2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/backing-dev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/gfp.h>
25 #include <linux/pagemap.h>
26 #include <linux/pagevec.h>
27 #include <linux/sched.h>
28 #include <linux/swap.h>
29 #include <linux/uio.h>
30 #include <linux/writeback.h>
33 #include <asm/uaccess.h>
45 * ntfs_file_open - called when an inode is about to be opened
46 * @vi: inode to be opened
47 * @filp: file structure describing the inode
49 * Limit file size to the page cache limit on architectures where unsigned long
50 * is 32-bits. This is the most we can do for now without overflowing the page
51 * cache page index. Doing it this way means we don't run into problems because
52 * of existing too large files. It would be better to allow the user to read
53 * the beginning of the file but I doubt very much anyone is going to hit this
54 * check on a 32-bit architecture, so there is no point in adding the extra
55 * complexity required to support this.
57 * On 64-bit architectures, the check is hopefully optimized away by the
60 * After the check passes, just call generic_file_open() to do its work.
62 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
64 if (sizeof(unsigned long) < 8) {
65 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
68 return generic_file_open(vi
, filp
);
74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75 * @ni: ntfs inode of the attribute to extend
76 * @new_init_size: requested new initialized size in bytes
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * Return 0 on success and -errno on error. In the case that an error is
101 * encountered it is possible that the initialized size will already have been
102 * incremented some way towards @new_init_size but it is guaranteed that if
103 * this is the case, the necessary zeroing will also have happened and that all
104 * metadata is self-consistent.
106 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
107 * held by the caller.
109 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
)
113 pgoff_t index
, end_index
;
115 struct inode
*vi
= VFS_I(ni
);
117 MFT_RECORD
*m
= NULL
;
119 ntfs_attr_search_ctx
*ctx
= NULL
;
120 struct address_space
*mapping
;
121 struct page
*page
= NULL
;
126 read_lock_irqsave(&ni
->size_lock
, flags
);
127 old_init_size
= ni
->initialized_size
;
128 old_i_size
= i_size_read(vi
);
129 BUG_ON(new_init_size
> ni
->allocated_size
);
130 read_unlock_irqrestore(&ni
->size_lock
, flags
);
131 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
132 "old_initialized_size 0x%llx, "
133 "new_initialized_size 0x%llx, i_size 0x%llx.",
134 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
135 (unsigned long long)old_init_size
,
136 (unsigned long long)new_init_size
, old_i_size
);
140 base_ni
= ni
->ext
.base_ntfs_ino
;
141 /* Use goto to reduce indentation and we need the label below anyway. */
142 if (NInoNonResident(ni
))
143 goto do_non_resident_extend
;
144 BUG_ON(old_init_size
!= old_i_size
);
145 m
= map_mft_record(base_ni
);
151 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
152 if (unlikely(!ctx
)) {
156 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
157 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
165 BUG_ON(a
->non_resident
);
166 /* The total length of the attribute value. */
167 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
168 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
170 * Do the zeroing in the mft record and update the attribute size in
173 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
174 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
175 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
176 /* Finally, update the sizes in the vfs and ntfs inodes. */
177 write_lock_irqsave(&ni
->size_lock
, flags
);
178 i_size_write(vi
, new_init_size
);
179 ni
->initialized_size
= new_init_size
;
180 write_unlock_irqrestore(&ni
->size_lock
, flags
);
182 do_non_resident_extend
:
184 * If the new initialized size @new_init_size exceeds the current file
185 * size (vfs inode->i_size), we need to extend the file size to the
186 * new initialized size.
188 if (new_init_size
> old_i_size
) {
189 m
= map_mft_record(base_ni
);
195 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
196 if (unlikely(!ctx
)) {
200 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
201 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
209 BUG_ON(!a
->non_resident
);
210 BUG_ON(old_i_size
!= (loff_t
)
211 sle64_to_cpu(a
->data
.non_resident
.data_size
));
212 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
213 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
214 mark_mft_record_dirty(ctx
->ntfs_ino
);
215 /* Update the file size in the vfs inode. */
216 i_size_write(vi
, new_init_size
);
217 ntfs_attr_put_search_ctx(ctx
);
219 unmap_mft_record(base_ni
);
222 mapping
= vi
->i_mapping
;
223 index
= old_init_size
>> PAGE_CACHE_SHIFT
;
224 end_index
= (new_init_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
227 * Read the page. If the page is not present, this will zero
228 * the uninitialized regions for us.
230 page
= read_mapping_page(mapping
, index
, NULL
);
235 if (unlikely(PageError(page
))) {
236 page_cache_release(page
);
241 * Update the initialized size in the ntfs inode. This is
242 * enough to make ntfs_writepage() work.
244 write_lock_irqsave(&ni
->size_lock
, flags
);
245 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
246 if (ni
->initialized_size
> new_init_size
)
247 ni
->initialized_size
= new_init_size
;
248 write_unlock_irqrestore(&ni
->size_lock
, flags
);
249 /* Set the page dirty so it gets written out. */
250 set_page_dirty(page
);
251 page_cache_release(page
);
253 * Play nice with the vm and the rest of the system. This is
254 * very much needed as we can potentially be modifying the
255 * initialised size from a very small value to a really huge
257 * f = open(somefile, O_TRUNC);
258 * truncate(f, 10GiB);
261 * And this would mean we would be marking dirty hundreds of
262 * thousands of pages or as in the above example more than
263 * two and a half million pages!
265 * TODO: For sparse pages could optimize this workload by using
266 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
267 * would be set in readpage for sparse pages and here we would
268 * not need to mark dirty any pages which have this bit set.
269 * The only caveat is that we have to clear the bit everywhere
270 * where we allocate any clusters that lie in the page or that
273 * TODO: An even greater optimization would be for us to only
274 * call readpage() on pages which are not in sparse regions as
275 * determined from the runlist. This would greatly reduce the
276 * number of pages we read and make dirty in the case of sparse
279 balance_dirty_pages_ratelimited(mapping
);
281 } while (++index
< end_index
);
282 read_lock_irqsave(&ni
->size_lock
, flags
);
283 BUG_ON(ni
->initialized_size
!= new_init_size
);
284 read_unlock_irqrestore(&ni
->size_lock
, flags
);
285 /* Now bring in sync the initialized_size in the mft record. */
286 m
= map_mft_record(base_ni
);
292 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
293 if (unlikely(!ctx
)) {
297 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
298 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
306 BUG_ON(!a
->non_resident
);
307 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
309 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
310 mark_mft_record_dirty(ctx
->ntfs_ino
);
312 ntfs_attr_put_search_ctx(ctx
);
314 unmap_mft_record(base_ni
);
315 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
316 (unsigned long long)new_init_size
, i_size_read(vi
));
319 write_lock_irqsave(&ni
->size_lock
, flags
);
320 ni
->initialized_size
= old_init_size
;
321 write_unlock_irqrestore(&ni
->size_lock
, flags
);
324 ntfs_attr_put_search_ctx(ctx
);
326 unmap_mft_record(base_ni
);
327 ntfs_debug("Failed. Returning error code %i.", err
);
331 static ssize_t
ntfs_prepare_file_for_write(struct kiocb
*iocb
,
332 struct iov_iter
*from
)
338 struct file
*file
= iocb
->ki_filp
;
339 struct inode
*vi
= file_inode(file
);
340 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
341 ntfs_volume
*vol
= ni
->vol
;
343 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
344 "0x%llx, count 0x%zx.", vi
->i_ino
,
345 (unsigned)le32_to_cpu(ni
->type
),
346 (unsigned long long)iocb
->ki_pos
,
347 iov_iter_count(from
));
348 err
= generic_write_checks(iocb
, from
);
349 if (unlikely(err
<= 0))
352 * All checks have passed. Before we start doing any writing we want
353 * to abort any totally illegal writes.
355 BUG_ON(NInoMstProtected(ni
));
356 BUG_ON(ni
->type
!= AT_DATA
);
357 /* If file is encrypted, deny access, just like NT4. */
358 if (NInoEncrypted(ni
)) {
359 /* Only $DATA attributes can be encrypted. */
361 * Reminder for later: Encrypted files are _always_
362 * non-resident so that the content can always be encrypted.
364 ntfs_debug("Denying write access to encrypted file.");
368 if (NInoCompressed(ni
)) {
369 /* Only unnamed $DATA attribute can be compressed. */
370 BUG_ON(ni
->name_len
);
372 * Reminder for later: If resident, the data is not actually
373 * compressed. Only on the switch to non-resident does
374 * compression kick in. This is in contrast to encrypted files
377 ntfs_error(vi
->i_sb
, "Writing to compressed files is not "
378 "implemented yet. Sorry.");
384 base_ni
= ni
->ext
.base_ntfs_ino
;
385 err
= file_remove_suid(file
);
389 * Our ->update_time method always succeeds thus file_update_time()
390 * cannot fail either so there is no need to check the return code.
392 file_update_time(file
);
394 /* The first byte after the last cluster being written to. */
395 end
= (pos
+ iov_iter_count(from
) + vol
->cluster_size_mask
) &
396 ~(u64
)vol
->cluster_size_mask
;
398 * If the write goes beyond the allocated size, extend the allocation
399 * to cover the whole of the write, rounded up to the nearest cluster.
401 read_lock_irqsave(&ni
->size_lock
, flags
);
402 ll
= ni
->allocated_size
;
403 read_unlock_irqrestore(&ni
->size_lock
, flags
);
406 * Extend the allocation without changing the data size.
408 * Note we ensure the allocation is big enough to at least
409 * write some data but we do not require the allocation to be
410 * complete, i.e. it may be partial.
412 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
413 if (likely(ll
>= 0)) {
415 /* If the extension was partial truncate the write. */
417 ntfs_debug("Truncating write to inode 0x%lx, "
418 "attribute type 0x%x, because "
419 "the allocation was only "
420 "partially extended.",
421 vi
->i_ino
, (unsigned)
422 le32_to_cpu(ni
->type
));
423 iov_iter_truncate(from
, ll
- pos
);
427 read_lock_irqsave(&ni
->size_lock
, flags
);
428 ll
= ni
->allocated_size
;
429 read_unlock_irqrestore(&ni
->size_lock
, flags
);
430 /* Perform a partial write if possible or fail. */
432 ntfs_debug("Truncating write to inode 0x%lx "
433 "attribute type 0x%x, because "
434 "extending the allocation "
435 "failed (error %d).",
436 vi
->i_ino
, (unsigned)
437 le32_to_cpu(ni
->type
),
439 iov_iter_truncate(from
, ll
- pos
);
442 ntfs_error(vi
->i_sb
, "Cannot perform "
445 "type 0x%x, because "
449 vi
->i_ino
, (unsigned)
450 le32_to_cpu(ni
->type
),
453 ntfs_debug("Cannot perform write to "
455 "attribute type 0x%x, "
456 "because there is not "
458 vi
->i_ino
, (unsigned)
459 le32_to_cpu(ni
->type
));
465 * If the write starts beyond the initialized size, extend it up to the
466 * beginning of the write and initialize all non-sparse space between
467 * the old initialized size and the new one. This automatically also
468 * increments the vfs inode->i_size to keep it above or equal to the
471 read_lock_irqsave(&ni
->size_lock
, flags
);
472 ll
= ni
->initialized_size
;
473 read_unlock_irqrestore(&ni
->size_lock
, flags
);
476 * Wait for ongoing direct i/o to complete before proceeding.
477 * New direct i/o cannot start as we hold i_mutex.
480 err
= ntfs_attr_extend_initialized(ni
, pos
);
481 if (unlikely(err
< 0))
482 ntfs_error(vi
->i_sb
, "Cannot perform write to inode "
483 "0x%lx, attribute type 0x%x, because "
484 "extending the initialized size "
485 "failed (error %d).", vi
->i_ino
,
486 (unsigned)le32_to_cpu(ni
->type
),
494 * __ntfs_grab_cache_pages - obtain a number of locked pages
495 * @mapping: address space mapping from which to obtain page cache pages
496 * @index: starting index in @mapping at which to begin obtaining pages
497 * @nr_pages: number of page cache pages to obtain
498 * @pages: array of pages in which to return the obtained page cache pages
499 * @cached_page: allocated but as yet unused page
501 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
502 * starting at index @index.
504 * If a page is newly created, add it to lru list
506 * Note, the page locks are obtained in ascending page index order.
508 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
509 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
510 struct page
**cached_page
)
517 pages
[nr
] = find_get_page_flags(mapping
, index
, FGP_LOCK
|
521 *cached_page
= page_cache_alloc(mapping
);
522 if (unlikely(!*cached_page
)) {
527 err
= add_to_page_cache_lru(*cached_page
, mapping
,
534 pages
[nr
] = *cached_page
;
539 } while (nr
< nr_pages
);
544 unlock_page(pages
[--nr
]);
545 page_cache_release(pages
[nr
]);
550 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
554 bh
->b_end_io
= end_buffer_read_sync
;
555 return submit_bh(READ
, bh
);
559 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
560 * @pages: array of destination pages
561 * @nr_pages: number of pages in @pages
562 * @pos: byte position in file at which the write begins
563 * @bytes: number of bytes to be written
565 * This is called for non-resident attributes from ntfs_file_buffered_write()
566 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
567 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
568 * data has not yet been copied into the @pages.
570 * Need to fill any holes with actual clusters, allocate buffers if necessary,
571 * ensure all the buffers are mapped, and bring uptodate any buffers that are
572 * only partially being written to.
574 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
575 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
576 * the same cluster and that they are the entirety of that cluster, and that
577 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
579 * i_size is not to be modified yet.
581 * Return 0 on success or -errno on error.
583 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
584 unsigned nr_pages
, s64 pos
, size_t bytes
)
586 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
588 s64 bh_pos
, vcn_len
, end
, initialized_size
;
592 ntfs_inode
*ni
, *base_ni
= NULL
;
594 runlist_element
*rl
, *rl2
;
595 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
596 ntfs_attr_search_ctx
*ctx
= NULL
;
597 MFT_RECORD
*m
= NULL
;
598 ATTR_RECORD
*a
= NULL
;
600 u32 attr_rec_len
= 0;
601 unsigned blocksize
, u
;
603 bool rl_write_locked
, was_hole
, is_retry
;
604 unsigned char blocksize_bits
;
607 u8 mft_attr_mapped
:1;
610 } status
= { 0, 0, 0, 0 };
615 vi
= pages
[0]->mapping
->host
;
618 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
619 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
620 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
621 (long long)pos
, bytes
);
622 blocksize
= vol
->sb
->s_blocksize
;
623 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
629 * create_empty_buffers() will create uptodate/dirty buffers if
630 * the page is uptodate/dirty.
632 if (!page_has_buffers(page
)) {
633 create_empty_buffers(page
, blocksize
, 0);
634 if (unlikely(!page_has_buffers(page
)))
637 } while (++u
< nr_pages
);
638 rl_write_locked
= false;
645 cpos
= pos
>> vol
->cluster_size_bits
;
647 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
649 * Loop over each page and for each page over each buffer. Use goto to
650 * reduce indentation.
655 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
656 bh
= head
= page_buffers(page
);
662 /* Clear buffer_new on all buffers to reinitialise state. */
664 clear_buffer_new(bh
);
665 bh_end
= bh_pos
+ blocksize
;
666 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
667 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
668 if (buffer_mapped(bh
)) {
670 * The buffer is already mapped. If it is uptodate,
673 if (buffer_uptodate(bh
))
676 * The buffer is not uptodate. If the page is uptodate
677 * set the buffer uptodate and otherwise ignore it.
679 if (PageUptodate(page
)) {
680 set_buffer_uptodate(bh
);
684 * Neither the page nor the buffer are uptodate. If
685 * the buffer is only partially being written to, we
686 * need to read it in before the write, i.e. now.
688 if ((bh_pos
< pos
&& bh_end
> pos
) ||
689 (bh_pos
< end
&& bh_end
> end
)) {
691 * If the buffer is fully or partially within
692 * the initialized size, do an actual read.
693 * Otherwise, simply zero the buffer.
695 read_lock_irqsave(&ni
->size_lock
, flags
);
696 initialized_size
= ni
->initialized_size
;
697 read_unlock_irqrestore(&ni
->size_lock
, flags
);
698 if (bh_pos
< initialized_size
) {
699 ntfs_submit_bh_for_read(bh
);
702 zero_user(page
, bh_offset(bh
),
704 set_buffer_uptodate(bh
);
709 /* Unmapped buffer. Need to map it. */
710 bh
->b_bdev
= vol
->sb
->s_bdev
;
712 * If the current buffer is in the same clusters as the map
713 * cache, there is no need to check the runlist again. The
714 * map cache is made up of @vcn, which is the first cached file
715 * cluster, @vcn_len which is the number of cached file
716 * clusters, @lcn is the device cluster corresponding to @vcn,
717 * and @lcn_block is the block number corresponding to @lcn.
719 cdelta
= bh_cpos
- vcn
;
720 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
723 bh
->b_blocknr
= lcn_block
+
724 (cdelta
<< (vol
->cluster_size_bits
-
726 (bh_cofs
>> blocksize_bits
);
727 set_buffer_mapped(bh
);
729 * If the page is uptodate so is the buffer. If the
730 * buffer is fully outside the write, we ignore it if
731 * it was already allocated and we mark it dirty so it
732 * gets written out if we allocated it. On the other
733 * hand, if we allocated the buffer but we are not
734 * marking it dirty we set buffer_new so we can do
737 if (PageUptodate(page
)) {
738 if (!buffer_uptodate(bh
))
739 set_buffer_uptodate(bh
);
740 if (unlikely(was_hole
)) {
741 /* We allocated the buffer. */
742 unmap_underlying_metadata(bh
->b_bdev
,
744 if (bh_end
<= pos
|| bh_pos
>= end
)
745 mark_buffer_dirty(bh
);
751 /* Page is _not_ uptodate. */
752 if (likely(!was_hole
)) {
754 * Buffer was already allocated. If it is not
755 * uptodate and is only partially being written
756 * to, we need to read it in before the write,
759 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
764 * If the buffer is fully or partially
765 * within the initialized size, do an
766 * actual read. Otherwise, simply zero
769 read_lock_irqsave(&ni
->size_lock
,
771 initialized_size
= ni
->initialized_size
;
772 read_unlock_irqrestore(&ni
->size_lock
,
774 if (bh_pos
< initialized_size
) {
775 ntfs_submit_bh_for_read(bh
);
778 zero_user(page
, bh_offset(bh
),
780 set_buffer_uptodate(bh
);
785 /* We allocated the buffer. */
786 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
788 * If the buffer is fully outside the write, zero it,
789 * set it uptodate, and mark it dirty so it gets
790 * written out. If it is partially being written to,
791 * zero region surrounding the write but leave it to
792 * commit write to do anything else. Finally, if the
793 * buffer is fully being overwritten, do nothing.
795 if (bh_end
<= pos
|| bh_pos
>= end
) {
796 if (!buffer_uptodate(bh
)) {
797 zero_user(page
, bh_offset(bh
),
799 set_buffer_uptodate(bh
);
801 mark_buffer_dirty(bh
);
805 if (!buffer_uptodate(bh
) &&
806 (bh_pos
< pos
|| bh_end
> end
)) {
810 kaddr
= kmap_atomic(page
);
812 pofs
= bh_pos
& ~PAGE_CACHE_MASK
;
813 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
816 pofs
= end
& ~PAGE_CACHE_MASK
;
817 memset(kaddr
+ pofs
, 0, bh_end
- end
);
819 kunmap_atomic(kaddr
);
820 flush_dcache_page(page
);
825 * Slow path: this is the first buffer in the cluster. If it
826 * is outside allocated size and is not uptodate, zero it and
829 read_lock_irqsave(&ni
->size_lock
, flags
);
830 initialized_size
= ni
->allocated_size
;
831 read_unlock_irqrestore(&ni
->size_lock
, flags
);
832 if (bh_pos
> initialized_size
) {
833 if (PageUptodate(page
)) {
834 if (!buffer_uptodate(bh
))
835 set_buffer_uptodate(bh
);
836 } else if (!buffer_uptodate(bh
)) {
837 zero_user(page
, bh_offset(bh
), blocksize
);
838 set_buffer_uptodate(bh
);
844 down_read(&ni
->runlist
.lock
);
848 if (likely(rl
!= NULL
)) {
849 /* Seek to element containing target cluster. */
850 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
852 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
853 if (likely(lcn
>= 0)) {
855 * Successful remap, setup the map cache and
856 * use that to deal with the buffer.
860 vcn_len
= rl
[1].vcn
- vcn
;
861 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
865 * If the number of remaining clusters touched
866 * by the write is smaller or equal to the
867 * number of cached clusters, unlock the
868 * runlist as the map cache will be used from
871 if (likely(vcn
+ vcn_len
>= cend
)) {
872 if (rl_write_locked
) {
873 up_write(&ni
->runlist
.lock
);
874 rl_write_locked
= false;
876 up_read(&ni
->runlist
.lock
);
879 goto map_buffer_cached
;
882 lcn
= LCN_RL_NOT_MAPPED
;
884 * If it is not a hole and not out of bounds, the runlist is
885 * probably unmapped so try to map it now.
887 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
888 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
889 /* Attempt to map runlist. */
890 if (!rl_write_locked
) {
892 * We need the runlist locked for
893 * writing, so if it is locked for
894 * reading relock it now and retry in
895 * case it changed whilst we dropped
898 up_read(&ni
->runlist
.lock
);
899 down_write(&ni
->runlist
.lock
);
900 rl_write_locked
= true;
903 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
910 * If @vcn is out of bounds, pretend @lcn is
911 * LCN_ENOENT. As long as the buffer is out
912 * of bounds this will work fine.
914 if (err
== -ENOENT
) {
917 goto rl_not_mapped_enoent
;
921 /* Failed to map the buffer, even after retrying. */
923 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
924 "attribute type 0x%x, vcn 0x%llx, "
925 "vcn offset 0x%x, because its "
926 "location on disk could not be "
927 "determined%s (error code %i).",
928 ni
->mft_no
, ni
->type
,
929 (unsigned long long)bh_cpos
,
931 vol
->cluster_size_mask
,
932 is_retry
? " even after retrying" : "",
936 rl_not_mapped_enoent
:
938 * The buffer is in a hole or out of bounds. We need to fill
939 * the hole, unless the buffer is in a cluster which is not
940 * touched by the write, in which case we just leave the buffer
941 * unmapped. This can only happen when the cluster size is
942 * less than the page cache size.
944 if (unlikely(vol
->cluster_size
< PAGE_CACHE_SIZE
)) {
945 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
946 vol
->cluster_size_bits
;
947 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
950 * If the buffer is uptodate we skip it. If it
951 * is not but the page is uptodate, we can set
952 * the buffer uptodate. If the page is not
953 * uptodate, we can clear the buffer and set it
954 * uptodate. Whether this is worthwhile is
955 * debatable and this could be removed.
957 if (PageUptodate(page
)) {
958 if (!buffer_uptodate(bh
))
959 set_buffer_uptodate(bh
);
960 } else if (!buffer_uptodate(bh
)) {
961 zero_user(page
, bh_offset(bh
),
963 set_buffer_uptodate(bh
);
969 * Out of bounds buffer is invalid if it was not really out of
972 BUG_ON(lcn
!= LCN_HOLE
);
974 * We need the runlist locked for writing, so if it is locked
975 * for reading relock it now and retry in case it changed
976 * whilst we dropped the lock.
979 if (!rl_write_locked
) {
980 up_read(&ni
->runlist
.lock
);
981 down_write(&ni
->runlist
.lock
);
982 rl_write_locked
= true;
985 /* Find the previous last allocated cluster. */
986 BUG_ON(rl
->lcn
!= LCN_HOLE
);
989 while (--rl2
>= ni
->runlist
.rl
) {
991 lcn
= rl2
->lcn
+ rl2
->length
;
995 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
999 ntfs_debug("Failed to allocate cluster, error code %i.",
1004 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
1009 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
1010 ntfs_error(vol
->sb
, "Failed to release "
1011 "allocated cluster in error "
1012 "code path. Run chkdsk to "
1013 "recover the lost cluster.");
1019 ni
->runlist
.rl
= rl
;
1020 status
.runlist_merged
= 1;
1021 ntfs_debug("Allocated cluster, lcn 0x%llx.",
1022 (unsigned long long)lcn
);
1023 /* Map and lock the mft record and get the attribute record. */
1027 base_ni
= ni
->ext
.base_ntfs_ino
;
1028 m
= map_mft_record(base_ni
);
1033 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1034 if (unlikely(!ctx
)) {
1036 unmap_mft_record(base_ni
);
1039 status
.mft_attr_mapped
= 1;
1040 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1041 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
1042 if (unlikely(err
)) {
1050 * Find the runlist element with which the attribute extent
1051 * starts. Note, we cannot use the _attr_ version because we
1052 * have mapped the mft record. That is ok because we know the
1053 * runlist fragment must be mapped already to have ever gotten
1054 * here, so we can just use the _rl_ version.
1056 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
1057 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
1059 BUG_ON(!rl2
->length
);
1060 BUG_ON(rl2
->lcn
< LCN_HOLE
);
1061 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
1063 * If @highest_vcn is zero, calculate the real highest_vcn
1064 * (which can really be zero).
1067 highest_vcn
= (sle64_to_cpu(
1068 a
->data
.non_resident
.allocated_size
) >>
1069 vol
->cluster_size_bits
) - 1;
1071 * Determine the size of the mapping pairs array for the new
1072 * extent, i.e. the old extent with the hole filled.
1074 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
1076 if (unlikely(mp_size
<= 0)) {
1077 if (!(err
= mp_size
))
1079 ntfs_debug("Failed to get size for mapping pairs "
1080 "array, error code %i.", err
);
1084 * Resize the attribute record to fit the new mapping pairs
1087 attr_rec_len
= le32_to_cpu(a
->length
);
1088 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
1089 a
->data
.non_resident
.mapping_pairs_offset
));
1090 if (unlikely(err
)) {
1091 BUG_ON(err
!= -ENOSPC
);
1092 // TODO: Deal with this by using the current attribute
1093 // and fill it with as much of the mapping pairs
1094 // array as possible. Then loop over each attribute
1095 // extent rewriting the mapping pairs arrays as we go
1096 // along and if when we reach the end we have not
1097 // enough space, try to resize the last attribute
1098 // extent and if even that fails, add a new attribute
1100 // We could also try to resize at each step in the hope
1101 // that we will not need to rewrite every single extent.
1102 // Note, we may need to decompress some extents to fill
1103 // the runlist as we are walking the extents...
1104 ntfs_error(vol
->sb
, "Not enough space in the mft "
1105 "record for the extended attribute "
1106 "record. This case is not "
1107 "implemented yet.");
1111 status
.mp_rebuilt
= 1;
1113 * Generate the mapping pairs array directly into the attribute
1116 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1117 a
->data
.non_resident
.mapping_pairs_offset
),
1118 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1119 if (unlikely(err
)) {
1120 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1121 "attribute type 0x%x, because building "
1122 "the mapping pairs failed with error "
1123 "code %i.", vi
->i_ino
,
1124 (unsigned)le32_to_cpu(ni
->type
), err
);
1128 /* Update the highest_vcn but only if it was not set. */
1129 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1130 a
->data
.non_resident
.highest_vcn
=
1131 cpu_to_sle64(highest_vcn
);
1133 * If the attribute is sparse/compressed, update the compressed
1134 * size in the ntfs_inode structure and the attribute record.
1136 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1138 * If we are not in the first attribute extent, switch
1139 * to it, but first ensure the changes will make it to
1142 if (a
->data
.non_resident
.lowest_vcn
) {
1143 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1144 mark_mft_record_dirty(ctx
->ntfs_ino
);
1145 ntfs_attr_reinit_search_ctx(ctx
);
1146 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1147 ni
->name_len
, CASE_SENSITIVE
,
1149 if (unlikely(err
)) {
1150 status
.attr_switched
= 1;
1153 /* @m is not used any more so do not set it. */
1156 write_lock_irqsave(&ni
->size_lock
, flags
);
1157 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1158 a
->data
.non_resident
.compressed_size
=
1159 cpu_to_sle64(ni
->itype
.compressed
.size
);
1160 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1162 /* Ensure the changes make it to disk. */
1163 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1164 mark_mft_record_dirty(ctx
->ntfs_ino
);
1165 ntfs_attr_put_search_ctx(ctx
);
1166 unmap_mft_record(base_ni
);
1167 /* Successfully filled the hole. */
1168 status
.runlist_merged
= 0;
1169 status
.mft_attr_mapped
= 0;
1170 status
.mp_rebuilt
= 0;
1171 /* Setup the map cache and use that to deal with the buffer. */
1175 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1178 * If the number of remaining clusters in the @pages is smaller
1179 * or equal to the number of cached clusters, unlock the
1180 * runlist as the map cache will be used from now on.
1182 if (likely(vcn
+ vcn_len
>= cend
)) {
1183 up_write(&ni
->runlist
.lock
);
1184 rl_write_locked
= false;
1187 goto map_buffer_cached
;
1188 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1189 /* If there are no errors, do the next page. */
1190 if (likely(!err
&& ++u
< nr_pages
))
1192 /* If there are no errors, release the runlist lock if we took it. */
1194 if (unlikely(rl_write_locked
)) {
1195 up_write(&ni
->runlist
.lock
);
1196 rl_write_locked
= false;
1197 } else if (unlikely(rl
))
1198 up_read(&ni
->runlist
.lock
);
1201 /* If we issued read requests, let them complete. */
1202 read_lock_irqsave(&ni
->size_lock
, flags
);
1203 initialized_size
= ni
->initialized_size
;
1204 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1205 while (wait_bh
> wait
) {
1208 if (likely(buffer_uptodate(bh
))) {
1210 bh_pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1213 * If the buffer overflows the initialized size, need
1214 * to zero the overflowing region.
1216 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1219 if (likely(bh_pos
< initialized_size
))
1220 ofs
= initialized_size
- bh_pos
;
1221 zero_user_segment(page
, bh_offset(bh
) + ofs
,
1224 } else /* if (unlikely(!buffer_uptodate(bh))) */
1228 /* Clear buffer_new on all buffers. */
1231 bh
= head
= page_buffers(pages
[u
]);
1234 clear_buffer_new(bh
);
1235 } while ((bh
= bh
->b_this_page
) != head
);
1236 } while (++u
< nr_pages
);
1237 ntfs_debug("Done.");
1240 if (status
.attr_switched
) {
1241 /* Get back to the attribute extent we modified. */
1242 ntfs_attr_reinit_search_ctx(ctx
);
1243 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1244 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1245 ntfs_error(vol
->sb
, "Failed to find required "
1246 "attribute extent of attribute in "
1247 "error code path. Run chkdsk to "
1249 write_lock_irqsave(&ni
->size_lock
, flags
);
1250 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1251 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1252 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1253 mark_mft_record_dirty(ctx
->ntfs_ino
);
1255 * The only thing that is now wrong is the compressed
1256 * size of the base attribute extent which chkdsk
1257 * should be able to fix.
1263 status
.attr_switched
= 0;
1267 * If the runlist has been modified, need to restore it by punching a
1268 * hole into it and we then need to deallocate the on-disk cluster as
1269 * well. Note, we only modify the runlist if we are able to generate a
1270 * new mapping pairs array, i.e. only when the mapped attribute extent
1273 if (status
.runlist_merged
&& !status
.attr_switched
) {
1274 BUG_ON(!rl_write_locked
);
1275 /* Make the file cluster we allocated sparse in the runlist. */
1276 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1277 ntfs_error(vol
->sb
, "Failed to punch hole into "
1278 "attribute runlist in error code "
1279 "path. Run chkdsk to recover the "
1282 } else /* if (success) */ {
1283 status
.runlist_merged
= 0;
1285 * Deallocate the on-disk cluster we allocated but only
1286 * if we succeeded in punching its vcn out of the
1289 down_write(&vol
->lcnbmp_lock
);
1290 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1291 ntfs_error(vol
->sb
, "Failed to release "
1292 "allocated cluster in error "
1293 "code path. Run chkdsk to "
1294 "recover the lost cluster.");
1297 up_write(&vol
->lcnbmp_lock
);
1301 * Resize the attribute record to its old size and rebuild the mapping
1302 * pairs array. Note, we only can do this if the runlist has been
1303 * restored to its old state which also implies that the mapped
1304 * attribute extent is not switched.
1306 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1307 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1308 ntfs_error(vol
->sb
, "Failed to restore attribute "
1309 "record in error code path. Run "
1310 "chkdsk to recover.");
1312 } else /* if (success) */ {
1313 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1314 le16_to_cpu(a
->data
.non_resident
.
1315 mapping_pairs_offset
), attr_rec_len
-
1316 le16_to_cpu(a
->data
.non_resident
.
1317 mapping_pairs_offset
), ni
->runlist
.rl
,
1318 vcn
, highest_vcn
, NULL
)) {
1319 ntfs_error(vol
->sb
, "Failed to restore "
1320 "mapping pairs array in error "
1321 "code path. Run chkdsk to "
1325 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1326 mark_mft_record_dirty(ctx
->ntfs_ino
);
1329 /* Release the mft record and the attribute. */
1330 if (status
.mft_attr_mapped
) {
1331 ntfs_attr_put_search_ctx(ctx
);
1332 unmap_mft_record(base_ni
);
1334 /* Release the runlist lock. */
1335 if (rl_write_locked
)
1336 up_write(&ni
->runlist
.lock
);
1338 up_read(&ni
->runlist
.lock
);
1340 * Zero out any newly allocated blocks to avoid exposing stale data.
1341 * If BH_New is set, we know that the block was newly allocated above
1342 * and that it has not been fully zeroed and marked dirty yet.
1346 end
= bh_cpos
<< vol
->cluster_size_bits
;
1349 bh
= head
= page_buffers(page
);
1351 if (u
== nr_pages
&&
1352 ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1353 bh_offset(bh
) >= end
)
1355 if (!buffer_new(bh
))
1357 clear_buffer_new(bh
);
1358 if (!buffer_uptodate(bh
)) {
1359 if (PageUptodate(page
))
1360 set_buffer_uptodate(bh
);
1362 zero_user(page
, bh_offset(bh
),
1364 set_buffer_uptodate(bh
);
1367 mark_buffer_dirty(bh
);
1368 } while ((bh
= bh
->b_this_page
) != head
);
1369 } while (++u
<= nr_pages
);
1370 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1374 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1379 * Warning: Do not do the decrement at the same time as the call to
1380 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1381 * decrement never happens so the loop never terminates.
1385 flush_dcache_page(pages
[nr_pages
]);
1386 } while (nr_pages
> 0);
1390 * ntfs_commit_pages_after_non_resident_write - commit the received data
1391 * @pages: array of destination pages
1392 * @nr_pages: number of pages in @pages
1393 * @pos: byte position in file at which the write begins
1394 * @bytes: number of bytes to be written
1396 * See description of ntfs_commit_pages_after_write(), below.
1398 static inline int ntfs_commit_pages_after_non_resident_write(
1399 struct page
**pages
, const unsigned nr_pages
,
1400 s64 pos
, size_t bytes
)
1402 s64 end
, initialized_size
;
1404 ntfs_inode
*ni
, *base_ni
;
1405 struct buffer_head
*bh
, *head
;
1406 ntfs_attr_search_ctx
*ctx
;
1409 unsigned long flags
;
1410 unsigned blocksize
, u
;
1413 vi
= pages
[0]->mapping
->host
;
1415 blocksize
= vi
->i_sb
->s_blocksize
;
1424 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
1425 bh
= head
= page_buffers(page
);
1430 bh_end
= bh_pos
+ blocksize
;
1431 if (bh_end
<= pos
|| bh_pos
>= end
) {
1432 if (!buffer_uptodate(bh
))
1435 set_buffer_uptodate(bh
);
1436 mark_buffer_dirty(bh
);
1438 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1440 * If all buffers are now uptodate but the page is not, set the
1443 if (!partial
&& !PageUptodate(page
))
1444 SetPageUptodate(page
);
1445 } while (++u
< nr_pages
);
1447 * Finally, if we do not need to update initialized_size or i_size we
1450 read_lock_irqsave(&ni
->size_lock
, flags
);
1451 initialized_size
= ni
->initialized_size
;
1452 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1453 if (end
<= initialized_size
) {
1454 ntfs_debug("Done.");
1458 * Update initialized_size/i_size as appropriate, both in the inode and
1464 base_ni
= ni
->ext
.base_ntfs_ino
;
1465 /* Map, pin, and lock the mft record. */
1466 m
= map_mft_record(base_ni
);
1473 BUG_ON(!NInoNonResident(ni
));
1474 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1475 if (unlikely(!ctx
)) {
1479 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1480 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1481 if (unlikely(err
)) {
1487 BUG_ON(!a
->non_resident
);
1488 write_lock_irqsave(&ni
->size_lock
, flags
);
1489 BUG_ON(end
> ni
->allocated_size
);
1490 ni
->initialized_size
= end
;
1491 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1492 if (end
> i_size_read(vi
)) {
1493 i_size_write(vi
, end
);
1494 a
->data
.non_resident
.data_size
=
1495 a
->data
.non_resident
.initialized_size
;
1497 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1498 /* Mark the mft record dirty, so it gets written back. */
1499 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1500 mark_mft_record_dirty(ctx
->ntfs_ino
);
1501 ntfs_attr_put_search_ctx(ctx
);
1502 unmap_mft_record(base_ni
);
1503 ntfs_debug("Done.");
1507 ntfs_attr_put_search_ctx(ctx
);
1509 unmap_mft_record(base_ni
);
1510 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1513 NVolSetErrors(ni
->vol
);
1518 * ntfs_commit_pages_after_write - commit the received data
1519 * @pages: array of destination pages
1520 * @nr_pages: number of pages in @pages
1521 * @pos: byte position in file at which the write begins
1522 * @bytes: number of bytes to be written
1524 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1525 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1526 * locked but not kmap()ped. The source data has already been copied into the
1527 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1528 * the data was copied (for non-resident attributes only) and it returned
1531 * Need to set uptodate and mark dirty all buffers within the boundary of the
1532 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1534 * Setting the buffers dirty ensures that they get written out later when
1535 * ntfs_writepage() is invoked by the VM.
1537 * Finally, we need to update i_size and initialized_size as appropriate both
1538 * in the inode and the mft record.
1540 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1541 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1542 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1543 * that case, it also marks the inode dirty.
1545 * If things have gone as outlined in
1546 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1547 * content modifications here for non-resident attributes. For resident
1548 * attributes we need to do the uptodate bringing here which we combine with
1549 * the copying into the mft record which means we save one atomic kmap.
1551 * Return 0 on success or -errno on error.
1553 static int ntfs_commit_pages_after_write(struct page
**pages
,
1554 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1556 s64 end
, initialized_size
;
1559 ntfs_inode
*ni
, *base_ni
;
1561 ntfs_attr_search_ctx
*ctx
;
1564 char *kattr
, *kaddr
;
1565 unsigned long flags
;
1573 vi
= page
->mapping
->host
;
1575 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1576 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1577 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1578 (long long)pos
, bytes
);
1579 if (NInoNonResident(ni
))
1580 return ntfs_commit_pages_after_non_resident_write(pages
,
1581 nr_pages
, pos
, bytes
);
1582 BUG_ON(nr_pages
> 1);
1584 * Attribute is resident, implying it is not compressed, encrypted, or
1590 base_ni
= ni
->ext
.base_ntfs_ino
;
1591 BUG_ON(NInoNonResident(ni
));
1592 /* Map, pin, and lock the mft record. */
1593 m
= map_mft_record(base_ni
);
1600 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1601 if (unlikely(!ctx
)) {
1605 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1606 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1607 if (unlikely(err
)) {
1613 BUG_ON(a
->non_resident
);
1614 /* The total length of the attribute value. */
1615 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1616 i_size
= i_size_read(vi
);
1617 BUG_ON(attr_len
!= i_size
);
1618 BUG_ON(pos
> attr_len
);
1620 BUG_ON(end
> le32_to_cpu(a
->length
) -
1621 le16_to_cpu(a
->data
.resident
.value_offset
));
1622 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1623 kaddr
= kmap_atomic(page
);
1624 /* Copy the received data from the page to the mft record. */
1625 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1626 /* Update the attribute length if necessary. */
1627 if (end
> attr_len
) {
1629 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1632 * If the page is not uptodate, bring the out of bounds area(s)
1633 * uptodate by copying data from the mft record to the page.
1635 if (!PageUptodate(page
)) {
1637 memcpy(kaddr
, kattr
, pos
);
1639 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1640 /* Zero the region outside the end of the attribute value. */
1641 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1642 flush_dcache_page(page
);
1643 SetPageUptodate(page
);
1645 kunmap_atomic(kaddr
);
1646 /* Update initialized_size/i_size if necessary. */
1647 read_lock_irqsave(&ni
->size_lock
, flags
);
1648 initialized_size
= ni
->initialized_size
;
1649 BUG_ON(end
> ni
->allocated_size
);
1650 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1651 BUG_ON(initialized_size
!= i_size
);
1652 if (end
> initialized_size
) {
1653 write_lock_irqsave(&ni
->size_lock
, flags
);
1654 ni
->initialized_size
= end
;
1655 i_size_write(vi
, end
);
1656 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1658 /* Mark the mft record dirty, so it gets written back. */
1659 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1660 mark_mft_record_dirty(ctx
->ntfs_ino
);
1661 ntfs_attr_put_search_ctx(ctx
);
1662 unmap_mft_record(base_ni
);
1663 ntfs_debug("Done.");
1666 if (err
== -ENOMEM
) {
1667 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1668 "commit the write.");
1669 if (PageUptodate(page
)) {
1670 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1671 "dirty so the write will be retried "
1672 "later on by the VM.");
1674 * Put the page on mapping->dirty_pages, but leave its
1675 * buffers' dirty state as-is.
1677 __set_page_dirty_nobuffers(page
);
1680 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1681 "data has been lost.");
1683 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1684 "with error %i.", err
);
1685 NVolSetErrors(ni
->vol
);
1688 ntfs_attr_put_search_ctx(ctx
);
1690 unmap_mft_record(base_ni
);
1695 * Copy as much as we can into the pages and return the number of bytes which
1696 * were successfully copied. If a fault is encountered then clear the pages
1697 * out to (ofs + bytes) and return the number of bytes which were copied.
1699 static size_t ntfs_copy_from_user_iter(struct page
**pages
, unsigned nr_pages
,
1700 unsigned ofs
, struct iov_iter
*i
, size_t bytes
)
1702 struct page
**last_page
= pages
+ nr_pages
;
1704 struct iov_iter data
= *i
;
1705 unsigned len
, copied
;
1708 len
= PAGE_CACHE_SIZE
- ofs
;
1711 copied
= iov_iter_copy_from_user_atomic(*pages
, &data
, ofs
,
1717 iov_iter_advance(&data
, copied
);
1721 } while (++pages
< last_page
);
1725 /* Zero the rest of the target like __copy_from_user(). */
1726 len
= PAGE_CACHE_SIZE
- copied
;
1730 zero_user(*pages
, copied
, len
);
1733 len
= PAGE_CACHE_SIZE
;
1734 } while (++pages
< last_page
);
1739 * ntfs_perform_write - perform buffered write to a file
1740 * @file: file to write to
1741 * @i: iov_iter with data to write
1742 * @pos: byte offset in file at which to begin writing to
1744 static ssize_t
ntfs_perform_write(struct file
*file
, struct iov_iter
*i
,
1747 struct address_space
*mapping
= file
->f_mapping
;
1748 struct inode
*vi
= mapping
->host
;
1749 ntfs_inode
*ni
= NTFS_I(vi
);
1750 ntfs_volume
*vol
= ni
->vol
;
1751 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1752 struct page
*cached_page
= NULL
;
1756 ssize_t status
, written
= 0;
1759 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1760 "0x%llx, count 0x%lx.", vi
->i_ino
,
1761 (unsigned)le32_to_cpu(ni
->type
),
1762 (unsigned long long)pos
,
1763 (unsigned long)iov_iter_count(i
));
1765 * If a previous ntfs_truncate() failed, repeat it and abort if it
1768 if (unlikely(NInoTruncateFailed(ni
))) {
1772 err
= ntfs_truncate(vi
);
1773 if (err
|| NInoTruncateFailed(ni
)) {
1776 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1777 "0x%lx, attribute type 0x%x, because "
1778 "ntfs_truncate() failed (error code "
1780 (unsigned)le32_to_cpu(ni
->type
), err
);
1785 * Determine the number of pages per cluster for non-resident
1789 if (vol
->cluster_size
> PAGE_CACHE_SIZE
&& NInoNonResident(ni
))
1790 nr_pages
= vol
->cluster_size
>> PAGE_CACHE_SHIFT
;
1794 pgoff_t idx
, start_idx
;
1795 unsigned ofs
, do_pages
, u
;
1798 start_idx
= idx
= pos
>> PAGE_CACHE_SHIFT
;
1799 ofs
= pos
& ~PAGE_CACHE_MASK
;
1800 bytes
= PAGE_CACHE_SIZE
- ofs
;
1803 vcn
= pos
>> vol
->cluster_size_bits
;
1804 if (vcn
!= last_vcn
) {
1807 * Get the lcn of the vcn the write is in. If
1808 * it is a hole, need to lock down all pages in
1811 down_read(&ni
->runlist
.lock
);
1812 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
1813 vol
->cluster_size_bits
, false);
1814 up_read(&ni
->runlist
.lock
);
1815 if (unlikely(lcn
< LCN_HOLE
)) {
1816 if (lcn
== LCN_ENOMEM
)
1820 ntfs_error(vol
->sb
, "Cannot "
1823 "attribute type 0x%x, "
1824 "because the attribute "
1826 vi
->i_ino
, (unsigned)
1827 le32_to_cpu(ni
->type
));
1831 if (lcn
== LCN_HOLE
) {
1832 start_idx
= (pos
& ~(s64
)
1833 vol
->cluster_size_mask
)
1834 >> PAGE_CACHE_SHIFT
;
1835 bytes
= vol
->cluster_size
- (pos
&
1836 vol
->cluster_size_mask
);
1837 do_pages
= nr_pages
;
1841 if (bytes
> iov_iter_count(i
))
1842 bytes
= iov_iter_count(i
);
1845 * Bring in the user page(s) that we will copy from _first_.
1846 * Otherwise there is a nasty deadlock on copying from the same
1847 * page(s) as we are writing to, without it/them being marked
1848 * up-to-date. Note, at present there is nothing to stop the
1849 * pages being swapped out between us bringing them into memory
1850 * and doing the actual copying.
1852 if (unlikely(iov_iter_fault_in_multipages_readable(i
, bytes
))) {
1856 /* Get and lock @do_pages starting at index @start_idx. */
1857 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
1858 pages
, &cached_page
);
1859 if (unlikely(status
))
1862 * For non-resident attributes, we need to fill any holes with
1863 * actual clusters and ensure all bufferes are mapped. We also
1864 * need to bring uptodate any buffers that are only partially
1867 if (NInoNonResident(ni
)) {
1868 status
= ntfs_prepare_pages_for_non_resident_write(
1869 pages
, do_pages
, pos
, bytes
);
1870 if (unlikely(status
)) {
1872 unlock_page(pages
[--do_pages
]);
1873 page_cache_release(pages
[do_pages
]);
1878 u
= (pos
>> PAGE_CACHE_SHIFT
) - pages
[0]->index
;
1879 copied
= ntfs_copy_from_user_iter(pages
+ u
, do_pages
- u
, ofs
,
1881 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
1883 if (likely(copied
== bytes
)) {
1884 status
= ntfs_commit_pages_after_write(pages
, do_pages
,
1890 unlock_page(pages
[--do_pages
]);
1891 page_cache_release(pages
[do_pages
]);
1893 if (unlikely(status
< 0))
1897 if (unlikely(!copied
)) {
1901 * We failed to copy anything. Fall back to single
1902 * segment length write.
1904 * This is needed to avoid possible livelock in the
1905 * case that all segments in the iov cannot be copied
1906 * at once without a pagefault.
1908 sc
= iov_iter_single_seg_count(i
);
1913 iov_iter_advance(i
, copied
);
1916 balance_dirty_pages_ratelimited(mapping
);
1917 if (fatal_signal_pending(current
)) {
1921 } while (iov_iter_count(i
));
1923 page_cache_release(cached_page
);
1924 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
1925 written
? "written" : "status", (unsigned long)written
,
1927 return written
? written
: status
;
1931 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1932 * @iocb: IO state structure
1933 * @from: iov_iter with data to write
1935 * Basically the same as generic_file_write_iter() except that it ends up
1936 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1937 * O_DIRECT is not implemented.
1939 static ssize_t
ntfs_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1941 struct file
*file
= iocb
->ki_filp
;
1942 struct inode
*vi
= file_inode(file
);
1943 ssize_t written
= 0;
1946 mutex_lock(&vi
->i_mutex
);
1947 /* We can write back this queue in page reclaim. */
1948 current
->backing_dev_info
= inode_to_bdi(vi
);
1949 err
= ntfs_prepare_file_for_write(iocb
, from
);
1950 if (iov_iter_count(from
) && !err
)
1951 written
= ntfs_perform_write(file
, from
, iocb
->ki_pos
);
1952 current
->backing_dev_info
= NULL
;
1953 mutex_unlock(&vi
->i_mutex
);
1954 if (likely(written
> 0)) {
1955 err
= generic_write_sync(file
, iocb
->ki_pos
, written
);
1959 iocb
->ki_pos
+= written
;
1960 return written
? written
: err
;
1964 * ntfs_file_fsync - sync a file to disk
1965 * @filp: file to be synced
1966 * @datasync: if non-zero only flush user data and not metadata
1968 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
1969 * system calls. This function is inspired by fs/buffer.c::file_fsync().
1971 * If @datasync is false, write the mft record and all associated extent mft
1972 * records as well as the $DATA attribute and then sync the block device.
1974 * If @datasync is true and the attribute is non-resident, we skip the writing
1975 * of the mft record and all associated extent mft records (this might still
1976 * happen due to the write_inode_now() call).
1978 * Also, if @datasync is true, we do not wait on the inode to be written out
1979 * but we always wait on the page cache pages to be written out.
1981 * Locking: Caller must hold i_mutex on the inode.
1983 * TODO: We should probably also write all attribute/index inodes associated
1984 * with this inode but since we have no simple way of getting to them we ignore
1985 * this problem for now.
1987 static int ntfs_file_fsync(struct file
*filp
, loff_t start
, loff_t end
,
1990 struct inode
*vi
= filp
->f_mapping
->host
;
1993 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
1995 err
= filemap_write_and_wait_range(vi
->i_mapping
, start
, end
);
1998 mutex_lock(&vi
->i_mutex
);
2000 BUG_ON(S_ISDIR(vi
->i_mode
));
2001 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
2002 ret
= __ntfs_write_inode(vi
, 1);
2003 write_inode_now(vi
, !datasync
);
2005 * NOTE: If we were to use mapping->private_list (see ext2 and
2006 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2007 * sync_mapping_buffers(vi->i_mapping).
2009 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
2010 if (unlikely(err
&& !ret
))
2013 ntfs_debug("Done.");
2015 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
2016 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2017 mutex_unlock(&vi
->i_mutex
);
2021 #endif /* NTFS_RW */
2023 const struct file_operations ntfs_file_ops
= {
2024 .llseek
= generic_file_llseek
,
2025 .read_iter
= generic_file_read_iter
,
2027 .write_iter
= ntfs_file_write_iter
,
2028 .fsync
= ntfs_file_fsync
,
2029 #endif /* NTFS_RW */
2030 .mmap
= generic_file_mmap
,
2031 .open
= ntfs_file_open
,
2032 .splice_read
= generic_file_splice_read
,
2035 const struct inode_operations ntfs_file_inode_ops
= {
2037 .setattr
= ntfs_setattr
,
2038 #endif /* NTFS_RW */
2041 const struct file_operations ntfs_empty_file_ops
= {};
2043 const struct inode_operations ntfs_empty_inode_ops
= {};