2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
110 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
111 static void vsock_sk_destruct(struct sock
*sk
);
112 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
114 /* Protocol family. */
115 static struct proto vsock_proto
= {
117 .owner
= THIS_MODULE
,
118 .obj_size
= sizeof(struct vsock_sock
),
121 /* The default peer timeout indicates how long we will wait for a peer response
122 * to a control message.
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126 static const struct vsock_transport
*transport
;
127 static DEFINE_MUTEX(vsock_register_mutex
);
131 /* Get the ID of the local context. This is transport dependent. */
133 int vm_sockets_get_local_cid(void)
135 return transport
->get_local_cid();
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid
);
141 /* Each bound VSocket is stored in the bind hash table and each connected
142 * VSocket is stored in the connected hash table.
144 * Unbound sockets are all put on the same list attached to the end of the hash
145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
146 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147 * represents the list that addr hashes to).
149 * Specifically, we initialize the vsock_bind_table array to a size of
150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
153 * mods with VSOCK_HASH_SIZE to ensure this.
155 #define VSOCK_HASH_SIZE 251
156 #define MAX_PORT_RETRIES 24
158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst) \
164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst) \
166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk) \
168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170 static struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
171 static struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
172 static DEFINE_SPINLOCK(vsock_table_lock
);
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock
*vsk
)
177 struct sock
*sk
= sk_vsock(vsk
);
178 struct sockaddr_vm local_addr
;
180 if (vsock_addr_bound(&vsk
->local_addr
))
182 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
183 return __vsock_bind(sk
, &local_addr
);
186 static void vsock_init_tables(void)
190 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
191 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
193 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
194 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
197 static void __vsock_insert_bound(struct list_head
*list
,
198 struct vsock_sock
*vsk
)
201 list_add(&vsk
->bound_table
, list
);
204 static void __vsock_insert_connected(struct list_head
*list
,
205 struct vsock_sock
*vsk
)
208 list_add(&vsk
->connected_table
, list
);
211 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
213 list_del_init(&vsk
->bound_table
);
217 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
219 list_del_init(&vsk
->connected_table
);
223 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
225 struct vsock_sock
*vsk
;
227 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
)
228 if (addr
->svm_port
== vsk
->local_addr
.svm_port
)
229 return sk_vsock(vsk
);
234 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
235 struct sockaddr_vm
*dst
)
237 struct vsock_sock
*vsk
;
239 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
241 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
242 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
243 return sk_vsock(vsk
);
250 static bool __vsock_in_bound_table(struct vsock_sock
*vsk
)
252 return !list_empty(&vsk
->bound_table
);
255 static bool __vsock_in_connected_table(struct vsock_sock
*vsk
)
257 return !list_empty(&vsk
->connected_table
);
260 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
262 spin_lock_bh(&vsock_table_lock
);
263 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
264 spin_unlock_bh(&vsock_table_lock
);
267 void vsock_insert_connected(struct vsock_sock
*vsk
)
269 struct list_head
*list
= vsock_connected_sockets(
270 &vsk
->remote_addr
, &vsk
->local_addr
);
272 spin_lock_bh(&vsock_table_lock
);
273 __vsock_insert_connected(list
, vsk
);
274 spin_unlock_bh(&vsock_table_lock
);
276 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
278 void vsock_remove_bound(struct vsock_sock
*vsk
)
280 spin_lock_bh(&vsock_table_lock
);
281 __vsock_remove_bound(vsk
);
282 spin_unlock_bh(&vsock_table_lock
);
284 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
286 void vsock_remove_connected(struct vsock_sock
*vsk
)
288 spin_lock_bh(&vsock_table_lock
);
289 __vsock_remove_connected(vsk
);
290 spin_unlock_bh(&vsock_table_lock
);
292 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
294 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
298 spin_lock_bh(&vsock_table_lock
);
299 sk
= __vsock_find_bound_socket(addr
);
303 spin_unlock_bh(&vsock_table_lock
);
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
309 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
310 struct sockaddr_vm
*dst
)
314 spin_lock_bh(&vsock_table_lock
);
315 sk
= __vsock_find_connected_socket(src
, dst
);
319 spin_unlock_bh(&vsock_table_lock
);
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
325 static bool vsock_in_bound_table(struct vsock_sock
*vsk
)
329 spin_lock_bh(&vsock_table_lock
);
330 ret
= __vsock_in_bound_table(vsk
);
331 spin_unlock_bh(&vsock_table_lock
);
336 static bool vsock_in_connected_table(struct vsock_sock
*vsk
)
340 spin_lock_bh(&vsock_table_lock
);
341 ret
= __vsock_in_connected_table(vsk
);
342 spin_unlock_bh(&vsock_table_lock
);
347 void vsock_remove_sock(struct vsock_sock
*vsk
)
349 if (vsock_in_bound_table(vsk
))
350 vsock_remove_bound(vsk
);
352 if (vsock_in_connected_table(vsk
))
353 vsock_remove_connected(vsk
);
355 EXPORT_SYMBOL_GPL(vsock_remove_sock
);
357 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
361 spin_lock_bh(&vsock_table_lock
);
363 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
364 struct vsock_sock
*vsk
;
365 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
370 spin_unlock_bh(&vsock_table_lock
);
372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
374 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
376 struct vsock_sock
*vlistener
;
377 struct vsock_sock
*vpending
;
379 vlistener
= vsock_sk(listener
);
380 vpending
= vsock_sk(pending
);
384 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
386 EXPORT_SYMBOL_GPL(vsock_add_pending
);
388 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
390 struct vsock_sock
*vpending
= vsock_sk(pending
);
392 list_del_init(&vpending
->pending_links
);
396 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
398 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
400 struct vsock_sock
*vlistener
;
401 struct vsock_sock
*vconnected
;
403 vlistener
= vsock_sk(listener
);
404 vconnected
= vsock_sk(connected
);
406 sock_hold(connected
);
408 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
412 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
414 struct vsock_sock
*vlistener
;
415 struct vsock_sock
*vconnected
;
417 vlistener
= vsock_sk(listener
);
419 if (list_empty(&vlistener
->accept_queue
))
422 vconnected
= list_entry(vlistener
->accept_queue
.next
,
423 struct vsock_sock
, accept_queue
);
425 list_del_init(&vconnected
->accept_queue
);
427 /* The caller will need a reference on the connected socket so we let
428 * it call sock_put().
431 return sk_vsock(vconnected
);
434 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
436 struct vsock_sock
*vsk
= vsock_sk(sk
);
437 return list_empty(&vsk
->accept_queue
);
440 static bool vsock_is_pending(struct sock
*sk
)
442 struct vsock_sock
*vsk
= vsock_sk(sk
);
443 return !list_empty(&vsk
->pending_links
);
446 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
448 return transport
->shutdown(vsock_sk(sk
), mode
);
451 void vsock_pending_work(struct work_struct
*work
)
454 struct sock
*listener
;
455 struct vsock_sock
*vsk
;
458 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
460 listener
= vsk
->listener
;
464 lock_sock_nested(sk
, SINGLE_DEPTH_NESTING
);
466 if (vsock_is_pending(sk
)) {
467 vsock_remove_pending(listener
, sk
);
469 listener
->sk_ack_backlog
--;
470 } else if (!vsk
->rejected
) {
471 /* We are not on the pending list and accept() did not reject
472 * us, so we must have been accepted by our user process. We
473 * just need to drop our references to the sockets and be on
480 /* We need to remove ourself from the global connected sockets list so
481 * incoming packets can't find this socket, and to reduce the reference
484 if (vsock_in_connected_table(vsk
))
485 vsock_remove_connected(vsk
);
487 sk
->sk_state
= SS_FREE
;
491 release_sock(listener
);
498 EXPORT_SYMBOL_GPL(vsock_pending_work
);
500 /**** SOCKET OPERATIONS ****/
502 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
503 struct sockaddr_vm
*addr
)
505 static u32 port
= LAST_RESERVED_PORT
+ 1;
506 struct sockaddr_vm new_addr
;
508 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
510 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
514 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
515 if (port
<= LAST_RESERVED_PORT
)
516 port
= LAST_RESERVED_PORT
+ 1;
518 new_addr
.svm_port
= port
++;
520 if (!__vsock_find_bound_socket(&new_addr
)) {
527 return -EADDRNOTAVAIL
;
529 /* If port is in reserved range, ensure caller
530 * has necessary privileges.
532 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
533 !capable(CAP_NET_BIND_SERVICE
)) {
537 if (__vsock_find_bound_socket(&new_addr
))
541 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
543 /* Remove stream sockets from the unbound list and add them to the hash
544 * table for easy lookup by its address. The unbound list is simply an
545 * extra entry at the end of the hash table, a trick used by AF_UNIX.
547 __vsock_remove_bound(vsk
);
548 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
553 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
554 struct sockaddr_vm
*addr
)
556 return transport
->dgram_bind(vsk
, addr
);
559 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
561 struct vsock_sock
*vsk
= vsock_sk(sk
);
565 /* First ensure this socket isn't already bound. */
566 if (vsock_addr_bound(&vsk
->local_addr
))
569 /* Now bind to the provided address or select appropriate values if
570 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
571 * like AF_INET prevents binding to a non-local IP address (in most
572 * cases), we only allow binding to the local CID.
574 cid
= transport
->get_local_cid();
575 if (addr
->svm_cid
!= cid
&& addr
->svm_cid
!= VMADDR_CID_ANY
)
576 return -EADDRNOTAVAIL
;
578 switch (sk
->sk_socket
->type
) {
580 spin_lock_bh(&vsock_table_lock
);
581 retval
= __vsock_bind_stream(vsk
, addr
);
582 spin_unlock_bh(&vsock_table_lock
);
586 retval
= __vsock_bind_dgram(vsk
, addr
);
597 struct sock
*__vsock_create(struct net
*net
,
605 struct vsock_sock
*psk
;
606 struct vsock_sock
*vsk
;
608 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
612 sock_init_data(sock
, sk
);
614 /* sk->sk_type is normally set in sock_init_data, but only if sock is
615 * non-NULL. We make sure that our sockets always have a type by
616 * setting it here if needed.
622 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
623 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
625 sk
->sk_destruct
= vsock_sk_destruct
;
626 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
628 sock_reset_flag(sk
, SOCK_DONE
);
630 INIT_LIST_HEAD(&vsk
->bound_table
);
631 INIT_LIST_HEAD(&vsk
->connected_table
);
632 vsk
->listener
= NULL
;
633 INIT_LIST_HEAD(&vsk
->pending_links
);
634 INIT_LIST_HEAD(&vsk
->accept_queue
);
635 vsk
->rejected
= false;
636 vsk
->sent_request
= false;
637 vsk
->ignore_connecting_rst
= false;
638 vsk
->peer_shutdown
= 0;
640 psk
= parent
? vsock_sk(parent
) : NULL
;
642 vsk
->trusted
= psk
->trusted
;
643 vsk
->owner
= get_cred(psk
->owner
);
644 vsk
->connect_timeout
= psk
->connect_timeout
;
646 vsk
->trusted
= capable(CAP_NET_ADMIN
);
647 vsk
->owner
= get_current_cred();
648 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
651 if (transport
->init(vsk
, psk
) < 0) {
657 vsock_insert_unbound(vsk
);
661 EXPORT_SYMBOL_GPL(__vsock_create
);
663 static void __vsock_release(struct sock
*sk
)
667 struct sock
*pending
;
668 struct vsock_sock
*vsk
;
671 pending
= NULL
; /* Compiler warning. */
673 transport
->release(vsk
);
677 sk
->sk_shutdown
= SHUTDOWN_MASK
;
679 while ((skb
= skb_dequeue(&sk
->sk_receive_queue
)))
682 /* Clean up any sockets that never were accepted. */
683 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
684 __vsock_release(pending
);
693 static void vsock_sk_destruct(struct sock
*sk
)
695 struct vsock_sock
*vsk
= vsock_sk(sk
);
697 transport
->destruct(vsk
);
699 /* When clearing these addresses, there's no need to set the family and
700 * possibly register the address family with the kernel.
702 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
703 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
705 put_cred(vsk
->owner
);
708 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
712 err
= sock_queue_rcv_skb(sk
, skb
);
719 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
721 return transport
->stream_has_data(vsk
);
723 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
725 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
727 return transport
->stream_has_space(vsk
);
729 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
731 static int vsock_release(struct socket
*sock
)
733 __vsock_release(sock
->sk
);
735 sock
->state
= SS_FREE
;
741 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
745 struct sockaddr_vm
*vm_addr
;
749 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
753 err
= __vsock_bind(sk
, vm_addr
);
759 static int vsock_getname(struct socket
*sock
,
760 struct sockaddr
*addr
, int *addr_len
, int peer
)
764 struct vsock_sock
*vsk
;
765 struct sockaddr_vm
*vm_addr
;
774 if (sock
->state
!= SS_CONNECTED
) {
778 vm_addr
= &vsk
->remote_addr
;
780 vm_addr
= &vsk
->local_addr
;
788 /* sys_getsockname() and sys_getpeername() pass us a
789 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
790 * that macro is defined in socket.c instead of .h, so we hardcode its
793 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
794 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
795 *addr_len
= sizeof(*vm_addr
);
802 static int vsock_shutdown(struct socket
*sock
, int mode
)
807 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
808 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
809 * here like the other address families do. Note also that the
810 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
811 * which is what we want.
815 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
818 /* If this is a STREAM socket and it is not connected then bail out
819 * immediately. If it is a DGRAM socket then we must first kick the
820 * socket so that it wakes up from any sleeping calls, for example
821 * recv(), and then afterwards return the error.
825 if (sock
->state
== SS_UNCONNECTED
) {
827 if (sk
->sk_type
== SOCK_STREAM
)
830 sock
->state
= SS_DISCONNECTING
;
834 /* Receive and send shutdowns are treated alike. */
835 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
838 sk
->sk_shutdown
|= mode
;
839 sk
->sk_state_change(sk
);
842 if (sk
->sk_type
== SOCK_STREAM
) {
843 sock_reset_flag(sk
, SOCK_DONE
);
844 vsock_send_shutdown(sk
, mode
);
851 static unsigned int vsock_poll(struct file
*file
, struct socket
*sock
,
856 struct vsock_sock
*vsk
;
861 poll_wait(file
, sk_sleep(sk
), wait
);
865 /* Signify that there has been an error on this socket. */
868 /* INET sockets treat local write shutdown and peer write shutdown as a
869 * case of POLLHUP set.
871 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
872 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
873 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
877 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
878 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
882 if (sock
->type
== SOCK_DGRAM
) {
883 /* For datagram sockets we can read if there is something in
884 * the queue and write as long as the socket isn't shutdown for
887 if (!skb_queue_empty(&sk
->sk_receive_queue
) ||
888 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
889 mask
|= POLLIN
| POLLRDNORM
;
892 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
893 mask
|= POLLOUT
| POLLWRNORM
| POLLWRBAND
;
895 } else if (sock
->type
== SOCK_STREAM
) {
898 /* Listening sockets that have connections in their accept
901 if (sk
->sk_state
== VSOCK_SS_LISTEN
902 && !vsock_is_accept_queue_empty(sk
))
903 mask
|= POLLIN
| POLLRDNORM
;
905 /* If there is something in the queue then we can read. */
906 if (transport
->stream_is_active(vsk
) &&
907 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
908 bool data_ready_now
= false;
909 int ret
= transport
->notify_poll_in(
910 vsk
, 1, &data_ready_now
);
915 mask
|= POLLIN
| POLLRDNORM
;
920 /* Sockets whose connections have been closed, reset, or
921 * terminated should also be considered read, and we check the
922 * shutdown flag for that.
924 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
925 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
926 mask
|= POLLIN
| POLLRDNORM
;
929 /* Connected sockets that can produce data can be written. */
930 if (sk
->sk_state
== SS_CONNECTED
) {
931 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
932 bool space_avail_now
= false;
933 int ret
= transport
->notify_poll_out(
934 vsk
, 1, &space_avail_now
);
939 /* Remove POLLWRBAND since INET
940 * sockets are not setting it.
942 mask
|= POLLOUT
| POLLWRNORM
;
948 /* Simulate INET socket poll behaviors, which sets
949 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
950 * but local send is not shutdown.
952 if (sk
->sk_state
== SS_UNCONNECTED
) {
953 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
954 mask
|= POLLOUT
| POLLWRNORM
;
964 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
969 struct vsock_sock
*vsk
;
970 struct sockaddr_vm
*remote_addr
;
972 if (msg
->msg_flags
& MSG_OOB
)
975 /* For now, MSG_DONTWAIT is always assumed... */
982 err
= vsock_auto_bind(vsk
);
987 /* If the provided message contains an address, use that. Otherwise
988 * fall back on the socket's remote handle (if it has been connected).
991 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
992 &remote_addr
) == 0) {
993 /* Ensure this address is of the right type and is a valid
997 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
998 remote_addr
->svm_cid
= transport
->get_local_cid();
1000 if (!vsock_addr_bound(remote_addr
)) {
1004 } else if (sock
->state
== SS_CONNECTED
) {
1005 remote_addr
= &vsk
->remote_addr
;
1007 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1008 remote_addr
->svm_cid
= transport
->get_local_cid();
1010 /* XXX Should connect() or this function ensure remote_addr is
1013 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1022 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1023 remote_addr
->svm_port
)) {
1028 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1035 static int vsock_dgram_connect(struct socket
*sock
,
1036 struct sockaddr
*addr
, int addr_len
, int flags
)
1040 struct vsock_sock
*vsk
;
1041 struct sockaddr_vm
*remote_addr
;
1046 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1047 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1049 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1051 sock
->state
= SS_UNCONNECTED
;
1054 } else if (err
!= 0)
1059 err
= vsock_auto_bind(vsk
);
1063 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1064 remote_addr
->svm_port
)) {
1069 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1070 sock
->state
= SS_CONNECTED
;
1077 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1078 size_t len
, int flags
)
1080 return transport
->dgram_dequeue(vsock_sk(sock
->sk
), msg
, len
, flags
);
1083 static const struct proto_ops vsock_dgram_ops
= {
1085 .owner
= THIS_MODULE
,
1086 .release
= vsock_release
,
1088 .connect
= vsock_dgram_connect
,
1089 .socketpair
= sock_no_socketpair
,
1090 .accept
= sock_no_accept
,
1091 .getname
= vsock_getname
,
1093 .ioctl
= sock_no_ioctl
,
1094 .listen
= sock_no_listen
,
1095 .shutdown
= vsock_shutdown
,
1096 .setsockopt
= sock_no_setsockopt
,
1097 .getsockopt
= sock_no_getsockopt
,
1098 .sendmsg
= vsock_dgram_sendmsg
,
1099 .recvmsg
= vsock_dgram_recvmsg
,
1100 .mmap
= sock_no_mmap
,
1101 .sendpage
= sock_no_sendpage
,
1104 static void vsock_connect_timeout(struct work_struct
*work
)
1107 struct vsock_sock
*vsk
;
1109 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
1113 if (sk
->sk_state
== SS_CONNECTING
&&
1114 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1115 sk
->sk_state
= SS_UNCONNECTED
;
1116 sk
->sk_err
= ETIMEDOUT
;
1117 sk
->sk_error_report(sk
);
1124 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1125 int addr_len
, int flags
)
1129 struct vsock_sock
*vsk
;
1130 struct sockaddr_vm
*remote_addr
;
1140 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1141 switch (sock
->state
) {
1145 case SS_DISCONNECTING
:
1149 /* This continues on so we can move sock into the SS_CONNECTED
1150 * state once the connection has completed (at which point err
1151 * will be set to zero also). Otherwise, we will either wait
1152 * for the connection or return -EALREADY should this be a
1153 * non-blocking call.
1158 if ((sk
->sk_state
== VSOCK_SS_LISTEN
) ||
1159 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1164 /* The hypervisor and well-known contexts do not have socket
1167 if (!transport
->stream_allow(remote_addr
->svm_cid
,
1168 remote_addr
->svm_port
)) {
1173 /* Set the remote address that we are connecting to. */
1174 memcpy(&vsk
->remote_addr
, remote_addr
,
1175 sizeof(vsk
->remote_addr
));
1177 err
= vsock_auto_bind(vsk
);
1181 sk
->sk_state
= SS_CONNECTING
;
1183 err
= transport
->connect(vsk
);
1187 /* Mark sock as connecting and set the error code to in
1188 * progress in case this is a non-blocking connect.
1190 sock
->state
= SS_CONNECTING
;
1194 /* The receive path will handle all communication until we are able to
1195 * enter the connected state. Here we wait for the connection to be
1196 * completed or a notification of an error.
1198 timeout
= vsk
->connect_timeout
;
1199 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1201 while (sk
->sk_state
!= SS_CONNECTED
&& sk
->sk_err
== 0) {
1202 if (flags
& O_NONBLOCK
) {
1203 /* If we're not going to block, we schedule a timeout
1204 * function to generate a timeout on the connection
1205 * attempt, in case the peer doesn't respond in a
1206 * timely manner. We hold on to the socket until the
1210 INIT_DELAYED_WORK(&vsk
->dwork
,
1211 vsock_connect_timeout
);
1212 schedule_delayed_work(&vsk
->dwork
, timeout
);
1214 /* Skip ahead to preserve error code set above. */
1219 timeout
= schedule_timeout(timeout
);
1222 if (signal_pending(current
)) {
1223 err
= sock_intr_errno(timeout
);
1224 sk
->sk_state
= SS_UNCONNECTED
;
1225 sock
->state
= SS_UNCONNECTED
;
1227 } else if (timeout
== 0) {
1229 sk
->sk_state
= SS_UNCONNECTED
;
1230 sock
->state
= SS_UNCONNECTED
;
1234 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1239 sk
->sk_state
= SS_UNCONNECTED
;
1240 sock
->state
= SS_UNCONNECTED
;
1246 finish_wait(sk_sleep(sk
), &wait
);
1252 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1254 struct sock
*listener
;
1256 struct sock
*connected
;
1257 struct vsock_sock
*vconnected
;
1262 listener
= sock
->sk
;
1264 lock_sock(listener
);
1266 if (sock
->type
!= SOCK_STREAM
) {
1271 if (listener
->sk_state
!= VSOCK_SS_LISTEN
) {
1276 /* Wait for children sockets to appear; these are the new sockets
1277 * created upon connection establishment.
1279 timeout
= sock_sndtimeo(listener
, flags
& O_NONBLOCK
);
1280 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1282 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1283 listener
->sk_err
== 0) {
1284 release_sock(listener
);
1285 timeout
= schedule_timeout(timeout
);
1286 finish_wait(sk_sleep(listener
), &wait
);
1287 lock_sock(listener
);
1289 if (signal_pending(current
)) {
1290 err
= sock_intr_errno(timeout
);
1292 } else if (timeout
== 0) {
1297 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1299 finish_wait(sk_sleep(listener
), &wait
);
1301 if (listener
->sk_err
)
1302 err
= -listener
->sk_err
;
1305 listener
->sk_ack_backlog
--;
1307 lock_sock_nested(connected
, SINGLE_DEPTH_NESTING
);
1308 vconnected
= vsock_sk(connected
);
1310 /* If the listener socket has received an error, then we should
1311 * reject this socket and return. Note that we simply mark the
1312 * socket rejected, drop our reference, and let the cleanup
1313 * function handle the cleanup; the fact that we found it in
1314 * the listener's accept queue guarantees that the cleanup
1315 * function hasn't run yet.
1318 vconnected
->rejected
= true;
1320 newsock
->state
= SS_CONNECTED
;
1321 sock_graft(connected
, newsock
);
1324 release_sock(connected
);
1325 sock_put(connected
);
1329 release_sock(listener
);
1333 static int vsock_listen(struct socket
*sock
, int backlog
)
1337 struct vsock_sock
*vsk
;
1343 if (sock
->type
!= SOCK_STREAM
) {
1348 if (sock
->state
!= SS_UNCONNECTED
) {
1355 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1360 sk
->sk_max_ack_backlog
= backlog
;
1361 sk
->sk_state
= VSOCK_SS_LISTEN
;
1370 static int vsock_stream_setsockopt(struct socket
*sock
,
1373 char __user
*optval
,
1374 unsigned int optlen
)
1378 struct vsock_sock
*vsk
;
1381 if (level
!= AF_VSOCK
)
1382 return -ENOPROTOOPT
;
1384 #define COPY_IN(_v) \
1386 if (optlen < sizeof(_v)) { \
1390 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1403 case SO_VM_SOCKETS_BUFFER_SIZE
:
1405 transport
->set_buffer_size(vsk
, val
);
1408 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1410 transport
->set_max_buffer_size(vsk
, val
);
1413 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1415 transport
->set_min_buffer_size(vsk
, val
);
1418 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1421 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1422 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1423 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1424 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1425 if (vsk
->connect_timeout
== 0)
1426 vsk
->connect_timeout
=
1427 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1447 static int vsock_stream_getsockopt(struct socket
*sock
,
1448 int level
, int optname
,
1449 char __user
*optval
,
1455 struct vsock_sock
*vsk
;
1458 if (level
!= AF_VSOCK
)
1459 return -ENOPROTOOPT
;
1461 err
= get_user(len
, optlen
);
1465 #define COPY_OUT(_v) \
1467 if (len < sizeof(_v)) \
1471 if (copy_to_user(optval, &_v, len) != 0) \
1481 case SO_VM_SOCKETS_BUFFER_SIZE
:
1482 val
= transport
->get_buffer_size(vsk
);
1486 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1487 val
= transport
->get_max_buffer_size(vsk
);
1491 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1492 val
= transport
->get_min_buffer_size(vsk
);
1496 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1498 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1500 (vsk
->connect_timeout
-
1501 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1506 return -ENOPROTOOPT
;
1509 err
= put_user(len
, optlen
);
1518 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1522 struct vsock_sock
*vsk
;
1523 ssize_t total_written
;
1526 struct vsock_transport_send_notify_data send_data
;
1535 if (msg
->msg_flags
& MSG_OOB
)
1540 /* Callers should not provide a destination with stream sockets. */
1541 if (msg
->msg_namelen
) {
1542 err
= sk
->sk_state
== SS_CONNECTED
? -EISCONN
: -EOPNOTSUPP
;
1546 /* Send data only if both sides are not shutdown in the direction. */
1547 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1548 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1553 if (sk
->sk_state
!= SS_CONNECTED
||
1554 !vsock_addr_bound(&vsk
->local_addr
)) {
1559 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1560 err
= -EDESTADDRREQ
;
1564 /* Wait for room in the produce queue to enqueue our user's data. */
1565 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1567 err
= transport
->notify_send_init(vsk
, &send_data
);
1572 while (total_written
< len
) {
1575 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1576 while (vsock_stream_has_space(vsk
) == 0 &&
1578 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1579 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1581 /* Don't wait for non-blocking sockets. */
1584 finish_wait(sk_sleep(sk
), &wait
);
1588 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1590 finish_wait(sk_sleep(sk
), &wait
);
1595 timeout
= schedule_timeout(timeout
);
1597 if (signal_pending(current
)) {
1598 err
= sock_intr_errno(timeout
);
1599 finish_wait(sk_sleep(sk
), &wait
);
1601 } else if (timeout
== 0) {
1603 finish_wait(sk_sleep(sk
), &wait
);
1607 prepare_to_wait(sk_sleep(sk
), &wait
,
1608 TASK_INTERRUPTIBLE
);
1610 finish_wait(sk_sleep(sk
), &wait
);
1612 /* These checks occur both as part of and after the loop
1613 * conditional since we need to check before and after
1619 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1620 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1625 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1629 /* Note that enqueue will only write as many bytes as are free
1630 * in the produce queue, so we don't need to ensure len is
1631 * smaller than the queue size. It is the caller's
1632 * responsibility to check how many bytes we were able to send.
1635 written
= transport
->stream_enqueue(
1637 len
- total_written
);
1643 total_written
+= written
;
1645 err
= transport
->notify_send_post_enqueue(
1646 vsk
, written
, &send_data
);
1653 if (total_written
> 0)
1654 err
= total_written
;
1662 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1666 struct vsock_sock
*vsk
;
1671 struct vsock_transport_recv_notify_data recv_data
;
1681 if (sk
->sk_state
!= SS_CONNECTED
) {
1682 /* Recvmsg is supposed to return 0 if a peer performs an
1683 * orderly shutdown. Differentiate between that case and when a
1684 * peer has not connected or a local shutdown occured with the
1687 if (sock_flag(sk
, SOCK_DONE
))
1695 if (flags
& MSG_OOB
) {
1700 /* We don't check peer_shutdown flag here since peer may actually shut
1701 * down, but there can be data in the queue that a local socket can
1704 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1709 /* It is valid on Linux to pass in a zero-length receive buffer. This
1710 * is not an error. We may as well bail out now.
1717 /* We must not copy less than target bytes into the user's buffer
1718 * before returning successfully, so we wait for the consume queue to
1719 * have that much data to consume before dequeueing. Note that this
1720 * makes it impossible to handle cases where target is greater than the
1723 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1724 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1728 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1731 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1739 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1740 ready
= vsock_stream_has_data(vsk
);
1743 if (sk
->sk_err
!= 0 ||
1744 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1745 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1746 finish_wait(sk_sleep(sk
), &wait
);
1749 /* Don't wait for non-blocking sockets. */
1752 finish_wait(sk_sleep(sk
), &wait
);
1756 err
= transport
->notify_recv_pre_block(
1757 vsk
, target
, &recv_data
);
1759 finish_wait(sk_sleep(sk
), &wait
);
1763 timeout
= schedule_timeout(timeout
);
1766 if (signal_pending(current
)) {
1767 err
= sock_intr_errno(timeout
);
1768 finish_wait(sk_sleep(sk
), &wait
);
1770 } else if (timeout
== 0) {
1772 finish_wait(sk_sleep(sk
), &wait
);
1778 finish_wait(sk_sleep(sk
), &wait
);
1781 /* Invalid queue pair content. XXX This should
1782 * be changed to a connection reset in a later
1790 err
= transport
->notify_recv_pre_dequeue(
1791 vsk
, target
, &recv_data
);
1795 read
= transport
->stream_dequeue(
1797 len
- copied
, flags
);
1805 err
= transport
->notify_recv_post_dequeue(
1807 !(flags
& MSG_PEEK
), &recv_data
);
1811 if (read
>= target
|| flags
& MSG_PEEK
)
1820 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1831 static const struct proto_ops vsock_stream_ops
= {
1833 .owner
= THIS_MODULE
,
1834 .release
= vsock_release
,
1836 .connect
= vsock_stream_connect
,
1837 .socketpair
= sock_no_socketpair
,
1838 .accept
= vsock_accept
,
1839 .getname
= vsock_getname
,
1841 .ioctl
= sock_no_ioctl
,
1842 .listen
= vsock_listen
,
1843 .shutdown
= vsock_shutdown
,
1844 .setsockopt
= vsock_stream_setsockopt
,
1845 .getsockopt
= vsock_stream_getsockopt
,
1846 .sendmsg
= vsock_stream_sendmsg
,
1847 .recvmsg
= vsock_stream_recvmsg
,
1848 .mmap
= sock_no_mmap
,
1849 .sendpage
= sock_no_sendpage
,
1852 static int vsock_create(struct net
*net
, struct socket
*sock
,
1853 int protocol
, int kern
)
1858 if (protocol
&& protocol
!= PF_VSOCK
)
1859 return -EPROTONOSUPPORT
;
1861 switch (sock
->type
) {
1863 sock
->ops
= &vsock_dgram_ops
;
1866 sock
->ops
= &vsock_stream_ops
;
1869 return -ESOCKTNOSUPPORT
;
1872 sock
->state
= SS_UNCONNECTED
;
1874 return __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
) ? 0 : -ENOMEM
;
1877 static const struct net_proto_family vsock_family_ops
= {
1879 .create
= vsock_create
,
1880 .owner
= THIS_MODULE
,
1883 static long vsock_dev_do_ioctl(struct file
*filp
,
1884 unsigned int cmd
, void __user
*ptr
)
1886 u32 __user
*p
= ptr
;
1890 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
1891 if (put_user(transport
->get_local_cid(), p
) != 0)
1896 pr_err("Unknown ioctl %d\n", cmd
);
1903 static long vsock_dev_ioctl(struct file
*filp
,
1904 unsigned int cmd
, unsigned long arg
)
1906 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
1909 #ifdef CONFIG_COMPAT
1910 static long vsock_dev_compat_ioctl(struct file
*filp
,
1911 unsigned int cmd
, unsigned long arg
)
1913 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
1917 static const struct file_operations vsock_device_ops
= {
1918 .owner
= THIS_MODULE
,
1919 .unlocked_ioctl
= vsock_dev_ioctl
,
1920 #ifdef CONFIG_COMPAT
1921 .compat_ioctl
= vsock_dev_compat_ioctl
,
1923 .open
= nonseekable_open
,
1926 static struct miscdevice vsock_device
= {
1928 .fops
= &vsock_device_ops
,
1931 int __vsock_core_init(const struct vsock_transport
*t
, struct module
*owner
)
1933 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
1943 /* Transport must be the owner of the protocol so that it can't
1944 * unload while there are open sockets.
1946 vsock_proto
.owner
= owner
;
1949 vsock_init_tables();
1951 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
1952 err
= misc_register(&vsock_device
);
1954 pr_err("Failed to register misc device\n");
1955 goto err_reset_transport
;
1958 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
1960 pr_err("Cannot register vsock protocol\n");
1961 goto err_deregister_misc
;
1964 err
= sock_register(&vsock_family_ops
);
1966 pr_err("could not register af_vsock (%d) address family: %d\n",
1968 goto err_unregister_proto
;
1971 mutex_unlock(&vsock_register_mutex
);
1974 err_unregister_proto
:
1975 proto_unregister(&vsock_proto
);
1976 err_deregister_misc
:
1977 misc_deregister(&vsock_device
);
1978 err_reset_transport
:
1981 mutex_unlock(&vsock_register_mutex
);
1984 EXPORT_SYMBOL_GPL(__vsock_core_init
);
1986 void vsock_core_exit(void)
1988 mutex_lock(&vsock_register_mutex
);
1990 misc_deregister(&vsock_device
);
1991 sock_unregister(AF_VSOCK
);
1992 proto_unregister(&vsock_proto
);
1994 /* We do not want the assignment below re-ordered. */
1998 mutex_unlock(&vsock_register_mutex
);
2000 EXPORT_SYMBOL_GPL(vsock_core_exit
);
2002 const struct vsock_transport
*vsock_core_get_transport(void)
2004 /* vsock_register_mutex not taken since only the transport uses this
2005 * function and only while registered.
2009 EXPORT_SYMBOL_GPL(vsock_core_get_transport
);
2011 MODULE_AUTHOR("VMware, Inc.");
2012 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2013 MODULE_VERSION("1.0.2.0-k");
2014 MODULE_LICENSE("GPL v2");