x86/speculation/mds: Add sysfs reporting for MDS
[linux/fpc-iii.git] / kernel / bpf / devmap.c
blob191b79948424f4b21b7aa120abc03801264bf0a6
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15 * spent some effort to ensure the datapath with redirect maps does not use
16 * any locking. This is a quick note on the details.
18 * We have three possible paths to get into the devmap control plane bpf
19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20 * will invoke an update, delete, or lookup operation. To ensure updates and
21 * deletes appear atomic from the datapath side xchg() is used to modify the
22 * netdev_map array. Then because the datapath does a lookup into the netdev_map
23 * array (read-only) from an RCU critical section we use call_rcu() to wait for
24 * an rcu grace period before free'ing the old data structures. This ensures the
25 * datapath always has a valid copy. However, the datapath does a "flush"
26 * operation that pushes any pending packets in the driver outside the RCU
27 * critical section. Each bpf_dtab_netdev tracks these pending operations using
28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29 * until all bits are cleared indicating outstanding flush operations have
30 * completed.
32 * BPF syscalls may race with BPF program calls on any of the update, delete
33 * or lookup operations. As noted above the xchg() operation also keep the
34 * netdev_map consistent in this case. From the devmap side BPF programs
35 * calling into these operations are the same as multiple user space threads
36 * making system calls.
38 * Finally, any of the above may race with a netdev_unregister notifier. The
39 * unregister notifier must search for net devices in the map structure that
40 * contain a reference to the net device and remove them. This is a two step
41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42 * check to see if the ifindex is the same as the net_device being removed.
43 * When removing the dev a cmpxchg() is used to ensure the correct dev is
44 * removed, in the case of a concurrent update or delete operation it is
45 * possible that the initially referenced dev is no longer in the map. As the
46 * notifier hook walks the map we know that new dev references can not be
47 * added by the user because core infrastructure ensures dev_get_by_index()
48 * calls will fail at this point.
50 #include <linux/bpf.h>
51 #include <net/xdp.h>
52 #include <linux/filter.h>
53 #include <trace/events/xdp.h>
55 #define DEV_CREATE_FLAG_MASK \
56 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
58 #define DEV_MAP_BULK_SIZE 16
59 struct xdp_bulk_queue {
60 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
61 struct net_device *dev_rx;
62 unsigned int count;
65 struct bpf_dtab_netdev {
66 struct net_device *dev; /* must be first member, due to tracepoint */
67 struct bpf_dtab *dtab;
68 unsigned int bit;
69 struct xdp_bulk_queue __percpu *bulkq;
70 struct rcu_head rcu;
73 struct bpf_dtab {
74 struct bpf_map map;
75 struct bpf_dtab_netdev **netdev_map;
76 unsigned long __percpu *flush_needed;
77 struct list_head list;
80 static DEFINE_SPINLOCK(dev_map_lock);
81 static LIST_HEAD(dev_map_list);
83 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
85 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
90 struct bpf_dtab *dtab;
91 int err = -EINVAL;
92 u64 cost;
94 if (!capable(CAP_NET_ADMIN))
95 return ERR_PTR(-EPERM);
97 /* check sanity of attributes */
98 if (attr->max_entries == 0 || attr->key_size != 4 ||
99 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
100 return ERR_PTR(-EINVAL);
102 dtab = kzalloc(sizeof(*dtab), GFP_USER);
103 if (!dtab)
104 return ERR_PTR(-ENOMEM);
106 bpf_map_init_from_attr(&dtab->map, attr);
108 /* make sure page count doesn't overflow */
109 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
110 cost += dev_map_bitmap_size(attr) * num_possible_cpus();
111 if (cost >= U32_MAX - PAGE_SIZE)
112 goto free_dtab;
114 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
116 /* if map size is larger than memlock limit, reject it early */
117 err = bpf_map_precharge_memlock(dtab->map.pages);
118 if (err)
119 goto free_dtab;
121 err = -ENOMEM;
123 /* A per cpu bitfield with a bit per possible net device */
124 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
125 __alignof__(unsigned long),
126 GFP_KERNEL | __GFP_NOWARN);
127 if (!dtab->flush_needed)
128 goto free_dtab;
130 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
131 sizeof(struct bpf_dtab_netdev *),
132 dtab->map.numa_node);
133 if (!dtab->netdev_map)
134 goto free_dtab;
136 spin_lock(&dev_map_lock);
137 list_add_tail_rcu(&dtab->list, &dev_map_list);
138 spin_unlock(&dev_map_lock);
140 return &dtab->map;
141 free_dtab:
142 free_percpu(dtab->flush_needed);
143 kfree(dtab);
144 return ERR_PTR(err);
147 static void dev_map_free(struct bpf_map *map)
149 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
150 int i, cpu;
152 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
153 * so the programs (can be more than one that used this map) were
154 * disconnected from events. Wait for outstanding critical sections in
155 * these programs to complete. The rcu critical section only guarantees
156 * no further reads against netdev_map. It does __not__ ensure pending
157 * flush operations (if any) are complete.
160 spin_lock(&dev_map_lock);
161 list_del_rcu(&dtab->list);
162 spin_unlock(&dev_map_lock);
164 bpf_clear_redirect_map(map);
165 synchronize_rcu();
167 /* To ensure all pending flush operations have completed wait for flush
168 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
169 * Because the above synchronize_rcu() ensures the map is disconnected
170 * from the program we can assume no new bits will be set.
172 for_each_online_cpu(cpu) {
173 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
175 while (!bitmap_empty(bitmap, dtab->map.max_entries))
176 cond_resched();
179 for (i = 0; i < dtab->map.max_entries; i++) {
180 struct bpf_dtab_netdev *dev;
182 dev = dtab->netdev_map[i];
183 if (!dev)
184 continue;
186 dev_put(dev->dev);
187 kfree(dev);
190 free_percpu(dtab->flush_needed);
191 bpf_map_area_free(dtab->netdev_map);
192 kfree(dtab);
195 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
197 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
198 u32 index = key ? *(u32 *)key : U32_MAX;
199 u32 *next = next_key;
201 if (index >= dtab->map.max_entries) {
202 *next = 0;
203 return 0;
206 if (index == dtab->map.max_entries - 1)
207 return -ENOENT;
208 *next = index + 1;
209 return 0;
212 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
214 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
215 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
217 __set_bit(bit, bitmap);
220 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
221 struct xdp_bulk_queue *bq, u32 flags,
222 bool in_napi_ctx)
224 struct net_device *dev = obj->dev;
225 int sent = 0, drops = 0, err = 0;
226 int i;
228 if (unlikely(!bq->count))
229 return 0;
231 for (i = 0; i < bq->count; i++) {
232 struct xdp_frame *xdpf = bq->q[i];
234 prefetch(xdpf);
237 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
238 if (sent < 0) {
239 err = sent;
240 sent = 0;
241 goto error;
243 drops = bq->count - sent;
244 out:
245 bq->count = 0;
247 trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
248 sent, drops, bq->dev_rx, dev, err);
249 bq->dev_rx = NULL;
250 return 0;
251 error:
252 /* If ndo_xdp_xmit fails with an errno, no frames have been
253 * xmit'ed and it's our responsibility to them free all.
255 for (i = 0; i < bq->count; i++) {
256 struct xdp_frame *xdpf = bq->q[i];
258 /* RX path under NAPI protection, can return frames faster */
259 if (likely(in_napi_ctx))
260 xdp_return_frame_rx_napi(xdpf);
261 else
262 xdp_return_frame(xdpf);
263 drops++;
265 goto out;
268 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
269 * from the driver before returning from its napi->poll() routine. The poll()
270 * routine is called either from busy_poll context or net_rx_action signaled
271 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
272 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
273 * is zeroed before completing to ensure all flush operations have completed.
275 void __dev_map_flush(struct bpf_map *map)
277 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
279 u32 bit;
281 for_each_set_bit(bit, bitmap, map->max_entries) {
282 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
283 struct xdp_bulk_queue *bq;
285 /* This is possible if the dev entry is removed by user space
286 * between xdp redirect and flush op.
288 if (unlikely(!dev))
289 continue;
291 __clear_bit(bit, bitmap);
293 bq = this_cpu_ptr(dev->bulkq);
294 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
298 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
299 * update happens in parallel here a dev_put wont happen until after reading the
300 * ifindex.
302 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
304 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
305 struct bpf_dtab_netdev *obj;
307 if (key >= map->max_entries)
308 return NULL;
310 obj = READ_ONCE(dtab->netdev_map[key]);
311 return obj;
314 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
315 * Thus, safe percpu variable access.
317 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
318 struct net_device *dev_rx)
321 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
323 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
324 bq_xmit_all(obj, bq, 0, true);
326 /* Ingress dev_rx will be the same for all xdp_frame's in
327 * bulk_queue, because bq stored per-CPU and must be flushed
328 * from net_device drivers NAPI func end.
330 if (!bq->dev_rx)
331 bq->dev_rx = dev_rx;
333 bq->q[bq->count++] = xdpf;
334 return 0;
337 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
338 struct net_device *dev_rx)
340 struct net_device *dev = dst->dev;
341 struct xdp_frame *xdpf;
342 int err;
344 if (!dev->netdev_ops->ndo_xdp_xmit)
345 return -EOPNOTSUPP;
347 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
348 if (unlikely(err))
349 return err;
351 xdpf = convert_to_xdp_frame(xdp);
352 if (unlikely(!xdpf))
353 return -EOVERFLOW;
355 return bq_enqueue(dst, xdpf, dev_rx);
358 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
359 struct bpf_prog *xdp_prog)
361 int err;
363 err = xdp_ok_fwd_dev(dst->dev, skb->len);
364 if (unlikely(err))
365 return err;
366 skb->dev = dst->dev;
367 generic_xdp_tx(skb, xdp_prog);
369 return 0;
372 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
374 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
375 struct net_device *dev = obj ? obj->dev : NULL;
377 return dev ? &dev->ifindex : NULL;
380 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
382 if (dev->dev->netdev_ops->ndo_xdp_xmit) {
383 struct xdp_bulk_queue *bq;
384 unsigned long *bitmap;
386 int cpu;
388 for_each_online_cpu(cpu) {
389 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
390 __clear_bit(dev->bit, bitmap);
392 bq = per_cpu_ptr(dev->bulkq, cpu);
393 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
398 static void __dev_map_entry_free(struct rcu_head *rcu)
400 struct bpf_dtab_netdev *dev;
402 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
403 dev_map_flush_old(dev);
404 free_percpu(dev->bulkq);
405 dev_put(dev->dev);
406 kfree(dev);
409 static int dev_map_delete_elem(struct bpf_map *map, void *key)
411 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
412 struct bpf_dtab_netdev *old_dev;
413 int k = *(u32 *)key;
415 if (k >= map->max_entries)
416 return -EINVAL;
418 /* Use call_rcu() here to ensure any rcu critical sections have
419 * completed, but this does not guarantee a flush has happened
420 * yet. Because driver side rcu_read_lock/unlock only protects the
421 * running XDP program. However, for pending flush operations the
422 * dev and ctx are stored in another per cpu map. And additionally,
423 * the driver tear down ensures all soft irqs are complete before
424 * removing the net device in the case of dev_put equals zero.
426 old_dev = xchg(&dtab->netdev_map[k], NULL);
427 if (old_dev)
428 call_rcu(&old_dev->rcu, __dev_map_entry_free);
429 return 0;
432 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
433 u64 map_flags)
435 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
436 struct net *net = current->nsproxy->net_ns;
437 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
438 struct bpf_dtab_netdev *dev, *old_dev;
439 u32 i = *(u32 *)key;
440 u32 ifindex = *(u32 *)value;
442 if (unlikely(map_flags > BPF_EXIST))
443 return -EINVAL;
444 if (unlikely(i >= dtab->map.max_entries))
445 return -E2BIG;
446 if (unlikely(map_flags == BPF_NOEXIST))
447 return -EEXIST;
449 if (!ifindex) {
450 dev = NULL;
451 } else {
452 dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
453 if (!dev)
454 return -ENOMEM;
456 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
457 sizeof(void *), gfp);
458 if (!dev->bulkq) {
459 kfree(dev);
460 return -ENOMEM;
463 dev->dev = dev_get_by_index(net, ifindex);
464 if (!dev->dev) {
465 free_percpu(dev->bulkq);
466 kfree(dev);
467 return -EINVAL;
470 dev->bit = i;
471 dev->dtab = dtab;
474 /* Use call_rcu() here to ensure rcu critical sections have completed
475 * Remembering the driver side flush operation will happen before the
476 * net device is removed.
478 old_dev = xchg(&dtab->netdev_map[i], dev);
479 if (old_dev)
480 call_rcu(&old_dev->rcu, __dev_map_entry_free);
482 return 0;
485 const struct bpf_map_ops dev_map_ops = {
486 .map_alloc = dev_map_alloc,
487 .map_free = dev_map_free,
488 .map_get_next_key = dev_map_get_next_key,
489 .map_lookup_elem = dev_map_lookup_elem,
490 .map_update_elem = dev_map_update_elem,
491 .map_delete_elem = dev_map_delete_elem,
492 .map_check_btf = map_check_no_btf,
495 static int dev_map_notification(struct notifier_block *notifier,
496 ulong event, void *ptr)
498 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
499 struct bpf_dtab *dtab;
500 int i;
502 switch (event) {
503 case NETDEV_UNREGISTER:
504 /* This rcu_read_lock/unlock pair is needed because
505 * dev_map_list is an RCU list AND to ensure a delete
506 * operation does not free a netdev_map entry while we
507 * are comparing it against the netdev being unregistered.
509 rcu_read_lock();
510 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
511 for (i = 0; i < dtab->map.max_entries; i++) {
512 struct bpf_dtab_netdev *dev, *odev;
514 dev = READ_ONCE(dtab->netdev_map[i]);
515 if (!dev || netdev != dev->dev)
516 continue;
517 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
518 if (dev == odev)
519 call_rcu(&dev->rcu,
520 __dev_map_entry_free);
523 rcu_read_unlock();
524 break;
525 default:
526 break;
528 return NOTIFY_OK;
531 static struct notifier_block dev_map_notifier = {
532 .notifier_call = dev_map_notification,
535 static int __init dev_map_init(void)
537 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
538 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
539 offsetof(struct _bpf_dtab_netdev, dev));
540 register_netdevice_notifier(&dev_map_notifier);
541 return 0;
544 subsys_initcall(dev_map_init);