2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
30 /* magic values for the inode_only field in btrfs_log_inode:
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
40 * directory trouble cases
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
49 * rename foo/some_dir foo2/some_dir
51 * fsync foo/some_dir/some_file
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
96 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
, struct inode
*inode
,
101 struct btrfs_log_ctx
*ctx
);
102 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
,
104 struct btrfs_path
*path
, u64 objectid
);
105 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
106 struct btrfs_root
*root
,
107 struct btrfs_root
*log
,
108 struct btrfs_path
*path
,
109 u64 dirid
, int del_all
);
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
139 static int start_log_trans(struct btrfs_trans_handle
*trans
,
140 struct btrfs_root
*root
,
141 struct btrfs_log_ctx
*ctx
)
146 mutex_lock(&root
->log_mutex
);
147 if (root
->log_root
) {
148 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
152 if (!root
->log_start_pid
) {
153 root
->log_start_pid
= current
->pid
;
154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
155 } else if (root
->log_start_pid
!= current
->pid
) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
159 atomic_inc(&root
->log_batch
);
160 atomic_inc(&root
->log_writers
);
162 index
= root
->log_transid
% 2;
163 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
164 ctx
->log_transid
= root
->log_transid
;
166 mutex_unlock(&root
->log_mutex
);
171 mutex_lock(&root
->fs_info
->tree_log_mutex
);
172 if (!root
->fs_info
->log_root_tree
)
173 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
174 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
178 if (!root
->log_root
) {
179 ret
= btrfs_add_log_tree(trans
, root
);
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
184 root
->log_start_pid
= current
->pid
;
185 atomic_inc(&root
->log_batch
);
186 atomic_inc(&root
->log_writers
);
188 index
= root
->log_transid
% 2;
189 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
190 ctx
->log_transid
= root
->log_transid
;
193 mutex_unlock(&root
->log_mutex
);
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
202 static int join_running_log_trans(struct btrfs_root
*root
)
210 mutex_lock(&root
->log_mutex
);
211 if (root
->log_root
) {
213 atomic_inc(&root
->log_writers
);
215 mutex_unlock(&root
->log_mutex
);
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
224 int btrfs_pin_log_trans(struct btrfs_root
*root
)
228 mutex_lock(&root
->log_mutex
);
229 atomic_inc(&root
->log_writers
);
230 mutex_unlock(&root
->log_mutex
);
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
238 void btrfs_end_log_trans(struct btrfs_root
*root
)
240 if (atomic_dec_and_test(&root
->log_writers
)) {
242 if (waitqueue_active(&root
->log_writer_wait
))
243 wake_up(&root
->log_writer_wait
);
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
254 struct walk_control
{
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
270 /* pin only walk, we record which extents on disk belong to the
275 /* what stage of the replay code we're currently in */
278 /* the root we are currently replaying */
279 struct btrfs_root
*replay_dest
;
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle
*trans
;
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
289 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
290 struct walk_control
*wc
, u64 gen
);
294 * process_func used to pin down extents, write them or wait on them
296 static int process_one_buffer(struct btrfs_root
*log
,
297 struct extent_buffer
*eb
,
298 struct walk_control
*wc
, u64 gen
)
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
)) {
307 ret
= btrfs_read_buffer(eb
, gen
);
313 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
316 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
317 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
318 ret
= btrfs_exclude_logged_extents(log
, eb
);
320 btrfs_write_tree_block(eb
);
322 btrfs_wait_tree_block_writeback(eb
);
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
342 struct btrfs_root
*root
,
343 struct btrfs_path
*path
,
344 struct extent_buffer
*eb
, int slot
,
345 struct btrfs_key
*key
)
349 u64 saved_i_size
= 0;
350 int save_old_i_size
= 0;
351 unsigned long src_ptr
;
352 unsigned long dst_ptr
;
353 int overwrite_root
= 0;
354 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
356 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
359 item_size
= btrfs_item_size_nr(eb
, slot
);
360 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
362 /* look for the key in the destination tree */
363 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
370 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
372 if (dst_size
!= item_size
)
375 if (item_size
== 0) {
376 btrfs_release_path(path
);
379 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
380 src_copy
= kmalloc(item_size
, GFP_NOFS
);
381 if (!dst_copy
|| !src_copy
) {
382 btrfs_release_path(path
);
388 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
390 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
391 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
393 ret
= memcmp(dst_copy
, src_copy
, item_size
);
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
404 btrfs_release_path(path
);
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
413 struct btrfs_inode_item
*item
;
417 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
418 struct btrfs_inode_item
);
419 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
420 item
= btrfs_item_ptr(eb
, slot
,
421 struct btrfs_inode_item
);
422 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
429 mode
= btrfs_inode_mode(eb
, item
);
431 btrfs_set_inode_size(eb
, item
, 0);
433 } else if (inode_item
) {
434 struct btrfs_inode_item
*item
;
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
441 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
442 btrfs_set_inode_nbytes(eb
, item
, 0);
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
449 mode
= btrfs_inode_mode(eb
, item
);
451 btrfs_set_inode_size(eb
, item
, 0);
454 btrfs_release_path(path
);
455 /* try to insert the key into the destination tree */
456 path
->skip_release_on_error
= 1;
457 ret
= btrfs_insert_empty_item(trans
, root
, path
,
459 path
->skip_release_on_error
= 0;
461 /* make sure any existing item is the correct size */
462 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
464 found_size
= btrfs_item_size_nr(path
->nodes
[0],
466 if (found_size
> item_size
)
467 btrfs_truncate_item(root
, path
, item_size
, 1);
468 else if (found_size
< item_size
)
469 btrfs_extend_item(root
, path
,
470 item_size
- found_size
);
474 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
486 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
487 struct btrfs_inode_item
*src_item
;
488 struct btrfs_inode_item
*dst_item
;
490 src_item
= (struct btrfs_inode_item
*)src_ptr
;
491 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
493 if (btrfs_inode_generation(eb
, src_item
) == 0) {
494 struct extent_buffer
*dst_eb
= path
->nodes
[0];
495 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
504 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
507 struct btrfs_map_token token
;
509 btrfs_init_map_token(&token
);
510 btrfs_set_token_inode_size(dst_eb
, dst_item
,
516 if (overwrite_root
&&
517 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
518 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
520 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
525 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
528 if (save_old_i_size
) {
529 struct btrfs_inode_item
*dst_item
;
530 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
531 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
534 /* make sure the generation is filled in */
535 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
536 struct btrfs_inode_item
*dst_item
;
537 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
538 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
539 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
544 btrfs_mark_buffer_dirty(path
->nodes
[0]);
545 btrfs_release_path(path
);
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
553 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
556 struct btrfs_key key
;
559 key
.objectid
= objectid
;
560 key
.type
= BTRFS_INODE_ITEM_KEY
;
562 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
565 } else if (is_bad_inode(inode
)) {
572 /* replays a single extent in 'eb' at 'slot' with 'key' into the
573 * subvolume 'root'. path is released on entry and should be released
576 * extents in the log tree have not been allocated out of the extent
577 * tree yet. So, this completes the allocation, taking a reference
578 * as required if the extent already exists or creating a new extent
579 * if it isn't in the extent allocation tree yet.
581 * The extent is inserted into the file, dropping any existing extents
582 * from the file that overlap the new one.
584 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
585 struct btrfs_root
*root
,
586 struct btrfs_path
*path
,
587 struct extent_buffer
*eb
, int slot
,
588 struct btrfs_key
*key
)
592 u64 start
= key
->offset
;
594 struct btrfs_file_extent_item
*item
;
595 struct inode
*inode
= NULL
;
599 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
600 found_type
= btrfs_file_extent_type(eb
, item
);
602 if (found_type
== BTRFS_FILE_EXTENT_REG
||
603 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
604 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
605 extent_end
= start
+ nbytes
;
608 * We don't add to the inodes nbytes if we are prealloc or a
611 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
613 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
614 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
615 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
616 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
622 inode
= read_one_inode(root
, key
->objectid
);
629 * first check to see if we already have this extent in the
630 * file. This must be done before the btrfs_drop_extents run
631 * so we don't try to drop this extent.
633 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
637 (found_type
== BTRFS_FILE_EXTENT_REG
||
638 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
639 struct btrfs_file_extent_item cmp1
;
640 struct btrfs_file_extent_item cmp2
;
641 struct btrfs_file_extent_item
*existing
;
642 struct extent_buffer
*leaf
;
644 leaf
= path
->nodes
[0];
645 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
646 struct btrfs_file_extent_item
);
648 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
650 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
654 * we already have a pointer to this exact extent,
655 * we don't have to do anything
657 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
658 btrfs_release_path(path
);
662 btrfs_release_path(path
);
664 /* drop any overlapping extents */
665 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
669 if (found_type
== BTRFS_FILE_EXTENT_REG
||
670 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
672 unsigned long dest_offset
;
673 struct btrfs_key ins
;
675 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
679 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
681 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
682 (unsigned long)item
, sizeof(*item
));
684 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
685 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
686 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
687 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
689 if (ins
.objectid
> 0) {
692 LIST_HEAD(ordered_sums
);
694 * is this extent already allocated in the extent
695 * allocation tree? If so, just add a reference
697 ret
= btrfs_lookup_data_extent(root
, ins
.objectid
,
700 ret
= btrfs_inc_extent_ref(trans
, root
,
701 ins
.objectid
, ins
.offset
,
702 0, root
->root_key
.objectid
,
703 key
->objectid
, offset
, 0);
708 * insert the extent pointer in the extent
711 ret
= btrfs_alloc_logged_file_extent(trans
,
712 root
, root
->root_key
.objectid
,
713 key
->objectid
, offset
, &ins
);
717 btrfs_release_path(path
);
719 if (btrfs_file_extent_compression(eb
, item
)) {
720 csum_start
= ins
.objectid
;
721 csum_end
= csum_start
+ ins
.offset
;
723 csum_start
= ins
.objectid
+
724 btrfs_file_extent_offset(eb
, item
);
725 csum_end
= csum_start
+
726 btrfs_file_extent_num_bytes(eb
, item
);
729 ret
= btrfs_lookup_csums_range(root
->log_root
,
730 csum_start
, csum_end
- 1,
734 while (!list_empty(&ordered_sums
)) {
735 struct btrfs_ordered_sum
*sums
;
736 sums
= list_entry(ordered_sums
.next
,
737 struct btrfs_ordered_sum
,
740 ret
= btrfs_csum_file_blocks(trans
,
741 root
->fs_info
->csum_root
,
743 list_del(&sums
->list
);
749 btrfs_release_path(path
);
751 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
752 /* inline extents are easy, we just overwrite them */
753 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
758 inode_add_bytes(inode
, nbytes
);
759 ret
= btrfs_update_inode(trans
, root
, inode
);
767 * when cleaning up conflicts between the directory names in the
768 * subvolume, directory names in the log and directory names in the
769 * inode back references, we may have to unlink inodes from directories.
771 * This is a helper function to do the unlink of a specific directory
774 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
775 struct btrfs_root
*root
,
776 struct btrfs_path
*path
,
778 struct btrfs_dir_item
*di
)
783 struct extent_buffer
*leaf
;
784 struct btrfs_key location
;
787 leaf
= path
->nodes
[0];
789 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
790 name_len
= btrfs_dir_name_len(leaf
, di
);
791 name
= kmalloc(name_len
, GFP_NOFS
);
795 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
796 btrfs_release_path(path
);
798 inode
= read_one_inode(root
, location
.objectid
);
804 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
808 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
812 ret
= btrfs_run_delayed_items(trans
, root
);
820 * helper function to see if a given name and sequence number found
821 * in an inode back reference are already in a directory and correctly
822 * point to this inode
824 static noinline
int inode_in_dir(struct btrfs_root
*root
,
825 struct btrfs_path
*path
,
826 u64 dirid
, u64 objectid
, u64 index
,
827 const char *name
, int name_len
)
829 struct btrfs_dir_item
*di
;
830 struct btrfs_key location
;
833 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
834 index
, name
, name_len
, 0);
835 if (di
&& !IS_ERR(di
)) {
836 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
837 if (location
.objectid
!= objectid
)
841 btrfs_release_path(path
);
843 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
844 if (di
&& !IS_ERR(di
)) {
845 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
846 if (location
.objectid
!= objectid
)
852 btrfs_release_path(path
);
857 * helper function to check a log tree for a named back reference in
858 * an inode. This is used to decide if a back reference that is
859 * found in the subvolume conflicts with what we find in the log.
861 * inode backreferences may have multiple refs in a single item,
862 * during replay we process one reference at a time, and we don't
863 * want to delete valid links to a file from the subvolume if that
864 * link is also in the log.
866 static noinline
int backref_in_log(struct btrfs_root
*log
,
867 struct btrfs_key
*key
,
869 const char *name
, int namelen
)
871 struct btrfs_path
*path
;
872 struct btrfs_inode_ref
*ref
;
874 unsigned long ptr_end
;
875 unsigned long name_ptr
;
881 path
= btrfs_alloc_path();
885 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
889 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
891 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
892 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
893 name
, namelen
, NULL
))
899 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
900 ptr_end
= ptr
+ item_size
;
901 while (ptr
< ptr_end
) {
902 ref
= (struct btrfs_inode_ref
*)ptr
;
903 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
904 if (found_name_len
== namelen
) {
905 name_ptr
= (unsigned long)(ref
+ 1);
906 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
913 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
916 btrfs_free_path(path
);
920 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
921 struct btrfs_root
*root
,
922 struct btrfs_path
*path
,
923 struct btrfs_root
*log_root
,
924 struct inode
*dir
, struct inode
*inode
,
925 struct extent_buffer
*eb
,
926 u64 inode_objectid
, u64 parent_objectid
,
927 u64 ref_index
, char *name
, int namelen
,
933 struct extent_buffer
*leaf
;
934 struct btrfs_dir_item
*di
;
935 struct btrfs_key search_key
;
936 struct btrfs_inode_extref
*extref
;
939 /* Search old style refs */
940 search_key
.objectid
= inode_objectid
;
941 search_key
.type
= BTRFS_INODE_REF_KEY
;
942 search_key
.offset
= parent_objectid
;
943 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
945 struct btrfs_inode_ref
*victim_ref
;
947 unsigned long ptr_end
;
949 leaf
= path
->nodes
[0];
951 /* are we trying to overwrite a back ref for the root directory
952 * if so, just jump out, we're done
954 if (search_key
.objectid
== search_key
.offset
)
957 /* check all the names in this back reference to see
958 * if they are in the log. if so, we allow them to stay
959 * otherwise they must be unlinked as a conflict
961 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
962 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
963 while (ptr
< ptr_end
) {
964 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
965 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
967 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
971 read_extent_buffer(leaf
, victim_name
,
972 (unsigned long)(victim_ref
+ 1),
975 if (!backref_in_log(log_root
, &search_key
,
980 btrfs_release_path(path
);
982 ret
= btrfs_unlink_inode(trans
, root
, dir
,
988 ret
= btrfs_run_delayed_items(trans
, root
);
996 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1000 * NOTE: we have searched root tree and checked the
1001 * coresponding ref, it does not need to check again.
1005 btrfs_release_path(path
);
1007 /* Same search but for extended refs */
1008 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1009 inode_objectid
, parent_objectid
, 0,
1011 if (!IS_ERR_OR_NULL(extref
)) {
1015 struct inode
*victim_parent
;
1017 leaf
= path
->nodes
[0];
1019 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1020 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1022 while (cur_offset
< item_size
) {
1023 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1025 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1027 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1030 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1033 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1036 search_key
.objectid
= inode_objectid
;
1037 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1038 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1042 if (!backref_in_log(log_root
, &search_key
,
1043 parent_objectid
, victim_name
,
1046 victim_parent
= read_one_inode(root
,
1048 if (victim_parent
) {
1050 btrfs_release_path(path
);
1052 ret
= btrfs_unlink_inode(trans
, root
,
1058 ret
= btrfs_run_delayed_items(
1061 iput(victim_parent
);
1072 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1076 btrfs_release_path(path
);
1078 /* look for a conflicting sequence number */
1079 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1080 ref_index
, name
, namelen
, 0);
1081 if (di
&& !IS_ERR(di
)) {
1082 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1086 btrfs_release_path(path
);
1088 /* look for a conflicing name */
1089 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1091 if (di
&& !IS_ERR(di
)) {
1092 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1096 btrfs_release_path(path
);
1101 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1102 u32
*namelen
, char **name
, u64
*index
,
1103 u64
*parent_objectid
)
1105 struct btrfs_inode_extref
*extref
;
1107 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1109 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1110 *name
= kmalloc(*namelen
, GFP_NOFS
);
1114 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1117 *index
= btrfs_inode_extref_index(eb
, extref
);
1118 if (parent_objectid
)
1119 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1124 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1125 u32
*namelen
, char **name
, u64
*index
)
1127 struct btrfs_inode_ref
*ref
;
1129 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1131 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1132 *name
= kmalloc(*namelen
, GFP_NOFS
);
1136 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1138 *index
= btrfs_inode_ref_index(eb
, ref
);
1144 * replay one inode back reference item found in the log tree.
1145 * eb, slot and key refer to the buffer and key found in the log tree.
1146 * root is the destination we are replaying into, and path is for temp
1147 * use by this function. (it should be released on return).
1149 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1150 struct btrfs_root
*root
,
1151 struct btrfs_root
*log
,
1152 struct btrfs_path
*path
,
1153 struct extent_buffer
*eb
, int slot
,
1154 struct btrfs_key
*key
)
1156 struct inode
*dir
= NULL
;
1157 struct inode
*inode
= NULL
;
1158 unsigned long ref_ptr
;
1159 unsigned long ref_end
;
1163 int search_done
= 0;
1164 int log_ref_ver
= 0;
1165 u64 parent_objectid
;
1168 int ref_struct_size
;
1170 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1171 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1173 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1174 struct btrfs_inode_extref
*r
;
1176 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1178 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1179 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1181 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1182 parent_objectid
= key
->offset
;
1184 inode_objectid
= key
->objectid
;
1187 * it is possible that we didn't log all the parent directories
1188 * for a given inode. If we don't find the dir, just don't
1189 * copy the back ref in. The link count fixup code will take
1192 dir
= read_one_inode(root
, parent_objectid
);
1198 inode
= read_one_inode(root
, inode_objectid
);
1204 while (ref_ptr
< ref_end
) {
1206 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1207 &ref_index
, &parent_objectid
);
1209 * parent object can change from one array
1213 dir
= read_one_inode(root
, parent_objectid
);
1219 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1225 /* if we already have a perfect match, we're done */
1226 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1227 ref_index
, name
, namelen
)) {
1229 * look for a conflicting back reference in the
1230 * metadata. if we find one we have to unlink that name
1231 * of the file before we add our new link. Later on, we
1232 * overwrite any existing back reference, and we don't
1233 * want to create dangling pointers in the directory.
1237 ret
= __add_inode_ref(trans
, root
, path
, log
,
1241 ref_index
, name
, namelen
,
1250 /* insert our name */
1251 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1256 btrfs_update_inode(trans
, root
, inode
);
1259 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1268 /* finally write the back reference in the inode */
1269 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1271 btrfs_release_path(path
);
1278 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1279 struct btrfs_root
*root
, u64 ino
)
1283 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1290 static int count_inode_extrefs(struct btrfs_root
*root
,
1291 struct inode
*inode
, struct btrfs_path
*path
)
1295 unsigned int nlink
= 0;
1298 u64 inode_objectid
= btrfs_ino(inode
);
1301 struct btrfs_inode_extref
*extref
;
1302 struct extent_buffer
*leaf
;
1305 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1310 leaf
= path
->nodes
[0];
1311 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1312 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1315 while (cur_offset
< item_size
) {
1316 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1317 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1321 cur_offset
+= name_len
+ sizeof(*extref
);
1325 btrfs_release_path(path
);
1327 btrfs_release_path(path
);
1329 if (ret
< 0 && ret
!= -ENOENT
)
1334 static int count_inode_refs(struct btrfs_root
*root
,
1335 struct inode
*inode
, struct btrfs_path
*path
)
1338 struct btrfs_key key
;
1339 unsigned int nlink
= 0;
1341 unsigned long ptr_end
;
1343 u64 ino
= btrfs_ino(inode
);
1346 key
.type
= BTRFS_INODE_REF_KEY
;
1347 key
.offset
= (u64
)-1;
1350 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1354 if (path
->slots
[0] == 0)
1359 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1361 if (key
.objectid
!= ino
||
1362 key
.type
!= BTRFS_INODE_REF_KEY
)
1364 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1365 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1367 while (ptr
< ptr_end
) {
1368 struct btrfs_inode_ref
*ref
;
1370 ref
= (struct btrfs_inode_ref
*)ptr
;
1371 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1373 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1377 if (key
.offset
== 0)
1379 if (path
->slots
[0] > 0) {
1384 btrfs_release_path(path
);
1386 btrfs_release_path(path
);
1392 * There are a few corners where the link count of the file can't
1393 * be properly maintained during replay. So, instead of adding
1394 * lots of complexity to the log code, we just scan the backrefs
1395 * for any file that has been through replay.
1397 * The scan will update the link count on the inode to reflect the
1398 * number of back refs found. If it goes down to zero, the iput
1399 * will free the inode.
1401 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1402 struct btrfs_root
*root
,
1403 struct inode
*inode
)
1405 struct btrfs_path
*path
;
1408 u64 ino
= btrfs_ino(inode
);
1410 path
= btrfs_alloc_path();
1414 ret
= count_inode_refs(root
, inode
, path
);
1420 ret
= count_inode_extrefs(root
, inode
, path
);
1428 if (nlink
!= inode
->i_nlink
) {
1429 set_nlink(inode
, nlink
);
1430 btrfs_update_inode(trans
, root
, inode
);
1432 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1434 if (inode
->i_nlink
== 0) {
1435 if (S_ISDIR(inode
->i_mode
)) {
1436 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1441 ret
= insert_orphan_item(trans
, root
, ino
);
1445 btrfs_free_path(path
);
1449 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1450 struct btrfs_root
*root
,
1451 struct btrfs_path
*path
)
1454 struct btrfs_key key
;
1455 struct inode
*inode
;
1457 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1458 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1459 key
.offset
= (u64
)-1;
1461 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1466 if (path
->slots
[0] == 0)
1471 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1472 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1473 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1476 ret
= btrfs_del_item(trans
, root
, path
);
1480 btrfs_release_path(path
);
1481 inode
= read_one_inode(root
, key
.offset
);
1485 ret
= fixup_inode_link_count(trans
, root
, inode
);
1491 * fixup on a directory may create new entries,
1492 * make sure we always look for the highset possible
1495 key
.offset
= (u64
)-1;
1499 btrfs_release_path(path
);
1505 * record a given inode in the fixup dir so we can check its link
1506 * count when replay is done. The link count is incremented here
1507 * so the inode won't go away until we check it
1509 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1510 struct btrfs_root
*root
,
1511 struct btrfs_path
*path
,
1514 struct btrfs_key key
;
1516 struct inode
*inode
;
1518 inode
= read_one_inode(root
, objectid
);
1522 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1523 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1524 key
.offset
= objectid
;
1526 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1528 btrfs_release_path(path
);
1530 if (!inode
->i_nlink
)
1531 set_nlink(inode
, 1);
1534 ret
= btrfs_update_inode(trans
, root
, inode
);
1535 } else if (ret
== -EEXIST
) {
1538 BUG(); /* Logic Error */
1546 * when replaying the log for a directory, we only insert names
1547 * for inodes that actually exist. This means an fsync on a directory
1548 * does not implicitly fsync all the new files in it
1550 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1551 struct btrfs_root
*root
,
1552 struct btrfs_path
*path
,
1553 u64 dirid
, u64 index
,
1554 char *name
, int name_len
, u8 type
,
1555 struct btrfs_key
*location
)
1557 struct inode
*inode
;
1561 inode
= read_one_inode(root
, location
->objectid
);
1565 dir
= read_one_inode(root
, dirid
);
1571 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1573 /* FIXME, put inode into FIXUP list */
1581 * Return true if an inode reference exists in the log for the given name,
1582 * inode and parent inode.
1584 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1585 const char *name
, const int name_len
,
1586 const u64 dirid
, const u64 ino
)
1588 struct btrfs_key search_key
;
1590 search_key
.objectid
= ino
;
1591 search_key
.type
= BTRFS_INODE_REF_KEY
;
1592 search_key
.offset
= dirid
;
1593 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1596 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1597 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1598 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1605 * take a single entry in a log directory item and replay it into
1608 * if a conflicting item exists in the subdirectory already,
1609 * the inode it points to is unlinked and put into the link count
1612 * If a name from the log points to a file or directory that does
1613 * not exist in the FS, it is skipped. fsyncs on directories
1614 * do not force down inodes inside that directory, just changes to the
1615 * names or unlinks in a directory.
1617 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1618 struct btrfs_root
*root
,
1619 struct btrfs_path
*path
,
1620 struct extent_buffer
*eb
,
1621 struct btrfs_dir_item
*di
,
1622 struct btrfs_key
*key
)
1626 struct btrfs_dir_item
*dst_di
;
1627 struct btrfs_key found_key
;
1628 struct btrfs_key log_key
;
1633 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1635 dir
= read_one_inode(root
, key
->objectid
);
1639 name_len
= btrfs_dir_name_len(eb
, di
);
1640 name
= kmalloc(name_len
, GFP_NOFS
);
1646 log_type
= btrfs_dir_type(eb
, di
);
1647 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1650 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1651 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1656 btrfs_release_path(path
);
1658 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1659 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1661 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1662 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1671 if (IS_ERR_OR_NULL(dst_di
)) {
1672 /* we need a sequence number to insert, so we only
1673 * do inserts for the BTRFS_DIR_INDEX_KEY types
1675 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1680 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1681 /* the existing item matches the logged item */
1682 if (found_key
.objectid
== log_key
.objectid
&&
1683 found_key
.type
== log_key
.type
&&
1684 found_key
.offset
== log_key
.offset
&&
1685 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1686 update_size
= false;
1691 * don't drop the conflicting directory entry if the inode
1692 * for the new entry doesn't exist
1697 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1701 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1704 btrfs_release_path(path
);
1705 if (!ret
&& update_size
) {
1706 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1707 ret
= btrfs_update_inode(trans
, root
, dir
);
1714 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1715 key
->objectid
, log_key
.objectid
)) {
1716 /* The dentry will be added later. */
1718 update_size
= false;
1721 btrfs_release_path(path
);
1722 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1723 name
, name_len
, log_type
, &log_key
);
1724 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1726 update_size
= false;
1732 * find all the names in a directory item and reconcile them into
1733 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1734 * one name in a directory item, but the same code gets used for
1735 * both directory index types
1737 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1738 struct btrfs_root
*root
,
1739 struct btrfs_path
*path
,
1740 struct extent_buffer
*eb
, int slot
,
1741 struct btrfs_key
*key
)
1744 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1745 struct btrfs_dir_item
*di
;
1748 unsigned long ptr_end
;
1750 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1751 ptr_end
= ptr
+ item_size
;
1752 while (ptr
< ptr_end
) {
1753 di
= (struct btrfs_dir_item
*)ptr
;
1754 if (verify_dir_item(root
, eb
, di
))
1756 name_len
= btrfs_dir_name_len(eb
, di
);
1757 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1760 ptr
= (unsigned long)(di
+ 1);
1767 * directory replay has two parts. There are the standard directory
1768 * items in the log copied from the subvolume, and range items
1769 * created in the log while the subvolume was logged.
1771 * The range items tell us which parts of the key space the log
1772 * is authoritative for. During replay, if a key in the subvolume
1773 * directory is in a logged range item, but not actually in the log
1774 * that means it was deleted from the directory before the fsync
1775 * and should be removed.
1777 static noinline
int find_dir_range(struct btrfs_root
*root
,
1778 struct btrfs_path
*path
,
1779 u64 dirid
, int key_type
,
1780 u64
*start_ret
, u64
*end_ret
)
1782 struct btrfs_key key
;
1784 struct btrfs_dir_log_item
*item
;
1788 if (*start_ret
== (u64
)-1)
1791 key
.objectid
= dirid
;
1792 key
.type
= key_type
;
1793 key
.offset
= *start_ret
;
1795 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1799 if (path
->slots
[0] == 0)
1804 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1806 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1810 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1811 struct btrfs_dir_log_item
);
1812 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1814 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1816 *start_ret
= key
.offset
;
1817 *end_ret
= found_end
;
1822 /* check the next slot in the tree to see if it is a valid item */
1823 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1824 if (path
->slots
[0] >= nritems
) {
1825 ret
= btrfs_next_leaf(root
, path
);
1832 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1834 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1838 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1839 struct btrfs_dir_log_item
);
1840 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1841 *start_ret
= key
.offset
;
1842 *end_ret
= found_end
;
1845 btrfs_release_path(path
);
1850 * this looks for a given directory item in the log. If the directory
1851 * item is not in the log, the item is removed and the inode it points
1854 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1855 struct btrfs_root
*root
,
1856 struct btrfs_root
*log
,
1857 struct btrfs_path
*path
,
1858 struct btrfs_path
*log_path
,
1860 struct btrfs_key
*dir_key
)
1863 struct extent_buffer
*eb
;
1866 struct btrfs_dir_item
*di
;
1867 struct btrfs_dir_item
*log_di
;
1870 unsigned long ptr_end
;
1872 struct inode
*inode
;
1873 struct btrfs_key location
;
1876 eb
= path
->nodes
[0];
1877 slot
= path
->slots
[0];
1878 item_size
= btrfs_item_size_nr(eb
, slot
);
1879 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1880 ptr_end
= ptr
+ item_size
;
1881 while (ptr
< ptr_end
) {
1882 di
= (struct btrfs_dir_item
*)ptr
;
1883 if (verify_dir_item(root
, eb
, di
)) {
1888 name_len
= btrfs_dir_name_len(eb
, di
);
1889 name
= kmalloc(name_len
, GFP_NOFS
);
1894 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1897 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1898 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1901 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1902 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1908 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
1909 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1910 btrfs_release_path(path
);
1911 btrfs_release_path(log_path
);
1912 inode
= read_one_inode(root
, location
.objectid
);
1918 ret
= link_to_fixup_dir(trans
, root
,
1919 path
, location
.objectid
);
1927 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1930 ret
= btrfs_run_delayed_items(trans
, root
);
1936 /* there might still be more names under this key
1937 * check and repeat if required
1939 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1945 } else if (IS_ERR(log_di
)) {
1947 return PTR_ERR(log_di
);
1949 btrfs_release_path(log_path
);
1952 ptr
= (unsigned long)(di
+ 1);
1957 btrfs_release_path(path
);
1958 btrfs_release_path(log_path
);
1962 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
1963 struct btrfs_root
*root
,
1964 struct btrfs_root
*log
,
1965 struct btrfs_path
*path
,
1968 struct btrfs_key search_key
;
1969 struct btrfs_path
*log_path
;
1974 log_path
= btrfs_alloc_path();
1978 search_key
.objectid
= ino
;
1979 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
1980 search_key
.offset
= 0;
1982 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1986 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1987 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
1988 struct btrfs_key key
;
1989 struct btrfs_dir_item
*di
;
1990 struct btrfs_dir_item
*log_di
;
1994 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
1995 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2000 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2001 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2003 while (cur
< total_size
) {
2004 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2005 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2006 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2009 name
= kmalloc(name_len
, GFP_NOFS
);
2014 read_extent_buffer(path
->nodes
[0], name
,
2015 (unsigned long)(di
+ 1), name_len
);
2017 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2019 btrfs_release_path(log_path
);
2021 /* Doesn't exist in log tree, so delete it. */
2022 btrfs_release_path(path
);
2023 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2024 name
, name_len
, -1);
2031 ret
= btrfs_delete_one_dir_name(trans
, root
,
2035 btrfs_release_path(path
);
2040 if (IS_ERR(log_di
)) {
2041 ret
= PTR_ERR(log_di
);
2045 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2048 ret
= btrfs_next_leaf(root
, path
);
2054 btrfs_free_path(log_path
);
2055 btrfs_release_path(path
);
2061 * deletion replay happens before we copy any new directory items
2062 * out of the log or out of backreferences from inodes. It
2063 * scans the log to find ranges of keys that log is authoritative for,
2064 * and then scans the directory to find items in those ranges that are
2065 * not present in the log.
2067 * Anything we don't find in the log is unlinked and removed from the
2070 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2071 struct btrfs_root
*root
,
2072 struct btrfs_root
*log
,
2073 struct btrfs_path
*path
,
2074 u64 dirid
, int del_all
)
2078 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2080 struct btrfs_key dir_key
;
2081 struct btrfs_key found_key
;
2082 struct btrfs_path
*log_path
;
2085 dir_key
.objectid
= dirid
;
2086 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2087 log_path
= btrfs_alloc_path();
2091 dir
= read_one_inode(root
, dirid
);
2092 /* it isn't an error if the inode isn't there, that can happen
2093 * because we replay the deletes before we copy in the inode item
2097 btrfs_free_path(log_path
);
2105 range_end
= (u64
)-1;
2107 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2108 &range_start
, &range_end
);
2113 dir_key
.offset
= range_start
;
2116 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2121 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2122 if (path
->slots
[0] >= nritems
) {
2123 ret
= btrfs_next_leaf(root
, path
);
2127 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2129 if (found_key
.objectid
!= dirid
||
2130 found_key
.type
!= dir_key
.type
)
2133 if (found_key
.offset
> range_end
)
2136 ret
= check_item_in_log(trans
, root
, log
, path
,
2141 if (found_key
.offset
== (u64
)-1)
2143 dir_key
.offset
= found_key
.offset
+ 1;
2145 btrfs_release_path(path
);
2146 if (range_end
== (u64
)-1)
2148 range_start
= range_end
+ 1;
2153 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2154 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2155 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2156 btrfs_release_path(path
);
2160 btrfs_release_path(path
);
2161 btrfs_free_path(log_path
);
2167 * the process_func used to replay items from the log tree. This
2168 * gets called in two different stages. The first stage just looks
2169 * for inodes and makes sure they are all copied into the subvolume.
2171 * The second stage copies all the other item types from the log into
2172 * the subvolume. The two stage approach is slower, but gets rid of
2173 * lots of complexity around inodes referencing other inodes that exist
2174 * only in the log (references come from either directory items or inode
2177 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2178 struct walk_control
*wc
, u64 gen
)
2181 struct btrfs_path
*path
;
2182 struct btrfs_root
*root
= wc
->replay_dest
;
2183 struct btrfs_key key
;
2188 ret
= btrfs_read_buffer(eb
, gen
);
2192 level
= btrfs_header_level(eb
);
2197 path
= btrfs_alloc_path();
2201 nritems
= btrfs_header_nritems(eb
);
2202 for (i
= 0; i
< nritems
; i
++) {
2203 btrfs_item_key_to_cpu(eb
, &key
, i
);
2205 /* inode keys are done during the first stage */
2206 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2207 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2208 struct btrfs_inode_item
*inode_item
;
2211 inode_item
= btrfs_item_ptr(eb
, i
,
2212 struct btrfs_inode_item
);
2213 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2214 path
, key
.objectid
);
2217 mode
= btrfs_inode_mode(eb
, inode_item
);
2218 if (S_ISDIR(mode
)) {
2219 ret
= replay_dir_deletes(wc
->trans
,
2220 root
, log
, path
, key
.objectid
, 0);
2224 ret
= overwrite_item(wc
->trans
, root
, path
,
2229 /* for regular files, make sure corresponding
2230 * orhpan item exist. extents past the new EOF
2231 * will be truncated later by orphan cleanup.
2233 if (S_ISREG(mode
)) {
2234 ret
= insert_orphan_item(wc
->trans
, root
,
2240 ret
= link_to_fixup_dir(wc
->trans
, root
,
2241 path
, key
.objectid
);
2246 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2247 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2248 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2254 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2257 /* these keys are simply copied */
2258 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2259 ret
= overwrite_item(wc
->trans
, root
, path
,
2263 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2264 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2265 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2267 if (ret
&& ret
!= -ENOENT
)
2270 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2271 ret
= replay_one_extent(wc
->trans
, root
, path
,
2275 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2276 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2282 btrfs_free_path(path
);
2286 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2287 struct btrfs_root
*root
,
2288 struct btrfs_path
*path
, int *level
,
2289 struct walk_control
*wc
)
2294 struct extent_buffer
*next
;
2295 struct extent_buffer
*cur
;
2296 struct extent_buffer
*parent
;
2300 WARN_ON(*level
< 0);
2301 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2303 while (*level
> 0) {
2304 WARN_ON(*level
< 0);
2305 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2306 cur
= path
->nodes
[*level
];
2308 WARN_ON(btrfs_header_level(cur
) != *level
);
2310 if (path
->slots
[*level
] >=
2311 btrfs_header_nritems(cur
))
2314 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2315 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2316 blocksize
= root
->nodesize
;
2318 parent
= path
->nodes
[*level
];
2319 root_owner
= btrfs_header_owner(parent
);
2321 next
= btrfs_find_create_tree_block(root
, bytenr
);
2326 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2328 free_extent_buffer(next
);
2332 path
->slots
[*level
]++;
2334 ret
= btrfs_read_buffer(next
, ptr_gen
);
2336 free_extent_buffer(next
);
2341 btrfs_tree_lock(next
);
2342 btrfs_set_lock_blocking(next
);
2343 clean_tree_block(trans
, root
->fs_info
,
2345 btrfs_wait_tree_block_writeback(next
);
2346 btrfs_tree_unlock(next
);
2349 WARN_ON(root_owner
!=
2350 BTRFS_TREE_LOG_OBJECTID
);
2351 ret
= btrfs_free_and_pin_reserved_extent(root
,
2354 free_extent_buffer(next
);
2358 free_extent_buffer(next
);
2361 ret
= btrfs_read_buffer(next
, ptr_gen
);
2363 free_extent_buffer(next
);
2367 WARN_ON(*level
<= 0);
2368 if (path
->nodes
[*level
-1])
2369 free_extent_buffer(path
->nodes
[*level
-1]);
2370 path
->nodes
[*level
-1] = next
;
2371 *level
= btrfs_header_level(next
);
2372 path
->slots
[*level
] = 0;
2375 WARN_ON(*level
< 0);
2376 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2378 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2384 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2385 struct btrfs_root
*root
,
2386 struct btrfs_path
*path
, int *level
,
2387 struct walk_control
*wc
)
2394 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2395 slot
= path
->slots
[i
];
2396 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2399 WARN_ON(*level
== 0);
2402 struct extent_buffer
*parent
;
2403 if (path
->nodes
[*level
] == root
->node
)
2404 parent
= path
->nodes
[*level
];
2406 parent
= path
->nodes
[*level
+ 1];
2408 root_owner
= btrfs_header_owner(parent
);
2409 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2410 btrfs_header_generation(path
->nodes
[*level
]));
2415 struct extent_buffer
*next
;
2417 next
= path
->nodes
[*level
];
2420 btrfs_tree_lock(next
);
2421 btrfs_set_lock_blocking(next
);
2422 clean_tree_block(trans
, root
->fs_info
,
2424 btrfs_wait_tree_block_writeback(next
);
2425 btrfs_tree_unlock(next
);
2428 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2429 ret
= btrfs_free_and_pin_reserved_extent(root
,
2430 path
->nodes
[*level
]->start
,
2431 path
->nodes
[*level
]->len
);
2435 free_extent_buffer(path
->nodes
[*level
]);
2436 path
->nodes
[*level
] = NULL
;
2444 * drop the reference count on the tree rooted at 'snap'. This traverses
2445 * the tree freeing any blocks that have a ref count of zero after being
2448 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2449 struct btrfs_root
*log
, struct walk_control
*wc
)
2454 struct btrfs_path
*path
;
2457 path
= btrfs_alloc_path();
2461 level
= btrfs_header_level(log
->node
);
2463 path
->nodes
[level
] = log
->node
;
2464 extent_buffer_get(log
->node
);
2465 path
->slots
[level
] = 0;
2468 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2476 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2485 /* was the root node processed? if not, catch it here */
2486 if (path
->nodes
[orig_level
]) {
2487 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2488 btrfs_header_generation(path
->nodes
[orig_level
]));
2492 struct extent_buffer
*next
;
2494 next
= path
->nodes
[orig_level
];
2497 btrfs_tree_lock(next
);
2498 btrfs_set_lock_blocking(next
);
2499 clean_tree_block(trans
, log
->fs_info
, next
);
2500 btrfs_wait_tree_block_writeback(next
);
2501 btrfs_tree_unlock(next
);
2504 WARN_ON(log
->root_key
.objectid
!=
2505 BTRFS_TREE_LOG_OBJECTID
);
2506 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2514 btrfs_free_path(path
);
2519 * helper function to update the item for a given subvolumes log root
2520 * in the tree of log roots
2522 static int update_log_root(struct btrfs_trans_handle
*trans
,
2523 struct btrfs_root
*log
)
2527 if (log
->log_transid
== 1) {
2528 /* insert root item on the first sync */
2529 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2530 &log
->root_key
, &log
->root_item
);
2532 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2533 &log
->root_key
, &log
->root_item
);
2538 static void wait_log_commit(struct btrfs_trans_handle
*trans
,
2539 struct btrfs_root
*root
, int transid
)
2542 int index
= transid
% 2;
2545 * we only allow two pending log transactions at a time,
2546 * so we know that if ours is more than 2 older than the
2547 * current transaction, we're done
2550 prepare_to_wait(&root
->log_commit_wait
[index
],
2551 &wait
, TASK_UNINTERRUPTIBLE
);
2552 mutex_unlock(&root
->log_mutex
);
2554 if (root
->log_transid_committed
< transid
&&
2555 atomic_read(&root
->log_commit
[index
]))
2558 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2559 mutex_lock(&root
->log_mutex
);
2560 } while (root
->log_transid_committed
< transid
&&
2561 atomic_read(&root
->log_commit
[index
]));
2564 static void wait_for_writer(struct btrfs_trans_handle
*trans
,
2565 struct btrfs_root
*root
)
2569 while (atomic_read(&root
->log_writers
)) {
2570 prepare_to_wait(&root
->log_writer_wait
,
2571 &wait
, TASK_UNINTERRUPTIBLE
);
2572 mutex_unlock(&root
->log_mutex
);
2573 if (atomic_read(&root
->log_writers
))
2575 finish_wait(&root
->log_writer_wait
, &wait
);
2576 mutex_lock(&root
->log_mutex
);
2580 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2581 struct btrfs_log_ctx
*ctx
)
2586 mutex_lock(&root
->log_mutex
);
2587 list_del_init(&ctx
->list
);
2588 mutex_unlock(&root
->log_mutex
);
2592 * Invoked in log mutex context, or be sure there is no other task which
2593 * can access the list.
2595 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2596 int index
, int error
)
2598 struct btrfs_log_ctx
*ctx
;
2601 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2605 list_for_each_entry(ctx
, &root
->log_ctxs
[index
], list
)
2606 ctx
->log_ret
= error
;
2608 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2612 * btrfs_sync_log does sends a given tree log down to the disk and
2613 * updates the super blocks to record it. When this call is done,
2614 * you know that any inodes previously logged are safely on disk only
2617 * Any other return value means you need to call btrfs_commit_transaction.
2618 * Some of the edge cases for fsyncing directories that have had unlinks
2619 * or renames done in the past mean that sometimes the only safe
2620 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2621 * that has happened.
2623 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2624 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2630 struct btrfs_root
*log
= root
->log_root
;
2631 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2632 int log_transid
= 0;
2633 struct btrfs_log_ctx root_log_ctx
;
2634 struct blk_plug plug
;
2636 mutex_lock(&root
->log_mutex
);
2637 log_transid
= ctx
->log_transid
;
2638 if (root
->log_transid_committed
>= log_transid
) {
2639 mutex_unlock(&root
->log_mutex
);
2640 return ctx
->log_ret
;
2643 index1
= log_transid
% 2;
2644 if (atomic_read(&root
->log_commit
[index1
])) {
2645 wait_log_commit(trans
, root
, log_transid
);
2646 mutex_unlock(&root
->log_mutex
);
2647 return ctx
->log_ret
;
2649 ASSERT(log_transid
== root
->log_transid
);
2650 atomic_set(&root
->log_commit
[index1
], 1);
2652 /* wait for previous tree log sync to complete */
2653 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2654 wait_log_commit(trans
, root
, log_transid
- 1);
2657 int batch
= atomic_read(&root
->log_batch
);
2658 /* when we're on an ssd, just kick the log commit out */
2659 if (!btrfs_test_opt(root
, SSD
) &&
2660 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2661 mutex_unlock(&root
->log_mutex
);
2662 schedule_timeout_uninterruptible(1);
2663 mutex_lock(&root
->log_mutex
);
2665 wait_for_writer(trans
, root
);
2666 if (batch
== atomic_read(&root
->log_batch
))
2670 /* bail out if we need to do a full commit */
2671 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2673 btrfs_free_logged_extents(log
, log_transid
);
2674 mutex_unlock(&root
->log_mutex
);
2678 if (log_transid
% 2 == 0)
2679 mark
= EXTENT_DIRTY
;
2683 /* we start IO on all the marked extents here, but we don't actually
2684 * wait for them until later.
2686 blk_start_plug(&plug
);
2687 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2689 blk_finish_plug(&plug
);
2690 btrfs_abort_transaction(trans
, root
, ret
);
2691 btrfs_free_logged_extents(log
, log_transid
);
2692 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2693 mutex_unlock(&root
->log_mutex
);
2697 btrfs_set_root_node(&log
->root_item
, log
->node
);
2699 root
->log_transid
++;
2700 log
->log_transid
= root
->log_transid
;
2701 root
->log_start_pid
= 0;
2703 * IO has been started, blocks of the log tree have WRITTEN flag set
2704 * in their headers. new modifications of the log will be written to
2705 * new positions. so it's safe to allow log writers to go in.
2707 mutex_unlock(&root
->log_mutex
);
2709 btrfs_init_log_ctx(&root_log_ctx
);
2711 mutex_lock(&log_root_tree
->log_mutex
);
2712 atomic_inc(&log_root_tree
->log_batch
);
2713 atomic_inc(&log_root_tree
->log_writers
);
2715 index2
= log_root_tree
->log_transid
% 2;
2716 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2717 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2719 mutex_unlock(&log_root_tree
->log_mutex
);
2721 ret
= update_log_root(trans
, log
);
2723 mutex_lock(&log_root_tree
->log_mutex
);
2724 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2726 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2727 wake_up(&log_root_tree
->log_writer_wait
);
2731 if (!list_empty(&root_log_ctx
.list
))
2732 list_del_init(&root_log_ctx
.list
);
2734 blk_finish_plug(&plug
);
2735 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2737 if (ret
!= -ENOSPC
) {
2738 btrfs_abort_transaction(trans
, root
, ret
);
2739 mutex_unlock(&log_root_tree
->log_mutex
);
2742 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2743 btrfs_free_logged_extents(log
, log_transid
);
2744 mutex_unlock(&log_root_tree
->log_mutex
);
2749 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2750 blk_finish_plug(&plug
);
2751 mutex_unlock(&log_root_tree
->log_mutex
);
2752 ret
= root_log_ctx
.log_ret
;
2756 index2
= root_log_ctx
.log_transid
% 2;
2757 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2758 blk_finish_plug(&plug
);
2759 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
,
2761 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2762 wait_log_commit(trans
, log_root_tree
,
2763 root_log_ctx
.log_transid
);
2764 mutex_unlock(&log_root_tree
->log_mutex
);
2766 ret
= root_log_ctx
.log_ret
;
2769 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2770 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2772 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2773 wait_log_commit(trans
, log_root_tree
,
2774 root_log_ctx
.log_transid
- 1);
2777 wait_for_writer(trans
, log_root_tree
);
2780 * now that we've moved on to the tree of log tree roots,
2781 * check the full commit flag again
2783 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2784 blk_finish_plug(&plug
);
2785 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2786 btrfs_free_logged_extents(log
, log_transid
);
2787 mutex_unlock(&log_root_tree
->log_mutex
);
2789 goto out_wake_log_root
;
2792 ret
= btrfs_write_marked_extents(log_root_tree
,
2793 &log_root_tree
->dirty_log_pages
,
2794 EXTENT_DIRTY
| EXTENT_NEW
);
2795 blk_finish_plug(&plug
);
2797 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2798 btrfs_abort_transaction(trans
, root
, ret
);
2799 btrfs_free_logged_extents(log
, log_transid
);
2800 mutex_unlock(&log_root_tree
->log_mutex
);
2801 goto out_wake_log_root
;
2803 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2805 ret
= btrfs_wait_marked_extents(log_root_tree
,
2806 &log_root_tree
->dirty_log_pages
,
2807 EXTENT_NEW
| EXTENT_DIRTY
);
2809 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2810 btrfs_free_logged_extents(log
, log_transid
);
2811 mutex_unlock(&log_root_tree
->log_mutex
);
2812 goto out_wake_log_root
;
2814 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2816 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2817 log_root_tree
->node
->start
);
2818 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2819 btrfs_header_level(log_root_tree
->node
));
2821 log_root_tree
->log_transid
++;
2822 mutex_unlock(&log_root_tree
->log_mutex
);
2825 * nobody else is going to jump in and write the the ctree
2826 * super here because the log_commit atomic below is protecting
2827 * us. We must be called with a transaction handle pinning
2828 * the running transaction open, so a full commit can't hop
2829 * in and cause problems either.
2831 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2833 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2834 btrfs_abort_transaction(trans
, root
, ret
);
2835 goto out_wake_log_root
;
2838 mutex_lock(&root
->log_mutex
);
2839 if (root
->last_log_commit
< log_transid
)
2840 root
->last_log_commit
= log_transid
;
2841 mutex_unlock(&root
->log_mutex
);
2845 * We needn't get log_mutex here because we are sure all
2846 * the other tasks are blocked.
2848 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2850 mutex_lock(&log_root_tree
->log_mutex
);
2851 log_root_tree
->log_transid_committed
++;
2852 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2853 mutex_unlock(&log_root_tree
->log_mutex
);
2855 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2856 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2859 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2861 mutex_lock(&root
->log_mutex
);
2862 root
->log_transid_committed
++;
2863 atomic_set(&root
->log_commit
[index1
], 0);
2864 mutex_unlock(&root
->log_mutex
);
2866 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2867 wake_up(&root
->log_commit_wait
[index1
]);
2871 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2872 struct btrfs_root
*log
)
2877 struct walk_control wc
= {
2879 .process_func
= process_one_buffer
2882 ret
= walk_log_tree(trans
, log
, &wc
);
2883 /* I don't think this can happen but just in case */
2885 btrfs_abort_transaction(trans
, log
, ret
);
2888 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2889 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
2894 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2895 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2899 * We may have short-circuited the log tree with the full commit logic
2900 * and left ordered extents on our list, so clear these out to keep us
2901 * from leaking inodes and memory.
2903 btrfs_free_logged_extents(log
, 0);
2904 btrfs_free_logged_extents(log
, 1);
2906 free_extent_buffer(log
->node
);
2911 * free all the extents used by the tree log. This should be called
2912 * at commit time of the full transaction
2914 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2916 if (root
->log_root
) {
2917 free_log_tree(trans
, root
->log_root
);
2918 root
->log_root
= NULL
;
2923 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2924 struct btrfs_fs_info
*fs_info
)
2926 if (fs_info
->log_root_tree
) {
2927 free_log_tree(trans
, fs_info
->log_root_tree
);
2928 fs_info
->log_root_tree
= NULL
;
2934 * If both a file and directory are logged, and unlinks or renames are
2935 * mixed in, we have a few interesting corners:
2937 * create file X in dir Y
2938 * link file X to X.link in dir Y
2940 * unlink file X but leave X.link
2943 * After a crash we would expect only X.link to exist. But file X
2944 * didn't get fsync'd again so the log has back refs for X and X.link.
2946 * We solve this by removing directory entries and inode backrefs from the
2947 * log when a file that was logged in the current transaction is
2948 * unlinked. Any later fsync will include the updated log entries, and
2949 * we'll be able to reconstruct the proper directory items from backrefs.
2951 * This optimizations allows us to avoid relogging the entire inode
2952 * or the entire directory.
2954 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2955 struct btrfs_root
*root
,
2956 const char *name
, int name_len
,
2957 struct inode
*dir
, u64 index
)
2959 struct btrfs_root
*log
;
2960 struct btrfs_dir_item
*di
;
2961 struct btrfs_path
*path
;
2965 u64 dir_ino
= btrfs_ino(dir
);
2967 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2970 ret
= join_running_log_trans(root
);
2974 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2976 log
= root
->log_root
;
2977 path
= btrfs_alloc_path();
2983 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
2984 name
, name_len
, -1);
2990 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2991 bytes_del
+= name_len
;
2997 btrfs_release_path(path
);
2998 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
2999 index
, name
, name_len
, -1);
3005 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3006 bytes_del
+= name_len
;
3013 /* update the directory size in the log to reflect the names
3017 struct btrfs_key key
;
3019 key
.objectid
= dir_ino
;
3021 key
.type
= BTRFS_INODE_ITEM_KEY
;
3022 btrfs_release_path(path
);
3024 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3030 struct btrfs_inode_item
*item
;
3033 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3034 struct btrfs_inode_item
);
3035 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3036 if (i_size
> bytes_del
)
3037 i_size
-= bytes_del
;
3040 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3041 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3044 btrfs_release_path(path
);
3047 btrfs_free_path(path
);
3049 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
3050 if (ret
== -ENOSPC
) {
3051 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3054 btrfs_abort_transaction(trans
, root
, ret
);
3056 btrfs_end_log_trans(root
);
3061 /* see comments for btrfs_del_dir_entries_in_log */
3062 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3063 struct btrfs_root
*root
,
3064 const char *name
, int name_len
,
3065 struct inode
*inode
, u64 dirid
)
3067 struct btrfs_root
*log
;
3071 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
3074 ret
= join_running_log_trans(root
);
3077 log
= root
->log_root
;
3078 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3080 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3082 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3083 if (ret
== -ENOSPC
) {
3084 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3086 } else if (ret
< 0 && ret
!= -ENOENT
)
3087 btrfs_abort_transaction(trans
, root
, ret
);
3088 btrfs_end_log_trans(root
);
3094 * creates a range item in the log for 'dirid'. first_offset and
3095 * last_offset tell us which parts of the key space the log should
3096 * be considered authoritative for.
3098 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3099 struct btrfs_root
*log
,
3100 struct btrfs_path
*path
,
3101 int key_type
, u64 dirid
,
3102 u64 first_offset
, u64 last_offset
)
3105 struct btrfs_key key
;
3106 struct btrfs_dir_log_item
*item
;
3108 key
.objectid
= dirid
;
3109 key
.offset
= first_offset
;
3110 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3111 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3113 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3114 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3118 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3119 struct btrfs_dir_log_item
);
3120 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3121 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3122 btrfs_release_path(path
);
3127 * log all the items included in the current transaction for a given
3128 * directory. This also creates the range items in the log tree required
3129 * to replay anything deleted before the fsync
3131 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3132 struct btrfs_root
*root
, struct inode
*inode
,
3133 struct btrfs_path
*path
,
3134 struct btrfs_path
*dst_path
, int key_type
,
3135 struct btrfs_log_ctx
*ctx
,
3136 u64 min_offset
, u64
*last_offset_ret
)
3138 struct btrfs_key min_key
;
3139 struct btrfs_root
*log
= root
->log_root
;
3140 struct extent_buffer
*src
;
3145 u64 first_offset
= min_offset
;
3146 u64 last_offset
= (u64
)-1;
3147 u64 ino
= btrfs_ino(inode
);
3149 log
= root
->log_root
;
3151 min_key
.objectid
= ino
;
3152 min_key
.type
= key_type
;
3153 min_key
.offset
= min_offset
;
3155 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3158 * we didn't find anything from this transaction, see if there
3159 * is anything at all
3161 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3162 min_key
.objectid
= ino
;
3163 min_key
.type
= key_type
;
3164 min_key
.offset
= (u64
)-1;
3165 btrfs_release_path(path
);
3166 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3168 btrfs_release_path(path
);
3171 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3173 /* if ret == 0 there are items for this type,
3174 * create a range to tell us the last key of this type.
3175 * otherwise, there are no items in this directory after
3176 * *min_offset, and we create a range to indicate that.
3179 struct btrfs_key tmp
;
3180 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3182 if (key_type
== tmp
.type
)
3183 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3188 /* go backward to find any previous key */
3189 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3191 struct btrfs_key tmp
;
3192 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3193 if (key_type
== tmp
.type
) {
3194 first_offset
= tmp
.offset
;
3195 ret
= overwrite_item(trans
, log
, dst_path
,
3196 path
->nodes
[0], path
->slots
[0],
3204 btrfs_release_path(path
);
3206 /* find the first key from this transaction again */
3207 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3208 if (WARN_ON(ret
!= 0))
3212 * we have a block from this transaction, log every item in it
3213 * from our directory
3216 struct btrfs_key tmp
;
3217 src
= path
->nodes
[0];
3218 nritems
= btrfs_header_nritems(src
);
3219 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3220 struct btrfs_dir_item
*di
;
3222 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3224 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3226 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3234 * We must make sure that when we log a directory entry,
3235 * the corresponding inode, after log replay, has a
3236 * matching link count. For example:
3242 * xfs_io -c "fsync" mydir
3244 * <mount fs and log replay>
3246 * Would result in a fsync log that when replayed, our
3247 * file inode would have a link count of 1, but we get
3248 * two directory entries pointing to the same inode.
3249 * After removing one of the names, it would not be
3250 * possible to remove the other name, which resulted
3251 * always in stale file handle errors, and would not
3252 * be possible to rmdir the parent directory, since
3253 * its i_size could never decrement to the value
3254 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3256 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3257 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3259 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3260 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3261 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3262 ctx
->log_new_dentries
= true;
3264 path
->slots
[0] = nritems
;
3267 * look ahead to the next item and see if it is also
3268 * from this directory and from this transaction
3270 ret
= btrfs_next_leaf(root
, path
);
3272 last_offset
= (u64
)-1;
3275 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3276 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3277 last_offset
= (u64
)-1;
3280 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3281 ret
= overwrite_item(trans
, log
, dst_path
,
3282 path
->nodes
[0], path
->slots
[0],
3287 last_offset
= tmp
.offset
;
3292 btrfs_release_path(path
);
3293 btrfs_release_path(dst_path
);
3296 *last_offset_ret
= last_offset
;
3298 * insert the log range keys to indicate where the log
3301 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3302 ino
, first_offset
, last_offset
);
3310 * logging directories is very similar to logging inodes, We find all the items
3311 * from the current transaction and write them to the log.
3313 * The recovery code scans the directory in the subvolume, and if it finds a
3314 * key in the range logged that is not present in the log tree, then it means
3315 * that dir entry was unlinked during the transaction.
3317 * In order for that scan to work, we must include one key smaller than
3318 * the smallest logged by this transaction and one key larger than the largest
3319 * key logged by this transaction.
3321 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3322 struct btrfs_root
*root
, struct inode
*inode
,
3323 struct btrfs_path
*path
,
3324 struct btrfs_path
*dst_path
,
3325 struct btrfs_log_ctx
*ctx
)
3330 int key_type
= BTRFS_DIR_ITEM_KEY
;
3336 ret
= log_dir_items(trans
, root
, inode
, path
,
3337 dst_path
, key_type
, ctx
, min_key
,
3341 if (max_key
== (u64
)-1)
3343 min_key
= max_key
+ 1;
3346 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3347 key_type
= BTRFS_DIR_INDEX_KEY
;
3354 * a helper function to drop items from the log before we relog an
3355 * inode. max_key_type indicates the highest item type to remove.
3356 * This cannot be run for file data extents because it does not
3357 * free the extents they point to.
3359 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3360 struct btrfs_root
*log
,
3361 struct btrfs_path
*path
,
3362 u64 objectid
, int max_key_type
)
3365 struct btrfs_key key
;
3366 struct btrfs_key found_key
;
3369 key
.objectid
= objectid
;
3370 key
.type
= max_key_type
;
3371 key
.offset
= (u64
)-1;
3374 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3375 BUG_ON(ret
== 0); /* Logic error */
3379 if (path
->slots
[0] == 0)
3383 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3386 if (found_key
.objectid
!= objectid
)
3389 found_key
.offset
= 0;
3391 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3394 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3395 path
->slots
[0] - start_slot
+ 1);
3397 * If start slot isn't 0 then we don't need to re-search, we've
3398 * found the last guy with the objectid in this tree.
3400 if (ret
|| start_slot
!= 0)
3402 btrfs_release_path(path
);
3404 btrfs_release_path(path
);
3410 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3411 struct extent_buffer
*leaf
,
3412 struct btrfs_inode_item
*item
,
3413 struct inode
*inode
, int log_inode_only
,
3416 struct btrfs_map_token token
;
3418 btrfs_init_map_token(&token
);
3420 if (log_inode_only
) {
3421 /* set the generation to zero so the recover code
3422 * can tell the difference between an logging
3423 * just to say 'this inode exists' and a logging
3424 * to say 'update this inode with these values'
3426 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3427 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3429 btrfs_set_token_inode_generation(leaf
, item
,
3430 BTRFS_I(inode
)->generation
,
3432 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3435 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3436 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3437 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3438 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3440 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3441 inode
->i_atime
.tv_sec
, &token
);
3442 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3443 inode
->i_atime
.tv_nsec
, &token
);
3445 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3446 inode
->i_mtime
.tv_sec
, &token
);
3447 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3448 inode
->i_mtime
.tv_nsec
, &token
);
3450 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3451 inode
->i_ctime
.tv_sec
, &token
);
3452 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3453 inode
->i_ctime
.tv_nsec
, &token
);
3455 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3458 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3459 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3460 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3461 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3462 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3465 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3466 struct btrfs_root
*log
, struct btrfs_path
*path
,
3467 struct inode
*inode
)
3469 struct btrfs_inode_item
*inode_item
;
3472 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3473 &BTRFS_I(inode
)->location
,
3474 sizeof(*inode_item
));
3475 if (ret
&& ret
!= -EEXIST
)
3477 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3478 struct btrfs_inode_item
);
3479 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3480 btrfs_release_path(path
);
3484 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3485 struct inode
*inode
,
3486 struct btrfs_path
*dst_path
,
3487 struct btrfs_path
*src_path
, u64
*last_extent
,
3488 int start_slot
, int nr
, int inode_only
,
3491 unsigned long src_offset
;
3492 unsigned long dst_offset
;
3493 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3494 struct btrfs_file_extent_item
*extent
;
3495 struct btrfs_inode_item
*inode_item
;
3496 struct extent_buffer
*src
= src_path
->nodes
[0];
3497 struct btrfs_key first_key
, last_key
, key
;
3499 struct btrfs_key
*ins_keys
;
3503 struct list_head ordered_sums
;
3504 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3505 bool has_extents
= false;
3506 bool need_find_last_extent
= true;
3509 INIT_LIST_HEAD(&ordered_sums
);
3511 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3512 nr
* sizeof(u32
), GFP_NOFS
);
3516 first_key
.objectid
= (u64
)-1;
3518 ins_sizes
= (u32
*)ins_data
;
3519 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3521 for (i
= 0; i
< nr
; i
++) {
3522 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3523 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3525 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3526 ins_keys
, ins_sizes
, nr
);
3532 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3533 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3534 dst_path
->slots
[0]);
3536 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3538 if ((i
== (nr
- 1)))
3539 last_key
= ins_keys
[i
];
3541 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3542 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3544 struct btrfs_inode_item
);
3545 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3546 inode
, inode_only
== LOG_INODE_EXISTS
,
3549 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3550 src_offset
, ins_sizes
[i
]);
3554 * We set need_find_last_extent here in case we know we were
3555 * processing other items and then walk into the first extent in
3556 * the inode. If we don't hit an extent then nothing changes,
3557 * we'll do the last search the next time around.
3559 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3561 if (first_key
.objectid
== (u64
)-1)
3562 first_key
= ins_keys
[i
];
3564 need_find_last_extent
= false;
3567 /* take a reference on file data extents so that truncates
3568 * or deletes of this inode don't have to relog the inode
3571 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3574 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3575 struct btrfs_file_extent_item
);
3577 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3580 found_type
= btrfs_file_extent_type(src
, extent
);
3581 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3583 ds
= btrfs_file_extent_disk_bytenr(src
,
3585 /* ds == 0 is a hole */
3589 dl
= btrfs_file_extent_disk_num_bytes(src
,
3591 cs
= btrfs_file_extent_offset(src
, extent
);
3592 cl
= btrfs_file_extent_num_bytes(src
,
3594 if (btrfs_file_extent_compression(src
,
3600 ret
= btrfs_lookup_csums_range(
3601 log
->fs_info
->csum_root
,
3602 ds
+ cs
, ds
+ cs
+ cl
- 1,
3605 btrfs_release_path(dst_path
);
3613 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3614 btrfs_release_path(dst_path
);
3618 * we have to do this after the loop above to avoid changing the
3619 * log tree while trying to change the log tree.
3622 while (!list_empty(&ordered_sums
)) {
3623 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3624 struct btrfs_ordered_sum
,
3627 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3628 list_del(&sums
->list
);
3635 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3637 * We don't have any leafs between our current one and the one
3638 * we processed before that can have file extent items for our
3639 * inode (and have a generation number smaller than our current
3642 need_find_last_extent
= false;
3646 * Because we use btrfs_search_forward we could skip leaves that were
3647 * not modified and then assume *last_extent is valid when it really
3648 * isn't. So back up to the previous leaf and read the end of the last
3649 * extent before we go and fill in holes.
3651 if (need_find_last_extent
) {
3654 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3659 if (src_path
->slots
[0])
3660 src_path
->slots
[0]--;
3661 src
= src_path
->nodes
[0];
3662 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3663 if (key
.objectid
!= btrfs_ino(inode
) ||
3664 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3666 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3667 struct btrfs_file_extent_item
);
3668 if (btrfs_file_extent_type(src
, extent
) ==
3669 BTRFS_FILE_EXTENT_INLINE
) {
3670 len
= btrfs_file_extent_inline_len(src
,
3673 *last_extent
= ALIGN(key
.offset
+ len
,
3676 len
= btrfs_file_extent_num_bytes(src
, extent
);
3677 *last_extent
= key
.offset
+ len
;
3681 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3682 * things could have happened
3684 * 1) A merge could have happened, so we could currently be on a leaf
3685 * that holds what we were copying in the first place.
3686 * 2) A split could have happened, and now not all of the items we want
3687 * are on the same leaf.
3689 * So we need to adjust how we search for holes, we need to drop the
3690 * path and re-search for the first extent key we found, and then walk
3691 * forward until we hit the last one we copied.
3693 if (need_find_last_extent
) {
3694 /* btrfs_prev_leaf could return 1 without releasing the path */
3695 btrfs_release_path(src_path
);
3696 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3701 src
= src_path
->nodes
[0];
3702 i
= src_path
->slots
[0];
3708 * Ok so here we need to go through and fill in any holes we may have
3709 * to make sure that holes are punched for those areas in case they had
3710 * extents previously.
3716 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3717 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3721 src
= src_path
->nodes
[0];
3725 btrfs_item_key_to_cpu(src
, &key
, i
);
3726 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3728 if (key
.objectid
!= btrfs_ino(inode
) ||
3729 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3733 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3734 if (btrfs_file_extent_type(src
, extent
) ==
3735 BTRFS_FILE_EXTENT_INLINE
) {
3736 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3737 extent_end
= ALIGN(key
.offset
+ len
, log
->sectorsize
);
3739 len
= btrfs_file_extent_num_bytes(src
, extent
);
3740 extent_end
= key
.offset
+ len
;
3744 if (*last_extent
== key
.offset
) {
3745 *last_extent
= extent_end
;
3748 offset
= *last_extent
;
3749 len
= key
.offset
- *last_extent
;
3750 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3751 offset
, 0, 0, len
, 0, len
, 0,
3755 *last_extent
= extent_end
;
3758 * Need to let the callers know we dropped the path so they should
3761 if (!ret
&& need_find_last_extent
)
3766 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3768 struct extent_map
*em1
, *em2
;
3770 em1
= list_entry(a
, struct extent_map
, list
);
3771 em2
= list_entry(b
, struct extent_map
, list
);
3773 if (em1
->start
< em2
->start
)
3775 else if (em1
->start
> em2
->start
)
3780 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3781 struct inode
*inode
,
3782 struct btrfs_root
*root
,
3783 const struct extent_map
*em
,
3784 const struct list_head
*logged_list
,
3785 bool *ordered_io_error
)
3787 struct btrfs_ordered_extent
*ordered
;
3788 struct btrfs_root
*log
= root
->log_root
;
3789 u64 mod_start
= em
->mod_start
;
3790 u64 mod_len
= em
->mod_len
;
3791 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3794 LIST_HEAD(ordered_sums
);
3797 *ordered_io_error
= false;
3799 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3800 em
->block_start
== EXTENT_MAP_HOLE
)
3804 * Wait far any ordered extent that covers our extent map. If it
3805 * finishes without an error, first check and see if our csums are on
3806 * our outstanding ordered extents.
3808 list_for_each_entry(ordered
, logged_list
, log_list
) {
3809 struct btrfs_ordered_sum
*sum
;
3814 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3815 mod_start
+ mod_len
<= ordered
->file_offset
)
3818 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3819 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3820 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3821 const u64 start
= ordered
->file_offset
;
3822 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3824 WARN_ON(ordered
->inode
!= inode
);
3825 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3828 wait_event(ordered
->wait
,
3829 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3830 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3832 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3834 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3835 * i_mapping flags, so that the next fsync won't get
3836 * an outdated io error too.
3838 btrfs_inode_check_errors(inode
);
3839 *ordered_io_error
= true;
3843 * We are going to copy all the csums on this ordered extent, so
3844 * go ahead and adjust mod_start and mod_len in case this
3845 * ordered extent has already been logged.
3847 if (ordered
->file_offset
> mod_start
) {
3848 if (ordered
->file_offset
+ ordered
->len
>=
3849 mod_start
+ mod_len
)
3850 mod_len
= ordered
->file_offset
- mod_start
;
3852 * If we have this case
3854 * |--------- logged extent ---------|
3855 * |----- ordered extent ----|
3857 * Just don't mess with mod_start and mod_len, we'll
3858 * just end up logging more csums than we need and it
3862 if (ordered
->file_offset
+ ordered
->len
<
3863 mod_start
+ mod_len
) {
3864 mod_len
= (mod_start
+ mod_len
) -
3865 (ordered
->file_offset
+ ordered
->len
);
3866 mod_start
= ordered
->file_offset
+
3877 * To keep us from looping for the above case of an ordered
3878 * extent that falls inside of the logged extent.
3880 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
3884 if (ordered
->csum_bytes_left
) {
3885 btrfs_start_ordered_extent(inode
, ordered
, 0);
3886 wait_event(ordered
->wait
,
3887 ordered
->csum_bytes_left
== 0);
3890 list_for_each_entry(sum
, &ordered
->list
, list
) {
3891 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
3897 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
3900 if (em
->compress_type
) {
3902 csum_len
= max(em
->block_len
, em
->orig_block_len
);
3904 csum_offset
= mod_start
- em
->start
;
3908 /* block start is already adjusted for the file extent offset. */
3909 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
3910 em
->block_start
+ csum_offset
,
3911 em
->block_start
+ csum_offset
+
3912 csum_len
- 1, &ordered_sums
, 0);
3916 while (!list_empty(&ordered_sums
)) {
3917 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3918 struct btrfs_ordered_sum
,
3921 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3922 list_del(&sums
->list
);
3929 static int log_one_extent(struct btrfs_trans_handle
*trans
,
3930 struct inode
*inode
, struct btrfs_root
*root
,
3931 const struct extent_map
*em
,
3932 struct btrfs_path
*path
,
3933 const struct list_head
*logged_list
,
3934 struct btrfs_log_ctx
*ctx
)
3936 struct btrfs_root
*log
= root
->log_root
;
3937 struct btrfs_file_extent_item
*fi
;
3938 struct extent_buffer
*leaf
;
3939 struct btrfs_map_token token
;
3940 struct btrfs_key key
;
3941 u64 extent_offset
= em
->start
- em
->orig_start
;
3944 int extent_inserted
= 0;
3945 bool ordered_io_err
= false;
3947 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
3952 if (ordered_io_err
) {
3957 btrfs_init_map_token(&token
);
3959 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
3960 em
->start
+ em
->len
, NULL
, 0, 1,
3961 sizeof(*fi
), &extent_inserted
);
3965 if (!extent_inserted
) {
3966 key
.objectid
= btrfs_ino(inode
);
3967 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3968 key
.offset
= em
->start
;
3970 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
3975 leaf
= path
->nodes
[0];
3976 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3977 struct btrfs_file_extent_item
);
3979 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
3981 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3982 btrfs_set_token_file_extent_type(leaf
, fi
,
3983 BTRFS_FILE_EXTENT_PREALLOC
,
3986 btrfs_set_token_file_extent_type(leaf
, fi
,
3987 BTRFS_FILE_EXTENT_REG
,
3990 block_len
= max(em
->block_len
, em
->orig_block_len
);
3991 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
3992 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
3995 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
3997 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
3998 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4000 extent_offset
, &token
);
4001 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4004 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4005 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4009 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4010 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4011 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4012 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4014 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4015 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4016 btrfs_mark_buffer_dirty(leaf
);
4018 btrfs_release_path(path
);
4023 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4024 struct btrfs_root
*root
,
4025 struct inode
*inode
,
4026 struct btrfs_path
*path
,
4027 struct list_head
*logged_list
,
4028 struct btrfs_log_ctx
*ctx
)
4030 struct extent_map
*em
, *n
;
4031 struct list_head extents
;
4032 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
4037 INIT_LIST_HEAD(&extents
);
4039 write_lock(&tree
->lock
);
4040 test_gen
= root
->fs_info
->last_trans_committed
;
4042 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4043 list_del_init(&em
->list
);
4046 * Just an arbitrary number, this can be really CPU intensive
4047 * once we start getting a lot of extents, and really once we
4048 * have a bunch of extents we just want to commit since it will
4051 if (++num
> 32768) {
4052 list_del_init(&tree
->modified_extents
);
4057 if (em
->generation
<= test_gen
)
4059 /* Need a ref to keep it from getting evicted from cache */
4060 atomic_inc(&em
->refs
);
4061 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4062 list_add_tail(&em
->list
, &extents
);
4066 list_sort(NULL
, &extents
, extent_cmp
);
4069 while (!list_empty(&extents
)) {
4070 em
= list_entry(extents
.next
, struct extent_map
, list
);
4072 list_del_init(&em
->list
);
4075 * If we had an error we just need to delete everybody from our
4079 clear_em_logging(tree
, em
);
4080 free_extent_map(em
);
4084 write_unlock(&tree
->lock
);
4086 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4088 write_lock(&tree
->lock
);
4089 clear_em_logging(tree
, em
);
4090 free_extent_map(em
);
4092 WARN_ON(!list_empty(&extents
));
4093 write_unlock(&tree
->lock
);
4095 btrfs_release_path(path
);
4099 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
4100 struct btrfs_path
*path
, u64
*size_ret
)
4102 struct btrfs_key key
;
4105 key
.objectid
= btrfs_ino(inode
);
4106 key
.type
= BTRFS_INODE_ITEM_KEY
;
4109 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4112 } else if (ret
> 0) {
4115 struct btrfs_inode_item
*item
;
4117 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4118 struct btrfs_inode_item
);
4119 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4122 btrfs_release_path(path
);
4126 /* log a single inode in the tree log.
4127 * At least one parent directory for this inode must exist in the tree
4128 * or be logged already.
4130 * Any items from this inode changed by the current transaction are copied
4131 * to the log tree. An extra reference is taken on any extents in this
4132 * file, allowing us to avoid a whole pile of corner cases around logging
4133 * blocks that have been removed from the tree.
4135 * See LOG_INODE_ALL and related defines for a description of what inode_only
4138 * This handles both files and directories.
4140 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4141 struct btrfs_root
*root
, struct inode
*inode
,
4145 struct btrfs_log_ctx
*ctx
)
4147 struct btrfs_path
*path
;
4148 struct btrfs_path
*dst_path
;
4149 struct btrfs_key min_key
;
4150 struct btrfs_key max_key
;
4151 struct btrfs_root
*log
= root
->log_root
;
4152 struct extent_buffer
*src
= NULL
;
4153 LIST_HEAD(logged_list
);
4154 u64 last_extent
= 0;
4158 int ins_start_slot
= 0;
4160 bool fast_search
= false;
4161 u64 ino
= btrfs_ino(inode
);
4162 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4163 u64 logged_isize
= 0;
4165 path
= btrfs_alloc_path();
4168 dst_path
= btrfs_alloc_path();
4170 btrfs_free_path(path
);
4174 min_key
.objectid
= ino
;
4175 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4178 max_key
.objectid
= ino
;
4181 /* today the code can only do partial logging of directories */
4182 if (S_ISDIR(inode
->i_mode
) ||
4183 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4184 &BTRFS_I(inode
)->runtime_flags
) &&
4185 inode_only
== LOG_INODE_EXISTS
))
4186 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4188 max_key
.type
= (u8
)-1;
4189 max_key
.offset
= (u64
)-1;
4192 * Only run delayed items if we are a dir or a new file.
4193 * Otherwise commit the delayed inode only, which is needed in
4194 * order for the log replay code to mark inodes for link count
4195 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4197 if (S_ISDIR(inode
->i_mode
) ||
4198 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
)
4199 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4201 ret
= btrfs_commit_inode_delayed_inode(inode
);
4204 btrfs_free_path(path
);
4205 btrfs_free_path(dst_path
);
4209 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4211 btrfs_get_logged_extents(inode
, &logged_list
, start
, end
);
4214 * a brute force approach to making sure we get the most uptodate
4215 * copies of everything.
4217 if (S_ISDIR(inode
->i_mode
)) {
4218 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4220 if (inode_only
== LOG_INODE_EXISTS
)
4221 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4222 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4224 if (inode_only
== LOG_INODE_EXISTS
) {
4226 * Make sure the new inode item we write to the log has
4227 * the same isize as the current one (if it exists).
4228 * This is necessary to prevent data loss after log
4229 * replay, and also to prevent doing a wrong expanding
4230 * truncate - for e.g. create file, write 4K into offset
4231 * 0, fsync, write 4K into offset 4096, add hard link,
4232 * fsync some other file (to sync log), power fail - if
4233 * we use the inode's current i_size, after log replay
4234 * we get a 8Kb file, with the last 4Kb extent as a hole
4235 * (zeroes), as if an expanding truncate happened,
4236 * instead of getting a file of 4Kb only.
4238 err
= logged_inode_size(log
, inode
, path
,
4243 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4244 &BTRFS_I(inode
)->runtime_flags
)) {
4245 if (inode_only
== LOG_INODE_EXISTS
) {
4246 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4247 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4250 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4251 &BTRFS_I(inode
)->runtime_flags
);
4252 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4253 &BTRFS_I(inode
)->runtime_flags
);
4255 ret
= btrfs_truncate_inode_items(trans
,
4261 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4262 &BTRFS_I(inode
)->runtime_flags
) ||
4263 inode_only
== LOG_INODE_EXISTS
) {
4264 if (inode_only
== LOG_INODE_ALL
)
4266 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4267 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4270 if (inode_only
== LOG_INODE_ALL
)
4272 ret
= log_inode_item(trans
, log
, dst_path
, inode
);
4288 ret
= btrfs_search_forward(root
, &min_key
,
4289 path
, trans
->transid
);
4293 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4294 if (min_key
.objectid
!= ino
)
4296 if (min_key
.type
> max_key
.type
)
4299 src
= path
->nodes
[0];
4300 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4303 } else if (!ins_nr
) {
4304 ins_start_slot
= path
->slots
[0];
4309 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4310 ins_start_slot
, ins_nr
, inode_only
,
4318 btrfs_release_path(path
);
4322 ins_start_slot
= path
->slots
[0];
4325 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4327 if (path
->slots
[0] < nritems
) {
4328 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4333 ret
= copy_items(trans
, inode
, dst_path
, path
,
4334 &last_extent
, ins_start_slot
,
4335 ins_nr
, inode_only
, logged_isize
);
4343 btrfs_release_path(path
);
4345 if (min_key
.offset
< (u64
)-1) {
4347 } else if (min_key
.type
< max_key
.type
) {
4355 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4356 ins_start_slot
, ins_nr
, inode_only
,
4367 btrfs_release_path(path
);
4368 btrfs_release_path(dst_path
);
4371 * Some ordered extents started by fsync might have completed
4372 * before we collected the ordered extents in logged_list, which
4373 * means they're gone, not in our logged_list nor in the inode's
4374 * ordered tree. We want the application/user space to know an
4375 * error happened while attempting to persist file data so that
4376 * it can take proper action. If such error happened, we leave
4377 * without writing to the log tree and the fsync must report the
4378 * file data write error and not commit the current transaction.
4380 err
= btrfs_inode_check_errors(inode
);
4385 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4391 } else if (inode_only
== LOG_INODE_ALL
) {
4392 struct extent_map
*em
, *n
;
4394 write_lock(&em_tree
->lock
);
4396 * We can't just remove every em if we're called for a ranged
4397 * fsync - that is, one that doesn't cover the whole possible
4398 * file range (0 to LLONG_MAX). This is because we can have
4399 * em's that fall outside the range we're logging and therefore
4400 * their ordered operations haven't completed yet
4401 * (btrfs_finish_ordered_io() not invoked yet). This means we
4402 * didn't get their respective file extent item in the fs/subvol
4403 * tree yet, and need to let the next fast fsync (one which
4404 * consults the list of modified extent maps) find the em so
4405 * that it logs a matching file extent item and waits for the
4406 * respective ordered operation to complete (if it's still
4409 * Removing every em outside the range we're logging would make
4410 * the next fast fsync not log their matching file extent items,
4411 * therefore making us lose data after a log replay.
4413 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4415 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4417 if (em
->mod_start
>= start
&& mod_end
<= end
)
4418 list_del_init(&em
->list
);
4420 write_unlock(&em_tree
->lock
);
4423 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
4424 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
4432 spin_lock(&BTRFS_I(inode
)->lock
);
4433 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4434 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
4435 spin_unlock(&BTRFS_I(inode
)->lock
);
4438 btrfs_put_logged_extents(&logged_list
);
4440 btrfs_submit_logged_extents(&logged_list
, log
);
4441 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4443 btrfs_free_path(path
);
4444 btrfs_free_path(dst_path
);
4449 * follow the dentry parent pointers up the chain and see if any
4450 * of the directories in it require a full commit before they can
4451 * be logged. Returns zero if nothing special needs to be done or 1 if
4452 * a full commit is required.
4454 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
4455 struct inode
*inode
,
4456 struct dentry
*parent
,
4457 struct super_block
*sb
,
4461 struct btrfs_root
*root
;
4462 struct dentry
*old_parent
= NULL
;
4463 struct inode
*orig_inode
= inode
;
4466 * for regular files, if its inode is already on disk, we don't
4467 * have to worry about the parents at all. This is because
4468 * we can use the last_unlink_trans field to record renames
4469 * and other fun in this file.
4471 if (S_ISREG(inode
->i_mode
) &&
4472 BTRFS_I(inode
)->generation
<= last_committed
&&
4473 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
4476 if (!S_ISDIR(inode
->i_mode
)) {
4477 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
4479 inode
= d_inode(parent
);
4484 * If we are logging a directory then we start with our inode,
4485 * not our parents inode, so we need to skipp setting the
4486 * logged_trans so that further down in the log code we don't
4487 * think this inode has already been logged.
4489 if (inode
!= orig_inode
)
4490 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4493 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
4494 root
= BTRFS_I(inode
)->root
;
4497 * make sure any commits to the log are forced
4498 * to be full commits
4500 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4505 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
4508 if (IS_ROOT(parent
))
4511 parent
= dget_parent(parent
);
4513 old_parent
= parent
;
4514 inode
= d_inode(parent
);
4522 struct btrfs_dir_list
{
4524 struct list_head list
;
4528 * Log the inodes of the new dentries of a directory. See log_dir_items() for
4529 * details about the why it is needed.
4530 * This is a recursive operation - if an existing dentry corresponds to a
4531 * directory, that directory's new entries are logged too (same behaviour as
4532 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4533 * the dentries point to we do not lock their i_mutex, otherwise lockdep
4534 * complains about the following circular lock dependency / possible deadlock:
4538 * lock(&type->i_mutex_dir_key#3/2);
4539 * lock(sb_internal#2);
4540 * lock(&type->i_mutex_dir_key#3/2);
4541 * lock(&sb->s_type->i_mutex_key#14);
4543 * Where sb_internal is the lock (a counter that works as a lock) acquired by
4544 * sb_start_intwrite() in btrfs_start_transaction().
4545 * Not locking i_mutex of the inodes is still safe because:
4547 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4548 * that while logging the inode new references (names) are added or removed
4549 * from the inode, leaving the logged inode item with a link count that does
4550 * not match the number of logged inode reference items. This is fine because
4551 * at log replay time we compute the real number of links and correct the
4552 * link count in the inode item (see replay_one_buffer() and
4553 * link_to_fixup_dir());
4555 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4556 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4557 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4558 * has a size that doesn't match the sum of the lengths of all the logged
4559 * names. This does not result in a problem because if a dir_item key is
4560 * logged but its matching dir_index key is not logged, at log replay time we
4561 * don't use it to replay the respective name (see replay_one_name()). On the
4562 * other hand if only the dir_index key ends up being logged, the respective
4563 * name is added to the fs/subvol tree with both the dir_item and dir_index
4564 * keys created (see replay_one_name()).
4565 * The directory's inode item with a wrong i_size is not a problem as well,
4566 * since we don't use it at log replay time to set the i_size in the inode
4567 * item of the fs/subvol tree (see overwrite_item()).
4569 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
4570 struct btrfs_root
*root
,
4571 struct inode
*start_inode
,
4572 struct btrfs_log_ctx
*ctx
)
4574 struct btrfs_root
*log
= root
->log_root
;
4575 struct btrfs_path
*path
;
4576 LIST_HEAD(dir_list
);
4577 struct btrfs_dir_list
*dir_elem
;
4580 path
= btrfs_alloc_path();
4584 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
4586 btrfs_free_path(path
);
4589 dir_elem
->ino
= btrfs_ino(start_inode
);
4590 list_add_tail(&dir_elem
->list
, &dir_list
);
4592 while (!list_empty(&dir_list
)) {
4593 struct extent_buffer
*leaf
;
4594 struct btrfs_key min_key
;
4598 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
4601 goto next_dir_inode
;
4603 min_key
.objectid
= dir_elem
->ino
;
4604 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
4607 btrfs_release_path(path
);
4608 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
4610 goto next_dir_inode
;
4611 } else if (ret
> 0) {
4613 goto next_dir_inode
;
4617 leaf
= path
->nodes
[0];
4618 nritems
= btrfs_header_nritems(leaf
);
4619 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
4620 struct btrfs_dir_item
*di
;
4621 struct btrfs_key di_key
;
4622 struct inode
*di_inode
;
4623 struct btrfs_dir_list
*new_dir_elem
;
4624 int log_mode
= LOG_INODE_EXISTS
;
4627 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
4628 if (min_key
.objectid
!= dir_elem
->ino
||
4629 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
4630 goto next_dir_inode
;
4632 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
4633 type
= btrfs_dir_type(leaf
, di
);
4634 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
4635 type
!= BTRFS_FT_DIR
)
4637 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
4638 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
4641 di_inode
= btrfs_iget(root
->fs_info
->sb
, &di_key
,
4643 if (IS_ERR(di_inode
)) {
4644 ret
= PTR_ERR(di_inode
);
4645 goto next_dir_inode
;
4648 if (btrfs_inode_in_log(di_inode
, trans
->transid
)) {
4653 ctx
->log_new_dentries
= false;
4654 if (type
== BTRFS_FT_DIR
)
4655 log_mode
= LOG_INODE_ALL
;
4656 btrfs_release_path(path
);
4657 ret
= btrfs_log_inode(trans
, root
, di_inode
,
4658 log_mode
, 0, LLONG_MAX
, ctx
);
4661 goto next_dir_inode
;
4662 if (ctx
->log_new_dentries
) {
4663 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
4665 if (!new_dir_elem
) {
4667 goto next_dir_inode
;
4669 new_dir_elem
->ino
= di_key
.objectid
;
4670 list_add_tail(&new_dir_elem
->list
, &dir_list
);
4675 ret
= btrfs_next_leaf(log
, path
);
4677 goto next_dir_inode
;
4678 } else if (ret
> 0) {
4680 goto next_dir_inode
;
4684 if (min_key
.offset
< (u64
)-1) {
4689 list_del(&dir_elem
->list
);
4693 btrfs_free_path(path
);
4698 * helper function around btrfs_log_inode to make sure newly created
4699 * parent directories also end up in the log. A minimal inode and backref
4700 * only logging is done of any parent directories that are older than
4701 * the last committed transaction
4703 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
4704 struct btrfs_root
*root
, struct inode
*inode
,
4705 struct dentry
*parent
,
4709 struct btrfs_log_ctx
*ctx
)
4711 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
4712 struct super_block
*sb
;
4713 struct dentry
*old_parent
= NULL
;
4715 u64 last_committed
= root
->fs_info
->last_trans_committed
;
4716 const struct dentry
* const first_parent
= parent
;
4717 const bool did_unlink
= (BTRFS_I(inode
)->last_unlink_trans
>
4719 bool log_dentries
= false;
4720 struct inode
*orig_inode
= inode
;
4724 if (btrfs_test_opt(root
, NOTREELOG
)) {
4730 * The prev transaction commit doesn't complete, we need do
4731 * full commit by ourselves.
4733 if (root
->fs_info
->last_trans_log_full_commit
>
4734 root
->fs_info
->last_trans_committed
) {
4739 if (root
!= BTRFS_I(inode
)->root
||
4740 btrfs_root_refs(&root
->root_item
) == 0) {
4745 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
4746 sb
, last_committed
);
4750 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
4751 ret
= BTRFS_NO_LOG_SYNC
;
4755 ret
= start_log_trans(trans
, root
, ctx
);
4759 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
4764 * for regular files, if its inode is already on disk, we don't
4765 * have to worry about the parents at all. This is because
4766 * we can use the last_unlink_trans field to record renames
4767 * and other fun in this file.
4769 if (S_ISREG(inode
->i_mode
) &&
4770 BTRFS_I(inode
)->generation
<= last_committed
&&
4771 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
4776 if (S_ISDIR(inode
->i_mode
) && ctx
&& ctx
->log_new_dentries
)
4777 log_dentries
= true;
4780 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
4783 inode
= d_inode(parent
);
4784 if (root
!= BTRFS_I(inode
)->root
)
4788 * On unlink we must make sure our immediate parent directory
4789 * inode is fully logged. This is to prevent leaving dangling
4790 * directory index entries and a wrong directory inode's i_size.
4791 * Not doing so can result in a directory being impossible to
4792 * delete after log replay (rmdir will always fail with error
4795 if (did_unlink
&& parent
== first_parent
)
4796 inode_only
= LOG_INODE_ALL
;
4798 inode_only
= LOG_INODE_EXISTS
;
4800 if (BTRFS_I(inode
)->generation
>
4801 root
->fs_info
->last_trans_committed
||
4802 inode_only
== LOG_INODE_ALL
) {
4803 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
,
4808 if (IS_ROOT(parent
))
4811 parent
= dget_parent(parent
);
4813 old_parent
= parent
;
4816 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
4822 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4827 btrfs_remove_log_ctx(root
, ctx
);
4828 btrfs_end_log_trans(root
);
4834 * it is not safe to log dentry if the chunk root has added new
4835 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4836 * If this returns 1, you must commit the transaction to safely get your
4839 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
4840 struct btrfs_root
*root
, struct dentry
*dentry
,
4843 struct btrfs_log_ctx
*ctx
)
4845 struct dentry
*parent
= dget_parent(dentry
);
4848 ret
= btrfs_log_inode_parent(trans
, root
, d_inode(dentry
), parent
,
4849 start
, end
, 0, ctx
);
4856 * should be called during mount to recover any replay any log trees
4859 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
4862 struct btrfs_path
*path
;
4863 struct btrfs_trans_handle
*trans
;
4864 struct btrfs_key key
;
4865 struct btrfs_key found_key
;
4866 struct btrfs_key tmp_key
;
4867 struct btrfs_root
*log
;
4868 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
4869 struct walk_control wc
= {
4870 .process_func
= process_one_buffer
,
4874 path
= btrfs_alloc_path();
4878 fs_info
->log_root_recovering
= 1;
4880 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
4881 if (IS_ERR(trans
)) {
4882 ret
= PTR_ERR(trans
);
4889 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
4891 btrfs_error(fs_info
, ret
, "Failed to pin buffers while "
4892 "recovering log root tree.");
4897 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
4898 key
.offset
= (u64
)-1;
4899 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4902 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
4905 btrfs_error(fs_info
, ret
,
4906 "Couldn't find tree log root.");
4910 if (path
->slots
[0] == 0)
4914 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
4916 btrfs_release_path(path
);
4917 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4920 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
4923 btrfs_error(fs_info
, ret
,
4924 "Couldn't read tree log root.");
4928 tmp_key
.objectid
= found_key
.offset
;
4929 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4930 tmp_key
.offset
= (u64
)-1;
4932 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
4933 if (IS_ERR(wc
.replay_dest
)) {
4934 ret
= PTR_ERR(wc
.replay_dest
);
4935 free_extent_buffer(log
->node
);
4936 free_extent_buffer(log
->commit_root
);
4938 btrfs_error(fs_info
, ret
, "Couldn't read target root "
4939 "for tree log recovery.");
4943 wc
.replay_dest
->log_root
= log
;
4944 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
4945 ret
= walk_log_tree(trans
, log
, &wc
);
4947 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
4948 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
4952 key
.offset
= found_key
.offset
- 1;
4953 wc
.replay_dest
->log_root
= NULL
;
4954 free_extent_buffer(log
->node
);
4955 free_extent_buffer(log
->commit_root
);
4961 if (found_key
.offset
== 0)
4964 btrfs_release_path(path
);
4966 /* step one is to pin it all, step two is to replay just inodes */
4969 wc
.process_func
= replay_one_buffer
;
4970 wc
.stage
= LOG_WALK_REPLAY_INODES
;
4973 /* step three is to replay everything */
4974 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
4979 btrfs_free_path(path
);
4981 /* step 4: commit the transaction, which also unpins the blocks */
4982 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
4986 free_extent_buffer(log_root_tree
->node
);
4987 log_root_tree
->log_root
= NULL
;
4988 fs_info
->log_root_recovering
= 0;
4989 kfree(log_root_tree
);
4994 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
4995 btrfs_free_path(path
);
5000 * there are some corner cases where we want to force a full
5001 * commit instead of allowing a directory to be logged.
5003 * They revolve around files there were unlinked from the directory, and
5004 * this function updates the parent directory so that a full commit is
5005 * properly done if it is fsync'd later after the unlinks are done.
5007 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5008 struct inode
*dir
, struct inode
*inode
,
5012 * when we're logging a file, if it hasn't been renamed
5013 * or unlinked, and its inode is fully committed on disk,
5014 * we don't have to worry about walking up the directory chain
5015 * to log its parents.
5017 * So, we use the last_unlink_trans field to put this transid
5018 * into the file. When the file is logged we check it and
5019 * don't log the parents if the file is fully on disk.
5021 if (S_ISREG(inode
->i_mode
))
5022 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5025 * if this directory was already logged any new
5026 * names for this file/dir will get recorded
5029 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
5033 * if the inode we're about to unlink was logged,
5034 * the log will be properly updated for any new names
5036 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
5040 * when renaming files across directories, if the directory
5041 * there we're unlinking from gets fsync'd later on, there's
5042 * no way to find the destination directory later and fsync it
5043 * properly. So, we have to be conservative and force commits
5044 * so the new name gets discovered.
5049 /* we can safely do the unlink without any special recording */
5053 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5057 * Call this after adding a new name for a file and it will properly
5058 * update the log to reflect the new name.
5060 * It will return zero if all goes well, and it will return 1 if a
5061 * full transaction commit is required.
5063 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5064 struct inode
*inode
, struct inode
*old_dir
,
5065 struct dentry
*parent
)
5067 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
5070 * this will force the logging code to walk the dentry chain
5073 if (S_ISREG(inode
->i_mode
))
5074 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5077 * if this inode hasn't been logged and directory we're renaming it
5078 * from hasn't been logged, we don't need to log it
5080 if (BTRFS_I(inode
)->logged_trans
<=
5081 root
->fs_info
->last_trans_committed
&&
5082 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
5083 root
->fs_info
->last_trans_committed
))
5086 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5087 LLONG_MAX
, 1, NULL
);