685 found_type
= found_key
.type
;
6686 if (found_key
.objectid
!= objectid
||
6687 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6689 * If we backup past the first extent we want to move forward
6690 * and see if there is an extent in front of us, otherwise we'll
6691 * say there is a hole for our whole search range which can
6698 found_type
= btrfs_file_extent_type(leaf
, item
);
6699 extent_start
= found_key
.offset
;
6700 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6701 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6702 extent_end
= extent_start
+
6703 btrfs_file_extent_num_bytes(leaf
, item
);
6704 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6706 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6707 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6710 if (start
>= extent_end
) {
6712 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6713 ret
= btrfs_next_leaf(root
, path
);
6720 leaf
= path
->nodes
[0];
6722 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6723 if (found_key
.objectid
!= objectid
||
6724 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6726 if (start
+ len
<= found_key
.offset
)
6728 if (start
> found_key
.offset
)
6731 em
->orig_start
= start
;
6732 em
->len
= found_key
.offset
- start
;
6736 btrfs_extent_item_to_extent_map(inode
, path
, item
, new_inline
, em
);
6738 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6739 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6741 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6745 size_t extent_offset
;
6751 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6752 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6753 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
6754 size
- extent_offset
);
6755 em
->start
= extent_start
+ extent_offset
;
6756 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6757 em
->orig_block_len
= em
->len
;
6758 em
->orig_start
= em
->start
;
6759 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6760 if (create
== 0 && !PageUptodate(page
)) {
6761 if (btrfs_file_extent_compression(leaf
, item
) !=
6762 BTRFS_COMPRESS_NONE
) {
6763 ret
= uncompress_inline(path
, inode
, page
,
6765 extent_offset
, item
);
6772 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6774 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
6775 memset(map
+ pg_offset
+ copy_size
, 0,
6776 PAGE_CACHE_SIZE
- pg_offset
-
6781 flush_dcache_page(page
);
6782 } else if (create
&& PageUptodate(page
)) {
6786 free_extent_map(em
);
6789 btrfs_release_path(path
);
6790 trans
= btrfs_join_transaction(root
);
6793 return ERR_CAST(trans
);
6797 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6800 btrfs_mark_buffer_dirty(leaf
);
6802 set_extent_uptodate(io_tree
, em
->start
,
6803 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6808 em
->orig_start
= start
;
6811 em
->block_start
= EXTENT_MAP_HOLE
;
6812 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
6814 btrfs_release_path(path
);
6815 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6816 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6817 em
->start
, em
->len
, start
, len
);
6823 write_lock(&em_tree
->lock
);
6824 ret
= add_extent_mapping(em_tree
, em
, 0);
6825 /* it is possible that someone inserted the extent into the tree
6826 * while we had the lock dropped. It is also possible that
6827 * an overlapping map exists in the tree
6829 if (ret
== -EEXIST
) {
6830 struct extent_map
*existing
;
6834 existing
= search_extent_mapping(em_tree
, start
, len
);
6836 * existing will always be non-NULL, since there must be
6837 * extent causing the -EEXIST.
6839 if (start
>= extent_map_end(existing
) ||
6840 start
<= existing
->start
) {
6842 * The existing extent map is the one nearest to
6843 * the [start, start + len) range which overlaps
6845 err
= merge_extent_mapping(em_tree
, existing
,
6847 free_extent_map(existing
);
6849 free_extent_map(em
);
6853 free_extent_map(em
);
6858 write_unlock(&em_tree
->lock
);
6861 trace_btrfs_get_extent(root
, em
);
6864 btrfs_free_path(path
);
6866 ret
= btrfs_end_transaction(trans
, root
);
6871 free_extent_map(em
);
6872 return ERR_PTR(err
);
6874 BUG_ON(!em
); /* Error is always set */
6878 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
6879 size_t pg_offset
, u64 start
, u64 len
,
6882 struct extent_map
*em
;
6883 struct extent_map
*hole_em
= NULL
;
6884 u64 range_start
= start
;
6890 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
6897 * - a pre-alloc extent,
6898 * there might actually be delalloc bytes behind it.
6900 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6901 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6907 /* check to see if we've wrapped (len == -1 or similar) */
6916 /* ok, we didn't find anything, lets look for delalloc */
6917 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
6918 end
, len
, EXTENT_DELALLOC
, 1);
6919 found_end
= range_start
+ found
;
6920 if (found_end
< range_start
)
6921 found_end
= (u64
)-1;
6924 * we didn't find anything useful, return
6925 * the original results from get_extent()
6927 if (range_start
> end
|| found_end
<= start
) {
6933 /* adjust the range_start to make sure it doesn't
6934 * go backwards from the start they passed in
6936 range_start
= max(start
, range_start
);
6937 found
= found_end
- range_start
;
6940 u64 hole_start
= start
;
6943 em
= alloc_extent_map();
6949 * when btrfs_get_extent can't find anything it
6950 * returns one huge hole
6952 * make sure what it found really fits our range, and
6953 * adjust to make sure it is based on the start from
6957 u64 calc_end
= extent_map_end(hole_em
);
6959 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
6960 free_extent_map(hole_em
);
6963 hole_start
= max(hole_em
->start
, start
);
6964 hole_len
= calc_end
- hole_start
;
6968 if (hole_em
&& range_start
> hole_start
) {
6969 /* our hole starts before our delalloc, so we
6970 * have to return just the parts of the hole
6971 * that go until the delalloc starts
6973 em
->len
= min(hole_len
,
6974 range_start
- hole_start
);
6975 em
->start
= hole_start
;
6976 em
->orig_start
= hole_start
;
6978 * don't adjust block start at all,
6979 * it is fixed at EXTENT_MAP_HOLE
6981 em
->block_start
= hole_em
->block_start
;
6982 em
->block_len
= hole_len
;
6983 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6984 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6986 em
->start
= range_start
;
6988 em
->orig_start
= range_start
;
6989 em
->block_start
= EXTENT_MAP_DELALLOC
;
6990 em
->block_len
= found
;
6992 } else if (hole_em
) {
6997 free_extent_map(hole_em
);
6999 free_extent_map(em
);
7000 return ERR_PTR(err
);
7005 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7008 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7009 struct extent_map
*em
;
7010 struct btrfs_key ins
;
7014 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7015 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
7016 alloc_hint
, &ins
, 1, 1);
7018 return ERR_PTR(ret
);
7020 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
7021 ins
.offset
, ins
.offset
, ins
.offset
, 0);
7023 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
7027 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
7028 ins
.offset
, ins
.offset
, 0);
7030 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
7031 free_extent_map(em
);
7032 return ERR_PTR(ret
);
7039 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7040 * block must be cow'd
7042 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7043 u64
*orig_start
, u64
*orig_block_len
,
7046 struct btrfs_trans_handle
*trans
;
7047 struct btrfs_path
*path
;
7049 struct extent_buffer
*leaf
;
7050 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7051 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7052 struct btrfs_file_extent_item
*fi
;
7053 struct btrfs_key key
;
7060 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7062 path
= btrfs_alloc_path();
7066 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
7071 slot
= path
->slots
[0];
7074 /* can't find the item, must cow */
7081 leaf
= path
->nodes
[0];
7082 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7083 if (key
.objectid
!= btrfs_ino(inode
) ||
7084 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7085 /* not our file or wrong item type, must cow */
7089 if (key
.offset
> offset
) {
7090 /* Wrong offset, must cow */
7094 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7095 found_type
= btrfs_file_extent_type(leaf
, fi
);
7096 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7097 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7098 /* not a regular extent, must cow */
7102 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7105 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7106 if (extent_end
<= offset
)
7109 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7110 if (disk_bytenr
== 0)
7113 if (btrfs_file_extent_compression(leaf
, fi
) ||
7114 btrfs_file_extent_encryption(leaf
, fi
) ||
7115 btrfs_file_extent_other_encoding(leaf
, fi
))
7118 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7121 *orig_start
= key
.offset
- backref_offset
;
7122 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7123 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7126 if (btrfs_extent_readonly(root
, disk_bytenr
))
7129 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7130 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7133 range_end
= round_up(offset
+ num_bytes
, root
->sectorsize
) - 1;
7134 ret
= test_range_bit(io_tree
, offset
, range_end
,
7135 EXTENT_DELALLOC
, 0, NULL
);
7142 btrfs_release_path(path
);
7145 * look for other files referencing this extent, if we
7146 * find any we must cow
7148 trans
= btrfs_join_transaction(root
);
7149 if (IS_ERR(trans
)) {
7154 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
7155 key
.offset
- backref_offset
, disk_bytenr
);
7156 btrfs_end_transaction(trans
, root
);
7163 * adjust disk_bytenr and num_bytes to cover just the bytes
7164 * in this extent we are about to write. If there
7165 * are any csums in that range we have to cow in order
7166 * to keep the csums correct
7168 disk_bytenr
+= backref_offset
;
7169 disk_bytenr
+= offset
- key
.offset
;
7170 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
7173 * all of the above have passed, it is safe to overwrite this extent
7179 btrfs_free_path(path
);
7183 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7185 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7187 void **pagep
= NULL
;
7188 struct page
*page
= NULL
;
7192 start_idx
= start
>> PAGE_CACHE_SHIFT
;
7195 * end is the last byte in the last page. end == start is legal
7197 end_idx
= end
>> PAGE_CACHE_SHIFT
;
7201 /* Most of the code in this while loop is lifted from
7202 * find_get_page. It's been modified to begin searching from a
7203 * page and return just the first page found in that range. If the
7204 * found idx is less than or equal to the end idx then we know that
7205 * a page exists. If no pages are found or if those pages are
7206 * outside of the range then we're fine (yay!) */
7207 while (page
== NULL
&&
7208 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7209 page
= radix_tree_deref_slot(pagep
);
7210 if (unlikely(!page
))
7213 if (radix_tree_exception(page
)) {
7214 if (radix_tree_deref_retry(page
)) {
7219 * Otherwise, shmem/tmpfs must be storing a swap entry
7220 * here as an exceptional entry: so return it without
7221 * attempting to raise page count.
7224 break; /* TODO: Is this relevant for this use case? */
7227 if (!page_cache_get_speculative(page
)) {
7233 * Has the page moved?
7234 * This is part of the lockless pagecache protocol. See
7235 * include/linux/pagemap.h for details.
7237 if (unlikely(page
!= *pagep
)) {
7238 page_cache_release(page
);
7244 if (page
->index
<= end_idx
)
7246 page_cache_release(page
);
7253 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7254 struct extent_state
**cached_state
, int writing
)
7256 struct btrfs_ordered_extent
*ordered
;
7260 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7263 * We're concerned with the entire range that we're going to be
7264 * doing DIO to, so we need to make sure theres no ordered
7265 * extents in this range.
7267 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
7268 lockend
- lockstart
+ 1);
7271 * We need to make sure there are no buffered pages in this
7272 * range either, we could have raced between the invalidate in
7273 * generic_file_direct_write and locking the extent. The
7274 * invalidate needs to happen so that reads after a write do not
7279 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7282 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7283 cached_state
, GFP_NOFS
);
7286 btrfs_start_ordered_extent(inode
, ordered
, 1);
7287 btrfs_put_ordered_extent(ordered
);
7289 /* Screw you mmap */
7290 ret
= btrfs_fdatawrite_range(inode
, lockstart
, lockend
);
7293 ret
= filemap_fdatawait_range(inode
->i_mapping
,
7300 * If we found a page that couldn't be invalidated just
7301 * fall back to buffered.
7303 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
7304 lockstart
>> PAGE_CACHE_SHIFT
,
7305 lockend
>> PAGE_CACHE_SHIFT
);
7316 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
7317 u64 len
, u64 orig_start
,
7318 u64 block_start
, u64 block_len
,
7319 u64 orig_block_len
, u64 ram_bytes
,
7322 struct extent_map_tree
*em_tree
;
7323 struct extent_map
*em
;
7324 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7327 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7328 em
= alloc_extent_map();
7330 return ERR_PTR(-ENOMEM
);
7333 em
->orig_start
= orig_start
;
7334 em
->mod_start
= start
;
7337 em
->block_len
= block_len
;
7338 em
->block_start
= block_start
;
7339 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7340 em
->orig_block_len
= orig_block_len
;
7341 em
->ram_bytes
= ram_bytes
;
7342 em
->generation
= -1;
7343 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7344 if (type
== BTRFS_ORDERED_PREALLOC
)
7345 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7348 btrfs_drop_extent_cache(inode
, em
->start
,
7349 em
->start
+ em
->len
- 1, 0);
7350 write_lock(&em_tree
->lock
);
7351 ret
= add_extent_mapping(em_tree
, em
, 1);
7352 write_unlock(&em_tree
->lock
);
7353 } while (ret
== -EEXIST
);
7356 free_extent_map(em
);
7357 return ERR_PTR(ret
);
7364 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7365 struct buffer_head
*bh_result
, int create
)
7367 struct extent_map
*em
;
7368 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7369 struct extent_state
*cached_state
= NULL
;
7370 u64 start
= iblock
<< inode
->i_blkbits
;
7371 u64 lockstart
, lockend
;
7372 u64 len
= bh_result
->b_size
;
7373 u64
*outstanding_extents
= NULL
;
7374 int unlock_bits
= EXTENT_LOCKED
;
7378 unlock_bits
|= EXTENT_DIRTY
;
7380 len
= min_t(u64
, len
, root
->sectorsize
);
7383 lockend
= start
+ len
- 1;
7385 if (current
->journal_info
) {
7387 * Need to pull our outstanding extents and set journal_info to NULL so
7388 * that anything that needs to check if there's a transction doesn't get
7391 outstanding_extents
= current
->journal_info
;
7392 current
->journal_info
= NULL
;
7396 * If this errors out it's because we couldn't invalidate pagecache for
7397 * this range and we need to fallback to buffered.
7399 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
7402 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
7409 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7410 * io. INLINE is special, and we could probably kludge it in here, but
7411 * it's still buffered so for safety lets just fall back to the generic
7414 * For COMPRESSED we _have_ to read the entire extent in so we can
7415 * decompress it, so there will be buffering required no matter what we
7416 * do, so go ahead and fallback to buffered.
7418 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7419 * to buffered IO. Don't blame me, this is the price we pay for using
7422 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7423 em
->block_start
== EXTENT_MAP_INLINE
) {
7424 free_extent_map(em
);
7429 /* Just a good old fashioned hole, return */
7430 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7431 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7432 free_extent_map(em
);
7437 * We don't allocate a new extent in the following cases
7439 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7441 * 2) The extent is marked as PREALLOC. We're good to go here and can
7442 * just use the extent.
7446 len
= min(len
, em
->len
- (start
- em
->start
));
7447 lockstart
= start
+ len
;
7451 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7452 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7453 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7455 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7457 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7458 type
= BTRFS_ORDERED_PREALLOC
;
7460 type
= BTRFS_ORDERED_NOCOW
;
7461 len
= min(len
, em
->len
- (start
- em
->start
));
7462 block_start
= em
->block_start
+ (start
- em
->start
);
7464 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7465 &orig_block_len
, &ram_bytes
) == 1) {
7466 if (type
== BTRFS_ORDERED_PREALLOC
) {
7467 free_extent_map(em
);
7468 em
= create_pinned_em(inode
, start
, len
,
7479 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
7480 block_start
, len
, len
, type
);
7482 free_extent_map(em
);
7490 * this will cow the extent, reset the len in case we changed
7493 len
= bh_result
->b_size
;
7494 free_extent_map(em
);
7495 em
= btrfs_new_extent_direct(inode
, start
, len
);
7500 len
= min(len
, em
->len
- (start
- em
->start
));
7502 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7504 bh_result
->b_size
= len
;
7505 bh_result
->b_bdev
= em
->bdev
;
7506 set_buffer_mapped(bh_result
);
7508 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7509 set_buffer_new(bh_result
);
7512 * Need to update the i_size under the extent lock so buffered
7513 * readers will get the updated i_size when we unlock.
7515 if (start
+ len
> i_size_read(inode
))
7516 i_size_write(inode
, start
+ len
);
7519 * If we have an outstanding_extents count still set then we're
7520 * within our reservation, otherwise we need to adjust our inode
7521 * counter appropriately.
7523 if (*outstanding_extents
) {
7524 (*outstanding_extents
)--;
7526 spin_lock(&BTRFS_I(inode
)->lock
);
7527 BTRFS_I(inode
)->outstanding_extents
++;
7528 spin_unlock(&BTRFS_I(inode
)->lock
);
7531 current
->journal_info
= outstanding_extents
;
7532 btrfs_free_reserved_data_space(inode
, len
);
7536 * In the case of write we need to clear and unlock the entire range,
7537 * in the case of read we need to unlock only the end area that we
7538 * aren't using if there is any left over space.
7540 if (lockstart
< lockend
) {
7541 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7542 lockend
, unlock_bits
, 1, 0,
7543 &cached_state
, GFP_NOFS
);
7545 free_extent_state(cached_state
);
7548 free_extent_map(em
);
7553 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7554 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7555 if (outstanding_extents
)
7556 current
->journal_info
= outstanding_extents
;
7560 static inline int submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7561 int rw
, int mirror_num
)
7563 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7566 BUG_ON(rw
& REQ_WRITE
);
7570 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
7571 BTRFS_WQ_ENDIO_DIO_REPAIR
);
7575 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
7581 static int btrfs_check_dio_repairable(struct inode
*inode
,
7582 struct bio
*failed_bio
,
7583 struct io_failure_record
*failrec
,
7588 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
7589 failrec
->logical
, failrec
->len
);
7590 if (num_copies
== 1) {
7592 * we only have a single copy of the data, so don't bother with
7593 * all the retry and error correction code that follows. no
7594 * matter what the error is, it is very likely to persist.
7596 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7597 num_copies
, failrec
->this_mirror
, failed_mirror
);
7601 failrec
->failed_mirror
= failed_mirror
;
7602 failrec
->this_mirror
++;
7603 if (failrec
->this_mirror
== failed_mirror
)
7604 failrec
->this_mirror
++;
7606 if (failrec
->this_mirror
> num_copies
) {
7607 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7608 num_copies
, failrec
->this_mirror
, failed_mirror
);
7615 static int dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7616 struct page
*page
, u64 start
, u64 end
,
7617 int failed_mirror
, bio_end_io_t
*repair_endio
,
7620 struct io_failure_record
*failrec
;
7626 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
7628 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7632 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7635 free_io_failure(inode
, failrec
);
7639 if (failed_bio
->bi_vcnt
> 1)
7640 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
7642 read_mode
= READ_SYNC
;
7644 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7645 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7646 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7647 0, isector
, repair_endio
, repair_arg
);
7649 free_io_failure(inode
, failrec
);
7653 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7654 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7655 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7657 ret
= submit_dio_repair_bio(inode
, bio
, read_mode
,
7658 failrec
->this_mirror
);
7660 free_io_failure(inode
, failrec
);
7667 struct btrfs_retry_complete
{
7668 struct completion done
;
7669 struct inode
*inode
;
7674 static void btrfs_retry_endio_nocsum(struct bio
*bio
, int err
)
7676 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7677 struct bio_vec
*bvec
;
7684 bio_for_each_segment_all(bvec
, bio
, i
)
7685 clean_io_failure(done
->inode
, done
->start
, bvec
->bv_page
, 0);
7687 complete(&done
->done
);
7691 static int __btrfs_correct_data_nocsum(struct inode
*inode
,
7692 struct btrfs_io_bio
*io_bio
)
7694 struct bio_vec
*bvec
;
7695 struct btrfs_retry_complete done
;
7700 start
= io_bio
->logical
;
7703 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7707 init_completion(&done
.done
);
7709 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
, start
,
7710 start
+ bvec
->bv_len
- 1,
7712 btrfs_retry_endio_nocsum
, &done
);
7716 wait_for_completion(&done
.done
);
7718 if (!done
.uptodate
) {
7719 /* We might have another mirror, so try again */
7723 start
+= bvec
->bv_len
;
7729 static void btrfs_retry_endio(struct bio
*bio
, int err
)
7731 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7732 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7733 struct bio_vec
*bvec
;
7742 bio_for_each_segment_all(bvec
, bio
, i
) {
7743 ret
= __readpage_endio_check(done
->inode
, io_bio
, i
,
7745 done
->start
, bvec
->bv_len
);
7747 clean_io_failure(done
->inode
, done
->start
,
7753 done
->uptodate
= uptodate
;
7755 complete(&done
->done
);
7759 static int __btrfs_subio_endio_read(struct inode
*inode
,
7760 struct btrfs_io_bio
*io_bio
, int err
)
7762 struct bio_vec
*bvec
;
7763 struct btrfs_retry_complete done
;
7770 start
= io_bio
->logical
;
7773 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7774 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7775 0, start
, bvec
->bv_len
);
7781 init_completion(&done
.done
);
7783 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
, start
,
7784 start
+ bvec
->bv_len
- 1,
7786 btrfs_retry_endio
, &done
);
7792 wait_for_completion(&done
.done
);
7794 if (!done
.uptodate
) {
7795 /* We might have another mirror, so try again */
7799 offset
+= bvec
->bv_len
;
7800 start
+= bvec
->bv_len
;
7806 static int btrfs_subio_endio_read(struct inode
*inode
,
7807 struct btrfs_io_bio
*io_bio
, int err
)
7809 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7813 return __btrfs_correct_data_nocsum(inode
, io_bio
);
7817 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
7821 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
7823 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7824 struct inode
*inode
= dip
->inode
;
7825 struct bio
*dio_bio
;
7826 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7828 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
7829 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
7831 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
7832 dip
->logical_offset
+ dip
->bytes
- 1);
7833 dio_bio
= dip
->dio_bio
;
7837 /* If we had a csum failure make sure to clear the uptodate flag */
7839 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7840 dio_end_io(dio_bio
, err
);
7843 io_bio
->end_io(io_bio
, err
);
7847 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
7849 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7850 struct inode
*inode
= dip
->inode
;
7851 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7852 struct btrfs_ordered_extent
*ordered
= NULL
;
7853 u64 ordered_offset
= dip
->logical_offset
;
7854 u64 ordered_bytes
= dip
->bytes
;
7855 struct bio
*dio_bio
;
7861 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7863 ordered_bytes
, !err
);
7867 btrfs_init_work(&ordered
->work
, btrfs_endio_write_helper
,
7868 finish_ordered_fn
, NULL
, NULL
);
7869 btrfs_queue_work(root
->fs_info
->endio_write_workers
,
7873 * our bio might span multiple ordered extents. If we haven't
7874 * completed the accounting for the whole dio, go back and try again
7876 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
7877 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
7883 dio_bio
= dip
->dio_bio
;
7887 /* If we had an error make sure to clear the uptodate flag */
7889 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
7890 dio_end_io(dio_bio
, err
);
7894 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
7895 struct bio
*bio
, int mirror_num
,
7896 unsigned long bio_flags
, u64 offset
)
7899 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7900 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
7901 BUG_ON(ret
); /* -ENOMEM */
7905 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
7907 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7910 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
7911 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7912 btrfs_ino(dip
->inode
), bio
->bi_rw
,
7913 (unsigned long long)bio
->bi_iter
.bi_sector
,
7914 bio
->bi_iter
.bi_size
, err
);
7916 if (dip
->subio_endio
)
7917 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
7923 * before atomic variable goto zero, we must make sure
7924 * dip->errors is perceived to be set.
7926 smp_mb__before_atomic();
7929 /* if there are more bios still pending for this dio, just exit */
7930 if (!atomic_dec_and_test(&dip
->pending_bios
))
7934 bio_io_error(dip
->orig_bio
);
7936 set_bit(BIO_UPTODATE
, &dip
->dio_bio
->bi_flags
);
7937 bio_endio(dip
->orig_bio
, 0);
7943 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
7944 u64 first_sector
, gfp_t gfp_flags
)
7946 int nr_vecs
= bio_get_nr_vecs(bdev
);
7947 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
7950 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root
*root
,
7951 struct inode
*inode
,
7952 struct btrfs_dio_private
*dip
,
7956 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7957 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
7961 * We load all the csum data we need when we submit
7962 * the first bio to reduce the csum tree search and
7965 if (dip
->logical_offset
== file_offset
) {
7966 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
->orig_bio
,
7972 if (bio
== dip
->orig_bio
)
7975 file_offset
-= dip
->logical_offset
;
7976 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
7977 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
7982 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
7983 int rw
, u64 file_offset
, int skip_sum
,
7986 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7987 int write
= rw
& REQ_WRITE
;
7988 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7992 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7997 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
7998 BTRFS_WQ_ENDIO_DATA
);
8006 if (write
&& async_submit
) {
8007 ret
= btrfs_wq_submit_bio(root
->fs_info
,
8008 inode
, rw
, bio
, 0, 0,
8010 __btrfs_submit_bio_start_direct_io
,
8011 __btrfs_submit_bio_done
);
8015 * If we aren't doing async submit, calculate the csum of the
8018 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
8022 ret
= btrfs_lookup_and_bind_dio_csum(root
, inode
, dip
, bio
,
8028 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
8034 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
8037 struct inode
*inode
= dip
->inode
;
8038 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8040 struct bio
*orig_bio
= dip
->orig_bio
;
8041 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
8042 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8043 u64 file_offset
= dip
->logical_offset
;
8048 int async_submit
= 0;
8050 map_length
= orig_bio
->bi_iter
.bi_size
;
8051 ret
= btrfs_map_block(root
->fs_info
, rw
, start_sector
<< 9,
8052 &map_length
, NULL
, 0);
8056 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
8058 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8062 /* async crcs make it difficult to collect full stripe writes. */
8063 if (btrfs_get_alloc_profile(root
, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8068 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
8072 bio
->bi_private
= dip
;
8073 bio
->bi_end_io
= btrfs_end_dio_bio
;
8074 btrfs_io_bio(bio
)->logical
= file_offset
;
8075 atomic_inc(&dip
->pending_bios
);
8077 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
8078 if (map_length
< submit_len
+ bvec
->bv_len
||
8079 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
8080 bvec
->bv_offset
) < bvec
->bv_len
) {
8082 * inc the count before we submit the bio so
8083 * we know the end IO handler won't happen before
8084 * we inc the count. Otherwise, the dip might get freed
8085 * before we're done setting it up
8087 atomic_inc(&dip
->pending_bios
);
8088 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
8089 file_offset
, skip_sum
,
8093 atomic_dec(&dip
->pending_bios
);
8097 start_sector
+= submit_len
>> 9;
8098 file_offset
+= submit_len
;
8103 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
8104 start_sector
, GFP_NOFS
);
8107 bio
->bi_private
= dip
;
8108 bio
->bi_end_io
= btrfs_end_dio_bio
;
8109 btrfs_io_bio(bio
)->logical
= file_offset
;
8111 map_length
= orig_bio
->bi_iter
.bi_size
;
8112 ret
= btrfs_map_block(root
->fs_info
, rw
,
8114 &map_length
, NULL
, 0);
8120 submit_len
+= bvec
->bv_len
;
8127 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
8136 * before atomic variable goto zero, we must
8137 * make sure dip->errors is perceived to be set.
8139 smp_mb__before_atomic();
8140 if (atomic_dec_and_test(&dip
->pending_bios
))
8141 bio_io_error(dip
->orig_bio
);
8143 /* bio_end_io() will handle error, so we needn't return it */
8147 static void btrfs_submit_direct(int rw
, struct bio
*dio_bio
,
8148 struct inode
*inode
, loff_t file_offset
)
8150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8151 struct btrfs_dio_private
*dip
;
8153 struct btrfs_io_bio
*btrfs_bio
;
8155 int write
= rw
& REQ_WRITE
;
8158 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8160 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
8166 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8172 dip
->private = dio_bio
->bi_private
;
8174 dip
->logical_offset
= file_offset
;
8175 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8176 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8177 io_bio
->bi_private
= dip
;
8178 dip
->orig_bio
= io_bio
;
8179 dip
->dio_bio
= dio_bio
;
8180 atomic_set(&dip
->pending_bios
, 0);
8181 btrfs_bio
= btrfs_io_bio(io_bio
);
8182 btrfs_bio
->logical
= file_offset
;
8185 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
8187 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
8188 dip
->subio_endio
= btrfs_subio_endio_read
;
8191 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
8195 if (btrfs_bio
->end_io
)
8196 btrfs_bio
->end_io(btrfs_bio
, ret
);
8202 * If this is a write, we need to clean up the reserved space and kill
8203 * the ordered extent.
8206 struct btrfs_ordered_extent
*ordered
;
8207 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
8208 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
8209 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
8210 btrfs_free_reserved_extent(root
, ordered
->start
,
8211 ordered
->disk_len
, 1);
8212 btrfs_put_ordered_extent(ordered
);
8213 btrfs_put_ordered_extent(ordered
);
8215 bio_endio(dio_bio
, ret
);
8218 static ssize_t
check_direct_IO(struct btrfs_root
*root
, struct kiocb
*iocb
,
8219 const struct iov_iter
*iter
, loff_t offset
)
8223 unsigned blocksize_mask
= root
->sectorsize
- 1;
8224 ssize_t retval
= -EINVAL
;
8226 if (offset
& blocksize_mask
)
8229 if (iov_iter_alignment(iter
) & blocksize_mask
)
8232 /* If this is a write we don't need to check anymore */
8233 if (iov_iter_rw(iter
) == WRITE
)
8236 * Check to make sure we don't have duplicate iov_base's in this
8237 * iovec, if so return EINVAL, otherwise we'll get csum errors
8238 * when reading back.
8240 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8241 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8242 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8251 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
8254 struct file
*file
= iocb
->ki_filp
;
8255 struct inode
*inode
= file
->f_mapping
->host
;
8256 u64 outstanding_extents
= 0;
8260 bool relock
= false;
8263 if (check_direct_IO(BTRFS_I(inode
)->root
, iocb
, iter
, offset
))
8266 inode_dio_begin(inode
);
8267 smp_mb__after_atomic();
8270 * The generic stuff only does filemap_write_and_wait_range, which
8271 * isn't enough if we've written compressed pages to this area, so
8272 * we need to flush the dirty pages again to make absolutely sure
8273 * that any outstanding dirty pages are on disk.
8275 count
= iov_iter_count(iter
);
8276 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8277 &BTRFS_I(inode
)->runtime_flags
))
8278 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8279 offset
+ count
- 1);
8281 if (iov_iter_rw(iter
) == WRITE
) {
8283 * If the write DIO is beyond the EOF, we need update
8284 * the isize, but it is protected by i_mutex. So we can
8285 * not unlock the i_mutex at this case.
8287 if (offset
+ count
<= inode
->i_size
) {
8288 mutex_unlock(&inode
->i_mutex
);
8291 ret
= btrfs_delalloc_reserve_space(inode
, count
);
8294 outstanding_extents
= div64_u64(count
+
8295 BTRFS_MAX_EXTENT_SIZE
- 1,
8296 BTRFS_MAX_EXTENT_SIZE
);
8299 * We need to know how many extents we reserved so that we can
8300 * do the accounting properly if we go over the number we
8301 * originally calculated. Abuse current->journal_info for this.
8303 current
->journal_info
= &outstanding_extents
;
8304 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8305 &BTRFS_I(inode
)->runtime_flags
)) {
8306 inode_dio_end(inode
);
8307 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8311 ret
= __blockdev_direct_IO(iocb
, inode
,
8312 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
8313 iter
, offset
, btrfs_get_blocks_direct
, NULL
,
8314 btrfs_submit_direct
, flags
);
8315 if (iov_iter_rw(iter
) == WRITE
) {
8316 current
->journal_info
= NULL
;
8317 if (ret
< 0 && ret
!= -EIOCBQUEUED
)
8318 btrfs_delalloc_release_space(inode
, count
);
8319 else if (ret
>= 0 && (size_t)ret
< count
)
8320 btrfs_delalloc_release_space(inode
,
8321 count
- (size_t)ret
);
8325 inode_dio_end(inode
);
8327 mutex_lock(&inode
->i_mutex
);
8332 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8334 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8335 __u64 start
, __u64 len
)
8339 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8343 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8346 int btrfs_readpage(struct file
*file
, struct page
*page
)
8348 struct extent_io_tree
*tree
;
8349 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8350 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8353 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8355 struct extent_io_tree
*tree
;
8358 if (current
->flags
& PF_MEMALLOC
) {
8359 redirty_page_for_writepage(wbc
, page
);
8363 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8364 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8367 static int btrfs_writepages(struct address_space
*mapping
,
8368 struct writeback_control
*wbc
)
8370 struct extent_io_tree
*tree
;
8372 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8373 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8377 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8378 struct list_head
*pages
, unsigned nr_pages
)
8380 struct extent_io_tree
*tree
;
8381 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8382 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8385 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8387 struct extent_io_tree
*tree
;
8388 struct extent_map_tree
*map
;
8391 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8392 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8393 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8395 ClearPagePrivate(page
);
8396 set_page_private(page
, 0);
8397 page_cache_release(page
);
8402 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8404 if (PageWriteback(page
) || PageDirty(page
))
8406 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
8409 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8410 unsigned int length
)
8412 struct inode
*inode
= page
->mapping
->host
;
8413 struct extent_io_tree
*tree
;
8414 struct btrfs_ordered_extent
*ordered
;
8415 struct extent_state
*cached_state
= NULL
;
8416 u64 page_start
= page_offset(page
);
8417 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
8418 int inode_evicting
= inode
->i_state
& I_FREEING
;
8421 * we have the page locked, so new writeback can't start,
8422 * and the dirty bit won't be cleared while we are here.
8424 * Wait for IO on this page so that we can safely clear
8425 * the PagePrivate2 bit and do ordered accounting
8427 wait_on_page_writeback(page
);
8429 tree
= &BTRFS_I(inode
)->io_tree
;
8431 btrfs_releasepage(page
, GFP_NOFS
);
8435 if (!inode_evicting
)
8436 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
8437 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
8440 * IO on this page will never be started, so we need
8441 * to account for any ordered extents now
8443 if (!inode_evicting
)
8444 clear_extent_bit(tree
, page_start
, page_end
,
8445 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8446 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8447 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8450 * whoever cleared the private bit is responsible
8451 * for the finish_ordered_io
8453 if (TestClearPagePrivate2(page
)) {
8454 struct btrfs_ordered_inode_tree
*tree
;
8457 tree
= &BTRFS_I(inode
)->ordered_tree
;
8459 spin_lock_irq(&tree
->lock
);
8460 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8461 new_len
= page_start
- ordered
->file_offset
;
8462 if (new_len
< ordered
->truncated_len
)
8463 ordered
->truncated_len
= new_len
;
8464 spin_unlock_irq(&tree
->lock
);
8466 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8468 PAGE_CACHE_SIZE
, 1))
8469 btrfs_finish_ordered_io(ordered
);
8471 btrfs_put_ordered_extent(ordered
);
8472 if (!inode_evicting
) {
8473 cached_state
= NULL
;
8474 lock_extent_bits(tree
, page_start
, page_end
, 0,
8479 if (!inode_evicting
) {
8480 clear_extent_bit(tree
, page_start
, page_end
,
8481 EXTENT_LOCKED
| EXTENT_DIRTY
|
8482 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8483 EXTENT_DEFRAG
, 1, 1,
8484 &cached_state
, GFP_NOFS
);
8486 __btrfs_releasepage(page
, GFP_NOFS
);
8489 ClearPageChecked(page
);
8490 if (PagePrivate(page
)) {
8491 ClearPagePrivate(page
);
8492 set_page_private(page
, 0);
8493 page_cache_release(page
);
8498 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8499 * called from a page fault handler when a page is first dirtied. Hence we must
8500 * be careful to check for EOF conditions here. We set the page up correctly
8501 * for a written page which means we get ENOSPC checking when writing into
8502 * holes and correct delalloc and unwritten extent mapping on filesystems that
8503 * support these features.
8505 * We are not allowed to take the i_mutex here so we have to play games to
8506 * protect against truncate races as the page could now be beyond EOF. Because
8507 * vmtruncate() writes the inode size before removing pages, once we have the
8508 * page lock we can determine safely if the page is beyond EOF. If it is not
8509 * beyond EOF, then the page is guaranteed safe against truncation until we
8512 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
8514 struct page
*page
= vmf
->page
;
8515 struct inode
*inode
= file_inode(vma
->vm_file
);
8516 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8517 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8518 struct btrfs_ordered_extent
*ordered
;
8519 struct extent_state
*cached_state
= NULL
;
8521 unsigned long zero_start
;
8528 sb_start_pagefault(inode
->i_sb
);
8529 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
8531 ret
= file_update_time(vma
->vm_file
);
8537 else /* -ENOSPC, -EIO, etc */
8538 ret
= VM_FAULT_SIGBUS
;
8544 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8547 size
= i_size_read(inode
);
8548 page_start
= page_offset(page
);
8549 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
8551 if ((page
->mapping
!= inode
->i_mapping
) ||
8552 (page_start
>= size
)) {
8553 /* page got truncated out from underneath us */
8556 wait_on_page_writeback(page
);
8558 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
8559 set_page_extent_mapped(page
);
8562 * we can't set the delalloc bits if there are pending ordered
8563 * extents. Drop our locks and wait for them to finish
8565 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
8567 unlock_extent_cached(io_tree
, page_start
, page_end
,
8568 &cached_state
, GFP_NOFS
);
8570 btrfs_start_ordered_extent(inode
, ordered
, 1);
8571 btrfs_put_ordered_extent(ordered
);
8576 * XXX - page_mkwrite gets called every time the page is dirtied, even
8577 * if it was already dirty, so for space accounting reasons we need to
8578 * clear any delalloc bits for the range we are fixing to save. There
8579 * is probably a better way to do this, but for now keep consistent with
8580 * prepare_pages in the normal write path.
8582 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
8583 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8584 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8585 0, 0, &cached_state
, GFP_NOFS
);
8587 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
8590 unlock_extent_cached(io_tree
, page_start
, page_end
,
8591 &cached_state
, GFP_NOFS
);
8592 ret
= VM_FAULT_SIGBUS
;
8597 /* page is wholly or partially inside EOF */
8598 if (page_start
+ PAGE_CACHE_SIZE
> size
)
8599 zero_start
= size
& ~PAGE_CACHE_MASK
;
8601 zero_start
= PAGE_CACHE_SIZE
;
8603 if (zero_start
!= PAGE_CACHE_SIZE
) {
8605 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
8606 flush_dcache_page(page
);
8609 ClearPageChecked(page
);
8610 set_page_dirty(page
);
8611 SetPageUptodate(page
);
8613 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
8614 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8615 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8617 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
8621 sb_end_pagefault(inode
->i_sb
);
8622 return VM_FAULT_LOCKED
;
8626 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
8628 sb_end_pagefault(inode
->i_sb
);
8632 static int btrfs_truncate(struct inode
*inode
)
8634 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8635 struct btrfs_block_rsv
*rsv
;
8638 struct btrfs_trans_handle
*trans
;
8639 u64 mask
= root
->sectorsize
- 1;
8640 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
8642 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8648 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8649 * 3 things going on here
8651 * 1) We need to reserve space for our orphan item and the space to
8652 * delete our orphan item. Lord knows we don't want to have a dangling
8653 * orphan item because we didn't reserve space to remove it.
8655 * 2) We need to reserve space to update our inode.
8657 * 3) We need to have something to cache all the space that is going to
8658 * be free'd up by the truncate operation, but also have some slack
8659 * space reserved in case it uses space during the truncate (thank you
8660 * very much snapshotting).
8662 * And we need these to all be seperate. The fact is we can use alot of
8663 * space doing the truncate, and we have no earthly idea how much space
8664 * we will use, so we need the truncate reservation to be seperate so it
8665 * doesn't end up using space reserved for updating the inode or
8666 * removing the orphan item. We also need to be able to stop the
8667 * transaction and start a new one, which means we need to be able to
8668 * update the inode several times, and we have no idea of knowing how
8669 * many times that will be, so we can't just reserve 1 item for the
8670 * entirety of the opration, so that has to be done seperately as well.
8671 * Then there is the orphan item, which does indeed need to be held on
8672 * to for the whole operation, and we need nobody to touch this reserved
8673 * space except the orphan code.
8675 * So that leaves us with
8677 * 1) root->orphan_block_rsv - for the orphan deletion.
8678 * 2) rsv - for the truncate reservation, which we will steal from the
8679 * transaction reservation.
8680 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8681 * updating the inode.
8683 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
8686 rsv
->size
= min_size
;
8690 * 1 for the truncate slack space
8691 * 1 for updating the inode.
8693 trans
= btrfs_start_transaction(root
, 2);
8694 if (IS_ERR(trans
)) {
8695 err
= PTR_ERR(trans
);
8699 /* Migrate the slack space for the truncate to our reserve */
8700 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
8705 * So if we truncate and then write and fsync we normally would just
8706 * write the extents that changed, which is a problem if we need to
8707 * first truncate that entire inode. So set this flag so we write out
8708 * all of the extents in the inode to the sync log so we're completely
8711 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
8712 trans
->block_rsv
= rsv
;
8715 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
8717 BTRFS_EXTENT_DATA_KEY
);
8718 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
8723 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
8724 ret
= btrfs_update_inode(trans
, root
, inode
);
8730 btrfs_end_transaction(trans
, root
);
8731 btrfs_btree_balance_dirty(root
);
8733 trans
= btrfs_start_transaction(root
, 2);
8734 if (IS_ERR(trans
)) {
8735 ret
= err
= PTR_ERR(trans
);
8740 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
8742 BUG_ON(ret
); /* shouldn't happen */
8743 trans
->block_rsv
= rsv
;
8746 if (ret
== 0 && inode
->i_nlink
> 0) {
8747 trans
->block_rsv
= root
->orphan_block_rsv
;
8748 ret
= btrfs_orphan_del(trans
, inode
);
8754 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
8755 ret
= btrfs_update_inode(trans
, root
, inode
);
8759 ret
= btrfs_end_transaction(trans
, root
);
8760 btrfs_btree_balance_dirty(root
);
8764 btrfs_free_block_rsv(root
, rsv
);
8773 * create a new subvolume directory/inode (helper for the ioctl).
8775 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
8776 struct btrfs_root
*new_root
,
8777 struct btrfs_root
*parent_root
,
8780 struct inode
*inode
;
8784 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
8785 new_dirid
, new_dirid
,
8786 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
8789 return PTR_ERR(inode
);
8790 inode
->i_op
= &btrfs_dir_inode_operations
;
8791 inode
->i_fop
= &btrfs_dir_file_operations
;
8793 set_nlink(inode
, 1);
8794 btrfs_i_size_write(inode
, 0);
8795 unlock_new_inode(inode
);
8797 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
8799 btrfs_err(new_root
->fs_info
,
8800 "error inheriting subvolume %llu properties: %d",
8801 new_root
->root_key
.objectid
, err
);
8803 err
= btrfs_update_inode(trans
, new_root
, inode
);
8809 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8811 struct btrfs_inode
*ei
;
8812 struct inode
*inode
;
8814 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
8821 ei
->last_sub_trans
= 0;
8822 ei
->logged_trans
= 0;
8823 ei
->delalloc_bytes
= 0;
8824 ei
->defrag_bytes
= 0;
8825 ei
->disk_i_size
= 0;
8828 ei
->index_cnt
= (u64
)-1;
8830 ei
->last_unlink_trans
= 0;
8831 ei
->last_log_commit
= 0;
8833 spin_lock_init(&ei
->lock
);
8834 ei
->outstanding_extents
= 0;
8835 ei
->reserved_extents
= 0;
8837 ei
->runtime_flags
= 0;
8838 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
8840 ei
->delayed_node
= NULL
;
8842 ei
->i_otime
.tv_sec
= 0;
8843 ei
->i_otime
.tv_nsec
= 0;
8845 inode
= &ei
->vfs_inode
;
8846 extent_map_tree_init(&ei
->extent_tree
);
8847 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
8848 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
8849 ei
->io_tree
.track_uptodate
= 1;
8850 ei
->io_failure_tree
.track_uptodate
= 1;
8851 atomic_set(&ei
->sync_writers
, 0);
8852 mutex_init(&ei
->log_mutex
);
8853 mutex_init(&ei
->delalloc_mutex
);
8854 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8855 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8856 RB_CLEAR_NODE(&ei
->rb_node
);
8861 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8862 void btrfs_test_destroy_inode(struct inode
*inode
)
8864 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8865 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8869 static void btrfs_i_callback(struct rcu_head
*head
)
8871 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
8872 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8875 void btrfs_destroy_inode(struct inode
*inode
)
8877 struct btrfs_ordered_extent
*ordered
;
8878 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8880 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8881 WARN_ON(inode
->i_data
.nrpages
);
8882 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8883 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
8884 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8885 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8886 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
8889 * This can happen where we create an inode, but somebody else also
8890 * created the same inode and we need to destroy the one we already
8896 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
8897 &BTRFS_I(inode
)->runtime_flags
)) {
8898 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
8900 atomic_dec(&root
->orphan_inodes
);
8904 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8908 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
8909 ordered
->file_offset
, ordered
->len
);
8910 btrfs_remove_ordered_extent(inode
, ordered
);
8911 btrfs_put_ordered_extent(ordered
);
8912 btrfs_put_ordered_extent(ordered
);
8915 inode_tree_del(inode
);
8916 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8918 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
8921 int btrfs_drop_inode(struct inode
*inode
)
8923 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8928 /* the snap/subvol tree is on deleting */
8929 if (btrfs_root_refs(&root
->root_item
) == 0)
8932 return generic_drop_inode(inode
);
8935 static void init_once(void *foo
)
8937 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8939 inode_init_once(&ei
->vfs_inode
);
8942 void btrfs_destroy_cachep(void)
8945 * Make sure all delayed rcu free inodes are flushed before we
8949 if (btrfs_inode_cachep
)
8950 kmem_cache_destroy(btrfs_inode_cachep
);
8951 if (btrfs_trans_handle_cachep
)
8952 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8953 if (btrfs_transaction_cachep
)
8954 kmem_cache_destroy(btrfs_transaction_cachep
);
8955 if (btrfs_path_cachep
)
8956 kmem_cache_destroy(btrfs_path_cachep
);
8957 if (btrfs_free_space_cachep
)
8958 kmem_cache_destroy(btrfs_free_space_cachep
);
8959 if (btrfs_delalloc_work_cachep
)
8960 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
8963 int btrfs_init_cachep(void)
8965 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8966 sizeof(struct btrfs_inode
), 0,
8967 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
8968 if (!btrfs_inode_cachep
)
8971 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8972 sizeof(struct btrfs_trans_handle
), 0,
8973 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8974 if (!btrfs_trans_handle_cachep
)
8977 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
8978 sizeof(struct btrfs_transaction
), 0,
8979 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8980 if (!btrfs_transaction_cachep
)
8983 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8984 sizeof(struct btrfs_path
), 0,
8985 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8986 if (!btrfs_path_cachep
)
8989 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8990 sizeof(struct btrfs_free_space
), 0,
8991 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
8992 if (!btrfs_free_space_cachep
)
8995 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
8996 sizeof(struct btrfs_delalloc_work
), 0,
8997 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
8999 if (!btrfs_delalloc_work_cachep
)
9004 btrfs_destroy_cachep();
9008 static int btrfs_getattr(struct vfsmount
*mnt
,
9009 struct dentry
*dentry
, struct kstat
*stat
)
9012 struct inode
*inode
= d_inode(dentry
);
9013 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9015 generic_fillattr(inode
, stat
);
9016 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9017 stat
->blksize
= PAGE_CACHE_SIZE
;
9019 spin_lock(&BTRFS_I(inode
)->lock
);
9020 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
9021 spin_unlock(&BTRFS_I(inode
)->lock
);
9022 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9023 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9027 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9028 struct inode
*new_dir
, struct dentry
*new_dentry
)
9030 struct btrfs_trans_handle
*trans
;
9031 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9032 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9033 struct inode
*new_inode
= d_inode(new_dentry
);
9034 struct inode
*old_inode
= d_inode(old_dentry
);
9035 struct timespec ctime
= CURRENT_TIME
;
9039 u64 old_ino
= btrfs_ino(old_inode
);
9041 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9044 /* we only allow rename subvolume link between subvolumes */
9045 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9048 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9049 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
9052 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9053 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9057 /* check for collisions, even if the name isn't there */
9058 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9059 new_dentry
->d_name
.name
,
9060 new_dentry
->d_name
.len
);
9063 if (ret
== -EEXIST
) {
9065 * eexist without a new_inode */
9066 if (WARN_ON(!new_inode
)) {
9070 /* maybe -EOVERFLOW */
9077 * we're using rename to replace one file with another. Start IO on it
9078 * now so we don't add too much work to the end of the transaction
9080 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9081 filemap_flush(old_inode
->i_mapping
);
9083 /* close the racy window with snapshot create/destroy ioctl */
9084 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9085 down_read(&root
->fs_info
->subvol_sem
);
9087 * We want to reserve the absolute worst case amount of items. So if
9088 * both inodes are subvols and we need to unlink them then that would
9089 * require 4 item modifications, but if they are both normal inodes it
9090 * would require 5 item modifications, so we'll assume their normal
9091 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9092 * should cover the worst case number of items we'll modify.
9094 trans
= btrfs_start_transaction(root
, 11);
9095 if (IS_ERR(trans
)) {
9096 ret
= PTR_ERR(trans
);
9101 btrfs_record_root_in_trans(trans
, dest
);
9103 ret
= btrfs_set_inode_index(new_dir
, &index
);
9107 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9108 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9109 /* force full log commit if subvolume involved. */
9110 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9112 ret
= btrfs_insert_inode_ref(trans
, dest
,
9113 new_dentry
->d_name
.name
,
9114 new_dentry
->d_name
.len
,
9116 btrfs_ino(new_dir
), index
);
9120 * this is an ugly little race, but the rename is required
9121 * to make sure that if we crash, the inode is either at the
9122 * old name or the new one. pinning the log transaction lets
9123 * us make sure we don't allow a log commit to come in after
9124 * we unlink the name but before we add the new name back in.
9126 btrfs_pin_log_trans(root
);
9129 inode_inc_iversion(old_dir
);
9130 inode_inc_iversion(new_dir
);
9131 inode_inc_iversion(old_inode
);
9132 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9133 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9134 old_inode
->i_ctime
= ctime
;
9136 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9137 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9139 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9140 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9141 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9142 old_dentry
->d_name
.name
,
9143 old_dentry
->d_name
.len
);
9145 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9146 d_inode(old_dentry
),
9147 old_dentry
->d_name
.name
,
9148 old_dentry
->d_name
.len
);
9150 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9153 btrfs_abort_transaction(trans
, root
, ret
);
9158 inode_inc_iversion(new_inode
);
9159 new_inode
->i_ctime
= CURRENT_TIME
;
9160 if (unlikely(btrfs_ino(new_inode
) ==
9161 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9162 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9163 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9165 new_dentry
->d_name
.name
,
9166 new_dentry
->d_name
.len
);
9167 BUG_ON(new_inode
->i_nlink
== 0);
9169 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
9170 d_inode(new_dentry
),
9171 new_dentry
->d_name
.name
,
9172 new_dentry
->d_name
.len
);
9174 if (!ret
&& new_inode
->i_nlink
== 0)
9175 ret
= btrfs_orphan_add(trans
, d_inode(new_dentry
));
9177 btrfs_abort_transaction(trans
, root
, ret
);
9182 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9183 new_dentry
->d_name
.name
,
9184 new_dentry
->d_name
.len
, 0, index
);
9186 btrfs_abort_transaction(trans
, root
, ret
);
9190 if (old_inode
->i_nlink
== 1)
9191 BTRFS_I(old_inode
)->dir_index
= index
;
9193 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
9194 struct dentry
*parent
= new_dentry
->d_parent
;
9195 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9196 btrfs_end_log_trans(root
);
9199 btrfs_end_transaction(trans
, root
);
9201 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9202 up_read(&root
->fs_info
->subvol_sem
);
9207 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9208 struct inode
*new_dir
, struct dentry
*new_dentry
,
9211 if (flags
& ~RENAME_NOREPLACE
)
9214 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
9217 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9219 struct btrfs_delalloc_work
*delalloc_work
;
9220 struct inode
*inode
;
9222 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9224 inode
= delalloc_work
->inode
;
9225 if (delalloc_work
->wait
) {
9226 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
9228 filemap_flush(inode
->i_mapping
);
9229 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9230 &BTRFS_I(inode
)->runtime_flags
))
9231 filemap_flush(inode
->i_mapping
);
9234 if (delalloc_work
->delay_iput
)
9235 btrfs_add_delayed_iput(inode
);
9238 complete(&delalloc_work
->completion
);
9241 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
9242 int wait
, int delay_iput
)
9244 struct btrfs_delalloc_work
*work
;
9246 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
9250 init_completion(&work
->completion
);
9251 INIT_LIST_HEAD(&work
->list
);
9252 work
->inode
= inode
;
9254 work
->delay_iput
= delay_iput
;
9255 WARN_ON_ONCE(!inode
);
9256 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
9257 btrfs_run_delalloc_work
, NULL
, NULL
);
9262 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
9264 wait_for_completion(&work
->completion
);
9265 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
9269 * some fairly slow code that needs optimization. This walks the list
9270 * of all the inodes with pending delalloc and forces them to disk.
9272 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
9275 struct btrfs_inode
*binode
;
9276 struct inode
*inode
;
9277 struct btrfs_delalloc_work
*work
, *next
;
9278 struct list_head works
;
9279 struct list_head splice
;
9282 INIT_LIST_HEAD(&works
);
9283 INIT_LIST_HEAD(&splice
);
9285 mutex_lock(&root
->delalloc_mutex
);
9286 spin_lock(&root
->delalloc_lock
);
9287 list_splice_init(&root
->delalloc_inodes
, &splice
);
9288 while (!list_empty(&splice
)) {
9289 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9292 list_move_tail(&binode
->delalloc_inodes
,
9293 &root
->delalloc_inodes
);
9294 inode
= igrab(&binode
->vfs_inode
);
9296 cond_resched_lock(&root
->delalloc_lock
);
9299 spin_unlock(&root
->delalloc_lock
);
9301 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
9304 btrfs_add_delayed_iput(inode
);
9310 list_add_tail(&work
->list
, &works
);
9311 btrfs_queue_work(root
->fs_info
->flush_workers
,
9314 if (nr
!= -1 && ret
>= nr
)
9317 spin_lock(&root
->delalloc_lock
);
9319 spin_unlock(&root
->delalloc_lock
);
9322 list_for_each_entry_safe(work
, next
, &works
, list
) {
9323 list_del_init(&work
->list
);
9324 btrfs_wait_and_free_delalloc_work(work
);
9327 if (!list_empty_careful(&splice
)) {
9328 spin_lock(&root
->delalloc_lock
);
9329 list_splice_tail(&splice
, &root
->delalloc_inodes
);
9330 spin_unlock(&root
->delalloc_lock
);
9332 mutex_unlock(&root
->delalloc_mutex
);
9336 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
9340 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
9343 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
9347 * the filemap_flush will queue IO into the worker threads, but
9348 * we have to make sure the IO is actually started and that
9349 * ordered extents get created before we return
9351 atomic_inc(&root
->fs_info
->async_submit_draining
);
9352 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
9353 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
9354 wait_event(root
->fs_info
->async_submit_wait
,
9355 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
9356 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
9358 atomic_dec(&root
->fs_info
->async_submit_draining
);
9362 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
9365 struct btrfs_root
*root
;
9366 struct list_head splice
;
9369 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9372 INIT_LIST_HEAD(&splice
);
9374 mutex_lock(&fs_info
->delalloc_root_mutex
);
9375 spin_lock(&fs_info
->delalloc_root_lock
);
9376 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
9377 while (!list_empty(&splice
) && nr
) {
9378 root
= list_first_entry(&splice
, struct btrfs_root
,
9380 root
= btrfs_grab_fs_root(root
);
9382 list_move_tail(&root
->delalloc_root
,
9383 &fs_info
->delalloc_roots
);
9384 spin_unlock(&fs_info
->delalloc_root_lock
);
9386 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
9387 btrfs_put_fs_root(root
);
9395 spin_lock(&fs_info
->delalloc_root_lock
);
9397 spin_unlock(&fs_info
->delalloc_root_lock
);
9400 atomic_inc(&fs_info
->async_submit_draining
);
9401 while (atomic_read(&fs_info
->nr_async_submits
) ||
9402 atomic_read(&fs_info
->async_delalloc_pages
)) {
9403 wait_event(fs_info
->async_submit_wait
,
9404 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
9405 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
9407 atomic_dec(&fs_info
->async_submit_draining
);
9409 if (!list_empty_careful(&splice
)) {
9410 spin_lock(&fs_info
->delalloc_root_lock
);
9411 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
9412 spin_unlock(&fs_info
->delalloc_root_lock
);
9414 mutex_unlock(&fs_info
->delalloc_root_mutex
);
9418 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
9419 const char *symname
)
9421 struct btrfs_trans_handle
*trans
;
9422 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9423 struct btrfs_path
*path
;
9424 struct btrfs_key key
;
9425 struct inode
*inode
= NULL
;
9433 struct btrfs_file_extent_item
*ei
;
9434 struct extent_buffer
*leaf
;
9436 name_len
= strlen(symname
);
9437 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
9438 return -ENAMETOOLONG
;
9441 * 2 items for inode item and ref
9442 * 2 items for dir items
9443 * 1 item for xattr if selinux is on
9445 trans
= btrfs_start_transaction(root
, 5);
9447 return PTR_ERR(trans
);
9449 err
= btrfs_find_free_ino(root
, &objectid
);
9453 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
9454 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
9455 S_IFLNK
|S_IRWXUGO
, &index
);
9456 if (IS_ERR(inode
)) {
9457 err
= PTR_ERR(inode
);
9462 * If the active LSM wants to access the inode during
9463 * d_instantiate it needs these. Smack checks to see
9464 * if the filesystem supports xattrs by looking at the
9467 inode
->i_fop
= &btrfs_file_operations
;
9468 inode
->i_op
= &btrfs_file_inode_operations
;
9469 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9470 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9472 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
9474 goto out_unlock_inode
;
9476 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
9478 goto out_unlock_inode
;
9480 path
= btrfs_alloc_path();
9483 goto out_unlock_inode
;
9485 key
.objectid
= btrfs_ino(inode
);
9487 key
.type
= BTRFS_EXTENT_DATA_KEY
;
9488 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
9489 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
9492 btrfs_free_path(path
);
9493 goto out_unlock_inode
;
9495 leaf
= path
->nodes
[0];
9496 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
9497 struct btrfs_file_extent_item
);
9498 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
9499 btrfs_set_file_extent_type(leaf
, ei
,
9500 BTRFS_FILE_EXTENT_INLINE
);
9501 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
9502 btrfs_set_file_extent_compression(leaf
, ei
, 0);
9503 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
9504 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
9506 ptr
= btrfs_file_extent_inline_start(ei
);
9507 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
9508 btrfs_mark_buffer_dirty(leaf
);
9509 btrfs_free_path(path
);
9511 inode
->i_op
= &btrfs_symlink_inode_operations
;
9512 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
9513 inode_set_bytes(inode
, name_len
);
9514 btrfs_i_size_write(inode
, name_len
);
9515 err
= btrfs_update_inode(trans
, root
, inode
);
9518 goto out_unlock_inode
;
9521 unlock_new_inode(inode
);
9522 d_instantiate(dentry
, inode
);
9525 btrfs_end_transaction(trans
, root
);
9527 inode_dec_link_count(inode
);
9530 btrfs_btree_balance_dirty(root
);
9535 unlock_new_inode(inode
);
9539 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9540 u64 start
, u64 num_bytes
, u64 min_size
,
9541 loff_t actual_len
, u64
*alloc_hint
,
9542 struct btrfs_trans_handle
*trans
)
9544 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
9545 struct extent_map
*em
;
9546 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9547 struct btrfs_key ins
;
9548 u64 cur_offset
= start
;
9552 bool own_trans
= true;
9556 while (num_bytes
> 0) {
9558 trans
= btrfs_start_transaction(root
, 3);
9559 if (IS_ERR(trans
)) {
9560 ret
= PTR_ERR(trans
);
9565 cur_bytes
= min(num_bytes
, 256ULL * 1024 * 1024);
9566 cur_bytes
= max(cur_bytes
, min_size
);
9567 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
9568 *alloc_hint
, &ins
, 1, 0);
9571 btrfs_end_transaction(trans
, root
);
9575 ret
= insert_reserved_file_extent(trans
, inode
,
9576 cur_offset
, ins
.objectid
,
9577 ins
.offset
, ins
.offset
,
9578 ins
.offset
, 0, 0, 0,
9579 BTRFS_FILE_EXTENT_PREALLOC
);
9581 btrfs_free_reserved_extent(root
, ins
.objectid
,
9583 btrfs_abort_transaction(trans
, root
, ret
);
9585 btrfs_end_transaction(trans
, root
);
9589 btrfs_drop_extent_cache(inode
, cur_offset
,
9590 cur_offset
+ ins
.offset
-1, 0);
9592 em
= alloc_extent_map();
9594 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
9595 &BTRFS_I(inode
)->runtime_flags
);
9599 em
->start
= cur_offset
;
9600 em
->orig_start
= cur_offset
;
9601 em
->len
= ins
.offset
;
9602 em
->block_start
= ins
.objectid
;
9603 em
->block_len
= ins
.offset
;
9604 em
->orig_block_len
= ins
.offset
;
9605 em
->ram_bytes
= ins
.offset
;
9606 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
9607 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
9608 em
->generation
= trans
->transid
;
9611 write_lock(&em_tree
->lock
);
9612 ret
= add_extent_mapping(em_tree
, em
, 1);
9613 write_unlock(&em_tree
->lock
);
9616 btrfs_drop_extent_cache(inode
, cur_offset
,
9617 cur_offset
+ ins
.offset
- 1,
9620 free_extent_map(em
);
9622 num_bytes
-= ins
.offset
;
9623 cur_offset
+= ins
.offset
;
9624 *alloc_hint
= ins
.objectid
+ ins
.offset
;
9626 inode_inc_iversion(inode
);
9627 inode
->i_ctime
= CURRENT_TIME
;
9628 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
9629 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
9630 (actual_len
> inode
->i_size
) &&
9631 (cur_offset
> inode
->i_size
)) {
9632 if (cur_offset
> actual_len
)
9633 i_size
= actual_len
;
9635 i_size
= cur_offset
;
9636 i_size_write(inode
, i_size
);
9637 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
9640 ret
= btrfs_update_inode(trans
, root
, inode
);
9643 btrfs_abort_transaction(trans
, root
, ret
);
9645 btrfs_end_transaction(trans
, root
);
9650 btrfs_end_transaction(trans
, root
);
9655 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9656 u64 start
, u64 num_bytes
, u64 min_size
,
9657 loff_t actual_len
, u64
*alloc_hint
)
9659 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9660 min_size
, actual_len
, alloc_hint
,
9664 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
9665 struct btrfs_trans_handle
*trans
, int mode
,
9666 u64 start
, u64 num_bytes
, u64 min_size
,
9667 loff_t actual_len
, u64
*alloc_hint
)
9669 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9670 min_size
, actual_len
, alloc_hint
, trans
);
9673 static int btrfs_set_page_dirty(struct page
*page
)
9675 return __set_page_dirty_nobuffers(page
);
9678 static int btrfs_permission(struct inode
*inode
, int mask
)
9680 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9681 umode_t mode
= inode
->i_mode
;
9683 if (mask
& MAY_WRITE
&&
9684 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
9685 if (btrfs_root_readonly(root
))
9687 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
9690 return generic_permission(inode
, mask
);
9693 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
9695 struct btrfs_trans_handle
*trans
;
9696 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9697 struct inode
*inode
= NULL
;
9703 * 5 units required for adding orphan entry
9705 trans
= btrfs_start_transaction(root
, 5);
9707 return PTR_ERR(trans
);
9709 ret
= btrfs_find_free_ino(root
, &objectid
);
9713 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
9714 btrfs_ino(dir
), objectid
, mode
, &index
);
9715 if (IS_ERR(inode
)) {
9716 ret
= PTR_ERR(inode
);
9721 inode
->i_fop
= &btrfs_file_operations
;
9722 inode
->i_op
= &btrfs_file_inode_operations
;
9724 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9725 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9727 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
9731 ret
= btrfs_update_inode(trans
, root
, inode
);
9734 ret
= btrfs_orphan_add(trans
, inode
);
9739 * We set number of links to 0 in btrfs_new_inode(), and here we set
9740 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9743 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9745 set_nlink(inode
, 1);
9746 unlock_new_inode(inode
);
9747 d_tmpfile(dentry
, inode
);
9748 mark_inode_dirty(inode
);
9751 btrfs_end_transaction(trans
, root
);
9754 btrfs_balance_delayed_items(root
);
9755 btrfs_btree_balance_dirty(root
);
9759 unlock_new_inode(inode
);
9764 /* Inspired by filemap_check_errors() */
9765 int btrfs_inode_check_errors(struct inode
*inode
)
9769 if (test_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
) &&
9770 test_and_clear_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
))
9772 if (test_bit(AS_EIO
, &inode
->i_mapping
->flags
) &&
9773 test_and_clear_bit(AS_EIO
, &inode
->i_mapping
->flags
))
9779 static const struct inode_operations btrfs_dir_inode_operations
= {
9780 .getattr
= btrfs_getattr
,
9781 .lookup
= btrfs_lookup
,
9782 .create
= btrfs_create
,
9783 .unlink
= btrfs_unlink
,
9785 .mkdir
= btrfs_mkdir
,
9786 .rmdir
= btrfs_rmdir
,
9787 .rename2
= btrfs_rename2
,
9788 .symlink
= btrfs_symlink
,
9789 .setattr
= btrfs_setattr
,
9790 .mknod
= btrfs_mknod
,
9791 .setxattr
= btrfs_setxattr
,
9792 .getxattr
= btrfs_getxattr
,
9793 .listxattr
= btrfs_listxattr
,
9794 .removexattr
= btrfs_removexattr
,
9795 .permission
= btrfs_permission
,
9796 .get_acl
= btrfs_get_acl
,
9797 .set_acl
= btrfs_set_acl
,
9798 .update_time
= btrfs_update_time
,
9799 .tmpfile
= btrfs_tmpfile
,
9801 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
9802 .lookup
= btrfs_lookup
,
9803 .permission
= btrfs_permission
,
9804 .get_acl
= btrfs_get_acl
,
9805 .set_acl
= btrfs_set_acl
,
9806 .update_time
= btrfs_update_time
,
9809 static const struct file_operations btrfs_dir_file_operations
= {
9810 .llseek
= generic_file_llseek
,
9811 .read
= generic_read_dir
,
9812 .iterate
= btrfs_real_readdir
,
9813 .unlocked_ioctl
= btrfs_ioctl
,
9814 #ifdef CONFIG_COMPAT
9815 .compat_ioctl
= btrfs_ioctl
,
9817 .release
= btrfs_release_file
,
9818 .fsync
= btrfs_sync_file
,
9821 static struct extent_io_ops btrfs_extent_io_ops
= {
9822 .fill_delalloc
= run_delalloc_range
,
9823 .submit_bio_hook
= btrfs_submit_bio_hook
,
9824 .merge_bio_hook
= btrfs_merge_bio_hook
,
9825 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
9826 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
9827 .writepage_start_hook
= btrfs_writepage_start_hook
,
9828 .set_bit_hook
= btrfs_set_bit_hook
,
9829 .clear_bit_hook
= btrfs_clear_bit_hook
,
9830 .merge_extent_hook
= btrfs_merge_extent_hook
,
9831 .split_extent_hook
= btrfs_split_extent_hook
,
9835 * btrfs doesn't support the bmap operation because swapfiles
9836 * use bmap to make a mapping of extents in the file. They assume
9837 * these extents won't change over the life of the file and they
9838 * use the bmap result to do IO directly to the drive.
9840 * the btrfs bmap call would return logical addresses that aren't
9841 * suitable for IO and they also will change frequently as COW
9842 * operations happen. So, swapfile + btrfs == corruption.
9844 * For now we're avoiding this by dropping bmap.
9846 static const struct address_space_operations btrfs_aops
= {
9847 .readpage
= btrfs_readpage
,
9848 .writepage
= btrfs_writepage
,
9849 .writepages
= btrfs_writepages
,
9850 .readpages
= btrfs_readpages
,
9851 .direct_IO
= btrfs_direct_IO
,
9852 .invalidatepage
= btrfs_invalidatepage
,
9853 .releasepage
= btrfs_releasepage
,
9854 .set_page_dirty
= btrfs_set_page_dirty
,
9855 .error_remove_page
= generic_error_remove_page
,
9858 static const struct address_space_operations btrfs_symlink_aops
= {
9859 .readpage
= btrfs_readpage
,
9860 .writepage
= btrfs_writepage
,
9861 .invalidatepage
= btrfs_invalidatepage
,
9862 .releasepage
= btrfs_releasepage
,
9865 static const struct inode_operations btrfs_file_inode_operations
= {
9866 .getattr
= btrfs_getattr
,
9867 .setattr
= btrfs_setattr
,
9868 .setxattr
= btrfs_setxattr
,
9869 .getxattr
= btrfs_getxattr
,
9870 .listxattr
= btrfs_listxattr
,
9871 .removexattr
= btrfs_removexattr
,
9872 .permission
= btrfs_permission
,
9873 .fiemap
= btrfs_fiemap
,
9874 .get_acl
= btrfs_get_acl
,
9875 .set_acl
= btrfs_set_acl
,
9876 .update_time
= btrfs_update_time
,
9878 static const struct inode_operations btrfs_special_inode_operations
= {
9879 .getattr
= btrfs_getattr
,
9880 .setattr
= btrfs_setattr
,
9881 .permission
= btrfs_permission
,
9882 .setxattr
= btrfs_setxattr
,
9883 .getxattr
= btrfs_getxattr
,
9884 .listxattr
= btrfs_listxattr
,
9885 .removexattr
= btrfs_removexattr
,
9886 .get_acl
= btrfs_get_acl
,
9887 .set_acl
= btrfs_set_acl
,
9888 .update_time
= btrfs_update_time
,
9890 static const struct inode_operations btrfs_symlink_inode_operations
= {
9891 .readlink
= generic_readlink
,
9892 .follow_link
= page_follow_link_light
,
9893 .put_link
= page_put_link
,
9894 .getattr
= btrfs_getattr
,
9895 .setattr
= btrfs_setattr
,
9896 .permission
= btrfs_permission
,
9897 .setxattr
= btrfs_setxattr
,
9898 .getxattr
= btrfs_getxattr
,
9899 .listxattr
= btrfs_listxattr
,
9900 .removexattr
= btrfs_removexattr
,
9901 .update_time
= btrfs_update_time
,
9904 const struct dentry_operations btrfs_dentry_operations
= {
9905 .d_delete
= btrfs_dentry_delete
,
9906 .d_release
= btrfs_dentry_release
,