4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/irq_regs.h>
28 static DEFINE_PER_CPU(struct arm_pmu
*, cpu_armpmu
);
29 static DEFINE_PER_CPU(int, cpu_irq
);
32 armpmu_map_cache_event(const unsigned (*cache_map
)
33 [PERF_COUNT_HW_CACHE_MAX
]
34 [PERF_COUNT_HW_CACHE_OP_MAX
]
35 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
38 unsigned int cache_type
, cache_op
, cache_result
, ret
;
40 cache_type
= (config
>> 0) & 0xff;
41 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
44 cache_op
= (config
>> 8) & 0xff;
45 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
48 cache_result
= (config
>> 16) & 0xff;
49 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
55 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
57 if (ret
== CACHE_OP_UNSUPPORTED
)
64 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
68 if (config
>= PERF_COUNT_HW_MAX
)
74 mapping
= (*event_map
)[config
];
75 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
79 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
81 return (int)(config
& raw_event_mask
);
85 armpmu_map_event(struct perf_event
*event
,
86 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
87 const unsigned (*cache_map
)
88 [PERF_COUNT_HW_CACHE_MAX
]
89 [PERF_COUNT_HW_CACHE_OP_MAX
]
90 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
93 u64 config
= event
->attr
.config
;
94 int type
= event
->attr
.type
;
96 if (type
== event
->pmu
->type
)
97 return armpmu_map_raw_event(raw_event_mask
, config
);
100 case PERF_TYPE_HARDWARE
:
101 return armpmu_map_hw_event(event_map
, config
);
102 case PERF_TYPE_HW_CACHE
:
103 return armpmu_map_cache_event(cache_map
, config
);
105 return armpmu_map_raw_event(raw_event_mask
, config
);
111 int armpmu_event_set_period(struct perf_event
*event
)
113 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
114 struct hw_perf_event
*hwc
= &event
->hw
;
115 s64 left
= local64_read(&hwc
->period_left
);
116 s64 period
= hwc
->sample_period
;
119 if (unlikely(left
<= -period
)) {
121 local64_set(&hwc
->period_left
, left
);
122 hwc
->last_period
= period
;
126 if (unlikely(left
<= 0)) {
128 local64_set(&hwc
->period_left
, left
);
129 hwc
->last_period
= period
;
134 * Limit the maximum period to prevent the counter value
135 * from overtaking the one we are about to program. In
136 * effect we are reducing max_period to account for
137 * interrupt latency (and we are being very conservative).
139 if (left
> (armpmu
->max_period
>> 1))
140 left
= armpmu
->max_period
>> 1;
142 local64_set(&hwc
->prev_count
, (u64
)-left
);
144 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
146 perf_event_update_userpage(event
);
151 u64
armpmu_event_update(struct perf_event
*event
)
153 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
154 struct hw_perf_event
*hwc
= &event
->hw
;
155 u64 delta
, prev_raw_count
, new_raw_count
;
158 prev_raw_count
= local64_read(&hwc
->prev_count
);
159 new_raw_count
= armpmu
->read_counter(event
);
161 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
162 new_raw_count
) != prev_raw_count
)
165 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
167 local64_add(delta
, &event
->count
);
168 local64_sub(delta
, &hwc
->period_left
);
170 return new_raw_count
;
174 armpmu_read(struct perf_event
*event
)
176 armpmu_event_update(event
);
180 armpmu_stop(struct perf_event
*event
, int flags
)
182 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
183 struct hw_perf_event
*hwc
= &event
->hw
;
186 * ARM pmu always has to update the counter, so ignore
187 * PERF_EF_UPDATE, see comments in armpmu_start().
189 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
190 armpmu
->disable(event
);
191 armpmu_event_update(event
);
192 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
196 static void armpmu_start(struct perf_event
*event
, int flags
)
198 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
199 struct hw_perf_event
*hwc
= &event
->hw
;
202 * ARM pmu always has to reprogram the period, so ignore
203 * PERF_EF_RELOAD, see the comment below.
205 if (flags
& PERF_EF_RELOAD
)
206 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
210 * Set the period again. Some counters can't be stopped, so when we
211 * were stopped we simply disabled the IRQ source and the counter
212 * may have been left counting. If we don't do this step then we may
213 * get an interrupt too soon or *way* too late if the overflow has
214 * happened since disabling.
216 armpmu_event_set_period(event
);
217 armpmu
->enable(event
);
221 armpmu_del(struct perf_event
*event
, int flags
)
223 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
224 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
225 struct hw_perf_event
*hwc
= &event
->hw
;
228 armpmu_stop(event
, PERF_EF_UPDATE
);
229 hw_events
->events
[idx
] = NULL
;
230 clear_bit(idx
, hw_events
->used_mask
);
231 if (armpmu
->clear_event_idx
)
232 armpmu
->clear_event_idx(hw_events
, event
);
234 perf_event_update_userpage(event
);
238 armpmu_add(struct perf_event
*event
, int flags
)
240 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
241 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
242 struct hw_perf_event
*hwc
= &event
->hw
;
245 /* An event following a process won't be stopped earlier */
246 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
249 /* If we don't have a space for the counter then finish early. */
250 idx
= armpmu
->get_event_idx(hw_events
, event
);
255 * If there is an event in the counter we are going to use then make
256 * sure it is disabled.
259 armpmu
->disable(event
);
260 hw_events
->events
[idx
] = event
;
262 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
263 if (flags
& PERF_EF_START
)
264 armpmu_start(event
, PERF_EF_RELOAD
);
266 /* Propagate our changes to the userspace mapping. */
267 perf_event_update_userpage(event
);
273 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
274 struct perf_event
*event
)
276 struct arm_pmu
*armpmu
;
278 if (is_software_event(event
))
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
286 if (event
->pmu
!= pmu
)
289 if (event
->state
< PERF_EVENT_STATE_OFF
)
292 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
295 armpmu
= to_arm_pmu(event
->pmu
);
296 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
300 validate_group(struct perf_event
*event
)
302 struct perf_event
*sibling
, *leader
= event
->group_leader
;
303 struct pmu_hw_events fake_pmu
;
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
309 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
311 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
314 for_each_sibling_event(sibling
, leader
) {
315 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
319 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
325 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
327 struct arm_pmu
*armpmu
;
329 u64 start_clock
, finish_clock
;
332 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
333 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
334 * do any necessary shifting, we just need to perform the first
337 armpmu
= *(void **)dev
;
338 if (WARN_ON_ONCE(!armpmu
))
341 start_clock
= sched_clock();
342 ret
= armpmu
->handle_irq(irq
, armpmu
);
343 finish_clock
= sched_clock();
345 perf_sample_event_took(finish_clock
- start_clock
);
350 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
352 return attr
->exclude_idle
|| attr
->exclude_user
||
353 attr
->exclude_kernel
|| attr
->exclude_hv
;
357 __hw_perf_event_init(struct perf_event
*event
)
359 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
360 struct hw_perf_event
*hwc
= &event
->hw
;
363 mapping
= armpmu
->map_event(event
);
366 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
372 * We don't assign an index until we actually place the event onto
373 * hardware. Use -1 to signify that we haven't decided where to put it
374 * yet. For SMP systems, each core has it's own PMU so we can't do any
375 * clever allocation or constraints checking at this point.
378 hwc
->config_base
= 0;
383 * Check whether we need to exclude the counter from certain modes.
385 if ((!armpmu
->set_event_filter
||
386 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
387 event_requires_mode_exclusion(&event
->attr
)) {
388 pr_debug("ARM performance counters do not support "
394 * Store the event encoding into the config_base field.
396 hwc
->config_base
|= (unsigned long)mapping
;
398 if (!is_sampling_event(event
)) {
400 * For non-sampling runs, limit the sample_period to half
401 * of the counter width. That way, the new counter value
402 * is far less likely to overtake the previous one unless
403 * you have some serious IRQ latency issues.
405 hwc
->sample_period
= armpmu
->max_period
>> 1;
406 hwc
->last_period
= hwc
->sample_period
;
407 local64_set(&hwc
->period_left
, hwc
->sample_period
);
410 if (event
->group_leader
!= event
) {
411 if (validate_group(event
) != 0)
418 static int armpmu_event_init(struct perf_event
*event
)
420 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
423 * Reject CPU-affine events for CPUs that are of a different class to
424 * that which this PMU handles. Process-following events (where
425 * event->cpu == -1) can be migrated between CPUs, and thus we have to
426 * reject them later (in armpmu_add) if they're scheduled on a
427 * different class of CPU.
429 if (event
->cpu
!= -1 &&
430 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
433 /* does not support taken branch sampling */
434 if (has_branch_stack(event
))
437 if (armpmu
->map_event(event
) == -ENOENT
)
440 return __hw_perf_event_init(event
);
443 static void armpmu_enable(struct pmu
*pmu
)
445 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
446 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
447 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
449 /* For task-bound events we may be called on other CPUs */
450 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
454 armpmu
->start(armpmu
);
457 static void armpmu_disable(struct pmu
*pmu
)
459 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
461 /* For task-bound events we may be called on other CPUs */
462 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
465 armpmu
->stop(armpmu
);
469 * In heterogeneous systems, events are specific to a particular
470 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
471 * the same microarchitecture.
473 static int armpmu_filter_match(struct perf_event
*event
)
475 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
476 unsigned int cpu
= smp_processor_id();
477 return cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
480 static ssize_t
armpmu_cpumask_show(struct device
*dev
,
481 struct device_attribute
*attr
, char *buf
)
483 struct arm_pmu
*armpmu
= to_arm_pmu(dev_get_drvdata(dev
));
484 return cpumap_print_to_pagebuf(true, buf
, &armpmu
->supported_cpus
);
487 static DEVICE_ATTR(cpus
, S_IRUGO
, armpmu_cpumask_show
, NULL
);
489 static struct attribute
*armpmu_common_attrs
[] = {
494 static struct attribute_group armpmu_common_attr_group
= {
495 .attrs
= armpmu_common_attrs
,
498 /* Set at runtime when we know what CPU type we are. */
499 static struct arm_pmu
*__oprofile_cpu_pmu
;
502 * Despite the names, these two functions are CPU-specific and are used
503 * by the OProfile/perf code.
505 const char *perf_pmu_name(void)
507 if (!__oprofile_cpu_pmu
)
510 return __oprofile_cpu_pmu
->name
;
512 EXPORT_SYMBOL_GPL(perf_pmu_name
);
514 int perf_num_counters(void)
518 if (__oprofile_cpu_pmu
!= NULL
)
519 max_events
= __oprofile_cpu_pmu
->num_events
;
523 EXPORT_SYMBOL_GPL(perf_num_counters
);
525 static int armpmu_count_irq_users(const int irq
)
529 for_each_possible_cpu(cpu
) {
530 if (per_cpu(cpu_irq
, cpu
) == irq
)
537 void armpmu_free_irq(int irq
, int cpu
)
539 if (per_cpu(cpu_irq
, cpu
) == 0)
541 if (WARN_ON(irq
!= per_cpu(cpu_irq
, cpu
)))
544 if (!irq_is_percpu_devid(irq
))
545 free_irq(irq
, per_cpu_ptr(&cpu_armpmu
, cpu
));
546 else if (armpmu_count_irq_users(irq
) == 1)
547 free_percpu_irq(irq
, &cpu_armpmu
);
549 per_cpu(cpu_irq
, cpu
) = 0;
552 int armpmu_request_irq(int irq
, int cpu
)
555 const irq_handler_t handler
= armpmu_dispatch_irq
;
559 if (!irq_is_percpu_devid(irq
)) {
560 unsigned long irq_flags
;
562 err
= irq_force_affinity(irq
, cpumask_of(cpu
));
564 if (err
&& num_possible_cpus() > 1) {
565 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
570 irq_flags
= IRQF_PERCPU
|
574 irq_set_status_flags(irq
, IRQ_NOAUTOEN
);
575 err
= request_irq(irq
, handler
, irq_flags
, "arm-pmu",
576 per_cpu_ptr(&cpu_armpmu
, cpu
));
577 } else if (armpmu_count_irq_users(irq
) == 0) {
578 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
585 per_cpu(cpu_irq
, cpu
) = irq
;
589 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq
);
593 static int armpmu_get_cpu_irq(struct arm_pmu
*pmu
, int cpu
)
595 struct pmu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
596 return per_cpu(hw_events
->irq
, cpu
);
600 * PMU hardware loses all context when a CPU goes offline.
601 * When a CPU is hotplugged back in, since some hardware registers are
602 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
603 * junk values out of them.
605 static int arm_perf_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
607 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
610 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
615 per_cpu(cpu_armpmu
, cpu
) = pmu
;
617 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
619 if (irq_is_percpu_devid(irq
))
620 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
628 static int arm_perf_teardown_cpu(unsigned int cpu
, struct hlist_node
*node
)
630 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
633 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
636 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
638 if (irq_is_percpu_devid(irq
))
639 disable_percpu_irq(irq
);
641 disable_irq_nosync(irq
);
644 per_cpu(cpu_armpmu
, cpu
) = NULL
;
650 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
652 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
653 struct perf_event
*event
;
656 for (idx
= 0; idx
< armpmu
->num_events
; idx
++) {
658 * If the counter is not used skip it, there is no
659 * need of stopping/restarting it.
661 if (!test_bit(idx
, hw_events
->used_mask
))
664 event
= hw_events
->events
[idx
];
669 * Stop and update the counter
671 armpmu_stop(event
, PERF_EF_UPDATE
);
674 case CPU_PM_ENTER_FAILED
:
676 * Restore and enable the counter.
677 * armpmu_start() indirectly calls
679 * perf_event_update_userpage()
681 * that requires RCU read locking to be functional,
682 * wrap the call within RCU_NONIDLE to make the
683 * RCU subsystem aware this cpu is not idle from
684 * an RCU perspective for the armpmu_start() call
687 RCU_NONIDLE(armpmu_start(event
, PERF_EF_RELOAD
));
695 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
698 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
699 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
700 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
702 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
706 * Always reset the PMU registers on power-up even if
707 * there are no events running.
709 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
710 armpmu
->reset(armpmu
);
717 armpmu
->stop(armpmu
);
718 cpu_pm_pmu_setup(armpmu
, cmd
);
721 cpu_pm_pmu_setup(armpmu
, cmd
);
722 case CPU_PM_ENTER_FAILED
:
723 armpmu
->start(armpmu
);
732 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
734 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
735 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
738 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
740 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
743 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
744 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
747 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
751 err
= cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING
,
756 err
= cpu_pm_pmu_register(cpu_pmu
);
763 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
769 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
771 cpu_pm_pmu_unregister(cpu_pmu
);
772 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
776 static struct arm_pmu
*__armpmu_alloc(gfp_t flags
)
781 pmu
= kzalloc(sizeof(*pmu
), flags
);
783 pr_info("failed to allocate PMU device!\n");
787 pmu
->hw_events
= alloc_percpu_gfp(struct pmu_hw_events
, flags
);
788 if (!pmu
->hw_events
) {
789 pr_info("failed to allocate per-cpu PMU data.\n");
793 pmu
->pmu
= (struct pmu
) {
794 .pmu_enable
= armpmu_enable
,
795 .pmu_disable
= armpmu_disable
,
796 .event_init
= armpmu_event_init
,
799 .start
= armpmu_start
,
802 .filter_match
= armpmu_filter_match
,
803 .attr_groups
= pmu
->attr_groups
,
805 * This is a CPU PMU potentially in a heterogeneous
806 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
807 * and we have taken ctx sharing into account (e.g. with our
808 * pmu::filter_match callback and pmu::event_init group
811 .capabilities
= PERF_PMU_CAP_HETEROGENEOUS_CPUS
,
814 pmu
->attr_groups
[ARMPMU_ATTR_GROUP_COMMON
] =
815 &armpmu_common_attr_group
;
817 for_each_possible_cpu(cpu
) {
818 struct pmu_hw_events
*events
;
820 events
= per_cpu_ptr(pmu
->hw_events
, cpu
);
821 raw_spin_lock_init(&events
->pmu_lock
);
822 events
->percpu_pmu
= pmu
;
833 struct arm_pmu
*armpmu_alloc(void)
835 return __armpmu_alloc(GFP_KERNEL
);
838 struct arm_pmu
*armpmu_alloc_atomic(void)
840 return __armpmu_alloc(GFP_ATOMIC
);
844 void armpmu_free(struct arm_pmu
*pmu
)
846 free_percpu(pmu
->hw_events
);
850 int armpmu_register(struct arm_pmu
*pmu
)
854 ret
= cpu_pmu_init(pmu
);
858 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
862 if (!__oprofile_cpu_pmu
)
863 __oprofile_cpu_pmu
= pmu
;
865 pr_info("enabled with %s PMU driver, %d counters available\n",
866 pmu
->name
, pmu
->num_events
);
871 cpu_pmu_destroy(pmu
);
875 static int arm_pmu_hp_init(void)
879 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING
,
880 "perf/arm/pmu:starting",
881 arm_perf_starting_cpu
,
882 arm_perf_teardown_cpu
);
884 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
888 subsys_initcall(arm_pmu_hp_init
);