workqueue: Make worker_attach/detach_pool() update worker->pool
[linux/fpc-iii.git] / drivers / perf / arm_pmu.c
blob1a0d340b65cf1d2b85d09a2d4e0857d7795ea112
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/irq_regs.h>
28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
29 static DEFINE_PER_CPU(int, cpu_irq);
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33 [PERF_COUNT_HW_CACHE_MAX]
34 [PERF_COUNT_HW_CACHE_OP_MAX]
35 [PERF_COUNT_HW_CACHE_RESULT_MAX],
36 u64 config)
38 unsigned int cache_type, cache_op, cache_result, ret;
40 cache_type = (config >> 0) & 0xff;
41 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42 return -EINVAL;
44 cache_op = (config >> 8) & 0xff;
45 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46 return -EINVAL;
48 cache_result = (config >> 16) & 0xff;
49 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50 return -EINVAL;
52 if (!cache_map)
53 return -ENOENT;
55 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
57 if (ret == CACHE_OP_UNSUPPORTED)
58 return -ENOENT;
60 return ret;
63 static int
64 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
66 int mapping;
68 if (config >= PERF_COUNT_HW_MAX)
69 return -EINVAL;
71 if (!event_map)
72 return -ENOENT;
74 mapping = (*event_map)[config];
75 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
78 static int
79 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
81 return (int)(config & raw_event_mask);
84 int
85 armpmu_map_event(struct perf_event *event,
86 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
87 const unsigned (*cache_map)
88 [PERF_COUNT_HW_CACHE_MAX]
89 [PERF_COUNT_HW_CACHE_OP_MAX]
90 [PERF_COUNT_HW_CACHE_RESULT_MAX],
91 u32 raw_event_mask)
93 u64 config = event->attr.config;
94 int type = event->attr.type;
96 if (type == event->pmu->type)
97 return armpmu_map_raw_event(raw_event_mask, config);
99 switch (type) {
100 case PERF_TYPE_HARDWARE:
101 return armpmu_map_hw_event(event_map, config);
102 case PERF_TYPE_HW_CACHE:
103 return armpmu_map_cache_event(cache_map, config);
104 case PERF_TYPE_RAW:
105 return armpmu_map_raw_event(raw_event_mask, config);
108 return -ENOENT;
111 int armpmu_event_set_period(struct perf_event *event)
113 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
114 struct hw_perf_event *hwc = &event->hw;
115 s64 left = local64_read(&hwc->period_left);
116 s64 period = hwc->sample_period;
117 int ret = 0;
119 if (unlikely(left <= -period)) {
120 left = period;
121 local64_set(&hwc->period_left, left);
122 hwc->last_period = period;
123 ret = 1;
126 if (unlikely(left <= 0)) {
127 left += period;
128 local64_set(&hwc->period_left, left);
129 hwc->last_period = period;
130 ret = 1;
134 * Limit the maximum period to prevent the counter value
135 * from overtaking the one we are about to program. In
136 * effect we are reducing max_period to account for
137 * interrupt latency (and we are being very conservative).
139 if (left > (armpmu->max_period >> 1))
140 left = armpmu->max_period >> 1;
142 local64_set(&hwc->prev_count, (u64)-left);
144 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
146 perf_event_update_userpage(event);
148 return ret;
151 u64 armpmu_event_update(struct perf_event *event)
153 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
154 struct hw_perf_event *hwc = &event->hw;
155 u64 delta, prev_raw_count, new_raw_count;
157 again:
158 prev_raw_count = local64_read(&hwc->prev_count);
159 new_raw_count = armpmu->read_counter(event);
161 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
162 new_raw_count) != prev_raw_count)
163 goto again;
165 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
167 local64_add(delta, &event->count);
168 local64_sub(delta, &hwc->period_left);
170 return new_raw_count;
173 static void
174 armpmu_read(struct perf_event *event)
176 armpmu_event_update(event);
179 static void
180 armpmu_stop(struct perf_event *event, int flags)
182 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
183 struct hw_perf_event *hwc = &event->hw;
186 * ARM pmu always has to update the counter, so ignore
187 * PERF_EF_UPDATE, see comments in armpmu_start().
189 if (!(hwc->state & PERF_HES_STOPPED)) {
190 armpmu->disable(event);
191 armpmu_event_update(event);
192 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
196 static void armpmu_start(struct perf_event *event, int flags)
198 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199 struct hw_perf_event *hwc = &event->hw;
202 * ARM pmu always has to reprogram the period, so ignore
203 * PERF_EF_RELOAD, see the comment below.
205 if (flags & PERF_EF_RELOAD)
206 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
208 hwc->state = 0;
210 * Set the period again. Some counters can't be stopped, so when we
211 * were stopped we simply disabled the IRQ source and the counter
212 * may have been left counting. If we don't do this step then we may
213 * get an interrupt too soon or *way* too late if the overflow has
214 * happened since disabling.
216 armpmu_event_set_period(event);
217 armpmu->enable(event);
220 static void
221 armpmu_del(struct perf_event *event, int flags)
223 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
224 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
225 struct hw_perf_event *hwc = &event->hw;
226 int idx = hwc->idx;
228 armpmu_stop(event, PERF_EF_UPDATE);
229 hw_events->events[idx] = NULL;
230 clear_bit(idx, hw_events->used_mask);
231 if (armpmu->clear_event_idx)
232 armpmu->clear_event_idx(hw_events, event);
234 perf_event_update_userpage(event);
237 static int
238 armpmu_add(struct perf_event *event, int flags)
240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
242 struct hw_perf_event *hwc = &event->hw;
243 int idx;
245 /* An event following a process won't be stopped earlier */
246 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
247 return -ENOENT;
249 /* If we don't have a space for the counter then finish early. */
250 idx = armpmu->get_event_idx(hw_events, event);
251 if (idx < 0)
252 return idx;
255 * If there is an event in the counter we are going to use then make
256 * sure it is disabled.
258 event->hw.idx = idx;
259 armpmu->disable(event);
260 hw_events->events[idx] = event;
262 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
263 if (flags & PERF_EF_START)
264 armpmu_start(event, PERF_EF_RELOAD);
266 /* Propagate our changes to the userspace mapping. */
267 perf_event_update_userpage(event);
269 return 0;
272 static int
273 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274 struct perf_event *event)
276 struct arm_pmu *armpmu;
278 if (is_software_event(event))
279 return 1;
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
286 if (event->pmu != pmu)
287 return 0;
289 if (event->state < PERF_EVENT_STATE_OFF)
290 return 1;
292 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
293 return 1;
295 armpmu = to_arm_pmu(event->pmu);
296 return armpmu->get_event_idx(hw_events, event) >= 0;
299 static int
300 validate_group(struct perf_event *event)
302 struct perf_event *sibling, *leader = event->group_leader;
303 struct pmu_hw_events fake_pmu;
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
309 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311 if (!validate_event(event->pmu, &fake_pmu, leader))
312 return -EINVAL;
314 for_each_sibling_event(sibling, leader) {
315 if (!validate_event(event->pmu, &fake_pmu, sibling))
316 return -EINVAL;
319 if (!validate_event(event->pmu, &fake_pmu, event))
320 return -EINVAL;
322 return 0;
325 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 struct arm_pmu *armpmu;
328 int ret;
329 u64 start_clock, finish_clock;
332 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
333 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
334 * do any necessary shifting, we just need to perform the first
335 * dereference.
337 armpmu = *(void **)dev;
338 if (WARN_ON_ONCE(!armpmu))
339 return IRQ_NONE;
341 start_clock = sched_clock();
342 ret = armpmu->handle_irq(irq, armpmu);
343 finish_clock = sched_clock();
345 perf_sample_event_took(finish_clock - start_clock);
346 return ret;
349 static int
350 event_requires_mode_exclusion(struct perf_event_attr *attr)
352 return attr->exclude_idle || attr->exclude_user ||
353 attr->exclude_kernel || attr->exclude_hv;
356 static int
357 __hw_perf_event_init(struct perf_event *event)
359 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
360 struct hw_perf_event *hwc = &event->hw;
361 int mapping;
363 mapping = armpmu->map_event(event);
365 if (mapping < 0) {
366 pr_debug("event %x:%llx not supported\n", event->attr.type,
367 event->attr.config);
368 return mapping;
372 * We don't assign an index until we actually place the event onto
373 * hardware. Use -1 to signify that we haven't decided where to put it
374 * yet. For SMP systems, each core has it's own PMU so we can't do any
375 * clever allocation or constraints checking at this point.
377 hwc->idx = -1;
378 hwc->config_base = 0;
379 hwc->config = 0;
380 hwc->event_base = 0;
383 * Check whether we need to exclude the counter from certain modes.
385 if ((!armpmu->set_event_filter ||
386 armpmu->set_event_filter(hwc, &event->attr)) &&
387 event_requires_mode_exclusion(&event->attr)) {
388 pr_debug("ARM performance counters do not support "
389 "mode exclusion\n");
390 return -EOPNOTSUPP;
394 * Store the event encoding into the config_base field.
396 hwc->config_base |= (unsigned long)mapping;
398 if (!is_sampling_event(event)) {
400 * For non-sampling runs, limit the sample_period to half
401 * of the counter width. That way, the new counter value
402 * is far less likely to overtake the previous one unless
403 * you have some serious IRQ latency issues.
405 hwc->sample_period = armpmu->max_period >> 1;
406 hwc->last_period = hwc->sample_period;
407 local64_set(&hwc->period_left, hwc->sample_period);
410 if (event->group_leader != event) {
411 if (validate_group(event) != 0)
412 return -EINVAL;
415 return 0;
418 static int armpmu_event_init(struct perf_event *event)
420 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
423 * Reject CPU-affine events for CPUs that are of a different class to
424 * that which this PMU handles. Process-following events (where
425 * event->cpu == -1) can be migrated between CPUs, and thus we have to
426 * reject them later (in armpmu_add) if they're scheduled on a
427 * different class of CPU.
429 if (event->cpu != -1 &&
430 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
431 return -ENOENT;
433 /* does not support taken branch sampling */
434 if (has_branch_stack(event))
435 return -EOPNOTSUPP;
437 if (armpmu->map_event(event) == -ENOENT)
438 return -ENOENT;
440 return __hw_perf_event_init(event);
443 static void armpmu_enable(struct pmu *pmu)
445 struct arm_pmu *armpmu = to_arm_pmu(pmu);
446 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
447 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
449 /* For task-bound events we may be called on other CPUs */
450 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
451 return;
453 if (enabled)
454 armpmu->start(armpmu);
457 static void armpmu_disable(struct pmu *pmu)
459 struct arm_pmu *armpmu = to_arm_pmu(pmu);
461 /* For task-bound events we may be called on other CPUs */
462 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
463 return;
465 armpmu->stop(armpmu);
469 * In heterogeneous systems, events are specific to a particular
470 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
471 * the same microarchitecture.
473 static int armpmu_filter_match(struct perf_event *event)
475 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
476 unsigned int cpu = smp_processor_id();
477 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
480 static ssize_t armpmu_cpumask_show(struct device *dev,
481 struct device_attribute *attr, char *buf)
483 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
484 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
487 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
489 static struct attribute *armpmu_common_attrs[] = {
490 &dev_attr_cpus.attr,
491 NULL,
494 static struct attribute_group armpmu_common_attr_group = {
495 .attrs = armpmu_common_attrs,
498 /* Set at runtime when we know what CPU type we are. */
499 static struct arm_pmu *__oprofile_cpu_pmu;
502 * Despite the names, these two functions are CPU-specific and are used
503 * by the OProfile/perf code.
505 const char *perf_pmu_name(void)
507 if (!__oprofile_cpu_pmu)
508 return NULL;
510 return __oprofile_cpu_pmu->name;
512 EXPORT_SYMBOL_GPL(perf_pmu_name);
514 int perf_num_counters(void)
516 int max_events = 0;
518 if (__oprofile_cpu_pmu != NULL)
519 max_events = __oprofile_cpu_pmu->num_events;
521 return max_events;
523 EXPORT_SYMBOL_GPL(perf_num_counters);
525 static int armpmu_count_irq_users(const int irq)
527 int cpu, count = 0;
529 for_each_possible_cpu(cpu) {
530 if (per_cpu(cpu_irq, cpu) == irq)
531 count++;
534 return count;
537 void armpmu_free_irq(int irq, int cpu)
539 if (per_cpu(cpu_irq, cpu) == 0)
540 return;
541 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
542 return;
544 if (!irq_is_percpu_devid(irq))
545 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
546 else if (armpmu_count_irq_users(irq) == 1)
547 free_percpu_irq(irq, &cpu_armpmu);
549 per_cpu(cpu_irq, cpu) = 0;
552 int armpmu_request_irq(int irq, int cpu)
554 int err = 0;
555 const irq_handler_t handler = armpmu_dispatch_irq;
556 if (!irq)
557 return 0;
559 if (!irq_is_percpu_devid(irq)) {
560 unsigned long irq_flags;
562 err = irq_force_affinity(irq, cpumask_of(cpu));
564 if (err && num_possible_cpus() > 1) {
565 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
566 irq, cpu);
567 goto err_out;
570 irq_flags = IRQF_PERCPU |
571 IRQF_NOBALANCING |
572 IRQF_NO_THREAD;
574 irq_set_status_flags(irq, IRQ_NOAUTOEN);
575 err = request_irq(irq, handler, irq_flags, "arm-pmu",
576 per_cpu_ptr(&cpu_armpmu, cpu));
577 } else if (armpmu_count_irq_users(irq) == 0) {
578 err = request_percpu_irq(irq, handler, "arm-pmu",
579 &cpu_armpmu);
582 if (err)
583 goto err_out;
585 per_cpu(cpu_irq, cpu) = irq;
586 return 0;
588 err_out:
589 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
590 return err;
593 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
595 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
596 return per_cpu(hw_events->irq, cpu);
600 * PMU hardware loses all context when a CPU goes offline.
601 * When a CPU is hotplugged back in, since some hardware registers are
602 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
603 * junk values out of them.
605 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
607 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
608 int irq;
610 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
611 return 0;
612 if (pmu->reset)
613 pmu->reset(pmu);
615 per_cpu(cpu_armpmu, cpu) = pmu;
617 irq = armpmu_get_cpu_irq(pmu, cpu);
618 if (irq) {
619 if (irq_is_percpu_devid(irq))
620 enable_percpu_irq(irq, IRQ_TYPE_NONE);
621 else
622 enable_irq(irq);
625 return 0;
628 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
630 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
631 int irq;
633 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
634 return 0;
636 irq = armpmu_get_cpu_irq(pmu, cpu);
637 if (irq) {
638 if (irq_is_percpu_devid(irq))
639 disable_percpu_irq(irq);
640 else
641 disable_irq_nosync(irq);
644 per_cpu(cpu_armpmu, cpu) = NULL;
646 return 0;
649 #ifdef CONFIG_CPU_PM
650 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
652 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
653 struct perf_event *event;
654 int idx;
656 for (idx = 0; idx < armpmu->num_events; idx++) {
658 * If the counter is not used skip it, there is no
659 * need of stopping/restarting it.
661 if (!test_bit(idx, hw_events->used_mask))
662 continue;
664 event = hw_events->events[idx];
666 switch (cmd) {
667 case CPU_PM_ENTER:
669 * Stop and update the counter
671 armpmu_stop(event, PERF_EF_UPDATE);
672 break;
673 case CPU_PM_EXIT:
674 case CPU_PM_ENTER_FAILED:
676 * Restore and enable the counter.
677 * armpmu_start() indirectly calls
679 * perf_event_update_userpage()
681 * that requires RCU read locking to be functional,
682 * wrap the call within RCU_NONIDLE to make the
683 * RCU subsystem aware this cpu is not idle from
684 * an RCU perspective for the armpmu_start() call
685 * duration.
687 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
688 break;
689 default:
690 break;
695 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
696 void *v)
698 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
699 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
700 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
702 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
703 return NOTIFY_DONE;
706 * Always reset the PMU registers on power-up even if
707 * there are no events running.
709 if (cmd == CPU_PM_EXIT && armpmu->reset)
710 armpmu->reset(armpmu);
712 if (!enabled)
713 return NOTIFY_OK;
715 switch (cmd) {
716 case CPU_PM_ENTER:
717 armpmu->stop(armpmu);
718 cpu_pm_pmu_setup(armpmu, cmd);
719 break;
720 case CPU_PM_EXIT:
721 cpu_pm_pmu_setup(armpmu, cmd);
722 case CPU_PM_ENTER_FAILED:
723 armpmu->start(armpmu);
724 break;
725 default:
726 return NOTIFY_DONE;
729 return NOTIFY_OK;
732 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
734 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
735 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
738 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
740 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
742 #else
743 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
744 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
745 #endif
747 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
749 int err;
751 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
752 &cpu_pmu->node);
753 if (err)
754 goto out;
756 err = cpu_pm_pmu_register(cpu_pmu);
757 if (err)
758 goto out_unregister;
760 return 0;
762 out_unregister:
763 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
764 &cpu_pmu->node);
765 out:
766 return err;
769 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
771 cpu_pm_pmu_unregister(cpu_pmu);
772 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
773 &cpu_pmu->node);
776 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
778 struct arm_pmu *pmu;
779 int cpu;
781 pmu = kzalloc(sizeof(*pmu), flags);
782 if (!pmu) {
783 pr_info("failed to allocate PMU device!\n");
784 goto out;
787 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
788 if (!pmu->hw_events) {
789 pr_info("failed to allocate per-cpu PMU data.\n");
790 goto out_free_pmu;
793 pmu->pmu = (struct pmu) {
794 .pmu_enable = armpmu_enable,
795 .pmu_disable = armpmu_disable,
796 .event_init = armpmu_event_init,
797 .add = armpmu_add,
798 .del = armpmu_del,
799 .start = armpmu_start,
800 .stop = armpmu_stop,
801 .read = armpmu_read,
802 .filter_match = armpmu_filter_match,
803 .attr_groups = pmu->attr_groups,
805 * This is a CPU PMU potentially in a heterogeneous
806 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
807 * and we have taken ctx sharing into account (e.g. with our
808 * pmu::filter_match callback and pmu::event_init group
809 * validation).
811 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
814 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
815 &armpmu_common_attr_group;
817 for_each_possible_cpu(cpu) {
818 struct pmu_hw_events *events;
820 events = per_cpu_ptr(pmu->hw_events, cpu);
821 raw_spin_lock_init(&events->pmu_lock);
822 events->percpu_pmu = pmu;
825 return pmu;
827 out_free_pmu:
828 kfree(pmu);
829 out:
830 return NULL;
833 struct arm_pmu *armpmu_alloc(void)
835 return __armpmu_alloc(GFP_KERNEL);
838 struct arm_pmu *armpmu_alloc_atomic(void)
840 return __armpmu_alloc(GFP_ATOMIC);
844 void armpmu_free(struct arm_pmu *pmu)
846 free_percpu(pmu->hw_events);
847 kfree(pmu);
850 int armpmu_register(struct arm_pmu *pmu)
852 int ret;
854 ret = cpu_pmu_init(pmu);
855 if (ret)
856 return ret;
858 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
859 if (ret)
860 goto out_destroy;
862 if (!__oprofile_cpu_pmu)
863 __oprofile_cpu_pmu = pmu;
865 pr_info("enabled with %s PMU driver, %d counters available\n",
866 pmu->name, pmu->num_events);
868 return 0;
870 out_destroy:
871 cpu_pmu_destroy(pmu);
872 return ret;
875 static int arm_pmu_hp_init(void)
877 int ret;
879 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
880 "perf/arm/pmu:starting",
881 arm_perf_starting_cpu,
882 arm_perf_teardown_cpu);
883 if (ret)
884 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
885 ret);
886 return ret;
888 subsys_initcall(arm_pmu_hp_init);