x86/speculation/mds: Add sysfs reporting for MDS
[linux/fpc-iii.git] / kernel / futex.c
blob6262f1534ac94d05bdfcde04fcf6b2eea95c3eaa
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/memblock.h>
70 #include <linux/fault-inject.h>
71 #include <linux/refcount.h>
73 #include <asm/futex.h>
75 #include "locking/rtmutex_common.h"
78 * READ this before attempting to hack on futexes!
80 * Basic futex operation and ordering guarantees
81 * =============================================
83 * The waiter reads the futex value in user space and calls
84 * futex_wait(). This function computes the hash bucket and acquires
85 * the hash bucket lock. After that it reads the futex user space value
86 * again and verifies that the data has not changed. If it has not changed
87 * it enqueues itself into the hash bucket, releases the hash bucket lock
88 * and schedules.
90 * The waker side modifies the user space value of the futex and calls
91 * futex_wake(). This function computes the hash bucket and acquires the
92 * hash bucket lock. Then it looks for waiters on that futex in the hash
93 * bucket and wakes them.
95 * In futex wake up scenarios where no tasks are blocked on a futex, taking
96 * the hb spinlock can be avoided and simply return. In order for this
97 * optimization to work, ordering guarantees must exist so that the waiter
98 * being added to the list is acknowledged when the list is concurrently being
99 * checked by the waker, avoiding scenarios like the following:
101 * CPU 0 CPU 1
102 * val = *futex;
103 * sys_futex(WAIT, futex, val);
104 * futex_wait(futex, val);
105 * uval = *futex;
106 * *futex = newval;
107 * sys_futex(WAKE, futex);
108 * futex_wake(futex);
109 * if (queue_empty())
110 * return;
111 * if (uval == val)
112 * lock(hash_bucket(futex));
113 * queue();
114 * unlock(hash_bucket(futex));
115 * schedule();
117 * This would cause the waiter on CPU 0 to wait forever because it
118 * missed the transition of the user space value from val to newval
119 * and the waker did not find the waiter in the hash bucket queue.
121 * The correct serialization ensures that a waiter either observes
122 * the changed user space value before blocking or is woken by a
123 * concurrent waker:
125 * CPU 0 CPU 1
126 * val = *futex;
127 * sys_futex(WAIT, futex, val);
128 * futex_wait(futex, val);
130 * waiters++; (a)
131 * smp_mb(); (A) <-- paired with -.
133 * lock(hash_bucket(futex)); |
135 * uval = *futex; |
136 * | *futex = newval;
137 * | sys_futex(WAKE, futex);
138 * | futex_wake(futex);
140 * `--------> smp_mb(); (B)
141 * if (uval == val)
142 * queue();
143 * unlock(hash_bucket(futex));
144 * schedule(); if (waiters)
145 * lock(hash_bucket(futex));
146 * else wake_waiters(futex);
147 * waiters--; (b) unlock(hash_bucket(futex));
149 * Where (A) orders the waiters increment and the futex value read through
150 * atomic operations (see hb_waiters_inc) and where (B) orders the write
151 * to futex and the waiters read -- this is done by the barriers for both
152 * shared and private futexes in get_futex_key_refs().
154 * This yields the following case (where X:=waiters, Y:=futex):
156 * X = Y = 0
158 * w[X]=1 w[Y]=1
159 * MB MB
160 * r[Y]=y r[X]=x
162 * Which guarantees that x==0 && y==0 is impossible; which translates back into
163 * the guarantee that we cannot both miss the futex variable change and the
164 * enqueue.
166 * Note that a new waiter is accounted for in (a) even when it is possible that
167 * the wait call can return error, in which case we backtrack from it in (b).
168 * Refer to the comment in queue_lock().
170 * Similarly, in order to account for waiters being requeued on another
171 * address we always increment the waiters for the destination bucket before
172 * acquiring the lock. It then decrements them again after releasing it -
173 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
174 * will do the additional required waiter count housekeeping. This is done for
175 * double_lock_hb() and double_unlock_hb(), respectively.
178 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
179 #define futex_cmpxchg_enabled 1
180 #else
181 static int __read_mostly futex_cmpxchg_enabled;
182 #endif
185 * Futex flags used to encode options to functions and preserve them across
186 * restarts.
188 #ifdef CONFIG_MMU
189 # define FLAGS_SHARED 0x01
190 #else
192 * NOMMU does not have per process address space. Let the compiler optimize
193 * code away.
195 # define FLAGS_SHARED 0x00
196 #endif
197 #define FLAGS_CLOCKRT 0x02
198 #define FLAGS_HAS_TIMEOUT 0x04
201 * Priority Inheritance state:
203 struct futex_pi_state {
205 * list of 'owned' pi_state instances - these have to be
206 * cleaned up in do_exit() if the task exits prematurely:
208 struct list_head list;
211 * The PI object:
213 struct rt_mutex pi_mutex;
215 struct task_struct *owner;
216 refcount_t refcount;
218 union futex_key key;
219 } __randomize_layout;
222 * struct futex_q - The hashed futex queue entry, one per waiting task
223 * @list: priority-sorted list of tasks waiting on this futex
224 * @task: the task waiting on the futex
225 * @lock_ptr: the hash bucket lock
226 * @key: the key the futex is hashed on
227 * @pi_state: optional priority inheritance state
228 * @rt_waiter: rt_waiter storage for use with requeue_pi
229 * @requeue_pi_key: the requeue_pi target futex key
230 * @bitset: bitset for the optional bitmasked wakeup
232 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
233 * we can wake only the relevant ones (hashed queues may be shared).
235 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
236 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
237 * The order of wakeup is always to make the first condition true, then
238 * the second.
240 * PI futexes are typically woken before they are removed from the hash list via
241 * the rt_mutex code. See unqueue_me_pi().
243 struct futex_q {
244 struct plist_node list;
246 struct task_struct *task;
247 spinlock_t *lock_ptr;
248 union futex_key key;
249 struct futex_pi_state *pi_state;
250 struct rt_mutex_waiter *rt_waiter;
251 union futex_key *requeue_pi_key;
252 u32 bitset;
253 } __randomize_layout;
255 static const struct futex_q futex_q_init = {
256 /* list gets initialized in queue_me()*/
257 .key = FUTEX_KEY_INIT,
258 .bitset = FUTEX_BITSET_MATCH_ANY
262 * Hash buckets are shared by all the futex_keys that hash to the same
263 * location. Each key may have multiple futex_q structures, one for each task
264 * waiting on a futex.
266 struct futex_hash_bucket {
267 atomic_t waiters;
268 spinlock_t lock;
269 struct plist_head chain;
270 } ____cacheline_aligned_in_smp;
273 * The base of the bucket array and its size are always used together
274 * (after initialization only in hash_futex()), so ensure that they
275 * reside in the same cacheline.
277 static struct {
278 struct futex_hash_bucket *queues;
279 unsigned long hashsize;
280 } __futex_data __read_mostly __aligned(2*sizeof(long));
281 #define futex_queues (__futex_data.queues)
282 #define futex_hashsize (__futex_data.hashsize)
286 * Fault injections for futexes.
288 #ifdef CONFIG_FAIL_FUTEX
290 static struct {
291 struct fault_attr attr;
293 bool ignore_private;
294 } fail_futex = {
295 .attr = FAULT_ATTR_INITIALIZER,
296 .ignore_private = false,
299 static int __init setup_fail_futex(char *str)
301 return setup_fault_attr(&fail_futex.attr, str);
303 __setup("fail_futex=", setup_fail_futex);
305 static bool should_fail_futex(bool fshared)
307 if (fail_futex.ignore_private && !fshared)
308 return false;
310 return should_fail(&fail_futex.attr, 1);
313 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
315 static int __init fail_futex_debugfs(void)
317 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
318 struct dentry *dir;
320 dir = fault_create_debugfs_attr("fail_futex", NULL,
321 &fail_futex.attr);
322 if (IS_ERR(dir))
323 return PTR_ERR(dir);
325 debugfs_create_bool("ignore-private", mode, dir,
326 &fail_futex.ignore_private);
327 return 0;
330 late_initcall(fail_futex_debugfs);
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
334 #else
335 static inline bool should_fail_futex(bool fshared)
337 return false;
339 #endif /* CONFIG_FAIL_FUTEX */
341 static inline void futex_get_mm(union futex_key *key)
343 mmgrab(key->private.mm);
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
349 smp_mb__after_atomic();
353 * Reflects a new waiter being added to the waitqueue.
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
360 * Full barrier (A), see the ordering comment above.
362 smp_mb__after_atomic();
363 #endif
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
407 * Return 1 if two futex_keys are equal, 0 otherwise.
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
422 static void get_futex_key_refs(union futex_key *key)
424 if (!key->both.ptr)
425 return;
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
450 smp_mb(); /* explicit smp_mb(); (B) */
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
460 static void drop_futex_key_refs(union futex_key *key)
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
481 enum futex_access {
482 FUTEX_READ,
483 FUTEX_WRITE
487 * get_futex_key() - Get parameters which are the keys for a futex
488 * @uaddr: virtual address of the futex
489 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
490 * @key: address where result is stored.
491 * @rw: mapping needs to be read/write (values: FUTEX_READ,
492 * FUTEX_WRITE)
494 * Return: a negative error code or 0
496 * The key words are stored in @key on success.
498 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
499 * offset_within_page). For private mappings, it's (uaddr, current->mm).
500 * We can usually work out the index without swapping in the page.
502 * lock_page() might sleep, the caller should not hold a spinlock.
504 static int
505 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
507 unsigned long address = (unsigned long)uaddr;
508 struct mm_struct *mm = current->mm;
509 struct page *page, *tail;
510 struct address_space *mapping;
511 int err, ro = 0;
514 * The futex address must be "naturally" aligned.
516 key->both.offset = address % PAGE_SIZE;
517 if (unlikely((address % sizeof(u32)) != 0))
518 return -EINVAL;
519 address -= key->both.offset;
521 if (unlikely(!access_ok(uaddr, sizeof(u32))))
522 return -EFAULT;
524 if (unlikely(should_fail_futex(fshared)))
525 return -EFAULT;
528 * PROCESS_PRIVATE futexes are fast.
529 * As the mm cannot disappear under us and the 'key' only needs
530 * virtual address, we dont even have to find the underlying vma.
531 * Note : We do have to check 'uaddr' is a valid user address,
532 * but access_ok() should be faster than find_vma()
534 if (!fshared) {
535 key->private.mm = mm;
536 key->private.address = address;
537 get_futex_key_refs(key); /* implies smp_mb(); (B) */
538 return 0;
541 again:
542 /* Ignore any VERIFY_READ mapping (futex common case) */
543 if (unlikely(should_fail_futex(fshared)))
544 return -EFAULT;
546 err = get_user_pages_fast(address, 1, 1, &page);
548 * If write access is not required (eg. FUTEX_WAIT), try
549 * and get read-only access.
551 if (err == -EFAULT && rw == FUTEX_READ) {
552 err = get_user_pages_fast(address, 1, 0, &page);
553 ro = 1;
555 if (err < 0)
556 return err;
557 else
558 err = 0;
561 * The treatment of mapping from this point on is critical. The page
562 * lock protects many things but in this context the page lock
563 * stabilizes mapping, prevents inode freeing in the shared
564 * file-backed region case and guards against movement to swap cache.
566 * Strictly speaking the page lock is not needed in all cases being
567 * considered here and page lock forces unnecessarily serialization
568 * From this point on, mapping will be re-verified if necessary and
569 * page lock will be acquired only if it is unavoidable
571 * Mapping checks require the head page for any compound page so the
572 * head page and mapping is looked up now. For anonymous pages, it
573 * does not matter if the page splits in the future as the key is
574 * based on the address. For filesystem-backed pages, the tail is
575 * required as the index of the page determines the key. For
576 * base pages, there is no tail page and tail == page.
578 tail = page;
579 page = compound_head(page);
580 mapping = READ_ONCE(page->mapping);
583 * If page->mapping is NULL, then it cannot be a PageAnon
584 * page; but it might be the ZERO_PAGE or in the gate area or
585 * in a special mapping (all cases which we are happy to fail);
586 * or it may have been a good file page when get_user_pages_fast
587 * found it, but truncated or holepunched or subjected to
588 * invalidate_complete_page2 before we got the page lock (also
589 * cases which we are happy to fail). And we hold a reference,
590 * so refcount care in invalidate_complete_page's remove_mapping
591 * prevents drop_caches from setting mapping to NULL beneath us.
593 * The case we do have to guard against is when memory pressure made
594 * shmem_writepage move it from filecache to swapcache beneath us:
595 * an unlikely race, but we do need to retry for page->mapping.
597 if (unlikely(!mapping)) {
598 int shmem_swizzled;
601 * Page lock is required to identify which special case above
602 * applies. If this is really a shmem page then the page lock
603 * will prevent unexpected transitions.
605 lock_page(page);
606 shmem_swizzled = PageSwapCache(page) || page->mapping;
607 unlock_page(page);
608 put_page(page);
610 if (shmem_swizzled)
611 goto again;
613 return -EFAULT;
617 * Private mappings are handled in a simple way.
619 * If the futex key is stored on an anonymous page, then the associated
620 * object is the mm which is implicitly pinned by the calling process.
622 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
623 * it's a read-only handle, it's expected that futexes attach to
624 * the object not the particular process.
626 if (PageAnon(page)) {
628 * A RO anonymous page will never change and thus doesn't make
629 * sense for futex operations.
631 if (unlikely(should_fail_futex(fshared)) || ro) {
632 err = -EFAULT;
633 goto out;
636 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
637 key->private.mm = mm;
638 key->private.address = address;
640 get_futex_key_refs(key); /* implies smp_mb(); (B) */
642 } else {
643 struct inode *inode;
646 * The associated futex object in this case is the inode and
647 * the page->mapping must be traversed. Ordinarily this should
648 * be stabilised under page lock but it's not strictly
649 * necessary in this case as we just want to pin the inode, not
650 * update the radix tree or anything like that.
652 * The RCU read lock is taken as the inode is finally freed
653 * under RCU. If the mapping still matches expectations then the
654 * mapping->host can be safely accessed as being a valid inode.
656 rcu_read_lock();
658 if (READ_ONCE(page->mapping) != mapping) {
659 rcu_read_unlock();
660 put_page(page);
662 goto again;
665 inode = READ_ONCE(mapping->host);
666 if (!inode) {
667 rcu_read_unlock();
668 put_page(page);
670 goto again;
674 * Take a reference unless it is about to be freed. Previously
675 * this reference was taken by ihold under the page lock
676 * pinning the inode in place so i_lock was unnecessary. The
677 * only way for this check to fail is if the inode was
678 * truncated in parallel which is almost certainly an
679 * application bug. In such a case, just retry.
681 * We are not calling into get_futex_key_refs() in file-backed
682 * cases, therefore a successful atomic_inc return below will
683 * guarantee that get_futex_key() will still imply smp_mb(); (B).
685 if (!atomic_inc_not_zero(&inode->i_count)) {
686 rcu_read_unlock();
687 put_page(page);
689 goto again;
692 /* Should be impossible but lets be paranoid for now */
693 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
694 err = -EFAULT;
695 rcu_read_unlock();
696 iput(inode);
698 goto out;
701 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
702 key->shared.inode = inode;
703 key->shared.pgoff = basepage_index(tail);
704 rcu_read_unlock();
707 out:
708 put_page(page);
709 return err;
712 static inline void put_futex_key(union futex_key *key)
714 drop_futex_key_refs(key);
718 * fault_in_user_writeable() - Fault in user address and verify RW access
719 * @uaddr: pointer to faulting user space address
721 * Slow path to fixup the fault we just took in the atomic write
722 * access to @uaddr.
724 * We have no generic implementation of a non-destructive write to the
725 * user address. We know that we faulted in the atomic pagefault
726 * disabled section so we can as well avoid the #PF overhead by
727 * calling get_user_pages() right away.
729 static int fault_in_user_writeable(u32 __user *uaddr)
731 struct mm_struct *mm = current->mm;
732 int ret;
734 down_read(&mm->mmap_sem);
735 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
736 FAULT_FLAG_WRITE, NULL);
737 up_read(&mm->mmap_sem);
739 return ret < 0 ? ret : 0;
743 * futex_top_waiter() - Return the highest priority waiter on a futex
744 * @hb: the hash bucket the futex_q's reside in
745 * @key: the futex key (to distinguish it from other futex futex_q's)
747 * Must be called with the hb lock held.
749 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
750 union futex_key *key)
752 struct futex_q *this;
754 plist_for_each_entry(this, &hb->chain, list) {
755 if (match_futex(&this->key, key))
756 return this;
758 return NULL;
761 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
762 u32 uval, u32 newval)
764 int ret;
766 pagefault_disable();
767 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
768 pagefault_enable();
770 return ret;
773 static int get_futex_value_locked(u32 *dest, u32 __user *from)
775 int ret;
777 pagefault_disable();
778 ret = __get_user(*dest, from);
779 pagefault_enable();
781 return ret ? -EFAULT : 0;
786 * PI code:
788 static int refill_pi_state_cache(void)
790 struct futex_pi_state *pi_state;
792 if (likely(current->pi_state_cache))
793 return 0;
795 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
797 if (!pi_state)
798 return -ENOMEM;
800 INIT_LIST_HEAD(&pi_state->list);
801 /* pi_mutex gets initialized later */
802 pi_state->owner = NULL;
803 refcount_set(&pi_state->refcount, 1);
804 pi_state->key = FUTEX_KEY_INIT;
806 current->pi_state_cache = pi_state;
808 return 0;
811 static struct futex_pi_state *alloc_pi_state(void)
813 struct futex_pi_state *pi_state = current->pi_state_cache;
815 WARN_ON(!pi_state);
816 current->pi_state_cache = NULL;
818 return pi_state;
821 static void get_pi_state(struct futex_pi_state *pi_state)
823 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
827 * Drops a reference to the pi_state object and frees or caches it
828 * when the last reference is gone.
830 static void put_pi_state(struct futex_pi_state *pi_state)
832 if (!pi_state)
833 return;
835 if (!refcount_dec_and_test(&pi_state->refcount))
836 return;
839 * If pi_state->owner is NULL, the owner is most probably dying
840 * and has cleaned up the pi_state already
842 if (pi_state->owner) {
843 struct task_struct *owner;
845 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
846 owner = pi_state->owner;
847 if (owner) {
848 raw_spin_lock(&owner->pi_lock);
849 list_del_init(&pi_state->list);
850 raw_spin_unlock(&owner->pi_lock);
852 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
853 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
856 if (current->pi_state_cache) {
857 kfree(pi_state);
858 } else {
860 * pi_state->list is already empty.
861 * clear pi_state->owner.
862 * refcount is at 0 - put it back to 1.
864 pi_state->owner = NULL;
865 refcount_set(&pi_state->refcount, 1);
866 current->pi_state_cache = pi_state;
870 #ifdef CONFIG_FUTEX_PI
873 * This task is holding PI mutexes at exit time => bad.
874 * Kernel cleans up PI-state, but userspace is likely hosed.
875 * (Robust-futex cleanup is separate and might save the day for userspace.)
877 void exit_pi_state_list(struct task_struct *curr)
879 struct list_head *next, *head = &curr->pi_state_list;
880 struct futex_pi_state *pi_state;
881 struct futex_hash_bucket *hb;
882 union futex_key key = FUTEX_KEY_INIT;
884 if (!futex_cmpxchg_enabled)
885 return;
887 * We are a ZOMBIE and nobody can enqueue itself on
888 * pi_state_list anymore, but we have to be careful
889 * versus waiters unqueueing themselves:
891 raw_spin_lock_irq(&curr->pi_lock);
892 while (!list_empty(head)) {
893 next = head->next;
894 pi_state = list_entry(next, struct futex_pi_state, list);
895 key = pi_state->key;
896 hb = hash_futex(&key);
899 * We can race against put_pi_state() removing itself from the
900 * list (a waiter going away). put_pi_state() will first
901 * decrement the reference count and then modify the list, so
902 * its possible to see the list entry but fail this reference
903 * acquire.
905 * In that case; drop the locks to let put_pi_state() make
906 * progress and retry the loop.
908 if (!refcount_inc_not_zero(&pi_state->refcount)) {
909 raw_spin_unlock_irq(&curr->pi_lock);
910 cpu_relax();
911 raw_spin_lock_irq(&curr->pi_lock);
912 continue;
914 raw_spin_unlock_irq(&curr->pi_lock);
916 spin_lock(&hb->lock);
917 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
918 raw_spin_lock(&curr->pi_lock);
920 * We dropped the pi-lock, so re-check whether this
921 * task still owns the PI-state:
923 if (head->next != next) {
924 /* retain curr->pi_lock for the loop invariant */
925 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
926 spin_unlock(&hb->lock);
927 put_pi_state(pi_state);
928 continue;
931 WARN_ON(pi_state->owner != curr);
932 WARN_ON(list_empty(&pi_state->list));
933 list_del_init(&pi_state->list);
934 pi_state->owner = NULL;
936 raw_spin_unlock(&curr->pi_lock);
937 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
938 spin_unlock(&hb->lock);
940 rt_mutex_futex_unlock(&pi_state->pi_mutex);
941 put_pi_state(pi_state);
943 raw_spin_lock_irq(&curr->pi_lock);
945 raw_spin_unlock_irq(&curr->pi_lock);
948 #endif
951 * We need to check the following states:
953 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
955 * [1] NULL | --- | --- | 0 | 0/1 | Valid
956 * [2] NULL | --- | --- | >0 | 0/1 | Valid
958 * [3] Found | NULL | -- | Any | 0/1 | Invalid
960 * [4] Found | Found | NULL | 0 | 1 | Valid
961 * [5] Found | Found | NULL | >0 | 1 | Invalid
963 * [6] Found | Found | task | 0 | 1 | Valid
965 * [7] Found | Found | NULL | Any | 0 | Invalid
967 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
968 * [9] Found | Found | task | 0 | 0 | Invalid
969 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
971 * [1] Indicates that the kernel can acquire the futex atomically. We
972 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
974 * [2] Valid, if TID does not belong to a kernel thread. If no matching
975 * thread is found then it indicates that the owner TID has died.
977 * [3] Invalid. The waiter is queued on a non PI futex
979 * [4] Valid state after exit_robust_list(), which sets the user space
980 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
982 * [5] The user space value got manipulated between exit_robust_list()
983 * and exit_pi_state_list()
985 * [6] Valid state after exit_pi_state_list() which sets the new owner in
986 * the pi_state but cannot access the user space value.
988 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
990 * [8] Owner and user space value match
992 * [9] There is no transient state which sets the user space TID to 0
993 * except exit_robust_list(), but this is indicated by the
994 * FUTEX_OWNER_DIED bit. See [4]
996 * [10] There is no transient state which leaves owner and user space
997 * TID out of sync.
1000 * Serialization and lifetime rules:
1002 * hb->lock:
1004 * hb -> futex_q, relation
1005 * futex_q -> pi_state, relation
1007 * (cannot be raw because hb can contain arbitrary amount
1008 * of futex_q's)
1010 * pi_mutex->wait_lock:
1012 * {uval, pi_state}
1014 * (and pi_mutex 'obviously')
1016 * p->pi_lock:
1018 * p->pi_state_list -> pi_state->list, relation
1020 * pi_state->refcount:
1022 * pi_state lifetime
1025 * Lock order:
1027 * hb->lock
1028 * pi_mutex->wait_lock
1029 * p->pi_lock
1034 * Validate that the existing waiter has a pi_state and sanity check
1035 * the pi_state against the user space value. If correct, attach to
1036 * it.
1038 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1039 struct futex_pi_state *pi_state,
1040 struct futex_pi_state **ps)
1042 pid_t pid = uval & FUTEX_TID_MASK;
1043 u32 uval2;
1044 int ret;
1047 * Userspace might have messed up non-PI and PI futexes [3]
1049 if (unlikely(!pi_state))
1050 return -EINVAL;
1053 * We get here with hb->lock held, and having found a
1054 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1055 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1056 * which in turn means that futex_lock_pi() still has a reference on
1057 * our pi_state.
1059 * The waiter holding a reference on @pi_state also protects against
1060 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1061 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1062 * free pi_state before we can take a reference ourselves.
1064 WARN_ON(!refcount_read(&pi_state->refcount));
1067 * Now that we have a pi_state, we can acquire wait_lock
1068 * and do the state validation.
1070 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1073 * Since {uval, pi_state} is serialized by wait_lock, and our current
1074 * uval was read without holding it, it can have changed. Verify it
1075 * still is what we expect it to be, otherwise retry the entire
1076 * operation.
1078 if (get_futex_value_locked(&uval2, uaddr))
1079 goto out_efault;
1081 if (uval != uval2)
1082 goto out_eagain;
1085 * Handle the owner died case:
1087 if (uval & FUTEX_OWNER_DIED) {
1089 * exit_pi_state_list sets owner to NULL and wakes the
1090 * topmost waiter. The task which acquires the
1091 * pi_state->rt_mutex will fixup owner.
1093 if (!pi_state->owner) {
1095 * No pi state owner, but the user space TID
1096 * is not 0. Inconsistent state. [5]
1098 if (pid)
1099 goto out_einval;
1101 * Take a ref on the state and return success. [4]
1103 goto out_attach;
1107 * If TID is 0, then either the dying owner has not
1108 * yet executed exit_pi_state_list() or some waiter
1109 * acquired the rtmutex in the pi state, but did not
1110 * yet fixup the TID in user space.
1112 * Take a ref on the state and return success. [6]
1114 if (!pid)
1115 goto out_attach;
1116 } else {
1118 * If the owner died bit is not set, then the pi_state
1119 * must have an owner. [7]
1121 if (!pi_state->owner)
1122 goto out_einval;
1126 * Bail out if user space manipulated the futex value. If pi
1127 * state exists then the owner TID must be the same as the
1128 * user space TID. [9/10]
1130 if (pid != task_pid_vnr(pi_state->owner))
1131 goto out_einval;
1133 out_attach:
1134 get_pi_state(pi_state);
1135 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1136 *ps = pi_state;
1137 return 0;
1139 out_einval:
1140 ret = -EINVAL;
1141 goto out_error;
1143 out_eagain:
1144 ret = -EAGAIN;
1145 goto out_error;
1147 out_efault:
1148 ret = -EFAULT;
1149 goto out_error;
1151 out_error:
1152 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1153 return ret;
1156 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1157 struct task_struct *tsk)
1159 u32 uval2;
1162 * If PF_EXITPIDONE is not yet set, then try again.
1164 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1165 return -EAGAIN;
1168 * Reread the user space value to handle the following situation:
1170 * CPU0 CPU1
1172 * sys_exit() sys_futex()
1173 * do_exit() futex_lock_pi()
1174 * futex_lock_pi_atomic()
1175 * exit_signals(tsk) No waiters:
1176 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1177 * mm_release(tsk) Set waiter bit
1178 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1179 * Set owner died attach_to_pi_owner() {
1180 * *uaddr = 0xC0000000; tsk = get_task(PID);
1181 * } if (!tsk->flags & PF_EXITING) {
1182 * ... attach();
1183 * tsk->flags |= PF_EXITPIDONE; } else {
1184 * if (!(tsk->flags & PF_EXITPIDONE))
1185 * return -EAGAIN;
1186 * return -ESRCH; <--- FAIL
1189 * Returning ESRCH unconditionally is wrong here because the
1190 * user space value has been changed by the exiting task.
1192 * The same logic applies to the case where the exiting task is
1193 * already gone.
1195 if (get_futex_value_locked(&uval2, uaddr))
1196 return -EFAULT;
1198 /* If the user space value has changed, try again. */
1199 if (uval2 != uval)
1200 return -EAGAIN;
1203 * The exiting task did not have a robust list, the robust list was
1204 * corrupted or the user space value in *uaddr is simply bogus.
1205 * Give up and tell user space.
1207 return -ESRCH;
1211 * Lookup the task for the TID provided from user space and attach to
1212 * it after doing proper sanity checks.
1214 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1215 struct futex_pi_state **ps)
1217 pid_t pid = uval & FUTEX_TID_MASK;
1218 struct futex_pi_state *pi_state;
1219 struct task_struct *p;
1222 * We are the first waiter - try to look up the real owner and attach
1223 * the new pi_state to it, but bail out when TID = 0 [1]
1225 * The !pid check is paranoid. None of the call sites should end up
1226 * with pid == 0, but better safe than sorry. Let the caller retry
1228 if (!pid)
1229 return -EAGAIN;
1230 p = find_get_task_by_vpid(pid);
1231 if (!p)
1232 return handle_exit_race(uaddr, uval, NULL);
1234 if (unlikely(p->flags & PF_KTHREAD)) {
1235 put_task_struct(p);
1236 return -EPERM;
1240 * We need to look at the task state flags to figure out,
1241 * whether the task is exiting. To protect against the do_exit
1242 * change of the task flags, we do this protected by
1243 * p->pi_lock:
1245 raw_spin_lock_irq(&p->pi_lock);
1246 if (unlikely(p->flags & PF_EXITING)) {
1248 * The task is on the way out. When PF_EXITPIDONE is
1249 * set, we know that the task has finished the
1250 * cleanup:
1252 int ret = handle_exit_race(uaddr, uval, p);
1254 raw_spin_unlock_irq(&p->pi_lock);
1255 put_task_struct(p);
1256 return ret;
1260 * No existing pi state. First waiter. [2]
1262 * This creates pi_state, we have hb->lock held, this means nothing can
1263 * observe this state, wait_lock is irrelevant.
1265 pi_state = alloc_pi_state();
1268 * Initialize the pi_mutex in locked state and make @p
1269 * the owner of it:
1271 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1273 /* Store the key for possible exit cleanups: */
1274 pi_state->key = *key;
1276 WARN_ON(!list_empty(&pi_state->list));
1277 list_add(&pi_state->list, &p->pi_state_list);
1279 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1280 * because there is no concurrency as the object is not published yet.
1282 pi_state->owner = p;
1283 raw_spin_unlock_irq(&p->pi_lock);
1285 put_task_struct(p);
1287 *ps = pi_state;
1289 return 0;
1292 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1293 struct futex_hash_bucket *hb,
1294 union futex_key *key, struct futex_pi_state **ps)
1296 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1299 * If there is a waiter on that futex, validate it and
1300 * attach to the pi_state when the validation succeeds.
1302 if (top_waiter)
1303 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1306 * We are the first waiter - try to look up the owner based on
1307 * @uval and attach to it.
1309 return attach_to_pi_owner(uaddr, uval, key, ps);
1312 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1314 int err;
1315 u32 uninitialized_var(curval);
1317 if (unlikely(should_fail_futex(true)))
1318 return -EFAULT;
1320 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1321 if (unlikely(err))
1322 return err;
1324 /* If user space value changed, let the caller retry */
1325 return curval != uval ? -EAGAIN : 0;
1329 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1330 * @uaddr: the pi futex user address
1331 * @hb: the pi futex hash bucket
1332 * @key: the futex key associated with uaddr and hb
1333 * @ps: the pi_state pointer where we store the result of the
1334 * lookup
1335 * @task: the task to perform the atomic lock work for. This will
1336 * be "current" except in the case of requeue pi.
1337 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1339 * Return:
1340 * - 0 - ready to wait;
1341 * - 1 - acquired the lock;
1342 * - <0 - error
1344 * The hb->lock and futex_key refs shall be held by the caller.
1346 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1347 union futex_key *key,
1348 struct futex_pi_state **ps,
1349 struct task_struct *task, int set_waiters)
1351 u32 uval, newval, vpid = task_pid_vnr(task);
1352 struct futex_q *top_waiter;
1353 int ret;
1356 * Read the user space value first so we can validate a few
1357 * things before proceeding further.
1359 if (get_futex_value_locked(&uval, uaddr))
1360 return -EFAULT;
1362 if (unlikely(should_fail_futex(true)))
1363 return -EFAULT;
1366 * Detect deadlocks.
1368 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1369 return -EDEADLK;
1371 if ((unlikely(should_fail_futex(true))))
1372 return -EDEADLK;
1375 * Lookup existing state first. If it exists, try to attach to
1376 * its pi_state.
1378 top_waiter = futex_top_waiter(hb, key);
1379 if (top_waiter)
1380 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1383 * No waiter and user TID is 0. We are here because the
1384 * waiters or the owner died bit is set or called from
1385 * requeue_cmp_pi or for whatever reason something took the
1386 * syscall.
1388 if (!(uval & FUTEX_TID_MASK)) {
1390 * We take over the futex. No other waiters and the user space
1391 * TID is 0. We preserve the owner died bit.
1393 newval = uval & FUTEX_OWNER_DIED;
1394 newval |= vpid;
1396 /* The futex requeue_pi code can enforce the waiters bit */
1397 if (set_waiters)
1398 newval |= FUTEX_WAITERS;
1400 ret = lock_pi_update_atomic(uaddr, uval, newval);
1401 /* If the take over worked, return 1 */
1402 return ret < 0 ? ret : 1;
1406 * First waiter. Set the waiters bit before attaching ourself to
1407 * the owner. If owner tries to unlock, it will be forced into
1408 * the kernel and blocked on hb->lock.
1410 newval = uval | FUTEX_WAITERS;
1411 ret = lock_pi_update_atomic(uaddr, uval, newval);
1412 if (ret)
1413 return ret;
1415 * If the update of the user space value succeeded, we try to
1416 * attach to the owner. If that fails, no harm done, we only
1417 * set the FUTEX_WAITERS bit in the user space variable.
1419 return attach_to_pi_owner(uaddr, newval, key, ps);
1423 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1424 * @q: The futex_q to unqueue
1426 * The q->lock_ptr must not be NULL and must be held by the caller.
1428 static void __unqueue_futex(struct futex_q *q)
1430 struct futex_hash_bucket *hb;
1432 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1433 return;
1434 lockdep_assert_held(q->lock_ptr);
1436 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1437 plist_del(&q->list, &hb->chain);
1438 hb_waiters_dec(hb);
1442 * The hash bucket lock must be held when this is called.
1443 * Afterwards, the futex_q must not be accessed. Callers
1444 * must ensure to later call wake_up_q() for the actual
1445 * wakeups to occur.
1447 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1449 struct task_struct *p = q->task;
1451 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1452 return;
1454 get_task_struct(p);
1455 __unqueue_futex(q);
1457 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1458 * is written, without taking any locks. This is possible in the event
1459 * of a spurious wakeup, for example. A memory barrier is required here
1460 * to prevent the following store to lock_ptr from getting ahead of the
1461 * plist_del in __unqueue_futex().
1463 smp_store_release(&q->lock_ptr, NULL);
1466 * Queue the task for later wakeup for after we've released
1467 * the hb->lock. wake_q_add() grabs reference to p.
1469 wake_q_add_safe(wake_q, p);
1473 * Caller must hold a reference on @pi_state.
1475 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1477 u32 uninitialized_var(curval), newval;
1478 struct task_struct *new_owner;
1479 bool postunlock = false;
1480 DEFINE_WAKE_Q(wake_q);
1481 int ret = 0;
1483 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1484 if (WARN_ON_ONCE(!new_owner)) {
1486 * As per the comment in futex_unlock_pi() this should not happen.
1488 * When this happens, give up our locks and try again, giving
1489 * the futex_lock_pi() instance time to complete, either by
1490 * waiting on the rtmutex or removing itself from the futex
1491 * queue.
1493 ret = -EAGAIN;
1494 goto out_unlock;
1498 * We pass it to the next owner. The WAITERS bit is always kept
1499 * enabled while there is PI state around. We cleanup the owner
1500 * died bit, because we are the owner.
1502 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1504 if (unlikely(should_fail_futex(true)))
1505 ret = -EFAULT;
1507 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1508 if (!ret && (curval != uval)) {
1510 * If a unconditional UNLOCK_PI operation (user space did not
1511 * try the TID->0 transition) raced with a waiter setting the
1512 * FUTEX_WAITERS flag between get_user() and locking the hash
1513 * bucket lock, retry the operation.
1515 if ((FUTEX_TID_MASK & curval) == uval)
1516 ret = -EAGAIN;
1517 else
1518 ret = -EINVAL;
1521 if (ret)
1522 goto out_unlock;
1525 * This is a point of no return; once we modify the uval there is no
1526 * going back and subsequent operations must not fail.
1529 raw_spin_lock(&pi_state->owner->pi_lock);
1530 WARN_ON(list_empty(&pi_state->list));
1531 list_del_init(&pi_state->list);
1532 raw_spin_unlock(&pi_state->owner->pi_lock);
1534 raw_spin_lock(&new_owner->pi_lock);
1535 WARN_ON(!list_empty(&pi_state->list));
1536 list_add(&pi_state->list, &new_owner->pi_state_list);
1537 pi_state->owner = new_owner;
1538 raw_spin_unlock(&new_owner->pi_lock);
1540 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1542 out_unlock:
1543 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1545 if (postunlock)
1546 rt_mutex_postunlock(&wake_q);
1548 return ret;
1552 * Express the locking dependencies for lockdep:
1554 static inline void
1555 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557 if (hb1 <= hb2) {
1558 spin_lock(&hb1->lock);
1559 if (hb1 < hb2)
1560 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1561 } else { /* hb1 > hb2 */
1562 spin_lock(&hb2->lock);
1563 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1567 static inline void
1568 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570 spin_unlock(&hb1->lock);
1571 if (hb1 != hb2)
1572 spin_unlock(&hb2->lock);
1576 * Wake up waiters matching bitset queued on this futex (uaddr).
1578 static int
1579 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1581 struct futex_hash_bucket *hb;
1582 struct futex_q *this, *next;
1583 union futex_key key = FUTEX_KEY_INIT;
1584 int ret;
1585 DEFINE_WAKE_Q(wake_q);
1587 if (!bitset)
1588 return -EINVAL;
1590 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1591 if (unlikely(ret != 0))
1592 goto out;
1594 hb = hash_futex(&key);
1596 /* Make sure we really have tasks to wakeup */
1597 if (!hb_waiters_pending(hb))
1598 goto out_put_key;
1600 spin_lock(&hb->lock);
1602 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1603 if (match_futex (&this->key, &key)) {
1604 if (this->pi_state || this->rt_waiter) {
1605 ret = -EINVAL;
1606 break;
1609 /* Check if one of the bits is set in both bitsets */
1610 if (!(this->bitset & bitset))
1611 continue;
1613 mark_wake_futex(&wake_q, this);
1614 if (++ret >= nr_wake)
1615 break;
1619 spin_unlock(&hb->lock);
1620 wake_up_q(&wake_q);
1621 out_put_key:
1622 put_futex_key(&key);
1623 out:
1624 return ret;
1627 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1629 unsigned int op = (encoded_op & 0x70000000) >> 28;
1630 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1631 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1632 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1633 int oldval, ret;
1635 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1636 if (oparg < 0 || oparg > 31) {
1637 char comm[sizeof(current->comm)];
1639 * kill this print and return -EINVAL when userspace
1640 * is sane again
1642 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1643 get_task_comm(comm, current), oparg);
1644 oparg &= 31;
1646 oparg = 1 << oparg;
1649 if (!access_ok(uaddr, sizeof(u32)))
1650 return -EFAULT;
1652 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1653 if (ret)
1654 return ret;
1656 switch (cmp) {
1657 case FUTEX_OP_CMP_EQ:
1658 return oldval == cmparg;
1659 case FUTEX_OP_CMP_NE:
1660 return oldval != cmparg;
1661 case FUTEX_OP_CMP_LT:
1662 return oldval < cmparg;
1663 case FUTEX_OP_CMP_GE:
1664 return oldval >= cmparg;
1665 case FUTEX_OP_CMP_LE:
1666 return oldval <= cmparg;
1667 case FUTEX_OP_CMP_GT:
1668 return oldval > cmparg;
1669 default:
1670 return -ENOSYS;
1675 * Wake up all waiters hashed on the physical page that is mapped
1676 * to this virtual address:
1678 static int
1679 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1680 int nr_wake, int nr_wake2, int op)
1682 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1683 struct futex_hash_bucket *hb1, *hb2;
1684 struct futex_q *this, *next;
1685 int ret, op_ret;
1686 DEFINE_WAKE_Q(wake_q);
1688 retry:
1689 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1690 if (unlikely(ret != 0))
1691 goto out;
1692 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1693 if (unlikely(ret != 0))
1694 goto out_put_key1;
1696 hb1 = hash_futex(&key1);
1697 hb2 = hash_futex(&key2);
1699 retry_private:
1700 double_lock_hb(hb1, hb2);
1701 op_ret = futex_atomic_op_inuser(op, uaddr2);
1702 if (unlikely(op_ret < 0)) {
1703 double_unlock_hb(hb1, hb2);
1705 if (!IS_ENABLED(CONFIG_MMU) ||
1706 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1708 * we don't get EFAULT from MMU faults if we don't have
1709 * an MMU, but we might get them from range checking
1711 ret = op_ret;
1712 goto out_put_keys;
1715 if (op_ret == -EFAULT) {
1716 ret = fault_in_user_writeable(uaddr2);
1717 if (ret)
1718 goto out_put_keys;
1721 if (!(flags & FLAGS_SHARED)) {
1722 cond_resched();
1723 goto retry_private;
1726 put_futex_key(&key2);
1727 put_futex_key(&key1);
1728 cond_resched();
1729 goto retry;
1732 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1733 if (match_futex (&this->key, &key1)) {
1734 if (this->pi_state || this->rt_waiter) {
1735 ret = -EINVAL;
1736 goto out_unlock;
1738 mark_wake_futex(&wake_q, this);
1739 if (++ret >= nr_wake)
1740 break;
1744 if (op_ret > 0) {
1745 op_ret = 0;
1746 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1747 if (match_futex (&this->key, &key2)) {
1748 if (this->pi_state || this->rt_waiter) {
1749 ret = -EINVAL;
1750 goto out_unlock;
1752 mark_wake_futex(&wake_q, this);
1753 if (++op_ret >= nr_wake2)
1754 break;
1757 ret += op_ret;
1760 out_unlock:
1761 double_unlock_hb(hb1, hb2);
1762 wake_up_q(&wake_q);
1763 out_put_keys:
1764 put_futex_key(&key2);
1765 out_put_key1:
1766 put_futex_key(&key1);
1767 out:
1768 return ret;
1772 * requeue_futex() - Requeue a futex_q from one hb to another
1773 * @q: the futex_q to requeue
1774 * @hb1: the source hash_bucket
1775 * @hb2: the target hash_bucket
1776 * @key2: the new key for the requeued futex_q
1778 static inline
1779 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1780 struct futex_hash_bucket *hb2, union futex_key *key2)
1784 * If key1 and key2 hash to the same bucket, no need to
1785 * requeue.
1787 if (likely(&hb1->chain != &hb2->chain)) {
1788 plist_del(&q->list, &hb1->chain);
1789 hb_waiters_dec(hb1);
1790 hb_waiters_inc(hb2);
1791 plist_add(&q->list, &hb2->chain);
1792 q->lock_ptr = &hb2->lock;
1794 get_futex_key_refs(key2);
1795 q->key = *key2;
1799 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1800 * @q: the futex_q
1801 * @key: the key of the requeue target futex
1802 * @hb: the hash_bucket of the requeue target futex
1804 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1805 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1806 * to the requeue target futex so the waiter can detect the wakeup on the right
1807 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1808 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1809 * to protect access to the pi_state to fixup the owner later. Must be called
1810 * with both q->lock_ptr and hb->lock held.
1812 static inline
1813 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1814 struct futex_hash_bucket *hb)
1816 get_futex_key_refs(key);
1817 q->key = *key;
1819 __unqueue_futex(q);
1821 WARN_ON(!q->rt_waiter);
1822 q->rt_waiter = NULL;
1824 q->lock_ptr = &hb->lock;
1826 wake_up_state(q->task, TASK_NORMAL);
1830 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1831 * @pifutex: the user address of the to futex
1832 * @hb1: the from futex hash bucket, must be locked by the caller
1833 * @hb2: the to futex hash bucket, must be locked by the caller
1834 * @key1: the from futex key
1835 * @key2: the to futex key
1836 * @ps: address to store the pi_state pointer
1837 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1839 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1840 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1841 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1842 * hb1 and hb2 must be held by the caller.
1844 * Return:
1845 * - 0 - failed to acquire the lock atomically;
1846 * - >0 - acquired the lock, return value is vpid of the top_waiter
1847 * - <0 - error
1849 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1850 struct futex_hash_bucket *hb1,
1851 struct futex_hash_bucket *hb2,
1852 union futex_key *key1, union futex_key *key2,
1853 struct futex_pi_state **ps, int set_waiters)
1855 struct futex_q *top_waiter = NULL;
1856 u32 curval;
1857 int ret, vpid;
1859 if (get_futex_value_locked(&curval, pifutex))
1860 return -EFAULT;
1862 if (unlikely(should_fail_futex(true)))
1863 return -EFAULT;
1866 * Find the top_waiter and determine if there are additional waiters.
1867 * If the caller intends to requeue more than 1 waiter to pifutex,
1868 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1869 * as we have means to handle the possible fault. If not, don't set
1870 * the bit unecessarily as it will force the subsequent unlock to enter
1871 * the kernel.
1873 top_waiter = futex_top_waiter(hb1, key1);
1875 /* There are no waiters, nothing for us to do. */
1876 if (!top_waiter)
1877 return 0;
1879 /* Ensure we requeue to the expected futex. */
1880 if (!match_futex(top_waiter->requeue_pi_key, key2))
1881 return -EINVAL;
1884 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1885 * the contended case or if set_waiters is 1. The pi_state is returned
1886 * in ps in contended cases.
1888 vpid = task_pid_vnr(top_waiter->task);
1889 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1890 set_waiters);
1891 if (ret == 1) {
1892 requeue_pi_wake_futex(top_waiter, key2, hb2);
1893 return vpid;
1895 return ret;
1899 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1900 * @uaddr1: source futex user address
1901 * @flags: futex flags (FLAGS_SHARED, etc.)
1902 * @uaddr2: target futex user address
1903 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1904 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1905 * @cmpval: @uaddr1 expected value (or %NULL)
1906 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1907 * pi futex (pi to pi requeue is not supported)
1909 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1910 * uaddr2 atomically on behalf of the top waiter.
1912 * Return:
1913 * - >=0 - on success, the number of tasks requeued or woken;
1914 * - <0 - on error
1916 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1917 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1918 u32 *cmpval, int requeue_pi)
1920 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1921 int drop_count = 0, task_count = 0, ret;
1922 struct futex_pi_state *pi_state = NULL;
1923 struct futex_hash_bucket *hb1, *hb2;
1924 struct futex_q *this, *next;
1925 DEFINE_WAKE_Q(wake_q);
1927 if (nr_wake < 0 || nr_requeue < 0)
1928 return -EINVAL;
1931 * When PI not supported: return -ENOSYS if requeue_pi is true,
1932 * consequently the compiler knows requeue_pi is always false past
1933 * this point which will optimize away all the conditional code
1934 * further down.
1936 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1937 return -ENOSYS;
1939 if (requeue_pi) {
1941 * Requeue PI only works on two distinct uaddrs. This
1942 * check is only valid for private futexes. See below.
1944 if (uaddr1 == uaddr2)
1945 return -EINVAL;
1948 * requeue_pi requires a pi_state, try to allocate it now
1949 * without any locks in case it fails.
1951 if (refill_pi_state_cache())
1952 return -ENOMEM;
1954 * requeue_pi must wake as many tasks as it can, up to nr_wake
1955 * + nr_requeue, since it acquires the rt_mutex prior to
1956 * returning to userspace, so as to not leave the rt_mutex with
1957 * waiters and no owner. However, second and third wake-ups
1958 * cannot be predicted as they involve race conditions with the
1959 * first wake and a fault while looking up the pi_state. Both
1960 * pthread_cond_signal() and pthread_cond_broadcast() should
1961 * use nr_wake=1.
1963 if (nr_wake != 1)
1964 return -EINVAL;
1967 retry:
1968 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1969 if (unlikely(ret != 0))
1970 goto out;
1971 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1972 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1973 if (unlikely(ret != 0))
1974 goto out_put_key1;
1977 * The check above which compares uaddrs is not sufficient for
1978 * shared futexes. We need to compare the keys:
1980 if (requeue_pi && match_futex(&key1, &key2)) {
1981 ret = -EINVAL;
1982 goto out_put_keys;
1985 hb1 = hash_futex(&key1);
1986 hb2 = hash_futex(&key2);
1988 retry_private:
1989 hb_waiters_inc(hb2);
1990 double_lock_hb(hb1, hb2);
1992 if (likely(cmpval != NULL)) {
1993 u32 curval;
1995 ret = get_futex_value_locked(&curval, uaddr1);
1997 if (unlikely(ret)) {
1998 double_unlock_hb(hb1, hb2);
1999 hb_waiters_dec(hb2);
2001 ret = get_user(curval, uaddr1);
2002 if (ret)
2003 goto out_put_keys;
2005 if (!(flags & FLAGS_SHARED))
2006 goto retry_private;
2008 put_futex_key(&key2);
2009 put_futex_key(&key1);
2010 goto retry;
2012 if (curval != *cmpval) {
2013 ret = -EAGAIN;
2014 goto out_unlock;
2018 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2020 * Attempt to acquire uaddr2 and wake the top waiter. If we
2021 * intend to requeue waiters, force setting the FUTEX_WAITERS
2022 * bit. We force this here where we are able to easily handle
2023 * faults rather in the requeue loop below.
2025 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2026 &key2, &pi_state, nr_requeue);
2029 * At this point the top_waiter has either taken uaddr2 or is
2030 * waiting on it. If the former, then the pi_state will not
2031 * exist yet, look it up one more time to ensure we have a
2032 * reference to it. If the lock was taken, ret contains the
2033 * vpid of the top waiter task.
2034 * If the lock was not taken, we have pi_state and an initial
2035 * refcount on it. In case of an error we have nothing.
2037 if (ret > 0) {
2038 WARN_ON(pi_state);
2039 drop_count++;
2040 task_count++;
2042 * If we acquired the lock, then the user space value
2043 * of uaddr2 should be vpid. It cannot be changed by
2044 * the top waiter as it is blocked on hb2 lock if it
2045 * tries to do so. If something fiddled with it behind
2046 * our back the pi state lookup might unearth it. So
2047 * we rather use the known value than rereading and
2048 * handing potential crap to lookup_pi_state.
2050 * If that call succeeds then we have pi_state and an
2051 * initial refcount on it.
2053 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2056 switch (ret) {
2057 case 0:
2058 /* We hold a reference on the pi state. */
2059 break;
2061 /* If the above failed, then pi_state is NULL */
2062 case -EFAULT:
2063 double_unlock_hb(hb1, hb2);
2064 hb_waiters_dec(hb2);
2065 put_futex_key(&key2);
2066 put_futex_key(&key1);
2067 ret = fault_in_user_writeable(uaddr2);
2068 if (!ret)
2069 goto retry;
2070 goto out;
2071 case -EAGAIN:
2073 * Two reasons for this:
2074 * - Owner is exiting and we just wait for the
2075 * exit to complete.
2076 * - The user space value changed.
2078 double_unlock_hb(hb1, hb2);
2079 hb_waiters_dec(hb2);
2080 put_futex_key(&key2);
2081 put_futex_key(&key1);
2082 cond_resched();
2083 goto retry;
2084 default:
2085 goto out_unlock;
2089 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2090 if (task_count - nr_wake >= nr_requeue)
2091 break;
2093 if (!match_futex(&this->key, &key1))
2094 continue;
2097 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2098 * be paired with each other and no other futex ops.
2100 * We should never be requeueing a futex_q with a pi_state,
2101 * which is awaiting a futex_unlock_pi().
2103 if ((requeue_pi && !this->rt_waiter) ||
2104 (!requeue_pi && this->rt_waiter) ||
2105 this->pi_state) {
2106 ret = -EINVAL;
2107 break;
2111 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2112 * lock, we already woke the top_waiter. If not, it will be
2113 * woken by futex_unlock_pi().
2115 if (++task_count <= nr_wake && !requeue_pi) {
2116 mark_wake_futex(&wake_q, this);
2117 continue;
2120 /* Ensure we requeue to the expected futex for requeue_pi. */
2121 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2122 ret = -EINVAL;
2123 break;
2127 * Requeue nr_requeue waiters and possibly one more in the case
2128 * of requeue_pi if we couldn't acquire the lock atomically.
2130 if (requeue_pi) {
2132 * Prepare the waiter to take the rt_mutex. Take a
2133 * refcount on the pi_state and store the pointer in
2134 * the futex_q object of the waiter.
2136 get_pi_state(pi_state);
2137 this->pi_state = pi_state;
2138 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2139 this->rt_waiter,
2140 this->task);
2141 if (ret == 1) {
2143 * We got the lock. We do neither drop the
2144 * refcount on pi_state nor clear
2145 * this->pi_state because the waiter needs the
2146 * pi_state for cleaning up the user space
2147 * value. It will drop the refcount after
2148 * doing so.
2150 requeue_pi_wake_futex(this, &key2, hb2);
2151 drop_count++;
2152 continue;
2153 } else if (ret) {
2155 * rt_mutex_start_proxy_lock() detected a
2156 * potential deadlock when we tried to queue
2157 * that waiter. Drop the pi_state reference
2158 * which we took above and remove the pointer
2159 * to the state from the waiters futex_q
2160 * object.
2162 this->pi_state = NULL;
2163 put_pi_state(pi_state);
2165 * We stop queueing more waiters and let user
2166 * space deal with the mess.
2168 break;
2171 requeue_futex(this, hb1, hb2, &key2);
2172 drop_count++;
2176 * We took an extra initial reference to the pi_state either
2177 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2178 * need to drop it here again.
2180 put_pi_state(pi_state);
2182 out_unlock:
2183 double_unlock_hb(hb1, hb2);
2184 wake_up_q(&wake_q);
2185 hb_waiters_dec(hb2);
2188 * drop_futex_key_refs() must be called outside the spinlocks. During
2189 * the requeue we moved futex_q's from the hash bucket at key1 to the
2190 * one at key2 and updated their key pointer. We no longer need to
2191 * hold the references to key1.
2193 while (--drop_count >= 0)
2194 drop_futex_key_refs(&key1);
2196 out_put_keys:
2197 put_futex_key(&key2);
2198 out_put_key1:
2199 put_futex_key(&key1);
2200 out:
2201 return ret ? ret : task_count;
2204 /* The key must be already stored in q->key. */
2205 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2206 __acquires(&hb->lock)
2208 struct futex_hash_bucket *hb;
2210 hb = hash_futex(&q->key);
2213 * Increment the counter before taking the lock so that
2214 * a potential waker won't miss a to-be-slept task that is
2215 * waiting for the spinlock. This is safe as all queue_lock()
2216 * users end up calling queue_me(). Similarly, for housekeeping,
2217 * decrement the counter at queue_unlock() when some error has
2218 * occurred and we don't end up adding the task to the list.
2220 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2222 q->lock_ptr = &hb->lock;
2224 spin_lock(&hb->lock);
2225 return hb;
2228 static inline void
2229 queue_unlock(struct futex_hash_bucket *hb)
2230 __releases(&hb->lock)
2232 spin_unlock(&hb->lock);
2233 hb_waiters_dec(hb);
2236 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2238 int prio;
2241 * The priority used to register this element is
2242 * - either the real thread-priority for the real-time threads
2243 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2244 * - or MAX_RT_PRIO for non-RT threads.
2245 * Thus, all RT-threads are woken first in priority order, and
2246 * the others are woken last, in FIFO order.
2248 prio = min(current->normal_prio, MAX_RT_PRIO);
2250 plist_node_init(&q->list, prio);
2251 plist_add(&q->list, &hb->chain);
2252 q->task = current;
2256 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2257 * @q: The futex_q to enqueue
2258 * @hb: The destination hash bucket
2260 * The hb->lock must be held by the caller, and is released here. A call to
2261 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2262 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2263 * or nothing if the unqueue is done as part of the wake process and the unqueue
2264 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2265 * an example).
2267 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2268 __releases(&hb->lock)
2270 __queue_me(q, hb);
2271 spin_unlock(&hb->lock);
2275 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2276 * @q: The futex_q to unqueue
2278 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2279 * be paired with exactly one earlier call to queue_me().
2281 * Return:
2282 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2283 * - 0 - if the futex_q was already removed by the waking thread
2285 static int unqueue_me(struct futex_q *q)
2287 spinlock_t *lock_ptr;
2288 int ret = 0;
2290 /* In the common case we don't take the spinlock, which is nice. */
2291 retry:
2293 * q->lock_ptr can change between this read and the following spin_lock.
2294 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2295 * optimizing lock_ptr out of the logic below.
2297 lock_ptr = READ_ONCE(q->lock_ptr);
2298 if (lock_ptr != NULL) {
2299 spin_lock(lock_ptr);
2301 * q->lock_ptr can change between reading it and
2302 * spin_lock(), causing us to take the wrong lock. This
2303 * corrects the race condition.
2305 * Reasoning goes like this: if we have the wrong lock,
2306 * q->lock_ptr must have changed (maybe several times)
2307 * between reading it and the spin_lock(). It can
2308 * change again after the spin_lock() but only if it was
2309 * already changed before the spin_lock(). It cannot,
2310 * however, change back to the original value. Therefore
2311 * we can detect whether we acquired the correct lock.
2313 if (unlikely(lock_ptr != q->lock_ptr)) {
2314 spin_unlock(lock_ptr);
2315 goto retry;
2317 __unqueue_futex(q);
2319 BUG_ON(q->pi_state);
2321 spin_unlock(lock_ptr);
2322 ret = 1;
2325 drop_futex_key_refs(&q->key);
2326 return ret;
2330 * PI futexes can not be requeued and must remove themself from the
2331 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2332 * and dropped here.
2334 static void unqueue_me_pi(struct futex_q *q)
2335 __releases(q->lock_ptr)
2337 __unqueue_futex(q);
2339 BUG_ON(!q->pi_state);
2340 put_pi_state(q->pi_state);
2341 q->pi_state = NULL;
2343 spin_unlock(q->lock_ptr);
2346 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2347 struct task_struct *argowner)
2349 struct futex_pi_state *pi_state = q->pi_state;
2350 u32 uval, uninitialized_var(curval), newval;
2351 struct task_struct *oldowner, *newowner;
2352 u32 newtid;
2353 int ret, err = 0;
2355 lockdep_assert_held(q->lock_ptr);
2357 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2359 oldowner = pi_state->owner;
2362 * We are here because either:
2364 * - we stole the lock and pi_state->owner needs updating to reflect
2365 * that (@argowner == current),
2367 * or:
2369 * - someone stole our lock and we need to fix things to point to the
2370 * new owner (@argowner == NULL).
2372 * Either way, we have to replace the TID in the user space variable.
2373 * This must be atomic as we have to preserve the owner died bit here.
2375 * Note: We write the user space value _before_ changing the pi_state
2376 * because we can fault here. Imagine swapped out pages or a fork
2377 * that marked all the anonymous memory readonly for cow.
2379 * Modifying pi_state _before_ the user space value would leave the
2380 * pi_state in an inconsistent state when we fault here, because we
2381 * need to drop the locks to handle the fault. This might be observed
2382 * in the PID check in lookup_pi_state.
2384 retry:
2385 if (!argowner) {
2386 if (oldowner != current) {
2388 * We raced against a concurrent self; things are
2389 * already fixed up. Nothing to do.
2391 ret = 0;
2392 goto out_unlock;
2395 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2396 /* We got the lock after all, nothing to fix. */
2397 ret = 0;
2398 goto out_unlock;
2402 * Since we just failed the trylock; there must be an owner.
2404 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2405 BUG_ON(!newowner);
2406 } else {
2407 WARN_ON_ONCE(argowner != current);
2408 if (oldowner == current) {
2410 * We raced against a concurrent self; things are
2411 * already fixed up. Nothing to do.
2413 ret = 0;
2414 goto out_unlock;
2416 newowner = argowner;
2419 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2420 /* Owner died? */
2421 if (!pi_state->owner)
2422 newtid |= FUTEX_OWNER_DIED;
2424 err = get_futex_value_locked(&uval, uaddr);
2425 if (err)
2426 goto handle_err;
2428 for (;;) {
2429 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2431 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2432 if (err)
2433 goto handle_err;
2435 if (curval == uval)
2436 break;
2437 uval = curval;
2441 * We fixed up user space. Now we need to fix the pi_state
2442 * itself.
2444 if (pi_state->owner != NULL) {
2445 raw_spin_lock(&pi_state->owner->pi_lock);
2446 WARN_ON(list_empty(&pi_state->list));
2447 list_del_init(&pi_state->list);
2448 raw_spin_unlock(&pi_state->owner->pi_lock);
2451 pi_state->owner = newowner;
2453 raw_spin_lock(&newowner->pi_lock);
2454 WARN_ON(!list_empty(&pi_state->list));
2455 list_add(&pi_state->list, &newowner->pi_state_list);
2456 raw_spin_unlock(&newowner->pi_lock);
2457 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2459 return 0;
2462 * In order to reschedule or handle a page fault, we need to drop the
2463 * locks here. In the case of a fault, this gives the other task
2464 * (either the highest priority waiter itself or the task which stole
2465 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2466 * are back from handling the fault we need to check the pi_state after
2467 * reacquiring the locks and before trying to do another fixup. When
2468 * the fixup has been done already we simply return.
2470 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2471 * drop hb->lock since the caller owns the hb -> futex_q relation.
2472 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2474 handle_err:
2475 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2476 spin_unlock(q->lock_ptr);
2478 switch (err) {
2479 case -EFAULT:
2480 ret = fault_in_user_writeable(uaddr);
2481 break;
2483 case -EAGAIN:
2484 cond_resched();
2485 ret = 0;
2486 break;
2488 default:
2489 WARN_ON_ONCE(1);
2490 ret = err;
2491 break;
2494 spin_lock(q->lock_ptr);
2495 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2498 * Check if someone else fixed it for us:
2500 if (pi_state->owner != oldowner) {
2501 ret = 0;
2502 goto out_unlock;
2505 if (ret)
2506 goto out_unlock;
2508 goto retry;
2510 out_unlock:
2511 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2512 return ret;
2515 static long futex_wait_restart(struct restart_block *restart);
2518 * fixup_owner() - Post lock pi_state and corner case management
2519 * @uaddr: user address of the futex
2520 * @q: futex_q (contains pi_state and access to the rt_mutex)
2521 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2523 * After attempting to lock an rt_mutex, this function is called to cleanup
2524 * the pi_state owner as well as handle race conditions that may allow us to
2525 * acquire the lock. Must be called with the hb lock held.
2527 * Return:
2528 * - 1 - success, lock taken;
2529 * - 0 - success, lock not taken;
2530 * - <0 - on error (-EFAULT)
2532 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2534 int ret = 0;
2536 if (locked) {
2538 * Got the lock. We might not be the anticipated owner if we
2539 * did a lock-steal - fix up the PI-state in that case:
2541 * Speculative pi_state->owner read (we don't hold wait_lock);
2542 * since we own the lock pi_state->owner == current is the
2543 * stable state, anything else needs more attention.
2545 if (q->pi_state->owner != current)
2546 ret = fixup_pi_state_owner(uaddr, q, current);
2547 goto out;
2551 * If we didn't get the lock; check if anybody stole it from us. In
2552 * that case, we need to fix up the uval to point to them instead of
2553 * us, otherwise bad things happen. [10]
2555 * Another speculative read; pi_state->owner == current is unstable
2556 * but needs our attention.
2558 if (q->pi_state->owner == current) {
2559 ret = fixup_pi_state_owner(uaddr, q, NULL);
2560 goto out;
2564 * Paranoia check. If we did not take the lock, then we should not be
2565 * the owner of the rt_mutex.
2567 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2568 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2569 "pi-state %p\n", ret,
2570 q->pi_state->pi_mutex.owner,
2571 q->pi_state->owner);
2574 out:
2575 return ret ? ret : locked;
2579 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2580 * @hb: the futex hash bucket, must be locked by the caller
2581 * @q: the futex_q to queue up on
2582 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2584 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2585 struct hrtimer_sleeper *timeout)
2588 * The task state is guaranteed to be set before another task can
2589 * wake it. set_current_state() is implemented using smp_store_mb() and
2590 * queue_me() calls spin_unlock() upon completion, both serializing
2591 * access to the hash list and forcing another memory barrier.
2593 set_current_state(TASK_INTERRUPTIBLE);
2594 queue_me(q, hb);
2596 /* Arm the timer */
2597 if (timeout)
2598 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2601 * If we have been removed from the hash list, then another task
2602 * has tried to wake us, and we can skip the call to schedule().
2604 if (likely(!plist_node_empty(&q->list))) {
2606 * If the timer has already expired, current will already be
2607 * flagged for rescheduling. Only call schedule if there
2608 * is no timeout, or if it has yet to expire.
2610 if (!timeout || timeout->task)
2611 freezable_schedule();
2613 __set_current_state(TASK_RUNNING);
2617 * futex_wait_setup() - Prepare to wait on a futex
2618 * @uaddr: the futex userspace address
2619 * @val: the expected value
2620 * @flags: futex flags (FLAGS_SHARED, etc.)
2621 * @q: the associated futex_q
2622 * @hb: storage for hash_bucket pointer to be returned to caller
2624 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2625 * compare it with the expected value. Handle atomic faults internally.
2626 * Return with the hb lock held and a q.key reference on success, and unlocked
2627 * with no q.key reference on failure.
2629 * Return:
2630 * - 0 - uaddr contains val and hb has been locked;
2631 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2633 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2634 struct futex_q *q, struct futex_hash_bucket **hb)
2636 u32 uval;
2637 int ret;
2640 * Access the page AFTER the hash-bucket is locked.
2641 * Order is important:
2643 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2644 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2646 * The basic logical guarantee of a futex is that it blocks ONLY
2647 * if cond(var) is known to be true at the time of blocking, for
2648 * any cond. If we locked the hash-bucket after testing *uaddr, that
2649 * would open a race condition where we could block indefinitely with
2650 * cond(var) false, which would violate the guarantee.
2652 * On the other hand, we insert q and release the hash-bucket only
2653 * after testing *uaddr. This guarantees that futex_wait() will NOT
2654 * absorb a wakeup if *uaddr does not match the desired values
2655 * while the syscall executes.
2657 retry:
2658 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2659 if (unlikely(ret != 0))
2660 return ret;
2662 retry_private:
2663 *hb = queue_lock(q);
2665 ret = get_futex_value_locked(&uval, uaddr);
2667 if (ret) {
2668 queue_unlock(*hb);
2670 ret = get_user(uval, uaddr);
2671 if (ret)
2672 goto out;
2674 if (!(flags & FLAGS_SHARED))
2675 goto retry_private;
2677 put_futex_key(&q->key);
2678 goto retry;
2681 if (uval != val) {
2682 queue_unlock(*hb);
2683 ret = -EWOULDBLOCK;
2686 out:
2687 if (ret)
2688 put_futex_key(&q->key);
2689 return ret;
2692 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2693 ktime_t *abs_time, u32 bitset)
2695 struct hrtimer_sleeper timeout, *to = NULL;
2696 struct restart_block *restart;
2697 struct futex_hash_bucket *hb;
2698 struct futex_q q = futex_q_init;
2699 int ret;
2701 if (!bitset)
2702 return -EINVAL;
2703 q.bitset = bitset;
2705 if (abs_time) {
2706 to = &timeout;
2708 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2709 CLOCK_REALTIME : CLOCK_MONOTONIC,
2710 HRTIMER_MODE_ABS);
2711 hrtimer_init_sleeper(to, current);
2712 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2713 current->timer_slack_ns);
2716 retry:
2718 * Prepare to wait on uaddr. On success, holds hb lock and increments
2719 * q.key refs.
2721 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2722 if (ret)
2723 goto out;
2725 /* queue_me and wait for wakeup, timeout, or a signal. */
2726 futex_wait_queue_me(hb, &q, to);
2728 /* If we were woken (and unqueued), we succeeded, whatever. */
2729 ret = 0;
2730 /* unqueue_me() drops q.key ref */
2731 if (!unqueue_me(&q))
2732 goto out;
2733 ret = -ETIMEDOUT;
2734 if (to && !to->task)
2735 goto out;
2738 * We expect signal_pending(current), but we might be the
2739 * victim of a spurious wakeup as well.
2741 if (!signal_pending(current))
2742 goto retry;
2744 ret = -ERESTARTSYS;
2745 if (!abs_time)
2746 goto out;
2748 restart = &current->restart_block;
2749 restart->fn = futex_wait_restart;
2750 restart->futex.uaddr = uaddr;
2751 restart->futex.val = val;
2752 restart->futex.time = *abs_time;
2753 restart->futex.bitset = bitset;
2754 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2756 ret = -ERESTART_RESTARTBLOCK;
2758 out:
2759 if (to) {
2760 hrtimer_cancel(&to->timer);
2761 destroy_hrtimer_on_stack(&to->timer);
2763 return ret;
2767 static long futex_wait_restart(struct restart_block *restart)
2769 u32 __user *uaddr = restart->futex.uaddr;
2770 ktime_t t, *tp = NULL;
2772 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2773 t = restart->futex.time;
2774 tp = &t;
2776 restart->fn = do_no_restart_syscall;
2778 return (long)futex_wait(uaddr, restart->futex.flags,
2779 restart->futex.val, tp, restart->futex.bitset);
2784 * Userspace tried a 0 -> TID atomic transition of the futex value
2785 * and failed. The kernel side here does the whole locking operation:
2786 * if there are waiters then it will block as a consequence of relying
2787 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2788 * a 0 value of the futex too.).
2790 * Also serves as futex trylock_pi()'ing, and due semantics.
2792 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2793 ktime_t *time, int trylock)
2795 struct hrtimer_sleeper timeout, *to = NULL;
2796 struct futex_pi_state *pi_state = NULL;
2797 struct rt_mutex_waiter rt_waiter;
2798 struct futex_hash_bucket *hb;
2799 struct futex_q q = futex_q_init;
2800 int res, ret;
2802 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2803 return -ENOSYS;
2805 if (refill_pi_state_cache())
2806 return -ENOMEM;
2808 if (time) {
2809 to = &timeout;
2810 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2811 HRTIMER_MODE_ABS);
2812 hrtimer_init_sleeper(to, current);
2813 hrtimer_set_expires(&to->timer, *time);
2816 retry:
2817 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2818 if (unlikely(ret != 0))
2819 goto out;
2821 retry_private:
2822 hb = queue_lock(&q);
2824 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2825 if (unlikely(ret)) {
2827 * Atomic work succeeded and we got the lock,
2828 * or failed. Either way, we do _not_ block.
2830 switch (ret) {
2831 case 1:
2832 /* We got the lock. */
2833 ret = 0;
2834 goto out_unlock_put_key;
2835 case -EFAULT:
2836 goto uaddr_faulted;
2837 case -EAGAIN:
2839 * Two reasons for this:
2840 * - Task is exiting and we just wait for the
2841 * exit to complete.
2842 * - The user space value changed.
2844 queue_unlock(hb);
2845 put_futex_key(&q.key);
2846 cond_resched();
2847 goto retry;
2848 default:
2849 goto out_unlock_put_key;
2853 WARN_ON(!q.pi_state);
2856 * Only actually queue now that the atomic ops are done:
2858 __queue_me(&q, hb);
2860 if (trylock) {
2861 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2862 /* Fixup the trylock return value: */
2863 ret = ret ? 0 : -EWOULDBLOCK;
2864 goto no_block;
2867 rt_mutex_init_waiter(&rt_waiter);
2870 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2871 * hold it while doing rt_mutex_start_proxy(), because then it will
2872 * include hb->lock in the blocking chain, even through we'll not in
2873 * fact hold it while blocking. This will lead it to report -EDEADLK
2874 * and BUG when futex_unlock_pi() interleaves with this.
2876 * Therefore acquire wait_lock while holding hb->lock, but drop the
2877 * latter before calling __rt_mutex_start_proxy_lock(). This
2878 * interleaves with futex_unlock_pi() -- which does a similar lock
2879 * handoff -- such that the latter can observe the futex_q::pi_state
2880 * before __rt_mutex_start_proxy_lock() is done.
2882 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2883 spin_unlock(q.lock_ptr);
2885 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2886 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2887 * it sees the futex_q::pi_state.
2889 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2890 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2892 if (ret) {
2893 if (ret == 1)
2894 ret = 0;
2895 goto cleanup;
2898 if (unlikely(to))
2899 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2901 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2903 cleanup:
2904 spin_lock(q.lock_ptr);
2906 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2907 * first acquire the hb->lock before removing the lock from the
2908 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2909 * lists consistent.
2911 * In particular; it is important that futex_unlock_pi() can not
2912 * observe this inconsistency.
2914 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2915 ret = 0;
2917 no_block:
2919 * Fixup the pi_state owner and possibly acquire the lock if we
2920 * haven't already.
2922 res = fixup_owner(uaddr, &q, !ret);
2924 * If fixup_owner() returned an error, proprogate that. If it acquired
2925 * the lock, clear our -ETIMEDOUT or -EINTR.
2927 if (res)
2928 ret = (res < 0) ? res : 0;
2931 * If fixup_owner() faulted and was unable to handle the fault, unlock
2932 * it and return the fault to userspace.
2934 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2935 pi_state = q.pi_state;
2936 get_pi_state(pi_state);
2939 /* Unqueue and drop the lock */
2940 unqueue_me_pi(&q);
2942 if (pi_state) {
2943 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2944 put_pi_state(pi_state);
2947 goto out_put_key;
2949 out_unlock_put_key:
2950 queue_unlock(hb);
2952 out_put_key:
2953 put_futex_key(&q.key);
2954 out:
2955 if (to) {
2956 hrtimer_cancel(&to->timer);
2957 destroy_hrtimer_on_stack(&to->timer);
2959 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2961 uaddr_faulted:
2962 queue_unlock(hb);
2964 ret = fault_in_user_writeable(uaddr);
2965 if (ret)
2966 goto out_put_key;
2968 if (!(flags & FLAGS_SHARED))
2969 goto retry_private;
2971 put_futex_key(&q.key);
2972 goto retry;
2976 * Userspace attempted a TID -> 0 atomic transition, and failed.
2977 * This is the in-kernel slowpath: we look up the PI state (if any),
2978 * and do the rt-mutex unlock.
2980 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2982 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2983 union futex_key key = FUTEX_KEY_INIT;
2984 struct futex_hash_bucket *hb;
2985 struct futex_q *top_waiter;
2986 int ret;
2988 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2989 return -ENOSYS;
2991 retry:
2992 if (get_user(uval, uaddr))
2993 return -EFAULT;
2995 * We release only a lock we actually own:
2997 if ((uval & FUTEX_TID_MASK) != vpid)
2998 return -EPERM;
3000 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3001 if (ret)
3002 return ret;
3004 hb = hash_futex(&key);
3005 spin_lock(&hb->lock);
3008 * Check waiters first. We do not trust user space values at
3009 * all and we at least want to know if user space fiddled
3010 * with the futex value instead of blindly unlocking.
3012 top_waiter = futex_top_waiter(hb, &key);
3013 if (top_waiter) {
3014 struct futex_pi_state *pi_state = top_waiter->pi_state;
3016 ret = -EINVAL;
3017 if (!pi_state)
3018 goto out_unlock;
3021 * If current does not own the pi_state then the futex is
3022 * inconsistent and user space fiddled with the futex value.
3024 if (pi_state->owner != current)
3025 goto out_unlock;
3027 get_pi_state(pi_state);
3029 * By taking wait_lock while still holding hb->lock, we ensure
3030 * there is no point where we hold neither; and therefore
3031 * wake_futex_pi() must observe a state consistent with what we
3032 * observed.
3034 * In particular; this forces __rt_mutex_start_proxy() to
3035 * complete such that we're guaranteed to observe the
3036 * rt_waiter. Also see the WARN in wake_futex_pi().
3038 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3039 spin_unlock(&hb->lock);
3041 /* drops pi_state->pi_mutex.wait_lock */
3042 ret = wake_futex_pi(uaddr, uval, pi_state);
3044 put_pi_state(pi_state);
3047 * Success, we're done! No tricky corner cases.
3049 if (!ret)
3050 goto out_putkey;
3052 * The atomic access to the futex value generated a
3053 * pagefault, so retry the user-access and the wakeup:
3055 if (ret == -EFAULT)
3056 goto pi_faulted;
3058 * A unconditional UNLOCK_PI op raced against a waiter
3059 * setting the FUTEX_WAITERS bit. Try again.
3061 if (ret == -EAGAIN)
3062 goto pi_retry;
3064 * wake_futex_pi has detected invalid state. Tell user
3065 * space.
3067 goto out_putkey;
3071 * We have no kernel internal state, i.e. no waiters in the
3072 * kernel. Waiters which are about to queue themselves are stuck
3073 * on hb->lock. So we can safely ignore them. We do neither
3074 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3075 * owner.
3077 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3078 spin_unlock(&hb->lock);
3079 switch (ret) {
3080 case -EFAULT:
3081 goto pi_faulted;
3083 case -EAGAIN:
3084 goto pi_retry;
3086 default:
3087 WARN_ON_ONCE(1);
3088 goto out_putkey;
3093 * If uval has changed, let user space handle it.
3095 ret = (curval == uval) ? 0 : -EAGAIN;
3097 out_unlock:
3098 spin_unlock(&hb->lock);
3099 out_putkey:
3100 put_futex_key(&key);
3101 return ret;
3103 pi_retry:
3104 put_futex_key(&key);
3105 cond_resched();
3106 goto retry;
3108 pi_faulted:
3109 put_futex_key(&key);
3111 ret = fault_in_user_writeable(uaddr);
3112 if (!ret)
3113 goto retry;
3115 return ret;
3119 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3120 * @hb: the hash_bucket futex_q was original enqueued on
3121 * @q: the futex_q woken while waiting to be requeued
3122 * @key2: the futex_key of the requeue target futex
3123 * @timeout: the timeout associated with the wait (NULL if none)
3125 * Detect if the task was woken on the initial futex as opposed to the requeue
3126 * target futex. If so, determine if it was a timeout or a signal that caused
3127 * the wakeup and return the appropriate error code to the caller. Must be
3128 * called with the hb lock held.
3130 * Return:
3131 * - 0 = no early wakeup detected;
3132 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3134 static inline
3135 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3136 struct futex_q *q, union futex_key *key2,
3137 struct hrtimer_sleeper *timeout)
3139 int ret = 0;
3142 * With the hb lock held, we avoid races while we process the wakeup.
3143 * We only need to hold hb (and not hb2) to ensure atomicity as the
3144 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3145 * It can't be requeued from uaddr2 to something else since we don't
3146 * support a PI aware source futex for requeue.
3148 if (!match_futex(&q->key, key2)) {
3149 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3151 * We were woken prior to requeue by a timeout or a signal.
3152 * Unqueue the futex_q and determine which it was.
3154 plist_del(&q->list, &hb->chain);
3155 hb_waiters_dec(hb);
3157 /* Handle spurious wakeups gracefully */
3158 ret = -EWOULDBLOCK;
3159 if (timeout && !timeout->task)
3160 ret = -ETIMEDOUT;
3161 else if (signal_pending(current))
3162 ret = -ERESTARTNOINTR;
3164 return ret;
3168 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3169 * @uaddr: the futex we initially wait on (non-pi)
3170 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3171 * the same type, no requeueing from private to shared, etc.
3172 * @val: the expected value of uaddr
3173 * @abs_time: absolute timeout
3174 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3175 * @uaddr2: the pi futex we will take prior to returning to user-space
3177 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3178 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3179 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3180 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3181 * without one, the pi logic would not know which task to boost/deboost, if
3182 * there was a need to.
3184 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3185 * via the following--
3186 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3187 * 2) wakeup on uaddr2 after a requeue
3188 * 3) signal
3189 * 4) timeout
3191 * If 3, cleanup and return -ERESTARTNOINTR.
3193 * If 2, we may then block on trying to take the rt_mutex and return via:
3194 * 5) successful lock
3195 * 6) signal
3196 * 7) timeout
3197 * 8) other lock acquisition failure
3199 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3201 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3203 * Return:
3204 * - 0 - On success;
3205 * - <0 - On error
3207 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3208 u32 val, ktime_t *abs_time, u32 bitset,
3209 u32 __user *uaddr2)
3211 struct hrtimer_sleeper timeout, *to = NULL;
3212 struct futex_pi_state *pi_state = NULL;
3213 struct rt_mutex_waiter rt_waiter;
3214 struct futex_hash_bucket *hb;
3215 union futex_key key2 = FUTEX_KEY_INIT;
3216 struct futex_q q = futex_q_init;
3217 int res, ret;
3219 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3220 return -ENOSYS;
3222 if (uaddr == uaddr2)
3223 return -EINVAL;
3225 if (!bitset)
3226 return -EINVAL;
3228 if (abs_time) {
3229 to = &timeout;
3230 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3231 CLOCK_REALTIME : CLOCK_MONOTONIC,
3232 HRTIMER_MODE_ABS);
3233 hrtimer_init_sleeper(to, current);
3234 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3235 current->timer_slack_ns);
3239 * The waiter is allocated on our stack, manipulated by the requeue
3240 * code while we sleep on uaddr.
3242 rt_mutex_init_waiter(&rt_waiter);
3244 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3245 if (unlikely(ret != 0))
3246 goto out;
3248 q.bitset = bitset;
3249 q.rt_waiter = &rt_waiter;
3250 q.requeue_pi_key = &key2;
3253 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3254 * count.
3256 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3257 if (ret)
3258 goto out_key2;
3261 * The check above which compares uaddrs is not sufficient for
3262 * shared futexes. We need to compare the keys:
3264 if (match_futex(&q.key, &key2)) {
3265 queue_unlock(hb);
3266 ret = -EINVAL;
3267 goto out_put_keys;
3270 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3271 futex_wait_queue_me(hb, &q, to);
3273 spin_lock(&hb->lock);
3274 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3275 spin_unlock(&hb->lock);
3276 if (ret)
3277 goto out_put_keys;
3280 * In order for us to be here, we know our q.key == key2, and since
3281 * we took the hb->lock above, we also know that futex_requeue() has
3282 * completed and we no longer have to concern ourselves with a wakeup
3283 * race with the atomic proxy lock acquisition by the requeue code. The
3284 * futex_requeue dropped our key1 reference and incremented our key2
3285 * reference count.
3288 /* Check if the requeue code acquired the second futex for us. */
3289 if (!q.rt_waiter) {
3291 * Got the lock. We might not be the anticipated owner if we
3292 * did a lock-steal - fix up the PI-state in that case.
3294 if (q.pi_state && (q.pi_state->owner != current)) {
3295 spin_lock(q.lock_ptr);
3296 ret = fixup_pi_state_owner(uaddr2, &q, current);
3297 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3298 pi_state = q.pi_state;
3299 get_pi_state(pi_state);
3302 * Drop the reference to the pi state which
3303 * the requeue_pi() code acquired for us.
3305 put_pi_state(q.pi_state);
3306 spin_unlock(q.lock_ptr);
3308 } else {
3309 struct rt_mutex *pi_mutex;
3312 * We have been woken up by futex_unlock_pi(), a timeout, or a
3313 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3314 * the pi_state.
3316 WARN_ON(!q.pi_state);
3317 pi_mutex = &q.pi_state->pi_mutex;
3318 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3320 spin_lock(q.lock_ptr);
3321 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3322 ret = 0;
3324 debug_rt_mutex_free_waiter(&rt_waiter);
3326 * Fixup the pi_state owner and possibly acquire the lock if we
3327 * haven't already.
3329 res = fixup_owner(uaddr2, &q, !ret);
3331 * If fixup_owner() returned an error, proprogate that. If it
3332 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3334 if (res)
3335 ret = (res < 0) ? res : 0;
3338 * If fixup_pi_state_owner() faulted and was unable to handle
3339 * the fault, unlock the rt_mutex and return the fault to
3340 * userspace.
3342 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3343 pi_state = q.pi_state;
3344 get_pi_state(pi_state);
3347 /* Unqueue and drop the lock. */
3348 unqueue_me_pi(&q);
3351 if (pi_state) {
3352 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3353 put_pi_state(pi_state);
3356 if (ret == -EINTR) {
3358 * We've already been requeued, but cannot restart by calling
3359 * futex_lock_pi() directly. We could restart this syscall, but
3360 * it would detect that the user space "val" changed and return
3361 * -EWOULDBLOCK. Save the overhead of the restart and return
3362 * -EWOULDBLOCK directly.
3364 ret = -EWOULDBLOCK;
3367 out_put_keys:
3368 put_futex_key(&q.key);
3369 out_key2:
3370 put_futex_key(&key2);
3372 out:
3373 if (to) {
3374 hrtimer_cancel(&to->timer);
3375 destroy_hrtimer_on_stack(&to->timer);
3377 return ret;
3381 * Support for robust futexes: the kernel cleans up held futexes at
3382 * thread exit time.
3384 * Implementation: user-space maintains a per-thread list of locks it
3385 * is holding. Upon do_exit(), the kernel carefully walks this list,
3386 * and marks all locks that are owned by this thread with the
3387 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3388 * always manipulated with the lock held, so the list is private and
3389 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3390 * field, to allow the kernel to clean up if the thread dies after
3391 * acquiring the lock, but just before it could have added itself to
3392 * the list. There can only be one such pending lock.
3396 * sys_set_robust_list() - Set the robust-futex list head of a task
3397 * @head: pointer to the list-head
3398 * @len: length of the list-head, as userspace expects
3400 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3401 size_t, len)
3403 if (!futex_cmpxchg_enabled)
3404 return -ENOSYS;
3406 * The kernel knows only one size for now:
3408 if (unlikely(len != sizeof(*head)))
3409 return -EINVAL;
3411 current->robust_list = head;
3413 return 0;
3417 * sys_get_robust_list() - Get the robust-futex list head of a task
3418 * @pid: pid of the process [zero for current task]
3419 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3420 * @len_ptr: pointer to a length field, the kernel fills in the header size
3422 SYSCALL_DEFINE3(get_robust_list, int, pid,
3423 struct robust_list_head __user * __user *, head_ptr,
3424 size_t __user *, len_ptr)
3426 struct robust_list_head __user *head;
3427 unsigned long ret;
3428 struct task_struct *p;
3430 if (!futex_cmpxchg_enabled)
3431 return -ENOSYS;
3433 rcu_read_lock();
3435 ret = -ESRCH;
3436 if (!pid)
3437 p = current;
3438 else {
3439 p = find_task_by_vpid(pid);
3440 if (!p)
3441 goto err_unlock;
3444 ret = -EPERM;
3445 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3446 goto err_unlock;
3448 head = p->robust_list;
3449 rcu_read_unlock();
3451 if (put_user(sizeof(*head), len_ptr))
3452 return -EFAULT;
3453 return put_user(head, head_ptr);
3455 err_unlock:
3456 rcu_read_unlock();
3458 return ret;
3462 * Process a futex-list entry, check whether it's owned by the
3463 * dying task, and do notification if so:
3465 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3467 u32 uval, uninitialized_var(nval), mval;
3468 int err;
3470 /* Futex address must be 32bit aligned */
3471 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3472 return -1;
3474 retry:
3475 if (get_user(uval, uaddr))
3476 return -1;
3478 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3479 return 0;
3482 * Ok, this dying thread is truly holding a futex
3483 * of interest. Set the OWNER_DIED bit atomically
3484 * via cmpxchg, and if the value had FUTEX_WAITERS
3485 * set, wake up a waiter (if any). (We have to do a
3486 * futex_wake() even if OWNER_DIED is already set -
3487 * to handle the rare but possible case of recursive
3488 * thread-death.) The rest of the cleanup is done in
3489 * userspace.
3491 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3494 * We are not holding a lock here, but we want to have
3495 * the pagefault_disable/enable() protection because
3496 * we want to handle the fault gracefully. If the
3497 * access fails we try to fault in the futex with R/W
3498 * verification via get_user_pages. get_user() above
3499 * does not guarantee R/W access. If that fails we
3500 * give up and leave the futex locked.
3502 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3503 switch (err) {
3504 case -EFAULT:
3505 if (fault_in_user_writeable(uaddr))
3506 return -1;
3507 goto retry;
3509 case -EAGAIN:
3510 cond_resched();
3511 goto retry;
3513 default:
3514 WARN_ON_ONCE(1);
3515 return err;
3519 if (nval != uval)
3520 goto retry;
3523 * Wake robust non-PI futexes here. The wakeup of
3524 * PI futexes happens in exit_pi_state():
3526 if (!pi && (uval & FUTEX_WAITERS))
3527 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3529 return 0;
3533 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3535 static inline int fetch_robust_entry(struct robust_list __user **entry,
3536 struct robust_list __user * __user *head,
3537 unsigned int *pi)
3539 unsigned long uentry;
3541 if (get_user(uentry, (unsigned long __user *)head))
3542 return -EFAULT;
3544 *entry = (void __user *)(uentry & ~1UL);
3545 *pi = uentry & 1;
3547 return 0;
3551 * Walk curr->robust_list (very carefully, it's a userspace list!)
3552 * and mark any locks found there dead, and notify any waiters.
3554 * We silently return on any sign of list-walking problem.
3556 void exit_robust_list(struct task_struct *curr)
3558 struct robust_list_head __user *head = curr->robust_list;
3559 struct robust_list __user *entry, *next_entry, *pending;
3560 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3561 unsigned int uninitialized_var(next_pi);
3562 unsigned long futex_offset;
3563 int rc;
3565 if (!futex_cmpxchg_enabled)
3566 return;
3569 * Fetch the list head (which was registered earlier, via
3570 * sys_set_robust_list()):
3572 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3573 return;
3575 * Fetch the relative futex offset:
3577 if (get_user(futex_offset, &head->futex_offset))
3578 return;
3580 * Fetch any possibly pending lock-add first, and handle it
3581 * if it exists:
3583 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3584 return;
3586 next_entry = NULL; /* avoid warning with gcc */
3587 while (entry != &head->list) {
3589 * Fetch the next entry in the list before calling
3590 * handle_futex_death:
3592 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3594 * A pending lock might already be on the list, so
3595 * don't process it twice:
3597 if (entry != pending)
3598 if (handle_futex_death((void __user *)entry + futex_offset,
3599 curr, pi))
3600 return;
3601 if (rc)
3602 return;
3603 entry = next_entry;
3604 pi = next_pi;
3606 * Avoid excessively long or circular lists:
3608 if (!--limit)
3609 break;
3611 cond_resched();
3614 if (pending)
3615 handle_futex_death((void __user *)pending + futex_offset,
3616 curr, pip);
3619 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3620 u32 __user *uaddr2, u32 val2, u32 val3)
3622 int cmd = op & FUTEX_CMD_MASK;
3623 unsigned int flags = 0;
3625 if (!(op & FUTEX_PRIVATE_FLAG))
3626 flags |= FLAGS_SHARED;
3628 if (op & FUTEX_CLOCK_REALTIME) {
3629 flags |= FLAGS_CLOCKRT;
3630 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3631 cmd != FUTEX_WAIT_REQUEUE_PI)
3632 return -ENOSYS;
3635 switch (cmd) {
3636 case FUTEX_LOCK_PI:
3637 case FUTEX_UNLOCK_PI:
3638 case FUTEX_TRYLOCK_PI:
3639 case FUTEX_WAIT_REQUEUE_PI:
3640 case FUTEX_CMP_REQUEUE_PI:
3641 if (!futex_cmpxchg_enabled)
3642 return -ENOSYS;
3645 switch (cmd) {
3646 case FUTEX_WAIT:
3647 val3 = FUTEX_BITSET_MATCH_ANY;
3648 /* fall through */
3649 case FUTEX_WAIT_BITSET:
3650 return futex_wait(uaddr, flags, val, timeout, val3);
3651 case FUTEX_WAKE:
3652 val3 = FUTEX_BITSET_MATCH_ANY;
3653 /* fall through */
3654 case FUTEX_WAKE_BITSET:
3655 return futex_wake(uaddr, flags, val, val3);
3656 case FUTEX_REQUEUE:
3657 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3658 case FUTEX_CMP_REQUEUE:
3659 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3660 case FUTEX_WAKE_OP:
3661 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3662 case FUTEX_LOCK_PI:
3663 return futex_lock_pi(uaddr, flags, timeout, 0);
3664 case FUTEX_UNLOCK_PI:
3665 return futex_unlock_pi(uaddr, flags);
3666 case FUTEX_TRYLOCK_PI:
3667 return futex_lock_pi(uaddr, flags, NULL, 1);
3668 case FUTEX_WAIT_REQUEUE_PI:
3669 val3 = FUTEX_BITSET_MATCH_ANY;
3670 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3671 uaddr2);
3672 case FUTEX_CMP_REQUEUE_PI:
3673 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3675 return -ENOSYS;
3679 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3680 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3681 u32, val3)
3683 struct timespec64 ts;
3684 ktime_t t, *tp = NULL;
3685 u32 val2 = 0;
3686 int cmd = op & FUTEX_CMD_MASK;
3688 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3689 cmd == FUTEX_WAIT_BITSET ||
3690 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3691 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3692 return -EFAULT;
3693 if (get_timespec64(&ts, utime))
3694 return -EFAULT;
3695 if (!timespec64_valid(&ts))
3696 return -EINVAL;
3698 t = timespec64_to_ktime(ts);
3699 if (cmd == FUTEX_WAIT)
3700 t = ktime_add_safe(ktime_get(), t);
3701 tp = &t;
3704 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3705 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3707 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3708 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3709 val2 = (u32) (unsigned long) utime;
3711 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3714 #ifdef CONFIG_COMPAT
3716 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3718 static inline int
3719 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3720 compat_uptr_t __user *head, unsigned int *pi)
3722 if (get_user(*uentry, head))
3723 return -EFAULT;
3725 *entry = compat_ptr((*uentry) & ~1);
3726 *pi = (unsigned int)(*uentry) & 1;
3728 return 0;
3731 static void __user *futex_uaddr(struct robust_list __user *entry,
3732 compat_long_t futex_offset)
3734 compat_uptr_t base = ptr_to_compat(entry);
3735 void __user *uaddr = compat_ptr(base + futex_offset);
3737 return uaddr;
3741 * Walk curr->robust_list (very carefully, it's a userspace list!)
3742 * and mark any locks found there dead, and notify any waiters.
3744 * We silently return on any sign of list-walking problem.
3746 void compat_exit_robust_list(struct task_struct *curr)
3748 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3749 struct robust_list __user *entry, *next_entry, *pending;
3750 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3751 unsigned int uninitialized_var(next_pi);
3752 compat_uptr_t uentry, next_uentry, upending;
3753 compat_long_t futex_offset;
3754 int rc;
3756 if (!futex_cmpxchg_enabled)
3757 return;
3760 * Fetch the list head (which was registered earlier, via
3761 * sys_set_robust_list()):
3763 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3764 return;
3766 * Fetch the relative futex offset:
3768 if (get_user(futex_offset, &head->futex_offset))
3769 return;
3771 * Fetch any possibly pending lock-add first, and handle it
3772 * if it exists:
3774 if (compat_fetch_robust_entry(&upending, &pending,
3775 &head->list_op_pending, &pip))
3776 return;
3778 next_entry = NULL; /* avoid warning with gcc */
3779 while (entry != (struct robust_list __user *) &head->list) {
3781 * Fetch the next entry in the list before calling
3782 * handle_futex_death:
3784 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3785 (compat_uptr_t __user *)&entry->next, &next_pi);
3787 * A pending lock might already be on the list, so
3788 * dont process it twice:
3790 if (entry != pending) {
3791 void __user *uaddr = futex_uaddr(entry, futex_offset);
3793 if (handle_futex_death(uaddr, curr, pi))
3794 return;
3796 if (rc)
3797 return;
3798 uentry = next_uentry;
3799 entry = next_entry;
3800 pi = next_pi;
3802 * Avoid excessively long or circular lists:
3804 if (!--limit)
3805 break;
3807 cond_resched();
3809 if (pending) {
3810 void __user *uaddr = futex_uaddr(pending, futex_offset);
3812 handle_futex_death(uaddr, curr, pip);
3816 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3817 struct compat_robust_list_head __user *, head,
3818 compat_size_t, len)
3820 if (!futex_cmpxchg_enabled)
3821 return -ENOSYS;
3823 if (unlikely(len != sizeof(*head)))
3824 return -EINVAL;
3826 current->compat_robust_list = head;
3828 return 0;
3831 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3832 compat_uptr_t __user *, head_ptr,
3833 compat_size_t __user *, len_ptr)
3835 struct compat_robust_list_head __user *head;
3836 unsigned long ret;
3837 struct task_struct *p;
3839 if (!futex_cmpxchg_enabled)
3840 return -ENOSYS;
3842 rcu_read_lock();
3844 ret = -ESRCH;
3845 if (!pid)
3846 p = current;
3847 else {
3848 p = find_task_by_vpid(pid);
3849 if (!p)
3850 goto err_unlock;
3853 ret = -EPERM;
3854 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3855 goto err_unlock;
3857 head = p->compat_robust_list;
3858 rcu_read_unlock();
3860 if (put_user(sizeof(*head), len_ptr))
3861 return -EFAULT;
3862 return put_user(ptr_to_compat(head), head_ptr);
3864 err_unlock:
3865 rcu_read_unlock();
3867 return ret;
3869 #endif /* CONFIG_COMPAT */
3871 #ifdef CONFIG_COMPAT_32BIT_TIME
3872 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3873 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3874 u32, val3)
3876 struct timespec64 ts;
3877 ktime_t t, *tp = NULL;
3878 int val2 = 0;
3879 int cmd = op & FUTEX_CMD_MASK;
3881 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3882 cmd == FUTEX_WAIT_BITSET ||
3883 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3884 if (get_old_timespec32(&ts, utime))
3885 return -EFAULT;
3886 if (!timespec64_valid(&ts))
3887 return -EINVAL;
3889 t = timespec64_to_ktime(ts);
3890 if (cmd == FUTEX_WAIT)
3891 t = ktime_add_safe(ktime_get(), t);
3892 tp = &t;
3894 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3895 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3896 val2 = (int) (unsigned long) utime;
3898 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3900 #endif /* CONFIG_COMPAT_32BIT_TIME */
3902 static void __init futex_detect_cmpxchg(void)
3904 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3905 u32 curval;
3908 * This will fail and we want it. Some arch implementations do
3909 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3910 * functionality. We want to know that before we call in any
3911 * of the complex code paths. Also we want to prevent
3912 * registration of robust lists in that case. NULL is
3913 * guaranteed to fault and we get -EFAULT on functional
3914 * implementation, the non-functional ones will return
3915 * -ENOSYS.
3917 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3918 futex_cmpxchg_enabled = 1;
3919 #endif
3922 static int __init futex_init(void)
3924 unsigned int futex_shift;
3925 unsigned long i;
3927 #if CONFIG_BASE_SMALL
3928 futex_hashsize = 16;
3929 #else
3930 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3931 #endif
3933 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3934 futex_hashsize, 0,
3935 futex_hashsize < 256 ? HASH_SMALL : 0,
3936 &futex_shift, NULL,
3937 futex_hashsize, futex_hashsize);
3938 futex_hashsize = 1UL << futex_shift;
3940 futex_detect_cmpxchg();
3942 for (i = 0; i < futex_hashsize; i++) {
3943 atomic_set(&futex_queues[i].waiters, 0);
3944 plist_head_init(&futex_queues[i].chain);
3945 spin_lock_init(&futex_queues[i].lock);
3948 return 0;
3950 core_initcall(futex_init);