workqueue: Make worker_attach/detach_pool() update worker->pool
[linux/fpc-iii.git] / fs / namei.c
blob186bd2464fd5a842480a37c55b57d60d9164cf86
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 /*
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
44 #include "internal.h"
45 #include "mount.h"
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
95 * [10-Sep-98 Alan Modra] Another symlink change.
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
131 struct filename *result;
132 char *kname;
133 int len;
134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
136 result = audit_reusename(filename);
137 if (result)
138 return result;
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
148 kname = (char *)result->iname;
149 result->name = kname;
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
191 result->refcnt = 1;
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
208 struct filename *
209 getname(const char __user * filename)
211 return getname_flags(filename, 0, NULL);
214 struct filename *
215 getname_kernel(const char * filename)
217 struct filename *result;
218 int len = strlen(filename) + 1;
220 result = __getname();
221 if (unlikely(!result))
222 return ERR_PTR(-ENOMEM);
224 if (len <= EMBEDDED_NAME_MAX) {
225 result->name = (char *)result->iname;
226 } else if (len <= PATH_MAX) {
227 const size_t size = offsetof(struct filename, iname[1]);
228 struct filename *tmp;
230 tmp = kmalloc(size, GFP_KERNEL);
231 if (unlikely(!tmp)) {
232 __putname(result);
233 return ERR_PTR(-ENOMEM);
235 tmp->name = (char *)result;
236 result = tmp;
237 } else {
238 __putname(result);
239 return ERR_PTR(-ENAMETOOLONG);
241 memcpy((char *)result->name, filename, len);
242 result->uptr = NULL;
243 result->aname = NULL;
244 result->refcnt = 1;
245 audit_getname(result);
247 return result;
250 void putname(struct filename *name)
252 BUG_ON(name->refcnt <= 0);
254 if (--name->refcnt > 0)
255 return;
257 if (name->name != name->iname) {
258 __putname(name->name);
259 kfree(name);
260 } else
261 __putname(name);
264 static int check_acl(struct inode *inode, int mask)
266 #ifdef CONFIG_FS_POSIX_ACL
267 struct posix_acl *acl;
269 if (mask & MAY_NOT_BLOCK) {
270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 if (!acl)
272 return -EAGAIN;
273 /* no ->get_acl() calls in RCU mode... */
274 if (is_uncached_acl(acl))
275 return -ECHILD;
276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
279 acl = get_acl(inode, ACL_TYPE_ACCESS);
280 if (IS_ERR(acl))
281 return PTR_ERR(acl);
282 if (acl) {
283 int error = posix_acl_permission(inode, acl, mask);
284 posix_acl_release(acl);
285 return error;
287 #endif
289 return -EAGAIN;
293 * This does the basic permission checking
295 static int acl_permission_check(struct inode *inode, int mask)
297 unsigned int mode = inode->i_mode;
299 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 mode >>= 6;
301 else {
302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 int error = check_acl(inode, mask);
304 if (error != -EAGAIN)
305 return error;
308 if (in_group_p(inode->i_gid))
309 mode >>= 3;
313 * If the DACs are ok we don't need any capability check.
315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 return 0;
317 return -EACCES;
321 * generic_permission - check for access rights on a Posix-like filesystem
322 * @inode: inode to check access rights for
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
325 * Used to check for read/write/execute permissions on a file.
326 * We use "fsuid" for this, letting us set arbitrary permissions
327 * for filesystem access without changing the "normal" uids which
328 * are used for other things.
330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331 * request cannot be satisfied (eg. requires blocking or too much complexity).
332 * It would then be called again in ref-walk mode.
334 int generic_permission(struct inode *inode, int mask)
336 int ret;
339 * Do the basic permission checks.
341 ret = acl_permission_check(inode, mask);
342 if (ret != -EACCES)
343 return ret;
345 if (S_ISDIR(inode->i_mode)) {
346 /* DACs are overridable for directories */
347 if (!(mask & MAY_WRITE))
348 if (capable_wrt_inode_uidgid(inode,
349 CAP_DAC_READ_SEARCH))
350 return 0;
351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 return 0;
353 return -EACCES;
357 * Searching includes executable on directories, else just read.
359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 if (mask == MAY_READ)
361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 return 0;
364 * Read/write DACs are always overridable.
365 * Executable DACs are overridable when there is
366 * at least one exec bit set.
368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 return 0;
372 return -EACCES;
374 EXPORT_SYMBOL(generic_permission);
377 * We _really_ want to just do "generic_permission()" without
378 * even looking at the inode->i_op values. So we keep a cache
379 * flag in inode->i_opflags, that says "this has not special
380 * permission function, use the fast case".
382 static inline int do_inode_permission(struct inode *inode, int mask)
384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 if (likely(inode->i_op->permission))
386 return inode->i_op->permission(inode, mask);
388 /* This gets set once for the inode lifetime */
389 spin_lock(&inode->i_lock);
390 inode->i_opflags |= IOP_FASTPERM;
391 spin_unlock(&inode->i_lock);
393 return generic_permission(inode, mask);
397 * sb_permission - Check superblock-level permissions
398 * @sb: Superblock of inode to check permission on
399 * @inode: Inode to check permission on
400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
402 * Separate out file-system wide checks from inode-specific permission checks.
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
406 if (unlikely(mask & MAY_WRITE)) {
407 umode_t mode = inode->i_mode;
409 /* Nobody gets write access to a read-only fs. */
410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 return -EROFS;
413 return 0;
417 * inode_permission - Check for access rights to a given inode
418 * @inode: Inode to check permission on
419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
422 * this, letting us set arbitrary permissions for filesystem access without
423 * changing the "normal" UIDs which are used for other things.
425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
427 int inode_permission(struct inode *inode, int mask)
429 int retval;
431 retval = sb_permission(inode->i_sb, inode, mask);
432 if (retval)
433 return retval;
435 if (unlikely(mask & MAY_WRITE)) {
437 * Nobody gets write access to an immutable file.
439 if (IS_IMMUTABLE(inode))
440 return -EPERM;
443 * Updating mtime will likely cause i_uid and i_gid to be
444 * written back improperly if their true value is unknown
445 * to the vfs.
447 if (HAS_UNMAPPED_ID(inode))
448 return -EACCES;
451 retval = do_inode_permission(inode, mask);
452 if (retval)
453 return retval;
455 retval = devcgroup_inode_permission(inode, mask);
456 if (retval)
457 return retval;
459 return security_inode_permission(inode, mask);
461 EXPORT_SYMBOL(inode_permission);
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
467 * Given a path increment the reference count to the dentry and the vfsmount.
469 void path_get(const struct path *path)
471 mntget(path->mnt);
472 dget(path->dentry);
474 EXPORT_SYMBOL(path_get);
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
480 * Given a path decrement the reference count to the dentry and the vfsmount.
482 void path_put(const struct path *path)
484 dput(path->dentry);
485 mntput(path->mnt);
487 EXPORT_SYMBOL(path_put);
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 int total_link_count;
500 struct saved {
501 struct path link;
502 struct delayed_call done;
503 const char *name;
504 unsigned seq;
505 } *stack, internal[EMBEDDED_LEVELS];
506 struct filename *name;
507 struct nameidata *saved;
508 struct inode *link_inode;
509 unsigned root_seq;
510 int dfd;
511 } __randomize_layout;
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->dfd = dfd;
518 p->name = name;
519 p->total_link_count = old ? old->total_link_count : 0;
520 p->saved = old;
521 current->nameidata = p;
524 static void restore_nameidata(void)
526 struct nameidata *now = current->nameidata, *old = now->saved;
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal)
532 kfree(now->stack);
535 static int __nd_alloc_stack(struct nameidata *nd)
537 struct saved *p;
539 if (nd->flags & LOOKUP_RCU) {
540 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
541 GFP_ATOMIC);
542 if (unlikely(!p))
543 return -ECHILD;
544 } else {
545 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
546 GFP_KERNEL);
547 if (unlikely(!p))
548 return -ENOMEM;
550 memcpy(p, nd->internal, sizeof(nd->internal));
551 nd->stack = p;
552 return 0;
556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557 * @path: nameidate to verify
559 * Rename can sometimes move a file or directory outside of a bind
560 * mount, path_connected allows those cases to be detected.
562 static bool path_connected(const struct path *path)
564 struct vfsmount *mnt = path->mnt;
565 struct super_block *sb = mnt->mnt_sb;
567 /* Bind mounts and multi-root filesystems can have disconnected paths */
568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 return true;
571 return is_subdir(path->dentry, mnt->mnt_root);
574 static inline int nd_alloc_stack(struct nameidata *nd)
576 if (likely(nd->depth != EMBEDDED_LEVELS))
577 return 0;
578 if (likely(nd->stack != nd->internal))
579 return 0;
580 return __nd_alloc_stack(nd);
583 static void drop_links(struct nameidata *nd)
585 int i = nd->depth;
586 while (i--) {
587 struct saved *last = nd->stack + i;
588 do_delayed_call(&last->done);
589 clear_delayed_call(&last->done);
593 static void terminate_walk(struct nameidata *nd)
595 drop_links(nd);
596 if (!(nd->flags & LOOKUP_RCU)) {
597 int i;
598 path_put(&nd->path);
599 for (i = 0; i < nd->depth; i++)
600 path_put(&nd->stack[i].link);
601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 path_put(&nd->root);
603 nd->root.mnt = NULL;
605 } else {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609 rcu_read_unlock();
611 nd->depth = 0;
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616 struct path *path, unsigned seq)
618 int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 if (unlikely(res)) {
620 if (res > 0)
621 path->mnt = NULL;
622 path->dentry = NULL;
623 return false;
625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 path->dentry = NULL;
627 return false;
629 return !read_seqcount_retry(&path->dentry->d_seq, seq);
632 static bool legitimize_links(struct nameidata *nd)
634 int i;
635 for (i = 0; i < nd->depth; i++) {
636 struct saved *last = nd->stack + i;
637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 drop_links(nd);
639 nd->depth = i + 1;
640 return false;
643 return true;
647 * Path walking has 2 modes, rcu-walk and ref-walk (see
648 * Documentation/filesystems/path-lookup.txt). In situations when we can't
649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650 * normal reference counts on dentries and vfsmounts to transition to ref-walk
651 * mode. Refcounts are grabbed at the last known good point before rcu-walk
652 * got stuck, so ref-walk may continue from there. If this is not successful
653 * (eg. a seqcount has changed), then failure is returned and it's up to caller
654 * to restart the path walk from the beginning in ref-walk mode.
658 * unlazy_walk - try to switch to ref-walk mode.
659 * @nd: nameidata pathwalk data
660 * Returns: 0 on success, -ECHILD on failure
662 * unlazy_walk attempts to legitimize the current nd->path and nd->root
663 * for ref-walk mode.
664 * Must be called from rcu-walk context.
665 * Nothing should touch nameidata between unlazy_walk() failure and
666 * terminate_walk().
668 static int unlazy_walk(struct nameidata *nd)
670 struct dentry *parent = nd->path.dentry;
672 BUG_ON(!(nd->flags & LOOKUP_RCU));
674 nd->flags &= ~LOOKUP_RCU;
675 if (unlikely(!legitimize_links(nd)))
676 goto out2;
677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 goto out1;
679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 goto out;
683 rcu_read_unlock();
684 BUG_ON(nd->inode != parent->d_inode);
685 return 0;
687 out2:
688 nd->path.mnt = NULL;
689 nd->path.dentry = NULL;
690 out1:
691 if (!(nd->flags & LOOKUP_ROOT))
692 nd->root.mnt = NULL;
693 out:
694 rcu_read_unlock();
695 return -ECHILD;
699 * unlazy_child - try to switch to ref-walk mode.
700 * @nd: nameidata pathwalk data
701 * @dentry: child of nd->path.dentry
702 * @seq: seq number to check dentry against
703 * Returns: 0 on success, -ECHILD on failure
705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
707 * @nd. Must be called from rcu-walk context.
708 * Nothing should touch nameidata between unlazy_child() failure and
709 * terminate_walk().
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
713 BUG_ON(!(nd->flags & LOOKUP_RCU));
715 nd->flags &= ~LOOKUP_RCU;
716 if (unlikely(!legitimize_links(nd)))
717 goto out2;
718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 goto out2;
720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 goto out1;
724 * We need to move both the parent and the dentry from the RCU domain
725 * to be properly refcounted. And the sequence number in the dentry
726 * validates *both* dentry counters, since we checked the sequence
727 * number of the parent after we got the child sequence number. So we
728 * know the parent must still be valid if the child sequence number is
730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 goto out;
732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 rcu_read_unlock();
734 dput(dentry);
735 goto drop_root_mnt;
738 * Sequence counts matched. Now make sure that the root is
739 * still valid and get it if required.
741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 rcu_read_unlock();
744 dput(dentry);
745 return -ECHILD;
749 rcu_read_unlock();
750 return 0;
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 drop_root_mnt:
759 if (!(nd->flags & LOOKUP_ROOT))
760 nd->root.mnt = NULL;
761 return -ECHILD;
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 return dentry->d_op->d_revalidate(dentry, flags);
768 else
769 return 1;
773 * complete_walk - successful completion of path walk
774 * @nd: pointer nameidata
776 * If we had been in RCU mode, drop out of it and legitimize nd->path.
777 * Revalidate the final result, unless we'd already done that during
778 * the path walk or the filesystem doesn't ask for it. Return 0 on
779 * success, -error on failure. In case of failure caller does not
780 * need to drop nd->path.
782 static int complete_walk(struct nameidata *nd)
784 struct dentry *dentry = nd->path.dentry;
785 int status;
787 if (nd->flags & LOOKUP_RCU) {
788 if (!(nd->flags & LOOKUP_ROOT))
789 nd->root.mnt = NULL;
790 if (unlikely(unlazy_walk(nd)))
791 return -ECHILD;
794 if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 return 0;
797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 return 0;
800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 if (status > 0)
802 return 0;
804 if (!status)
805 status = -ESTALE;
807 return status;
810 static void set_root(struct nameidata *nd)
812 struct fs_struct *fs = current->fs;
814 if (nd->flags & LOOKUP_RCU) {
815 unsigned seq;
817 do {
818 seq = read_seqcount_begin(&fs->seq);
819 nd->root = fs->root;
820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 } while (read_seqcount_retry(&fs->seq, seq));
822 } else {
823 get_fs_root(fs, &nd->root);
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
829 dput(path->dentry);
830 if (path->mnt != nd->path.mnt)
831 mntput(path->mnt);
834 static inline void path_to_nameidata(const struct path *path,
835 struct nameidata *nd)
837 if (!(nd->flags & LOOKUP_RCU)) {
838 dput(nd->path.dentry);
839 if (nd->path.mnt != path->mnt)
840 mntput(nd->path.mnt);
842 nd->path.mnt = path->mnt;
843 nd->path.dentry = path->dentry;
846 static int nd_jump_root(struct nameidata *nd)
848 if (nd->flags & LOOKUP_RCU) {
849 struct dentry *d;
850 nd->path = nd->root;
851 d = nd->path.dentry;
852 nd->inode = d->d_inode;
853 nd->seq = nd->root_seq;
854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 return -ECHILD;
856 } else {
857 path_put(&nd->path);
858 nd->path = nd->root;
859 path_get(&nd->path);
860 nd->inode = nd->path.dentry->d_inode;
862 nd->flags |= LOOKUP_JUMPED;
863 return 0;
867 * Helper to directly jump to a known parsed path from ->get_link,
868 * caller must have taken a reference to path beforehand.
870 void nd_jump_link(struct path *path)
872 struct nameidata *nd = current->nameidata;
873 path_put(&nd->path);
875 nd->path = *path;
876 nd->inode = nd->path.dentry->d_inode;
877 nd->flags |= LOOKUP_JUMPED;
880 static inline void put_link(struct nameidata *nd)
882 struct saved *last = nd->stack + --nd->depth;
883 do_delayed_call(&last->done);
884 if (!(nd->flags & LOOKUP_RCU))
885 path_put(&last->link);
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
892 * may_follow_link - Check symlink following for unsafe situations
893 * @nd: nameidata pathwalk data
895 * In the case of the sysctl_protected_symlinks sysctl being enabled,
896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897 * in a sticky world-writable directory. This is to protect privileged
898 * processes from failing races against path names that may change out
899 * from under them by way of other users creating malicious symlinks.
900 * It will permit symlinks to be followed only when outside a sticky
901 * world-writable directory, or when the uid of the symlink and follower
902 * match, or when the directory owner matches the symlink's owner.
904 * Returns 0 if following the symlink is allowed, -ve on error.
906 static inline int may_follow_link(struct nameidata *nd)
908 const struct inode *inode;
909 const struct inode *parent;
910 kuid_t puid;
912 if (!sysctl_protected_symlinks)
913 return 0;
915 /* Allowed if owner and follower match. */
916 inode = nd->link_inode;
917 if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 return 0;
920 /* Allowed if parent directory not sticky and world-writable. */
921 parent = nd->inode;
922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 return 0;
925 /* Allowed if parent directory and link owner match. */
926 puid = parent->i_uid;
927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 return 0;
930 if (nd->flags & LOOKUP_RCU)
931 return -ECHILD;
933 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 audit_log_link_denied("follow_link");
935 return -EACCES;
939 * safe_hardlink_source - Check for safe hardlink conditions
940 * @inode: the source inode to hardlink from
942 * Return false if at least one of the following conditions:
943 * - inode is not a regular file
944 * - inode is setuid
945 * - inode is setgid and group-exec
946 * - access failure for read and write
948 * Otherwise returns true.
950 static bool safe_hardlink_source(struct inode *inode)
952 umode_t mode = inode->i_mode;
954 /* Special files should not get pinned to the filesystem. */
955 if (!S_ISREG(mode))
956 return false;
958 /* Setuid files should not get pinned to the filesystem. */
959 if (mode & S_ISUID)
960 return false;
962 /* Executable setgid files should not get pinned to the filesystem. */
963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 return false;
966 /* Hardlinking to unreadable or unwritable sources is dangerous. */
967 if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 return false;
970 return true;
974 * may_linkat - Check permissions for creating a hardlink
975 * @link: the source to hardlink from
977 * Block hardlink when all of:
978 * - sysctl_protected_hardlinks enabled
979 * - fsuid does not match inode
980 * - hardlink source is unsafe (see safe_hardlink_source() above)
981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
983 * Returns 0 if successful, -ve on error.
985 static int may_linkat(struct path *link)
987 struct inode *inode;
989 if (!sysctl_protected_hardlinks)
990 return 0;
992 inode = link->dentry->d_inode;
994 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
995 * otherwise, it must be a safe source.
997 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
998 return 0;
1000 audit_log_link_denied("linkat");
1001 return -EPERM;
1004 static __always_inline
1005 const char *get_link(struct nameidata *nd)
1007 struct saved *last = nd->stack + nd->depth - 1;
1008 struct dentry *dentry = last->link.dentry;
1009 struct inode *inode = nd->link_inode;
1010 int error;
1011 const char *res;
1013 if (!(nd->flags & LOOKUP_RCU)) {
1014 touch_atime(&last->link);
1015 cond_resched();
1016 } else if (atime_needs_update_rcu(&last->link, inode)) {
1017 if (unlikely(unlazy_walk(nd)))
1018 return ERR_PTR(-ECHILD);
1019 touch_atime(&last->link);
1022 error = security_inode_follow_link(dentry, inode,
1023 nd->flags & LOOKUP_RCU);
1024 if (unlikely(error))
1025 return ERR_PTR(error);
1027 nd->last_type = LAST_BIND;
1028 res = inode->i_link;
1029 if (!res) {
1030 const char * (*get)(struct dentry *, struct inode *,
1031 struct delayed_call *);
1032 get = inode->i_op->get_link;
1033 if (nd->flags & LOOKUP_RCU) {
1034 res = get(NULL, inode, &last->done);
1035 if (res == ERR_PTR(-ECHILD)) {
1036 if (unlikely(unlazy_walk(nd)))
1037 return ERR_PTR(-ECHILD);
1038 res = get(dentry, inode, &last->done);
1040 } else {
1041 res = get(dentry, inode, &last->done);
1043 if (IS_ERR_OR_NULL(res))
1044 return res;
1046 if (*res == '/') {
1047 if (!nd->root.mnt)
1048 set_root(nd);
1049 if (unlikely(nd_jump_root(nd)))
1050 return ERR_PTR(-ECHILD);
1051 while (unlikely(*++res == '/'))
1054 if (!*res)
1055 res = NULL;
1056 return res;
1060 * follow_up - Find the mountpoint of path's vfsmount
1062 * Given a path, find the mountpoint of its source file system.
1063 * Replace @path with the path of the mountpoint in the parent mount.
1064 * Up is towards /.
1066 * Return 1 if we went up a level and 0 if we were already at the
1067 * root.
1069 int follow_up(struct path *path)
1071 struct mount *mnt = real_mount(path->mnt);
1072 struct mount *parent;
1073 struct dentry *mountpoint;
1075 read_seqlock_excl(&mount_lock);
1076 parent = mnt->mnt_parent;
1077 if (parent == mnt) {
1078 read_sequnlock_excl(&mount_lock);
1079 return 0;
1081 mntget(&parent->mnt);
1082 mountpoint = dget(mnt->mnt_mountpoint);
1083 read_sequnlock_excl(&mount_lock);
1084 dput(path->dentry);
1085 path->dentry = mountpoint;
1086 mntput(path->mnt);
1087 path->mnt = &parent->mnt;
1088 return 1;
1090 EXPORT_SYMBOL(follow_up);
1093 * Perform an automount
1094 * - return -EISDIR to tell follow_managed() to stop and return the path we
1095 * were called with.
1097 static int follow_automount(struct path *path, struct nameidata *nd,
1098 bool *need_mntput)
1100 struct vfsmount *mnt;
1101 int err;
1103 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1104 return -EREMOTE;
1106 /* We don't want to mount if someone's just doing a stat -
1107 * unless they're stat'ing a directory and appended a '/' to
1108 * the name.
1110 * We do, however, want to mount if someone wants to open or
1111 * create a file of any type under the mountpoint, wants to
1112 * traverse through the mountpoint or wants to open the
1113 * mounted directory. Also, autofs may mark negative dentries
1114 * as being automount points. These will need the attentions
1115 * of the daemon to instantiate them before they can be used.
1117 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1118 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1119 path->dentry->d_inode)
1120 return -EISDIR;
1122 nd->total_link_count++;
1123 if (nd->total_link_count >= 40)
1124 return -ELOOP;
1126 mnt = path->dentry->d_op->d_automount(path);
1127 if (IS_ERR(mnt)) {
1129 * The filesystem is allowed to return -EISDIR here to indicate
1130 * it doesn't want to automount. For instance, autofs would do
1131 * this so that its userspace daemon can mount on this dentry.
1133 * However, we can only permit this if it's a terminal point in
1134 * the path being looked up; if it wasn't then the remainder of
1135 * the path is inaccessible and we should say so.
1137 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1138 return -EREMOTE;
1139 return PTR_ERR(mnt);
1142 if (!mnt) /* mount collision */
1143 return 0;
1145 if (!*need_mntput) {
1146 /* lock_mount() may release path->mnt on error */
1147 mntget(path->mnt);
1148 *need_mntput = true;
1150 err = finish_automount(mnt, path);
1152 switch (err) {
1153 case -EBUSY:
1154 /* Someone else made a mount here whilst we were busy */
1155 return 0;
1156 case 0:
1157 path_put(path);
1158 path->mnt = mnt;
1159 path->dentry = dget(mnt->mnt_root);
1160 return 0;
1161 default:
1162 return err;
1168 * Handle a dentry that is managed in some way.
1169 * - Flagged for transit management (autofs)
1170 * - Flagged as mountpoint
1171 * - Flagged as automount point
1173 * This may only be called in refwalk mode.
1175 * Serialization is taken care of in namespace.c
1177 static int follow_managed(struct path *path, struct nameidata *nd)
1179 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1180 unsigned managed;
1181 bool need_mntput = false;
1182 int ret = 0;
1184 /* Given that we're not holding a lock here, we retain the value in a
1185 * local variable for each dentry as we look at it so that we don't see
1186 * the components of that value change under us */
1187 while (managed = READ_ONCE(path->dentry->d_flags),
1188 managed &= DCACHE_MANAGED_DENTRY,
1189 unlikely(managed != 0)) {
1190 /* Allow the filesystem to manage the transit without i_mutex
1191 * being held. */
1192 if (managed & DCACHE_MANAGE_TRANSIT) {
1193 BUG_ON(!path->dentry->d_op);
1194 BUG_ON(!path->dentry->d_op->d_manage);
1195 ret = path->dentry->d_op->d_manage(path, false);
1196 if (ret < 0)
1197 break;
1200 /* Transit to a mounted filesystem. */
1201 if (managed & DCACHE_MOUNTED) {
1202 struct vfsmount *mounted = lookup_mnt(path);
1203 if (mounted) {
1204 dput(path->dentry);
1205 if (need_mntput)
1206 mntput(path->mnt);
1207 path->mnt = mounted;
1208 path->dentry = dget(mounted->mnt_root);
1209 need_mntput = true;
1210 continue;
1213 /* Something is mounted on this dentry in another
1214 * namespace and/or whatever was mounted there in this
1215 * namespace got unmounted before lookup_mnt() could
1216 * get it */
1219 /* Handle an automount point */
1220 if (managed & DCACHE_NEED_AUTOMOUNT) {
1221 ret = follow_automount(path, nd, &need_mntput);
1222 if (ret < 0)
1223 break;
1224 continue;
1227 /* We didn't change the current path point */
1228 break;
1231 if (need_mntput && path->mnt == mnt)
1232 mntput(path->mnt);
1233 if (ret == -EISDIR || !ret)
1234 ret = 1;
1235 if (need_mntput)
1236 nd->flags |= LOOKUP_JUMPED;
1237 if (unlikely(ret < 0))
1238 path_put_conditional(path, nd);
1239 return ret;
1242 int follow_down_one(struct path *path)
1244 struct vfsmount *mounted;
1246 mounted = lookup_mnt(path);
1247 if (mounted) {
1248 dput(path->dentry);
1249 mntput(path->mnt);
1250 path->mnt = mounted;
1251 path->dentry = dget(mounted->mnt_root);
1252 return 1;
1254 return 0;
1256 EXPORT_SYMBOL(follow_down_one);
1258 static inline int managed_dentry_rcu(const struct path *path)
1260 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1261 path->dentry->d_op->d_manage(path, true) : 0;
1265 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1266 * we meet a managed dentry that would need blocking.
1268 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1269 struct inode **inode, unsigned *seqp)
1271 for (;;) {
1272 struct mount *mounted;
1274 * Don't forget we might have a non-mountpoint managed dentry
1275 * that wants to block transit.
1277 switch (managed_dentry_rcu(path)) {
1278 case -ECHILD:
1279 default:
1280 return false;
1281 case -EISDIR:
1282 return true;
1283 case 0:
1284 break;
1287 if (!d_mountpoint(path->dentry))
1288 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1290 mounted = __lookup_mnt(path->mnt, path->dentry);
1291 if (!mounted)
1292 break;
1293 path->mnt = &mounted->mnt;
1294 path->dentry = mounted->mnt.mnt_root;
1295 nd->flags |= LOOKUP_JUMPED;
1296 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1298 * Update the inode too. We don't need to re-check the
1299 * dentry sequence number here after this d_inode read,
1300 * because a mount-point is always pinned.
1302 *inode = path->dentry->d_inode;
1304 return !read_seqretry(&mount_lock, nd->m_seq) &&
1305 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 static int follow_dotdot_rcu(struct nameidata *nd)
1310 struct inode *inode = nd->inode;
1312 while (1) {
1313 if (path_equal(&nd->path, &nd->root))
1314 break;
1315 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1316 struct dentry *old = nd->path.dentry;
1317 struct dentry *parent = old->d_parent;
1318 unsigned seq;
1320 inode = parent->d_inode;
1321 seq = read_seqcount_begin(&parent->d_seq);
1322 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1323 return -ECHILD;
1324 nd->path.dentry = parent;
1325 nd->seq = seq;
1326 if (unlikely(!path_connected(&nd->path)))
1327 return -ENOENT;
1328 break;
1329 } else {
1330 struct mount *mnt = real_mount(nd->path.mnt);
1331 struct mount *mparent = mnt->mnt_parent;
1332 struct dentry *mountpoint = mnt->mnt_mountpoint;
1333 struct inode *inode2 = mountpoint->d_inode;
1334 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1335 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1336 return -ECHILD;
1337 if (&mparent->mnt == nd->path.mnt)
1338 break;
1339 /* we know that mountpoint was pinned */
1340 nd->path.dentry = mountpoint;
1341 nd->path.mnt = &mparent->mnt;
1342 inode = inode2;
1343 nd->seq = seq;
1346 while (unlikely(d_mountpoint(nd->path.dentry))) {
1347 struct mount *mounted;
1348 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1349 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1350 return -ECHILD;
1351 if (!mounted)
1352 break;
1353 nd->path.mnt = &mounted->mnt;
1354 nd->path.dentry = mounted->mnt.mnt_root;
1355 inode = nd->path.dentry->d_inode;
1356 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1358 nd->inode = inode;
1359 return 0;
1363 * Follow down to the covering mount currently visible to userspace. At each
1364 * point, the filesystem owning that dentry may be queried as to whether the
1365 * caller is permitted to proceed or not.
1367 int follow_down(struct path *path)
1369 unsigned managed;
1370 int ret;
1372 while (managed = READ_ONCE(path->dentry->d_flags),
1373 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1374 /* Allow the filesystem to manage the transit without i_mutex
1375 * being held.
1377 * We indicate to the filesystem if someone is trying to mount
1378 * something here. This gives autofs the chance to deny anyone
1379 * other than its daemon the right to mount on its
1380 * superstructure.
1382 * The filesystem may sleep at this point.
1384 if (managed & DCACHE_MANAGE_TRANSIT) {
1385 BUG_ON(!path->dentry->d_op);
1386 BUG_ON(!path->dentry->d_op->d_manage);
1387 ret = path->dentry->d_op->d_manage(path, false);
1388 if (ret < 0)
1389 return ret == -EISDIR ? 0 : ret;
1392 /* Transit to a mounted filesystem. */
1393 if (managed & DCACHE_MOUNTED) {
1394 struct vfsmount *mounted = lookup_mnt(path);
1395 if (!mounted)
1396 break;
1397 dput(path->dentry);
1398 mntput(path->mnt);
1399 path->mnt = mounted;
1400 path->dentry = dget(mounted->mnt_root);
1401 continue;
1404 /* Don't handle automount points here */
1405 break;
1407 return 0;
1409 EXPORT_SYMBOL(follow_down);
1412 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1414 static void follow_mount(struct path *path)
1416 while (d_mountpoint(path->dentry)) {
1417 struct vfsmount *mounted = lookup_mnt(path);
1418 if (!mounted)
1419 break;
1420 dput(path->dentry);
1421 mntput(path->mnt);
1422 path->mnt = mounted;
1423 path->dentry = dget(mounted->mnt_root);
1427 static int path_parent_directory(struct path *path)
1429 struct dentry *old = path->dentry;
1430 /* rare case of legitimate dget_parent()... */
1431 path->dentry = dget_parent(path->dentry);
1432 dput(old);
1433 if (unlikely(!path_connected(path)))
1434 return -ENOENT;
1435 return 0;
1438 static int follow_dotdot(struct nameidata *nd)
1440 while(1) {
1441 if (nd->path.dentry == nd->root.dentry &&
1442 nd->path.mnt == nd->root.mnt) {
1443 break;
1445 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 int ret = path_parent_directory(&nd->path);
1447 if (ret)
1448 return ret;
1449 break;
1451 if (!follow_up(&nd->path))
1452 break;
1454 follow_mount(&nd->path);
1455 nd->inode = nd->path.dentry->d_inode;
1456 return 0;
1460 * This looks up the name in dcache and possibly revalidates the found dentry.
1461 * NULL is returned if the dentry does not exist in the cache.
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464 struct dentry *dir,
1465 unsigned int flags)
1467 struct dentry *dentry = d_lookup(dir, name);
1468 if (dentry) {
1469 int error = d_revalidate(dentry, flags);
1470 if (unlikely(error <= 0)) {
1471 if (!error)
1472 d_invalidate(dentry);
1473 dput(dentry);
1474 return ERR_PTR(error);
1477 return dentry;
1481 * Parent directory has inode locked exclusive. This is one
1482 * and only case when ->lookup() gets called on non in-lookup
1483 * dentries - as the matter of fact, this only gets called
1484 * when directory is guaranteed to have no in-lookup children
1485 * at all.
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488 struct dentry *base, unsigned int flags)
1490 struct dentry *dentry = lookup_dcache(name, base, flags);
1491 struct dentry *old;
1492 struct inode *dir = base->d_inode;
1494 if (dentry)
1495 return dentry;
1497 /* Don't create child dentry for a dead directory. */
1498 if (unlikely(IS_DEADDIR(dir)))
1499 return ERR_PTR(-ENOENT);
1501 dentry = d_alloc(base, name);
1502 if (unlikely(!dentry))
1503 return ERR_PTR(-ENOMEM);
1505 old = dir->i_op->lookup(dir, dentry, flags);
1506 if (unlikely(old)) {
1507 dput(dentry);
1508 dentry = old;
1510 return dentry;
1513 static int lookup_fast(struct nameidata *nd,
1514 struct path *path, struct inode **inode,
1515 unsigned *seqp)
1517 struct vfsmount *mnt = nd->path.mnt;
1518 struct dentry *dentry, *parent = nd->path.dentry;
1519 int status = 1;
1520 int err;
1523 * Rename seqlock is not required here because in the off chance
1524 * of a false negative due to a concurrent rename, the caller is
1525 * going to fall back to non-racy lookup.
1527 if (nd->flags & LOOKUP_RCU) {
1528 unsigned seq;
1529 bool negative;
1530 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531 if (unlikely(!dentry)) {
1532 if (unlazy_walk(nd))
1533 return -ECHILD;
1534 return 0;
1538 * This sequence count validates that the inode matches
1539 * the dentry name information from lookup.
1541 *inode = d_backing_inode(dentry);
1542 negative = d_is_negative(dentry);
1543 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544 return -ECHILD;
1547 * This sequence count validates that the parent had no
1548 * changes while we did the lookup of the dentry above.
1550 * The memory barrier in read_seqcount_begin of child is
1551 * enough, we can use __read_seqcount_retry here.
1553 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554 return -ECHILD;
1556 *seqp = seq;
1557 status = d_revalidate(dentry, nd->flags);
1558 if (likely(status > 0)) {
1560 * Note: do negative dentry check after revalidation in
1561 * case that drops it.
1563 if (unlikely(negative))
1564 return -ENOENT;
1565 path->mnt = mnt;
1566 path->dentry = dentry;
1567 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568 return 1;
1570 if (unlazy_child(nd, dentry, seq))
1571 return -ECHILD;
1572 if (unlikely(status == -ECHILD))
1573 /* we'd been told to redo it in non-rcu mode */
1574 status = d_revalidate(dentry, nd->flags);
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 status = d_revalidate(dentry, nd->flags);
1581 if (unlikely(status <= 0)) {
1582 if (!status)
1583 d_invalidate(dentry);
1584 dput(dentry);
1585 return status;
1587 if (unlikely(d_is_negative(dentry))) {
1588 dput(dentry);
1589 return -ENOENT;
1592 path->mnt = mnt;
1593 path->dentry = dentry;
1594 err = follow_managed(path, nd);
1595 if (likely(err > 0))
1596 *inode = d_backing_inode(path->dentry);
1597 return err;
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602 struct dentry *dir,
1603 unsigned int flags)
1605 struct dentry *dentry, *old;
1606 struct inode *inode = dir->d_inode;
1607 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1609 /* Don't go there if it's already dead */
1610 if (unlikely(IS_DEADDIR(inode)))
1611 return ERR_PTR(-ENOENT);
1612 again:
1613 dentry = d_alloc_parallel(dir, name, &wq);
1614 if (IS_ERR(dentry))
1615 return dentry;
1616 if (unlikely(!d_in_lookup(dentry))) {
1617 if (!(flags & LOOKUP_NO_REVAL)) {
1618 int error = d_revalidate(dentry, flags);
1619 if (unlikely(error <= 0)) {
1620 if (!error) {
1621 d_invalidate(dentry);
1622 dput(dentry);
1623 goto again;
1625 dput(dentry);
1626 dentry = ERR_PTR(error);
1629 } else {
1630 old = inode->i_op->lookup(inode, dentry, flags);
1631 d_lookup_done(dentry);
1632 if (unlikely(old)) {
1633 dput(dentry);
1634 dentry = old;
1637 return dentry;
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641 struct dentry *dir,
1642 unsigned int flags)
1644 struct inode *inode = dir->d_inode;
1645 struct dentry *res;
1646 inode_lock_shared(inode);
1647 res = __lookup_slow(name, dir, flags);
1648 inode_unlock_shared(inode);
1649 return res;
1652 static inline int may_lookup(struct nameidata *nd)
1654 if (nd->flags & LOOKUP_RCU) {
1655 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 if (err != -ECHILD)
1657 return err;
1658 if (unlazy_walk(nd))
1659 return -ECHILD;
1661 return inode_permission(nd->inode, MAY_EXEC);
1664 static inline int handle_dots(struct nameidata *nd, int type)
1666 if (type == LAST_DOTDOT) {
1667 if (!nd->root.mnt)
1668 set_root(nd);
1669 if (nd->flags & LOOKUP_RCU) {
1670 return follow_dotdot_rcu(nd);
1671 } else
1672 return follow_dotdot(nd);
1674 return 0;
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678 struct inode *inode, unsigned seq)
1680 int error;
1681 struct saved *last;
1682 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683 path_to_nameidata(link, nd);
1684 return -ELOOP;
1686 if (!(nd->flags & LOOKUP_RCU)) {
1687 if (link->mnt == nd->path.mnt)
1688 mntget(link->mnt);
1690 error = nd_alloc_stack(nd);
1691 if (unlikely(error)) {
1692 if (error == -ECHILD) {
1693 if (unlikely(!legitimize_path(nd, link, seq))) {
1694 drop_links(nd);
1695 nd->depth = 0;
1696 nd->flags &= ~LOOKUP_RCU;
1697 nd->path.mnt = NULL;
1698 nd->path.dentry = NULL;
1699 if (!(nd->flags & LOOKUP_ROOT))
1700 nd->root.mnt = NULL;
1701 rcu_read_unlock();
1702 } else if (likely(unlazy_walk(nd)) == 0)
1703 error = nd_alloc_stack(nd);
1705 if (error) {
1706 path_put(link);
1707 return error;
1711 last = nd->stack + nd->depth++;
1712 last->link = *link;
1713 clear_delayed_call(&last->done);
1714 nd->link_inode = inode;
1715 last->seq = seq;
1716 return 1;
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1722 * Do we need to follow links? We _really_ want to be able
1723 * to do this check without having to look at inode->i_op,
1724 * so we keep a cache of "no, this doesn't need follow_link"
1725 * for the common case.
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728 int flags, struct inode *inode, unsigned seq)
1730 if (!(flags & WALK_MORE) && nd->depth)
1731 put_link(nd);
1732 if (likely(!d_is_symlink(path->dentry)) ||
1733 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734 /* not a symlink or should not follow */
1735 path_to_nameidata(path, nd);
1736 nd->inode = inode;
1737 nd->seq = seq;
1738 return 0;
1740 /* make sure that d_is_symlink above matches inode */
1741 if (nd->flags & LOOKUP_RCU) {
1742 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743 return -ECHILD;
1745 return pick_link(nd, path, inode, seq);
1748 static int walk_component(struct nameidata *nd, int flags)
1750 struct path path;
1751 struct inode *inode;
1752 unsigned seq;
1753 int err;
1755 * "." and ".." are special - ".." especially so because it has
1756 * to be able to know about the current root directory and
1757 * parent relationships.
1759 if (unlikely(nd->last_type != LAST_NORM)) {
1760 err = handle_dots(nd, nd->last_type);
1761 if (!(flags & WALK_MORE) && nd->depth)
1762 put_link(nd);
1763 return err;
1765 err = lookup_fast(nd, &path, &inode, &seq);
1766 if (unlikely(err <= 0)) {
1767 if (err < 0)
1768 return err;
1769 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770 nd->flags);
1771 if (IS_ERR(path.dentry))
1772 return PTR_ERR(path.dentry);
1774 path.mnt = nd->path.mnt;
1775 err = follow_managed(&path, nd);
1776 if (unlikely(err < 0))
1777 return err;
1779 if (unlikely(d_is_negative(path.dentry))) {
1780 path_to_nameidata(&path, nd);
1781 return -ENOENT;
1784 seq = 0; /* we are already out of RCU mode */
1785 inode = d_backing_inode(path.dentry);
1788 return step_into(nd, &path, flags, inode, seq);
1792 * We can do the critical dentry name comparison and hashing
1793 * operations one word at a time, but we are limited to:
1795 * - Architectures with fast unaligned word accesses. We could
1796 * do a "get_unaligned()" if this helps and is sufficiently
1797 * fast.
1799 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800 * do not trap on the (extremely unlikely) case of a page
1801 * crossing operation.
1803 * - Furthermore, we need an efficient 64-bit compile for the
1804 * 64-bit case in order to generate the "number of bytes in
1805 * the final mask". Again, that could be replaced with a
1806 * efficient population count instruction or similar.
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1810 #include <asm/word-at-a-time.h>
1812 #ifdef HASH_MIX
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1816 #elif defined(CONFIG_64BIT)
1818 * Register pressure in the mixing function is an issue, particularly
1819 * on 32-bit x86, but almost any function requires one state value and
1820 * one temporary. Instead, use a function designed for two state values
1821 * and no temporaries.
1823 * This function cannot create a collision in only two iterations, so
1824 * we have two iterations to achieve avalanche. In those two iterations,
1825 * we have six layers of mixing, which is enough to spread one bit's
1826 * influence out to 2^6 = 64 state bits.
1828 * Rotate constants are scored by considering either 64 one-bit input
1829 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830 * probability of that delta causing a change to each of the 128 output
1831 * bits, using a sample of random initial states.
1833 * The Shannon entropy of the computed probabilities is then summed
1834 * to produce a score. Ideally, any input change has a 50% chance of
1835 * toggling any given output bit.
1837 * Mixing scores (in bits) for (12,45):
1838 * Input delta: 1-bit 2-bit
1839 * 1 round: 713.3 42542.6
1840 * 2 rounds: 2753.7 140389.8
1841 * 3 rounds: 5954.1 233458.2
1842 * 4 rounds: 7862.6 256672.2
1843 * Perfect: 8192 258048
1844 * (64*128) (64*63/2 * 128)
1846 #define HASH_MIX(x, y, a) \
1847 ( x ^= (a), \
1848 y ^= x, x = rol64(x,12),\
1849 x += y, y = rol64(y,45),\
1850 y *= 9 )
1853 * Fold two longs into one 32-bit hash value. This must be fast, but
1854 * latency isn't quite as critical, as there is a fair bit of additional
1855 * work done before the hash value is used.
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1859 y ^= x * GOLDEN_RATIO_64;
1860 y *= GOLDEN_RATIO_64;
1861 return y >> 32;
1864 #else /* 32-bit case */
1867 * Mixing scores (in bits) for (7,20):
1868 * Input delta: 1-bit 2-bit
1869 * 1 round: 330.3 9201.6
1870 * 2 rounds: 1246.4 25475.4
1871 * 3 rounds: 1907.1 31295.1
1872 * 4 rounds: 2042.3 31718.6
1873 * Perfect: 2048 31744
1874 * (32*64) (32*31/2 * 64)
1876 #define HASH_MIX(x, y, a) \
1877 ( x ^= (a), \
1878 y ^= x, x = rol32(x, 7),\
1879 x += y, y = rol32(y,20),\
1880 y *= 9 )
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1884 /* Use arch-optimized multiply if one exists */
1885 return __hash_32(y ^ __hash_32(x));
1888 #endif
1891 * Return the hash of a string of known length. This is carfully
1892 * designed to match hash_name(), which is the more critical function.
1893 * In particular, we must end by hashing a final word containing 0..7
1894 * payload bytes, to match the way that hash_name() iterates until it
1895 * finds the delimiter after the name.
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1899 unsigned long a, x = 0, y = (unsigned long)salt;
1901 for (;;) {
1902 if (!len)
1903 goto done;
1904 a = load_unaligned_zeropad(name);
1905 if (len < sizeof(unsigned long))
1906 break;
1907 HASH_MIX(x, y, a);
1908 name += sizeof(unsigned long);
1909 len -= sizeof(unsigned long);
1911 x ^= a & bytemask_from_count(len);
1912 done:
1913 return fold_hash(x, y);
1915 EXPORT_SYMBOL(full_name_hash);
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1920 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921 unsigned long adata, mask, len;
1922 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1924 len = 0;
1925 goto inside;
1927 do {
1928 HASH_MIX(x, y, a);
1929 len += sizeof(unsigned long);
1930 inside:
1931 a = load_unaligned_zeropad(name+len);
1932 } while (!has_zero(a, &adata, &constants));
1934 adata = prep_zero_mask(a, adata, &constants);
1935 mask = create_zero_mask(adata);
1936 x ^= a & zero_bytemask(mask);
1938 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1940 EXPORT_SYMBOL(hashlen_string);
1943 * Calculate the length and hash of the path component, and
1944 * return the "hash_len" as the result.
1946 static inline u64 hash_name(const void *salt, const char *name)
1948 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949 unsigned long adata, bdata, mask, len;
1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1952 len = 0;
1953 goto inside;
1955 do {
1956 HASH_MIX(x, y, a);
1957 len += sizeof(unsigned long);
1958 inside:
1959 a = load_unaligned_zeropad(name+len);
1960 b = a ^ REPEAT_BYTE('/');
1961 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1963 adata = prep_zero_mask(a, adata, &constants);
1964 bdata = prep_zero_mask(b, bdata, &constants);
1965 mask = create_zero_mask(adata | bdata);
1966 x ^= a & zero_bytemask(mask);
1968 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1971 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1976 unsigned long hash = init_name_hash(salt);
1977 while (len--)
1978 hash = partial_name_hash((unsigned char)*name++, hash);
1979 return end_name_hash(hash);
1981 EXPORT_SYMBOL(full_name_hash);
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1986 unsigned long hash = init_name_hash(salt);
1987 unsigned long len = 0, c;
1989 c = (unsigned char)*name;
1990 while (c) {
1991 len++;
1992 hash = partial_name_hash(c, hash);
1993 c = (unsigned char)name[len];
1995 return hashlen_create(end_name_hash(hash), len);
1997 EXPORT_SYMBOL(hashlen_string);
2000 * We know there's a real path component here of at least
2001 * one character.
2003 static inline u64 hash_name(const void *salt, const char *name)
2005 unsigned long hash = init_name_hash(salt);
2006 unsigned long len = 0, c;
2008 c = (unsigned char)*name;
2009 do {
2010 len++;
2011 hash = partial_name_hash(c, hash);
2012 c = (unsigned char)name[len];
2013 } while (c && c != '/');
2014 return hashlen_create(end_name_hash(hash), len);
2017 #endif
2020 * Name resolution.
2021 * This is the basic name resolution function, turning a pathname into
2022 * the final dentry. We expect 'base' to be positive and a directory.
2024 * Returns 0 and nd will have valid dentry and mnt on success.
2025 * Returns error and drops reference to input namei data on failure.
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2029 int err;
2031 while (*name=='/')
2032 name++;
2033 if (!*name)
2034 return 0;
2036 /* At this point we know we have a real path component. */
2037 for(;;) {
2038 u64 hash_len;
2039 int type;
2041 err = may_lookup(nd);
2042 if (err)
2043 return err;
2045 hash_len = hash_name(nd->path.dentry, name);
2047 type = LAST_NORM;
2048 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2049 case 2:
2050 if (name[1] == '.') {
2051 type = LAST_DOTDOT;
2052 nd->flags |= LOOKUP_JUMPED;
2054 break;
2055 case 1:
2056 type = LAST_DOT;
2058 if (likely(type == LAST_NORM)) {
2059 struct dentry *parent = nd->path.dentry;
2060 nd->flags &= ~LOOKUP_JUMPED;
2061 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2062 struct qstr this = { { .hash_len = hash_len }, .name = name };
2063 err = parent->d_op->d_hash(parent, &this);
2064 if (err < 0)
2065 return err;
2066 hash_len = this.hash_len;
2067 name = this.name;
2071 nd->last.hash_len = hash_len;
2072 nd->last.name = name;
2073 nd->last_type = type;
2075 name += hashlen_len(hash_len);
2076 if (!*name)
2077 goto OK;
2079 * If it wasn't NUL, we know it was '/'. Skip that
2080 * slash, and continue until no more slashes.
2082 do {
2083 name++;
2084 } while (unlikely(*name == '/'));
2085 if (unlikely(!*name)) {
2087 /* pathname body, done */
2088 if (!nd->depth)
2089 return 0;
2090 name = nd->stack[nd->depth - 1].name;
2091 /* trailing symlink, done */
2092 if (!name)
2093 return 0;
2094 /* last component of nested symlink */
2095 err = walk_component(nd, WALK_FOLLOW);
2096 } else {
2097 /* not the last component */
2098 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2100 if (err < 0)
2101 return err;
2103 if (err) {
2104 const char *s = get_link(nd);
2106 if (IS_ERR(s))
2107 return PTR_ERR(s);
2108 err = 0;
2109 if (unlikely(!s)) {
2110 /* jumped */
2111 put_link(nd);
2112 } else {
2113 nd->stack[nd->depth - 1].name = name;
2114 name = s;
2115 continue;
2118 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2119 if (nd->flags & LOOKUP_RCU) {
2120 if (unlazy_walk(nd))
2121 return -ECHILD;
2123 return -ENOTDIR;
2128 static const char *path_init(struct nameidata *nd, unsigned flags)
2130 const char *s = nd->name->name;
2132 if (!*s)
2133 flags &= ~LOOKUP_RCU;
2135 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2136 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2137 nd->depth = 0;
2138 if (flags & LOOKUP_ROOT) {
2139 struct dentry *root = nd->root.dentry;
2140 struct inode *inode = root->d_inode;
2141 if (*s && unlikely(!d_can_lookup(root)))
2142 return ERR_PTR(-ENOTDIR);
2143 nd->path = nd->root;
2144 nd->inode = inode;
2145 if (flags & LOOKUP_RCU) {
2146 rcu_read_lock();
2147 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148 nd->root_seq = nd->seq;
2149 nd->m_seq = read_seqbegin(&mount_lock);
2150 } else {
2151 path_get(&nd->path);
2153 return s;
2156 nd->root.mnt = NULL;
2157 nd->path.mnt = NULL;
2158 nd->path.dentry = NULL;
2160 nd->m_seq = read_seqbegin(&mount_lock);
2161 if (*s == '/') {
2162 if (flags & LOOKUP_RCU)
2163 rcu_read_lock();
2164 set_root(nd);
2165 if (likely(!nd_jump_root(nd)))
2166 return s;
2167 nd->root.mnt = NULL;
2168 rcu_read_unlock();
2169 return ERR_PTR(-ECHILD);
2170 } else if (nd->dfd == AT_FDCWD) {
2171 if (flags & LOOKUP_RCU) {
2172 struct fs_struct *fs = current->fs;
2173 unsigned seq;
2175 rcu_read_lock();
2177 do {
2178 seq = read_seqcount_begin(&fs->seq);
2179 nd->path = fs->pwd;
2180 nd->inode = nd->path.dentry->d_inode;
2181 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182 } while (read_seqcount_retry(&fs->seq, seq));
2183 } else {
2184 get_fs_pwd(current->fs, &nd->path);
2185 nd->inode = nd->path.dentry->d_inode;
2187 return s;
2188 } else {
2189 /* Caller must check execute permissions on the starting path component */
2190 struct fd f = fdget_raw(nd->dfd);
2191 struct dentry *dentry;
2193 if (!f.file)
2194 return ERR_PTR(-EBADF);
2196 dentry = f.file->f_path.dentry;
2198 if (*s) {
2199 if (!d_can_lookup(dentry)) {
2200 fdput(f);
2201 return ERR_PTR(-ENOTDIR);
2205 nd->path = f.file->f_path;
2206 if (flags & LOOKUP_RCU) {
2207 rcu_read_lock();
2208 nd->inode = nd->path.dentry->d_inode;
2209 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210 } else {
2211 path_get(&nd->path);
2212 nd->inode = nd->path.dentry->d_inode;
2214 fdput(f);
2215 return s;
2219 static const char *trailing_symlink(struct nameidata *nd)
2221 const char *s;
2222 int error = may_follow_link(nd);
2223 if (unlikely(error))
2224 return ERR_PTR(error);
2225 nd->flags |= LOOKUP_PARENT;
2226 nd->stack[0].name = NULL;
2227 s = get_link(nd);
2228 return s ? s : "";
2231 static inline int lookup_last(struct nameidata *nd)
2233 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2236 nd->flags &= ~LOOKUP_PARENT;
2237 return walk_component(nd, 0);
2240 static int handle_lookup_down(struct nameidata *nd)
2242 struct path path = nd->path;
2243 struct inode *inode = nd->inode;
2244 unsigned seq = nd->seq;
2245 int err;
2247 if (nd->flags & LOOKUP_RCU) {
2249 * don't bother with unlazy_walk on failure - we are
2250 * at the very beginning of walk, so we lose nothing
2251 * if we simply redo everything in non-RCU mode
2253 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2254 return -ECHILD;
2255 } else {
2256 dget(path.dentry);
2257 err = follow_managed(&path, nd);
2258 if (unlikely(err < 0))
2259 return err;
2260 inode = d_backing_inode(path.dentry);
2261 seq = 0;
2263 path_to_nameidata(&path, nd);
2264 nd->inode = inode;
2265 nd->seq = seq;
2266 return 0;
2269 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2270 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2272 const char *s = path_init(nd, flags);
2273 int err;
2275 if (IS_ERR(s))
2276 return PTR_ERR(s);
2278 if (unlikely(flags & LOOKUP_DOWN)) {
2279 err = handle_lookup_down(nd);
2280 if (unlikely(err < 0)) {
2281 terminate_walk(nd);
2282 return err;
2286 while (!(err = link_path_walk(s, nd))
2287 && ((err = lookup_last(nd)) > 0)) {
2288 s = trailing_symlink(nd);
2289 if (IS_ERR(s)) {
2290 err = PTR_ERR(s);
2291 break;
2294 if (!err)
2295 err = complete_walk(nd);
2297 if (!err && nd->flags & LOOKUP_DIRECTORY)
2298 if (!d_can_lookup(nd->path.dentry))
2299 err = -ENOTDIR;
2300 if (!err) {
2301 *path = nd->path;
2302 nd->path.mnt = NULL;
2303 nd->path.dentry = NULL;
2305 terminate_walk(nd);
2306 return err;
2309 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2310 struct path *path, struct path *root)
2312 int retval;
2313 struct nameidata nd;
2314 if (IS_ERR(name))
2315 return PTR_ERR(name);
2316 if (unlikely(root)) {
2317 nd.root = *root;
2318 flags |= LOOKUP_ROOT;
2320 set_nameidata(&nd, dfd, name);
2321 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2322 if (unlikely(retval == -ECHILD))
2323 retval = path_lookupat(&nd, flags, path);
2324 if (unlikely(retval == -ESTALE))
2325 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2327 if (likely(!retval))
2328 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2329 restore_nameidata();
2330 putname(name);
2331 return retval;
2334 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2335 static int path_parentat(struct nameidata *nd, unsigned flags,
2336 struct path *parent)
2338 const char *s = path_init(nd, flags);
2339 int err;
2340 if (IS_ERR(s))
2341 return PTR_ERR(s);
2342 err = link_path_walk(s, nd);
2343 if (!err)
2344 err = complete_walk(nd);
2345 if (!err) {
2346 *parent = nd->path;
2347 nd->path.mnt = NULL;
2348 nd->path.dentry = NULL;
2350 terminate_walk(nd);
2351 return err;
2354 static struct filename *filename_parentat(int dfd, struct filename *name,
2355 unsigned int flags, struct path *parent,
2356 struct qstr *last, int *type)
2358 int retval;
2359 struct nameidata nd;
2361 if (IS_ERR(name))
2362 return name;
2363 set_nameidata(&nd, dfd, name);
2364 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2365 if (unlikely(retval == -ECHILD))
2366 retval = path_parentat(&nd, flags, parent);
2367 if (unlikely(retval == -ESTALE))
2368 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2369 if (likely(!retval)) {
2370 *last = nd.last;
2371 *type = nd.last_type;
2372 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2373 } else {
2374 putname(name);
2375 name = ERR_PTR(retval);
2377 restore_nameidata();
2378 return name;
2381 /* does lookup, returns the object with parent locked */
2382 struct dentry *kern_path_locked(const char *name, struct path *path)
2384 struct filename *filename;
2385 struct dentry *d;
2386 struct qstr last;
2387 int type;
2389 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2390 &last, &type);
2391 if (IS_ERR(filename))
2392 return ERR_CAST(filename);
2393 if (unlikely(type != LAST_NORM)) {
2394 path_put(path);
2395 putname(filename);
2396 return ERR_PTR(-EINVAL);
2398 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2399 d = __lookup_hash(&last, path->dentry, 0);
2400 if (IS_ERR(d)) {
2401 inode_unlock(path->dentry->d_inode);
2402 path_put(path);
2404 putname(filename);
2405 return d;
2408 int kern_path(const char *name, unsigned int flags, struct path *path)
2410 return filename_lookup(AT_FDCWD, getname_kernel(name),
2411 flags, path, NULL);
2413 EXPORT_SYMBOL(kern_path);
2416 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2417 * @dentry: pointer to dentry of the base directory
2418 * @mnt: pointer to vfs mount of the base directory
2419 * @name: pointer to file name
2420 * @flags: lookup flags
2421 * @path: pointer to struct path to fill
2423 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2424 const char *name, unsigned int flags,
2425 struct path *path)
2427 struct path root = {.mnt = mnt, .dentry = dentry};
2428 /* the first argument of filename_lookup() is ignored with root */
2429 return filename_lookup(AT_FDCWD, getname_kernel(name),
2430 flags , path, &root);
2432 EXPORT_SYMBOL(vfs_path_lookup);
2434 static int lookup_one_len_common(const char *name, struct dentry *base,
2435 int len, struct qstr *this)
2437 this->name = name;
2438 this->len = len;
2439 this->hash = full_name_hash(base, name, len);
2440 if (!len)
2441 return -EACCES;
2443 if (unlikely(name[0] == '.')) {
2444 if (len < 2 || (len == 2 && name[1] == '.'))
2445 return -EACCES;
2448 while (len--) {
2449 unsigned int c = *(const unsigned char *)name++;
2450 if (c == '/' || c == '\0')
2451 return -EACCES;
2454 * See if the low-level filesystem might want
2455 * to use its own hash..
2457 if (base->d_flags & DCACHE_OP_HASH) {
2458 int err = base->d_op->d_hash(base, this);
2459 if (err < 0)
2460 return err;
2463 return inode_permission(base->d_inode, MAY_EXEC);
2467 * lookup_one_len - filesystem helper to lookup single pathname component
2468 * @name: pathname component to lookup
2469 * @base: base directory to lookup from
2470 * @len: maximum length @len should be interpreted to
2472 * Note that this routine is purely a helper for filesystem usage and should
2473 * not be called by generic code.
2475 * The caller must hold base->i_mutex.
2477 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2479 struct dentry *dentry;
2480 struct qstr this;
2481 int err;
2483 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2485 err = lookup_one_len_common(name, base, len, &this);
2486 if (err)
2487 return ERR_PTR(err);
2489 dentry = lookup_dcache(&this, base, 0);
2490 return dentry ? dentry : __lookup_slow(&this, base, 0);
2492 EXPORT_SYMBOL(lookup_one_len);
2495 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2496 * @name: pathname component to lookup
2497 * @base: base directory to lookup from
2498 * @len: maximum length @len should be interpreted to
2500 * Note that this routine is purely a helper for filesystem usage and should
2501 * not be called by generic code.
2503 * Unlike lookup_one_len, it should be called without the parent
2504 * i_mutex held, and will take the i_mutex itself if necessary.
2506 struct dentry *lookup_one_len_unlocked(const char *name,
2507 struct dentry *base, int len)
2509 struct qstr this;
2510 int err;
2511 struct dentry *ret;
2513 err = lookup_one_len_common(name, base, len, &this);
2514 if (err)
2515 return ERR_PTR(err);
2517 ret = lookup_dcache(&this, base, 0);
2518 if (!ret)
2519 ret = lookup_slow(&this, base, 0);
2520 return ret;
2522 EXPORT_SYMBOL(lookup_one_len_unlocked);
2524 #ifdef CONFIG_UNIX98_PTYS
2525 int path_pts(struct path *path)
2527 /* Find something mounted on "pts" in the same directory as
2528 * the input path.
2530 struct dentry *child, *parent;
2531 struct qstr this;
2532 int ret;
2534 ret = path_parent_directory(path);
2535 if (ret)
2536 return ret;
2538 parent = path->dentry;
2539 this.name = "pts";
2540 this.len = 3;
2541 child = d_hash_and_lookup(parent, &this);
2542 if (!child)
2543 return -ENOENT;
2545 path->dentry = child;
2546 dput(parent);
2547 follow_mount(path);
2548 return 0;
2550 #endif
2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2553 struct path *path, int *empty)
2555 return filename_lookup(dfd, getname_flags(name, flags, empty),
2556 flags, path, NULL);
2558 EXPORT_SYMBOL(user_path_at_empty);
2561 * mountpoint_last - look up last component for umount
2562 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2564 * This is a special lookup_last function just for umount. In this case, we
2565 * need to resolve the path without doing any revalidation.
2567 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2568 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2569 * in almost all cases, this lookup will be served out of the dcache. The only
2570 * cases where it won't are if nd->last refers to a symlink or the path is
2571 * bogus and it doesn't exist.
2573 * Returns:
2574 * -error: if there was an error during lookup. This includes -ENOENT if the
2575 * lookup found a negative dentry.
2577 * 0: if we successfully resolved nd->last and found it to not to be a
2578 * symlink that needs to be followed.
2580 * 1: if we successfully resolved nd->last and found it to be a symlink
2581 * that needs to be followed.
2583 static int
2584 mountpoint_last(struct nameidata *nd)
2586 int error = 0;
2587 struct dentry *dir = nd->path.dentry;
2588 struct path path;
2590 /* If we're in rcuwalk, drop out of it to handle last component */
2591 if (nd->flags & LOOKUP_RCU) {
2592 if (unlazy_walk(nd))
2593 return -ECHILD;
2596 nd->flags &= ~LOOKUP_PARENT;
2598 if (unlikely(nd->last_type != LAST_NORM)) {
2599 error = handle_dots(nd, nd->last_type);
2600 if (error)
2601 return error;
2602 path.dentry = dget(nd->path.dentry);
2603 } else {
2604 path.dentry = d_lookup(dir, &nd->last);
2605 if (!path.dentry) {
2607 * No cached dentry. Mounted dentries are pinned in the
2608 * cache, so that means that this dentry is probably
2609 * a symlink or the path doesn't actually point
2610 * to a mounted dentry.
2612 path.dentry = lookup_slow(&nd->last, dir,
2613 nd->flags | LOOKUP_NO_REVAL);
2614 if (IS_ERR(path.dentry))
2615 return PTR_ERR(path.dentry);
2618 if (d_is_negative(path.dentry)) {
2619 dput(path.dentry);
2620 return -ENOENT;
2622 path.mnt = nd->path.mnt;
2623 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2627 * path_mountpoint - look up a path to be umounted
2628 * @nd: lookup context
2629 * @flags: lookup flags
2630 * @path: pointer to container for result
2632 * Look up the given name, but don't attempt to revalidate the last component.
2633 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2635 static int
2636 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2638 const char *s = path_init(nd, flags);
2639 int err;
2640 if (IS_ERR(s))
2641 return PTR_ERR(s);
2642 while (!(err = link_path_walk(s, nd)) &&
2643 (err = mountpoint_last(nd)) > 0) {
2644 s = trailing_symlink(nd);
2645 if (IS_ERR(s)) {
2646 err = PTR_ERR(s);
2647 break;
2650 if (!err) {
2651 *path = nd->path;
2652 nd->path.mnt = NULL;
2653 nd->path.dentry = NULL;
2654 follow_mount(path);
2656 terminate_walk(nd);
2657 return err;
2660 static int
2661 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2662 unsigned int flags)
2664 struct nameidata nd;
2665 int error;
2666 if (IS_ERR(name))
2667 return PTR_ERR(name);
2668 set_nameidata(&nd, dfd, name);
2669 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2670 if (unlikely(error == -ECHILD))
2671 error = path_mountpoint(&nd, flags, path);
2672 if (unlikely(error == -ESTALE))
2673 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2674 if (likely(!error))
2675 audit_inode(name, path->dentry, 0);
2676 restore_nameidata();
2677 putname(name);
2678 return error;
2682 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2683 * @dfd: directory file descriptor
2684 * @name: pathname from userland
2685 * @flags: lookup flags
2686 * @path: pointer to container to hold result
2688 * A umount is a special case for path walking. We're not actually interested
2689 * in the inode in this situation, and ESTALE errors can be a problem. We
2690 * simply want track down the dentry and vfsmount attached at the mountpoint
2691 * and avoid revalidating the last component.
2693 * Returns 0 and populates "path" on success.
2696 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2697 struct path *path)
2699 return filename_mountpoint(dfd, getname(name), path, flags);
2703 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2704 unsigned int flags)
2706 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2708 EXPORT_SYMBOL(kern_path_mountpoint);
2710 int __check_sticky(struct inode *dir, struct inode *inode)
2712 kuid_t fsuid = current_fsuid();
2714 if (uid_eq(inode->i_uid, fsuid))
2715 return 0;
2716 if (uid_eq(dir->i_uid, fsuid))
2717 return 0;
2718 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2720 EXPORT_SYMBOL(__check_sticky);
2723 * Check whether we can remove a link victim from directory dir, check
2724 * whether the type of victim is right.
2725 * 1. We can't do it if dir is read-only (done in permission())
2726 * 2. We should have write and exec permissions on dir
2727 * 3. We can't remove anything from append-only dir
2728 * 4. We can't do anything with immutable dir (done in permission())
2729 * 5. If the sticky bit on dir is set we should either
2730 * a. be owner of dir, or
2731 * b. be owner of victim, or
2732 * c. have CAP_FOWNER capability
2733 * 6. If the victim is append-only or immutable we can't do antyhing with
2734 * links pointing to it.
2735 * 7. If the victim has an unknown uid or gid we can't change the inode.
2736 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2737 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2738 * 10. We can't remove a root or mountpoint.
2739 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2740 * nfs_async_unlink().
2742 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2744 struct inode *inode = d_backing_inode(victim);
2745 int error;
2747 if (d_is_negative(victim))
2748 return -ENOENT;
2749 BUG_ON(!inode);
2751 BUG_ON(victim->d_parent->d_inode != dir);
2752 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2754 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2755 if (error)
2756 return error;
2757 if (IS_APPEND(dir))
2758 return -EPERM;
2760 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2761 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2762 return -EPERM;
2763 if (isdir) {
2764 if (!d_is_dir(victim))
2765 return -ENOTDIR;
2766 if (IS_ROOT(victim))
2767 return -EBUSY;
2768 } else if (d_is_dir(victim))
2769 return -EISDIR;
2770 if (IS_DEADDIR(dir))
2771 return -ENOENT;
2772 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2773 return -EBUSY;
2774 return 0;
2777 /* Check whether we can create an object with dentry child in directory
2778 * dir.
2779 * 1. We can't do it if child already exists (open has special treatment for
2780 * this case, but since we are inlined it's OK)
2781 * 2. We can't do it if dir is read-only (done in permission())
2782 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2783 * 4. We should have write and exec permissions on dir
2784 * 5. We can't do it if dir is immutable (done in permission())
2786 static inline int may_create(struct inode *dir, struct dentry *child)
2788 struct user_namespace *s_user_ns;
2789 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2790 if (child->d_inode)
2791 return -EEXIST;
2792 if (IS_DEADDIR(dir))
2793 return -ENOENT;
2794 s_user_ns = dir->i_sb->s_user_ns;
2795 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2796 !kgid_has_mapping(s_user_ns, current_fsgid()))
2797 return -EOVERFLOW;
2798 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2802 * p1 and p2 should be directories on the same fs.
2804 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2806 struct dentry *p;
2808 if (p1 == p2) {
2809 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2810 return NULL;
2813 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2815 p = d_ancestor(p2, p1);
2816 if (p) {
2817 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2818 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2819 return p;
2822 p = d_ancestor(p1, p2);
2823 if (p) {
2824 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2825 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2826 return p;
2829 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2830 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2831 return NULL;
2833 EXPORT_SYMBOL(lock_rename);
2835 void unlock_rename(struct dentry *p1, struct dentry *p2)
2837 inode_unlock(p1->d_inode);
2838 if (p1 != p2) {
2839 inode_unlock(p2->d_inode);
2840 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2843 EXPORT_SYMBOL(unlock_rename);
2845 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2846 bool want_excl)
2848 int error = may_create(dir, dentry);
2849 if (error)
2850 return error;
2852 if (!dir->i_op->create)
2853 return -EACCES; /* shouldn't it be ENOSYS? */
2854 mode &= S_IALLUGO;
2855 mode |= S_IFREG;
2856 error = security_inode_create(dir, dentry, mode);
2857 if (error)
2858 return error;
2859 error = dir->i_op->create(dir, dentry, mode, want_excl);
2860 if (!error)
2861 fsnotify_create(dir, dentry);
2862 return error;
2864 EXPORT_SYMBOL(vfs_create);
2866 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2867 int (*f)(struct dentry *, umode_t, void *),
2868 void *arg)
2870 struct inode *dir = dentry->d_parent->d_inode;
2871 int error = may_create(dir, dentry);
2872 if (error)
2873 return error;
2875 mode &= S_IALLUGO;
2876 mode |= S_IFREG;
2877 error = security_inode_create(dir, dentry, mode);
2878 if (error)
2879 return error;
2880 error = f(dentry, mode, arg);
2881 if (!error)
2882 fsnotify_create(dir, dentry);
2883 return error;
2885 EXPORT_SYMBOL(vfs_mkobj);
2887 bool may_open_dev(const struct path *path)
2889 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2890 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2893 static int may_open(const struct path *path, int acc_mode, int flag)
2895 struct dentry *dentry = path->dentry;
2896 struct inode *inode = dentry->d_inode;
2897 int error;
2899 if (!inode)
2900 return -ENOENT;
2902 switch (inode->i_mode & S_IFMT) {
2903 case S_IFLNK:
2904 return -ELOOP;
2905 case S_IFDIR:
2906 if (acc_mode & MAY_WRITE)
2907 return -EISDIR;
2908 break;
2909 case S_IFBLK:
2910 case S_IFCHR:
2911 if (!may_open_dev(path))
2912 return -EACCES;
2913 /*FALLTHRU*/
2914 case S_IFIFO:
2915 case S_IFSOCK:
2916 flag &= ~O_TRUNC;
2917 break;
2920 error = inode_permission(inode, MAY_OPEN | acc_mode);
2921 if (error)
2922 return error;
2925 * An append-only file must be opened in append mode for writing.
2927 if (IS_APPEND(inode)) {
2928 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2929 return -EPERM;
2930 if (flag & O_TRUNC)
2931 return -EPERM;
2934 /* O_NOATIME can only be set by the owner or superuser */
2935 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2936 return -EPERM;
2938 return 0;
2941 static int handle_truncate(struct file *filp)
2943 const struct path *path = &filp->f_path;
2944 struct inode *inode = path->dentry->d_inode;
2945 int error = get_write_access(inode);
2946 if (error)
2947 return error;
2949 * Refuse to truncate files with mandatory locks held on them.
2951 error = locks_verify_locked(filp);
2952 if (!error)
2953 error = security_path_truncate(path);
2954 if (!error) {
2955 error = do_truncate(path->dentry, 0,
2956 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2957 filp);
2959 put_write_access(inode);
2960 return error;
2963 static inline int open_to_namei_flags(int flag)
2965 if ((flag & O_ACCMODE) == 3)
2966 flag--;
2967 return flag;
2970 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2972 struct user_namespace *s_user_ns;
2973 int error = security_path_mknod(dir, dentry, mode, 0);
2974 if (error)
2975 return error;
2977 s_user_ns = dir->dentry->d_sb->s_user_ns;
2978 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2979 !kgid_has_mapping(s_user_ns, current_fsgid()))
2980 return -EOVERFLOW;
2982 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2983 if (error)
2984 return error;
2986 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2990 * Attempt to atomically look up, create and open a file from a negative
2991 * dentry.
2993 * Returns 0 if successful. The file will have been created and attached to
2994 * @file by the filesystem calling finish_open().
2996 * Returns 1 if the file was looked up only or didn't need creating. The
2997 * caller will need to perform the open themselves. @path will have been
2998 * updated to point to the new dentry. This may be negative.
3000 * Returns an error code otherwise.
3002 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3003 struct path *path, struct file *file,
3004 const struct open_flags *op,
3005 int open_flag, umode_t mode,
3006 int *opened)
3008 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3009 struct inode *dir = nd->path.dentry->d_inode;
3010 int error;
3012 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3013 open_flag &= ~O_TRUNC;
3015 if (nd->flags & LOOKUP_DIRECTORY)
3016 open_flag |= O_DIRECTORY;
3018 file->f_path.dentry = DENTRY_NOT_SET;
3019 file->f_path.mnt = nd->path.mnt;
3020 error = dir->i_op->atomic_open(dir, dentry, file,
3021 open_to_namei_flags(open_flag),
3022 mode, opened);
3023 d_lookup_done(dentry);
3024 if (!error) {
3026 * We didn't have the inode before the open, so check open
3027 * permission here.
3029 int acc_mode = op->acc_mode;
3030 if (*opened & FILE_CREATED) {
3031 WARN_ON(!(open_flag & O_CREAT));
3032 fsnotify_create(dir, dentry);
3033 acc_mode = 0;
3035 error = may_open(&file->f_path, acc_mode, open_flag);
3036 if (WARN_ON(error > 0))
3037 error = -EINVAL;
3038 } else if (error > 0) {
3039 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3040 error = -EIO;
3041 } else {
3042 if (file->f_path.dentry) {
3043 dput(dentry);
3044 dentry = file->f_path.dentry;
3046 if (*opened & FILE_CREATED)
3047 fsnotify_create(dir, dentry);
3048 if (unlikely(d_is_negative(dentry))) {
3049 error = -ENOENT;
3050 } else {
3051 path->dentry = dentry;
3052 path->mnt = nd->path.mnt;
3053 return 1;
3057 dput(dentry);
3058 return error;
3062 * Look up and maybe create and open the last component.
3064 * Must be called with i_mutex held on parent.
3066 * Returns 0 if the file was successfully atomically created (if necessary) and
3067 * opened. In this case the file will be returned attached to @file.
3069 * Returns 1 if the file was not completely opened at this time, though lookups
3070 * and creations will have been performed and the dentry returned in @path will
3071 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3072 * specified then a negative dentry may be returned.
3074 * An error code is returned otherwise.
3076 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3077 * cleared otherwise prior to returning.
3079 static int lookup_open(struct nameidata *nd, struct path *path,
3080 struct file *file,
3081 const struct open_flags *op,
3082 bool got_write, int *opened)
3084 struct dentry *dir = nd->path.dentry;
3085 struct inode *dir_inode = dir->d_inode;
3086 int open_flag = op->open_flag;
3087 struct dentry *dentry;
3088 int error, create_error = 0;
3089 umode_t mode = op->mode;
3090 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3092 if (unlikely(IS_DEADDIR(dir_inode)))
3093 return -ENOENT;
3095 *opened &= ~FILE_CREATED;
3096 dentry = d_lookup(dir, &nd->last);
3097 for (;;) {
3098 if (!dentry) {
3099 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3100 if (IS_ERR(dentry))
3101 return PTR_ERR(dentry);
3103 if (d_in_lookup(dentry))
3104 break;
3106 error = d_revalidate(dentry, nd->flags);
3107 if (likely(error > 0))
3108 break;
3109 if (error)
3110 goto out_dput;
3111 d_invalidate(dentry);
3112 dput(dentry);
3113 dentry = NULL;
3115 if (dentry->d_inode) {
3116 /* Cached positive dentry: will open in f_op->open */
3117 goto out_no_open;
3121 * Checking write permission is tricky, bacuse we don't know if we are
3122 * going to actually need it: O_CREAT opens should work as long as the
3123 * file exists. But checking existence breaks atomicity. The trick is
3124 * to check access and if not granted clear O_CREAT from the flags.
3126 * Another problem is returing the "right" error value (e.g. for an
3127 * O_EXCL open we want to return EEXIST not EROFS).
3129 if (open_flag & O_CREAT) {
3130 if (!IS_POSIXACL(dir->d_inode))
3131 mode &= ~current_umask();
3132 if (unlikely(!got_write)) {
3133 create_error = -EROFS;
3134 open_flag &= ~O_CREAT;
3135 if (open_flag & (O_EXCL | O_TRUNC))
3136 goto no_open;
3137 /* No side effects, safe to clear O_CREAT */
3138 } else {
3139 create_error = may_o_create(&nd->path, dentry, mode);
3140 if (create_error) {
3141 open_flag &= ~O_CREAT;
3142 if (open_flag & O_EXCL)
3143 goto no_open;
3146 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3147 unlikely(!got_write)) {
3149 * No O_CREATE -> atomicity not a requirement -> fall
3150 * back to lookup + open
3152 goto no_open;
3155 if (dir_inode->i_op->atomic_open) {
3156 error = atomic_open(nd, dentry, path, file, op, open_flag,
3157 mode, opened);
3158 if (unlikely(error == -ENOENT) && create_error)
3159 error = create_error;
3160 return error;
3163 no_open:
3164 if (d_in_lookup(dentry)) {
3165 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3166 nd->flags);
3167 d_lookup_done(dentry);
3168 if (unlikely(res)) {
3169 if (IS_ERR(res)) {
3170 error = PTR_ERR(res);
3171 goto out_dput;
3173 dput(dentry);
3174 dentry = res;
3178 /* Negative dentry, just create the file */
3179 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3180 *opened |= FILE_CREATED;
3181 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3182 if (!dir_inode->i_op->create) {
3183 error = -EACCES;
3184 goto out_dput;
3186 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3187 open_flag & O_EXCL);
3188 if (error)
3189 goto out_dput;
3190 fsnotify_create(dir_inode, dentry);
3192 if (unlikely(create_error) && !dentry->d_inode) {
3193 error = create_error;
3194 goto out_dput;
3196 out_no_open:
3197 path->dentry = dentry;
3198 path->mnt = nd->path.mnt;
3199 return 1;
3201 out_dput:
3202 dput(dentry);
3203 return error;
3207 * Handle the last step of open()
3209 static int do_last(struct nameidata *nd,
3210 struct file *file, const struct open_flags *op,
3211 int *opened)
3213 struct dentry *dir = nd->path.dentry;
3214 int open_flag = op->open_flag;
3215 bool will_truncate = (open_flag & O_TRUNC) != 0;
3216 bool got_write = false;
3217 int acc_mode = op->acc_mode;
3218 unsigned seq;
3219 struct inode *inode;
3220 struct path path;
3221 int error;
3223 nd->flags &= ~LOOKUP_PARENT;
3224 nd->flags |= op->intent;
3226 if (nd->last_type != LAST_NORM) {
3227 error = handle_dots(nd, nd->last_type);
3228 if (unlikely(error))
3229 return error;
3230 goto finish_open;
3233 if (!(open_flag & O_CREAT)) {
3234 if (nd->last.name[nd->last.len])
3235 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3236 /* we _can_ be in RCU mode here */
3237 error = lookup_fast(nd, &path, &inode, &seq);
3238 if (likely(error > 0))
3239 goto finish_lookup;
3241 if (error < 0)
3242 return error;
3244 BUG_ON(nd->inode != dir->d_inode);
3245 BUG_ON(nd->flags & LOOKUP_RCU);
3246 } else {
3247 /* create side of things */
3249 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3250 * has been cleared when we got to the last component we are
3251 * about to look up
3253 error = complete_walk(nd);
3254 if (error)
3255 return error;
3257 audit_inode(nd->name, dir, LOOKUP_PARENT);
3258 /* trailing slashes? */
3259 if (unlikely(nd->last.name[nd->last.len]))
3260 return -EISDIR;
3263 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3264 error = mnt_want_write(nd->path.mnt);
3265 if (!error)
3266 got_write = true;
3268 * do _not_ fail yet - we might not need that or fail with
3269 * a different error; let lookup_open() decide; we'll be
3270 * dropping this one anyway.
3273 if (open_flag & O_CREAT)
3274 inode_lock(dir->d_inode);
3275 else
3276 inode_lock_shared(dir->d_inode);
3277 error = lookup_open(nd, &path, file, op, got_write, opened);
3278 if (open_flag & O_CREAT)
3279 inode_unlock(dir->d_inode);
3280 else
3281 inode_unlock_shared(dir->d_inode);
3283 if (error <= 0) {
3284 if (error)
3285 goto out;
3287 if ((*opened & FILE_CREATED) ||
3288 !S_ISREG(file_inode(file)->i_mode))
3289 will_truncate = false;
3291 audit_inode(nd->name, file->f_path.dentry, 0);
3292 goto opened;
3295 if (*opened & FILE_CREATED) {
3296 /* Don't check for write permission, don't truncate */
3297 open_flag &= ~O_TRUNC;
3298 will_truncate = false;
3299 acc_mode = 0;
3300 path_to_nameidata(&path, nd);
3301 goto finish_open_created;
3305 * If atomic_open() acquired write access it is dropped now due to
3306 * possible mount and symlink following (this might be optimized away if
3307 * necessary...)
3309 if (got_write) {
3310 mnt_drop_write(nd->path.mnt);
3311 got_write = false;
3314 error = follow_managed(&path, nd);
3315 if (unlikely(error < 0))
3316 return error;
3318 if (unlikely(d_is_negative(path.dentry))) {
3319 path_to_nameidata(&path, nd);
3320 return -ENOENT;
3324 * create/update audit record if it already exists.
3326 audit_inode(nd->name, path.dentry, 0);
3328 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3329 path_to_nameidata(&path, nd);
3330 return -EEXIST;
3333 seq = 0; /* out of RCU mode, so the value doesn't matter */
3334 inode = d_backing_inode(path.dentry);
3335 finish_lookup:
3336 error = step_into(nd, &path, 0, inode, seq);
3337 if (unlikely(error))
3338 return error;
3339 finish_open:
3340 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3341 error = complete_walk(nd);
3342 if (error)
3343 return error;
3344 audit_inode(nd->name, nd->path.dentry, 0);
3345 error = -EISDIR;
3346 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3347 goto out;
3348 error = -ENOTDIR;
3349 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3350 goto out;
3351 if (!d_is_reg(nd->path.dentry))
3352 will_truncate = false;
3354 if (will_truncate) {
3355 error = mnt_want_write(nd->path.mnt);
3356 if (error)
3357 goto out;
3358 got_write = true;
3360 finish_open_created:
3361 error = may_open(&nd->path, acc_mode, open_flag);
3362 if (error)
3363 goto out;
3364 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3365 error = vfs_open(&nd->path, file, current_cred());
3366 if (error)
3367 goto out;
3368 *opened |= FILE_OPENED;
3369 opened:
3370 error = ima_file_check(file, op->acc_mode, *opened);
3371 if (!error && will_truncate)
3372 error = handle_truncate(file);
3373 out:
3374 if (unlikely(error) && (*opened & FILE_OPENED))
3375 fput(file);
3376 if (unlikely(error > 0)) {
3377 WARN_ON(1);
3378 error = -EINVAL;
3380 if (got_write)
3381 mnt_drop_write(nd->path.mnt);
3382 return error;
3385 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3387 struct dentry *child = NULL;
3388 struct inode *dir = dentry->d_inode;
3389 struct inode *inode;
3390 int error;
3392 /* we want directory to be writable */
3393 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3394 if (error)
3395 goto out_err;
3396 error = -EOPNOTSUPP;
3397 if (!dir->i_op->tmpfile)
3398 goto out_err;
3399 error = -ENOMEM;
3400 child = d_alloc(dentry, &slash_name);
3401 if (unlikely(!child))
3402 goto out_err;
3403 error = dir->i_op->tmpfile(dir, child, mode);
3404 if (error)
3405 goto out_err;
3406 error = -ENOENT;
3407 inode = child->d_inode;
3408 if (unlikely(!inode))
3409 goto out_err;
3410 if (!(open_flag & O_EXCL)) {
3411 spin_lock(&inode->i_lock);
3412 inode->i_state |= I_LINKABLE;
3413 spin_unlock(&inode->i_lock);
3415 return child;
3417 out_err:
3418 dput(child);
3419 return ERR_PTR(error);
3421 EXPORT_SYMBOL(vfs_tmpfile);
3423 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3424 const struct open_flags *op,
3425 struct file *file, int *opened)
3427 struct dentry *child;
3428 struct path path;
3429 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3430 if (unlikely(error))
3431 return error;
3432 error = mnt_want_write(path.mnt);
3433 if (unlikely(error))
3434 goto out;
3435 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3436 error = PTR_ERR(child);
3437 if (IS_ERR(child))
3438 goto out2;
3439 dput(path.dentry);
3440 path.dentry = child;
3441 audit_inode(nd->name, child, 0);
3442 /* Don't check for other permissions, the inode was just created */
3443 error = may_open(&path, 0, op->open_flag);
3444 if (error)
3445 goto out2;
3446 file->f_path.mnt = path.mnt;
3447 error = finish_open(file, child, NULL, opened);
3448 if (error)
3449 goto out2;
3450 out2:
3451 mnt_drop_write(path.mnt);
3452 out:
3453 path_put(&path);
3454 return error;
3457 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3459 struct path path;
3460 int error = path_lookupat(nd, flags, &path);
3461 if (!error) {
3462 audit_inode(nd->name, path.dentry, 0);
3463 error = vfs_open(&path, file, current_cred());
3464 path_put(&path);
3466 return error;
3469 static struct file *path_openat(struct nameidata *nd,
3470 const struct open_flags *op, unsigned flags)
3472 const char *s;
3473 struct file *file;
3474 int opened = 0;
3475 int error;
3477 file = get_empty_filp();
3478 if (IS_ERR(file))
3479 return file;
3481 file->f_flags = op->open_flag;
3483 if (unlikely(file->f_flags & __O_TMPFILE)) {
3484 error = do_tmpfile(nd, flags, op, file, &opened);
3485 goto out2;
3488 if (unlikely(file->f_flags & O_PATH)) {
3489 error = do_o_path(nd, flags, file);
3490 if (!error)
3491 opened |= FILE_OPENED;
3492 goto out2;
3495 s = path_init(nd, flags);
3496 if (IS_ERR(s)) {
3497 put_filp(file);
3498 return ERR_CAST(s);
3500 while (!(error = link_path_walk(s, nd)) &&
3501 (error = do_last(nd, file, op, &opened)) > 0) {
3502 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3503 s = trailing_symlink(nd);
3504 if (IS_ERR(s)) {
3505 error = PTR_ERR(s);
3506 break;
3509 terminate_walk(nd);
3510 out2:
3511 if (!(opened & FILE_OPENED)) {
3512 BUG_ON(!error);
3513 put_filp(file);
3515 if (unlikely(error)) {
3516 if (error == -EOPENSTALE) {
3517 if (flags & LOOKUP_RCU)
3518 error = -ECHILD;
3519 else
3520 error = -ESTALE;
3522 file = ERR_PTR(error);
3524 return file;
3527 struct file *do_filp_open(int dfd, struct filename *pathname,
3528 const struct open_flags *op)
3530 struct nameidata nd;
3531 int flags = op->lookup_flags;
3532 struct file *filp;
3534 set_nameidata(&nd, dfd, pathname);
3535 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3536 if (unlikely(filp == ERR_PTR(-ECHILD)))
3537 filp = path_openat(&nd, op, flags);
3538 if (unlikely(filp == ERR_PTR(-ESTALE)))
3539 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3540 restore_nameidata();
3541 return filp;
3544 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3545 const char *name, const struct open_flags *op)
3547 struct nameidata nd;
3548 struct file *file;
3549 struct filename *filename;
3550 int flags = op->lookup_flags | LOOKUP_ROOT;
3552 nd.root.mnt = mnt;
3553 nd.root.dentry = dentry;
3555 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3556 return ERR_PTR(-ELOOP);
3558 filename = getname_kernel(name);
3559 if (IS_ERR(filename))
3560 return ERR_CAST(filename);
3562 set_nameidata(&nd, -1, filename);
3563 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3564 if (unlikely(file == ERR_PTR(-ECHILD)))
3565 file = path_openat(&nd, op, flags);
3566 if (unlikely(file == ERR_PTR(-ESTALE)))
3567 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568 restore_nameidata();
3569 putname(filename);
3570 return file;
3573 static struct dentry *filename_create(int dfd, struct filename *name,
3574 struct path *path, unsigned int lookup_flags)
3576 struct dentry *dentry = ERR_PTR(-EEXIST);
3577 struct qstr last;
3578 int type;
3579 int err2;
3580 int error;
3581 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3584 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3585 * other flags passed in are ignored!
3587 lookup_flags &= LOOKUP_REVAL;
3589 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3590 if (IS_ERR(name))
3591 return ERR_CAST(name);
3594 * Yucky last component or no last component at all?
3595 * (foo/., foo/.., /////)
3597 if (unlikely(type != LAST_NORM))
3598 goto out;
3600 /* don't fail immediately if it's r/o, at least try to report other errors */
3601 err2 = mnt_want_write(path->mnt);
3603 * Do the final lookup.
3605 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3606 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3607 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3608 if (IS_ERR(dentry))
3609 goto unlock;
3611 error = -EEXIST;
3612 if (d_is_positive(dentry))
3613 goto fail;
3616 * Special case - lookup gave negative, but... we had foo/bar/
3617 * From the vfs_mknod() POV we just have a negative dentry -
3618 * all is fine. Let's be bastards - you had / on the end, you've
3619 * been asking for (non-existent) directory. -ENOENT for you.
3621 if (unlikely(!is_dir && last.name[last.len])) {
3622 error = -ENOENT;
3623 goto fail;
3625 if (unlikely(err2)) {
3626 error = err2;
3627 goto fail;
3629 putname(name);
3630 return dentry;
3631 fail:
3632 dput(dentry);
3633 dentry = ERR_PTR(error);
3634 unlock:
3635 inode_unlock(path->dentry->d_inode);
3636 if (!err2)
3637 mnt_drop_write(path->mnt);
3638 out:
3639 path_put(path);
3640 putname(name);
3641 return dentry;
3644 struct dentry *kern_path_create(int dfd, const char *pathname,
3645 struct path *path, unsigned int lookup_flags)
3647 return filename_create(dfd, getname_kernel(pathname),
3648 path, lookup_flags);
3650 EXPORT_SYMBOL(kern_path_create);
3652 void done_path_create(struct path *path, struct dentry *dentry)
3654 dput(dentry);
3655 inode_unlock(path->dentry->d_inode);
3656 mnt_drop_write(path->mnt);
3657 path_put(path);
3659 EXPORT_SYMBOL(done_path_create);
3661 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3662 struct path *path, unsigned int lookup_flags)
3664 return filename_create(dfd, getname(pathname), path, lookup_flags);
3666 EXPORT_SYMBOL(user_path_create);
3668 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3670 int error = may_create(dir, dentry);
3672 if (error)
3673 return error;
3675 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3676 return -EPERM;
3678 if (!dir->i_op->mknod)
3679 return -EPERM;
3681 error = devcgroup_inode_mknod(mode, dev);
3682 if (error)
3683 return error;
3685 error = security_inode_mknod(dir, dentry, mode, dev);
3686 if (error)
3687 return error;
3689 error = dir->i_op->mknod(dir, dentry, mode, dev);
3690 if (!error)
3691 fsnotify_create(dir, dentry);
3692 return error;
3694 EXPORT_SYMBOL(vfs_mknod);
3696 static int may_mknod(umode_t mode)
3698 switch (mode & S_IFMT) {
3699 case S_IFREG:
3700 case S_IFCHR:
3701 case S_IFBLK:
3702 case S_IFIFO:
3703 case S_IFSOCK:
3704 case 0: /* zero mode translates to S_IFREG */
3705 return 0;
3706 case S_IFDIR:
3707 return -EPERM;
3708 default:
3709 return -EINVAL;
3713 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3714 unsigned int dev)
3716 struct dentry *dentry;
3717 struct path path;
3718 int error;
3719 unsigned int lookup_flags = 0;
3721 error = may_mknod(mode);
3722 if (error)
3723 return error;
3724 retry:
3725 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3726 if (IS_ERR(dentry))
3727 return PTR_ERR(dentry);
3729 if (!IS_POSIXACL(path.dentry->d_inode))
3730 mode &= ~current_umask();
3731 error = security_path_mknod(&path, dentry, mode, dev);
3732 if (error)
3733 goto out;
3734 switch (mode & S_IFMT) {
3735 case 0: case S_IFREG:
3736 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3737 if (!error)
3738 ima_post_path_mknod(dentry);
3739 break;
3740 case S_IFCHR: case S_IFBLK:
3741 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3742 new_decode_dev(dev));
3743 break;
3744 case S_IFIFO: case S_IFSOCK:
3745 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3746 break;
3748 out:
3749 done_path_create(&path, dentry);
3750 if (retry_estale(error, lookup_flags)) {
3751 lookup_flags |= LOOKUP_REVAL;
3752 goto retry;
3754 return error;
3757 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3758 unsigned int, dev)
3760 return do_mknodat(dfd, filename, mode, dev);
3763 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3765 return do_mknodat(AT_FDCWD, filename, mode, dev);
3768 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3770 int error = may_create(dir, dentry);
3771 unsigned max_links = dir->i_sb->s_max_links;
3773 if (error)
3774 return error;
3776 if (!dir->i_op->mkdir)
3777 return -EPERM;
3779 mode &= (S_IRWXUGO|S_ISVTX);
3780 error = security_inode_mkdir(dir, dentry, mode);
3781 if (error)
3782 return error;
3784 if (max_links && dir->i_nlink >= max_links)
3785 return -EMLINK;
3787 error = dir->i_op->mkdir(dir, dentry, mode);
3788 if (!error)
3789 fsnotify_mkdir(dir, dentry);
3790 return error;
3792 EXPORT_SYMBOL(vfs_mkdir);
3794 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3796 struct dentry *dentry;
3797 struct path path;
3798 int error;
3799 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3801 retry:
3802 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3803 if (IS_ERR(dentry))
3804 return PTR_ERR(dentry);
3806 if (!IS_POSIXACL(path.dentry->d_inode))
3807 mode &= ~current_umask();
3808 error = security_path_mkdir(&path, dentry, mode);
3809 if (!error)
3810 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3811 done_path_create(&path, dentry);
3812 if (retry_estale(error, lookup_flags)) {
3813 lookup_flags |= LOOKUP_REVAL;
3814 goto retry;
3816 return error;
3819 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3821 return do_mkdirat(dfd, pathname, mode);
3824 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3826 return do_mkdirat(AT_FDCWD, pathname, mode);
3829 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3831 int error = may_delete(dir, dentry, 1);
3833 if (error)
3834 return error;
3836 if (!dir->i_op->rmdir)
3837 return -EPERM;
3839 dget(dentry);
3840 inode_lock(dentry->d_inode);
3842 error = -EBUSY;
3843 if (is_local_mountpoint(dentry))
3844 goto out;
3846 error = security_inode_rmdir(dir, dentry);
3847 if (error)
3848 goto out;
3850 shrink_dcache_parent(dentry);
3851 error = dir->i_op->rmdir(dir, dentry);
3852 if (error)
3853 goto out;
3855 dentry->d_inode->i_flags |= S_DEAD;
3856 dont_mount(dentry);
3857 detach_mounts(dentry);
3859 out:
3860 inode_unlock(dentry->d_inode);
3861 dput(dentry);
3862 if (!error)
3863 d_delete(dentry);
3864 return error;
3866 EXPORT_SYMBOL(vfs_rmdir);
3868 long do_rmdir(int dfd, const char __user *pathname)
3870 int error = 0;
3871 struct filename *name;
3872 struct dentry *dentry;
3873 struct path path;
3874 struct qstr last;
3875 int type;
3876 unsigned int lookup_flags = 0;
3877 retry:
3878 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3879 &path, &last, &type);
3880 if (IS_ERR(name))
3881 return PTR_ERR(name);
3883 switch (type) {
3884 case LAST_DOTDOT:
3885 error = -ENOTEMPTY;
3886 goto exit1;
3887 case LAST_DOT:
3888 error = -EINVAL;
3889 goto exit1;
3890 case LAST_ROOT:
3891 error = -EBUSY;
3892 goto exit1;
3895 error = mnt_want_write(path.mnt);
3896 if (error)
3897 goto exit1;
3899 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3900 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3901 error = PTR_ERR(dentry);
3902 if (IS_ERR(dentry))
3903 goto exit2;
3904 if (!dentry->d_inode) {
3905 error = -ENOENT;
3906 goto exit3;
3908 error = security_path_rmdir(&path, dentry);
3909 if (error)
3910 goto exit3;
3911 error = vfs_rmdir(path.dentry->d_inode, dentry);
3912 exit3:
3913 dput(dentry);
3914 exit2:
3915 inode_unlock(path.dentry->d_inode);
3916 mnt_drop_write(path.mnt);
3917 exit1:
3918 path_put(&path);
3919 putname(name);
3920 if (retry_estale(error, lookup_flags)) {
3921 lookup_flags |= LOOKUP_REVAL;
3922 goto retry;
3924 return error;
3927 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3929 return do_rmdir(AT_FDCWD, pathname);
3933 * vfs_unlink - unlink a filesystem object
3934 * @dir: parent directory
3935 * @dentry: victim
3936 * @delegated_inode: returns victim inode, if the inode is delegated.
3938 * The caller must hold dir->i_mutex.
3940 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3941 * return a reference to the inode in delegated_inode. The caller
3942 * should then break the delegation on that inode and retry. Because
3943 * breaking a delegation may take a long time, the caller should drop
3944 * dir->i_mutex before doing so.
3946 * Alternatively, a caller may pass NULL for delegated_inode. This may
3947 * be appropriate for callers that expect the underlying filesystem not
3948 * to be NFS exported.
3950 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3952 struct inode *target = dentry->d_inode;
3953 int error = may_delete(dir, dentry, 0);
3955 if (error)
3956 return error;
3958 if (!dir->i_op->unlink)
3959 return -EPERM;
3961 inode_lock(target);
3962 if (is_local_mountpoint(dentry))
3963 error = -EBUSY;
3964 else {
3965 error = security_inode_unlink(dir, dentry);
3966 if (!error) {
3967 error = try_break_deleg(target, delegated_inode);
3968 if (error)
3969 goto out;
3970 error = dir->i_op->unlink(dir, dentry);
3971 if (!error) {
3972 dont_mount(dentry);
3973 detach_mounts(dentry);
3977 out:
3978 inode_unlock(target);
3980 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3981 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3982 fsnotify_link_count(target);
3983 d_delete(dentry);
3986 return error;
3988 EXPORT_SYMBOL(vfs_unlink);
3991 * Make sure that the actual truncation of the file will occur outside its
3992 * directory's i_mutex. Truncate can take a long time if there is a lot of
3993 * writeout happening, and we don't want to prevent access to the directory
3994 * while waiting on the I/O.
3996 long do_unlinkat(int dfd, struct filename *name)
3998 int error;
3999 struct dentry *dentry;
4000 struct path path;
4001 struct qstr last;
4002 int type;
4003 struct inode *inode = NULL;
4004 struct inode *delegated_inode = NULL;
4005 unsigned int lookup_flags = 0;
4006 retry:
4007 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4008 if (IS_ERR(name))
4009 return PTR_ERR(name);
4011 error = -EISDIR;
4012 if (type != LAST_NORM)
4013 goto exit1;
4015 error = mnt_want_write(path.mnt);
4016 if (error)
4017 goto exit1;
4018 retry_deleg:
4019 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4020 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4021 error = PTR_ERR(dentry);
4022 if (!IS_ERR(dentry)) {
4023 /* Why not before? Because we want correct error value */
4024 if (last.name[last.len])
4025 goto slashes;
4026 inode = dentry->d_inode;
4027 if (d_is_negative(dentry))
4028 goto slashes;
4029 ihold(inode);
4030 error = security_path_unlink(&path, dentry);
4031 if (error)
4032 goto exit2;
4033 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4034 exit2:
4035 dput(dentry);
4037 inode_unlock(path.dentry->d_inode);
4038 if (inode)
4039 iput(inode); /* truncate the inode here */
4040 inode = NULL;
4041 if (delegated_inode) {
4042 error = break_deleg_wait(&delegated_inode);
4043 if (!error)
4044 goto retry_deleg;
4046 mnt_drop_write(path.mnt);
4047 exit1:
4048 path_put(&path);
4049 if (retry_estale(error, lookup_flags)) {
4050 lookup_flags |= LOOKUP_REVAL;
4051 inode = NULL;
4052 goto retry;
4054 putname(name);
4055 return error;
4057 slashes:
4058 if (d_is_negative(dentry))
4059 error = -ENOENT;
4060 else if (d_is_dir(dentry))
4061 error = -EISDIR;
4062 else
4063 error = -ENOTDIR;
4064 goto exit2;
4067 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4069 if ((flag & ~AT_REMOVEDIR) != 0)
4070 return -EINVAL;
4072 if (flag & AT_REMOVEDIR)
4073 return do_rmdir(dfd, pathname);
4075 return do_unlinkat(dfd, getname(pathname));
4078 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4080 return do_unlinkat(AT_FDCWD, getname(pathname));
4083 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4085 int error = may_create(dir, dentry);
4087 if (error)
4088 return error;
4090 if (!dir->i_op->symlink)
4091 return -EPERM;
4093 error = security_inode_symlink(dir, dentry, oldname);
4094 if (error)
4095 return error;
4097 error = dir->i_op->symlink(dir, dentry, oldname);
4098 if (!error)
4099 fsnotify_create(dir, dentry);
4100 return error;
4102 EXPORT_SYMBOL(vfs_symlink);
4104 long do_symlinkat(const char __user *oldname, int newdfd,
4105 const char __user *newname)
4107 int error;
4108 struct filename *from;
4109 struct dentry *dentry;
4110 struct path path;
4111 unsigned int lookup_flags = 0;
4113 from = getname(oldname);
4114 if (IS_ERR(from))
4115 return PTR_ERR(from);
4116 retry:
4117 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4118 error = PTR_ERR(dentry);
4119 if (IS_ERR(dentry))
4120 goto out_putname;
4122 error = security_path_symlink(&path, dentry, from->name);
4123 if (!error)
4124 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4125 done_path_create(&path, dentry);
4126 if (retry_estale(error, lookup_flags)) {
4127 lookup_flags |= LOOKUP_REVAL;
4128 goto retry;
4130 out_putname:
4131 putname(from);
4132 return error;
4135 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4136 int, newdfd, const char __user *, newname)
4138 return do_symlinkat(oldname, newdfd, newname);
4141 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4143 return do_symlinkat(oldname, AT_FDCWD, newname);
4147 * vfs_link - create a new link
4148 * @old_dentry: object to be linked
4149 * @dir: new parent
4150 * @new_dentry: where to create the new link
4151 * @delegated_inode: returns inode needing a delegation break
4153 * The caller must hold dir->i_mutex
4155 * If vfs_link discovers a delegation on the to-be-linked file in need
4156 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4157 * inode in delegated_inode. The caller should then break the delegation
4158 * and retry. Because breaking a delegation may take a long time, the
4159 * caller should drop the i_mutex before doing so.
4161 * Alternatively, a caller may pass NULL for delegated_inode. This may
4162 * be appropriate for callers that expect the underlying filesystem not
4163 * to be NFS exported.
4165 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4167 struct inode *inode = old_dentry->d_inode;
4168 unsigned max_links = dir->i_sb->s_max_links;
4169 int error;
4171 if (!inode)
4172 return -ENOENT;
4174 error = may_create(dir, new_dentry);
4175 if (error)
4176 return error;
4178 if (dir->i_sb != inode->i_sb)
4179 return -EXDEV;
4182 * A link to an append-only or immutable file cannot be created.
4184 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4185 return -EPERM;
4187 * Updating the link count will likely cause i_uid and i_gid to
4188 * be writen back improperly if their true value is unknown to
4189 * the vfs.
4191 if (HAS_UNMAPPED_ID(inode))
4192 return -EPERM;
4193 if (!dir->i_op->link)
4194 return -EPERM;
4195 if (S_ISDIR(inode->i_mode))
4196 return -EPERM;
4198 error = security_inode_link(old_dentry, dir, new_dentry);
4199 if (error)
4200 return error;
4202 inode_lock(inode);
4203 /* Make sure we don't allow creating hardlink to an unlinked file */
4204 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4205 error = -ENOENT;
4206 else if (max_links && inode->i_nlink >= max_links)
4207 error = -EMLINK;
4208 else {
4209 error = try_break_deleg(inode, delegated_inode);
4210 if (!error)
4211 error = dir->i_op->link(old_dentry, dir, new_dentry);
4214 if (!error && (inode->i_state & I_LINKABLE)) {
4215 spin_lock(&inode->i_lock);
4216 inode->i_state &= ~I_LINKABLE;
4217 spin_unlock(&inode->i_lock);
4219 inode_unlock(inode);
4220 if (!error)
4221 fsnotify_link(dir, inode, new_dentry);
4222 return error;
4224 EXPORT_SYMBOL(vfs_link);
4227 * Hardlinks are often used in delicate situations. We avoid
4228 * security-related surprises by not following symlinks on the
4229 * newname. --KAB
4231 * We don't follow them on the oldname either to be compatible
4232 * with linux 2.0, and to avoid hard-linking to directories
4233 * and other special files. --ADM
4235 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4236 const char __user *newname, int flags)
4238 struct dentry *new_dentry;
4239 struct path old_path, new_path;
4240 struct inode *delegated_inode = NULL;
4241 int how = 0;
4242 int error;
4244 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4245 return -EINVAL;
4247 * To use null names we require CAP_DAC_READ_SEARCH
4248 * This ensures that not everyone will be able to create
4249 * handlink using the passed filedescriptor.
4251 if (flags & AT_EMPTY_PATH) {
4252 if (!capable(CAP_DAC_READ_SEARCH))
4253 return -ENOENT;
4254 how = LOOKUP_EMPTY;
4257 if (flags & AT_SYMLINK_FOLLOW)
4258 how |= LOOKUP_FOLLOW;
4259 retry:
4260 error = user_path_at(olddfd, oldname, how, &old_path);
4261 if (error)
4262 return error;
4264 new_dentry = user_path_create(newdfd, newname, &new_path,
4265 (how & LOOKUP_REVAL));
4266 error = PTR_ERR(new_dentry);
4267 if (IS_ERR(new_dentry))
4268 goto out;
4270 error = -EXDEV;
4271 if (old_path.mnt != new_path.mnt)
4272 goto out_dput;
4273 error = may_linkat(&old_path);
4274 if (unlikely(error))
4275 goto out_dput;
4276 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4277 if (error)
4278 goto out_dput;
4279 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4280 out_dput:
4281 done_path_create(&new_path, new_dentry);
4282 if (delegated_inode) {
4283 error = break_deleg_wait(&delegated_inode);
4284 if (!error) {
4285 path_put(&old_path);
4286 goto retry;
4289 if (retry_estale(error, how)) {
4290 path_put(&old_path);
4291 how |= LOOKUP_REVAL;
4292 goto retry;
4294 out:
4295 path_put(&old_path);
4297 return error;
4300 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4301 int, newdfd, const char __user *, newname, int, flags)
4303 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4306 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4308 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4312 * vfs_rename - rename a filesystem object
4313 * @old_dir: parent of source
4314 * @old_dentry: source
4315 * @new_dir: parent of destination
4316 * @new_dentry: destination
4317 * @delegated_inode: returns an inode needing a delegation break
4318 * @flags: rename flags
4320 * The caller must hold multiple mutexes--see lock_rename()).
4322 * If vfs_rename discovers a delegation in need of breaking at either
4323 * the source or destination, it will return -EWOULDBLOCK and return a
4324 * reference to the inode in delegated_inode. The caller should then
4325 * break the delegation and retry. Because breaking a delegation may
4326 * take a long time, the caller should drop all locks before doing
4327 * so.
4329 * Alternatively, a caller may pass NULL for delegated_inode. This may
4330 * be appropriate for callers that expect the underlying filesystem not
4331 * to be NFS exported.
4333 * The worst of all namespace operations - renaming directory. "Perverted"
4334 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4335 * Problems:
4337 * a) we can get into loop creation.
4338 * b) race potential - two innocent renames can create a loop together.
4339 * That's where 4.4 screws up. Current fix: serialization on
4340 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4341 * story.
4342 * c) we have to lock _four_ objects - parents and victim (if it exists),
4343 * and source (if it is not a directory).
4344 * And that - after we got ->i_mutex on parents (until then we don't know
4345 * whether the target exists). Solution: try to be smart with locking
4346 * order for inodes. We rely on the fact that tree topology may change
4347 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4348 * move will be locked. Thus we can rank directories by the tree
4349 * (ancestors first) and rank all non-directories after them.
4350 * That works since everybody except rename does "lock parent, lookup,
4351 * lock child" and rename is under ->s_vfs_rename_mutex.
4352 * HOWEVER, it relies on the assumption that any object with ->lookup()
4353 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4354 * we'd better make sure that there's no link(2) for them.
4355 * d) conversion from fhandle to dentry may come in the wrong moment - when
4356 * we are removing the target. Solution: we will have to grab ->i_mutex
4357 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4358 * ->i_mutex on parents, which works but leads to some truly excessive
4359 * locking].
4361 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4362 struct inode *new_dir, struct dentry *new_dentry,
4363 struct inode **delegated_inode, unsigned int flags)
4365 int error;
4366 bool is_dir = d_is_dir(old_dentry);
4367 struct inode *source = old_dentry->d_inode;
4368 struct inode *target = new_dentry->d_inode;
4369 bool new_is_dir = false;
4370 unsigned max_links = new_dir->i_sb->s_max_links;
4371 struct name_snapshot old_name;
4373 if (source == target)
4374 return 0;
4376 error = may_delete(old_dir, old_dentry, is_dir);
4377 if (error)
4378 return error;
4380 if (!target) {
4381 error = may_create(new_dir, new_dentry);
4382 } else {
4383 new_is_dir = d_is_dir(new_dentry);
4385 if (!(flags & RENAME_EXCHANGE))
4386 error = may_delete(new_dir, new_dentry, is_dir);
4387 else
4388 error = may_delete(new_dir, new_dentry, new_is_dir);
4390 if (error)
4391 return error;
4393 if (!old_dir->i_op->rename)
4394 return -EPERM;
4397 * If we are going to change the parent - check write permissions,
4398 * we'll need to flip '..'.
4400 if (new_dir != old_dir) {
4401 if (is_dir) {
4402 error = inode_permission(source, MAY_WRITE);
4403 if (error)
4404 return error;
4406 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4407 error = inode_permission(target, MAY_WRITE);
4408 if (error)
4409 return error;
4413 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4414 flags);
4415 if (error)
4416 return error;
4418 take_dentry_name_snapshot(&old_name, old_dentry);
4419 dget(new_dentry);
4420 if (!is_dir || (flags & RENAME_EXCHANGE))
4421 lock_two_nondirectories(source, target);
4422 else if (target)
4423 inode_lock(target);
4425 error = -EBUSY;
4426 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4427 goto out;
4429 if (max_links && new_dir != old_dir) {
4430 error = -EMLINK;
4431 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4432 goto out;
4433 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4434 old_dir->i_nlink >= max_links)
4435 goto out;
4437 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4438 shrink_dcache_parent(new_dentry);
4439 if (!is_dir) {
4440 error = try_break_deleg(source, delegated_inode);
4441 if (error)
4442 goto out;
4444 if (target && !new_is_dir) {
4445 error = try_break_deleg(target, delegated_inode);
4446 if (error)
4447 goto out;
4449 error = old_dir->i_op->rename(old_dir, old_dentry,
4450 new_dir, new_dentry, flags);
4451 if (error)
4452 goto out;
4454 if (!(flags & RENAME_EXCHANGE) && target) {
4455 if (is_dir)
4456 target->i_flags |= S_DEAD;
4457 dont_mount(new_dentry);
4458 detach_mounts(new_dentry);
4460 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4461 if (!(flags & RENAME_EXCHANGE))
4462 d_move(old_dentry, new_dentry);
4463 else
4464 d_exchange(old_dentry, new_dentry);
4466 out:
4467 if (!is_dir || (flags & RENAME_EXCHANGE))
4468 unlock_two_nondirectories(source, target);
4469 else if (target)
4470 inode_unlock(target);
4471 dput(new_dentry);
4472 if (!error) {
4473 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4474 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4475 if (flags & RENAME_EXCHANGE) {
4476 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4477 new_is_dir, NULL, new_dentry);
4480 release_dentry_name_snapshot(&old_name);
4482 return error;
4484 EXPORT_SYMBOL(vfs_rename);
4486 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4487 const char __user *newname, unsigned int flags)
4489 struct dentry *old_dentry, *new_dentry;
4490 struct dentry *trap;
4491 struct path old_path, new_path;
4492 struct qstr old_last, new_last;
4493 int old_type, new_type;
4494 struct inode *delegated_inode = NULL;
4495 struct filename *from;
4496 struct filename *to;
4497 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4498 bool should_retry = false;
4499 int error;
4501 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4502 return -EINVAL;
4504 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4505 (flags & RENAME_EXCHANGE))
4506 return -EINVAL;
4508 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4509 return -EPERM;
4511 if (flags & RENAME_EXCHANGE)
4512 target_flags = 0;
4514 retry:
4515 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4516 &old_path, &old_last, &old_type);
4517 if (IS_ERR(from)) {
4518 error = PTR_ERR(from);
4519 goto exit;
4522 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4523 &new_path, &new_last, &new_type);
4524 if (IS_ERR(to)) {
4525 error = PTR_ERR(to);
4526 goto exit1;
4529 error = -EXDEV;
4530 if (old_path.mnt != new_path.mnt)
4531 goto exit2;
4533 error = -EBUSY;
4534 if (old_type != LAST_NORM)
4535 goto exit2;
4537 if (flags & RENAME_NOREPLACE)
4538 error = -EEXIST;
4539 if (new_type != LAST_NORM)
4540 goto exit2;
4542 error = mnt_want_write(old_path.mnt);
4543 if (error)
4544 goto exit2;
4546 retry_deleg:
4547 trap = lock_rename(new_path.dentry, old_path.dentry);
4549 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4550 error = PTR_ERR(old_dentry);
4551 if (IS_ERR(old_dentry))
4552 goto exit3;
4553 /* source must exist */
4554 error = -ENOENT;
4555 if (d_is_negative(old_dentry))
4556 goto exit4;
4557 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4558 error = PTR_ERR(new_dentry);
4559 if (IS_ERR(new_dentry))
4560 goto exit4;
4561 error = -EEXIST;
4562 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4563 goto exit5;
4564 if (flags & RENAME_EXCHANGE) {
4565 error = -ENOENT;
4566 if (d_is_negative(new_dentry))
4567 goto exit5;
4569 if (!d_is_dir(new_dentry)) {
4570 error = -ENOTDIR;
4571 if (new_last.name[new_last.len])
4572 goto exit5;
4575 /* unless the source is a directory trailing slashes give -ENOTDIR */
4576 if (!d_is_dir(old_dentry)) {
4577 error = -ENOTDIR;
4578 if (old_last.name[old_last.len])
4579 goto exit5;
4580 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4581 goto exit5;
4583 /* source should not be ancestor of target */
4584 error = -EINVAL;
4585 if (old_dentry == trap)
4586 goto exit5;
4587 /* target should not be an ancestor of source */
4588 if (!(flags & RENAME_EXCHANGE))
4589 error = -ENOTEMPTY;
4590 if (new_dentry == trap)
4591 goto exit5;
4593 error = security_path_rename(&old_path, old_dentry,
4594 &new_path, new_dentry, flags);
4595 if (error)
4596 goto exit5;
4597 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4598 new_path.dentry->d_inode, new_dentry,
4599 &delegated_inode, flags);
4600 exit5:
4601 dput(new_dentry);
4602 exit4:
4603 dput(old_dentry);
4604 exit3:
4605 unlock_rename(new_path.dentry, old_path.dentry);
4606 if (delegated_inode) {
4607 error = break_deleg_wait(&delegated_inode);
4608 if (!error)
4609 goto retry_deleg;
4611 mnt_drop_write(old_path.mnt);
4612 exit2:
4613 if (retry_estale(error, lookup_flags))
4614 should_retry = true;
4615 path_put(&new_path);
4616 putname(to);
4617 exit1:
4618 path_put(&old_path);
4619 putname(from);
4620 if (should_retry) {
4621 should_retry = false;
4622 lookup_flags |= LOOKUP_REVAL;
4623 goto retry;
4625 exit:
4626 return error;
4629 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4630 int, newdfd, const char __user *, newname, unsigned int, flags)
4632 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4635 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4636 int, newdfd, const char __user *, newname)
4638 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4641 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4643 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4646 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4648 int error = may_create(dir, dentry);
4649 if (error)
4650 return error;
4652 if (!dir->i_op->mknod)
4653 return -EPERM;
4655 return dir->i_op->mknod(dir, dentry,
4656 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4658 EXPORT_SYMBOL(vfs_whiteout);
4660 int readlink_copy(char __user *buffer, int buflen, const char *link)
4662 int len = PTR_ERR(link);
4663 if (IS_ERR(link))
4664 goto out;
4666 len = strlen(link);
4667 if (len > (unsigned) buflen)
4668 len = buflen;
4669 if (copy_to_user(buffer, link, len))
4670 len = -EFAULT;
4671 out:
4672 return len;
4676 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4677 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4678 * for any given inode is up to filesystem.
4680 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4681 int buflen)
4683 DEFINE_DELAYED_CALL(done);
4684 struct inode *inode = d_inode(dentry);
4685 const char *link = inode->i_link;
4686 int res;
4688 if (!link) {
4689 link = inode->i_op->get_link(dentry, inode, &done);
4690 if (IS_ERR(link))
4691 return PTR_ERR(link);
4693 res = readlink_copy(buffer, buflen, link);
4694 do_delayed_call(&done);
4695 return res;
4699 * vfs_readlink - copy symlink body into userspace buffer
4700 * @dentry: dentry on which to get symbolic link
4701 * @buffer: user memory pointer
4702 * @buflen: size of buffer
4704 * Does not touch atime. That's up to the caller if necessary
4706 * Does not call security hook.
4708 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4710 struct inode *inode = d_inode(dentry);
4712 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4713 if (unlikely(inode->i_op->readlink))
4714 return inode->i_op->readlink(dentry, buffer, buflen);
4716 if (!d_is_symlink(dentry))
4717 return -EINVAL;
4719 spin_lock(&inode->i_lock);
4720 inode->i_opflags |= IOP_DEFAULT_READLINK;
4721 spin_unlock(&inode->i_lock);
4724 return generic_readlink(dentry, buffer, buflen);
4726 EXPORT_SYMBOL(vfs_readlink);
4729 * vfs_get_link - get symlink body
4730 * @dentry: dentry on which to get symbolic link
4731 * @done: caller needs to free returned data with this
4733 * Calls security hook and i_op->get_link() on the supplied inode.
4735 * It does not touch atime. That's up to the caller if necessary.
4737 * Does not work on "special" symlinks like /proc/$$/fd/N
4739 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4741 const char *res = ERR_PTR(-EINVAL);
4742 struct inode *inode = d_inode(dentry);
4744 if (d_is_symlink(dentry)) {
4745 res = ERR_PTR(security_inode_readlink(dentry));
4746 if (!res)
4747 res = inode->i_op->get_link(dentry, inode, done);
4749 return res;
4751 EXPORT_SYMBOL(vfs_get_link);
4753 /* get the link contents into pagecache */
4754 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4755 struct delayed_call *callback)
4757 char *kaddr;
4758 struct page *page;
4759 struct address_space *mapping = inode->i_mapping;
4761 if (!dentry) {
4762 page = find_get_page(mapping, 0);
4763 if (!page)
4764 return ERR_PTR(-ECHILD);
4765 if (!PageUptodate(page)) {
4766 put_page(page);
4767 return ERR_PTR(-ECHILD);
4769 } else {
4770 page = read_mapping_page(mapping, 0, NULL);
4771 if (IS_ERR(page))
4772 return (char*)page;
4774 set_delayed_call(callback, page_put_link, page);
4775 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4776 kaddr = page_address(page);
4777 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4778 return kaddr;
4781 EXPORT_SYMBOL(page_get_link);
4783 void page_put_link(void *arg)
4785 put_page(arg);
4787 EXPORT_SYMBOL(page_put_link);
4789 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4791 DEFINE_DELAYED_CALL(done);
4792 int res = readlink_copy(buffer, buflen,
4793 page_get_link(dentry, d_inode(dentry),
4794 &done));
4795 do_delayed_call(&done);
4796 return res;
4798 EXPORT_SYMBOL(page_readlink);
4801 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4803 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4805 struct address_space *mapping = inode->i_mapping;
4806 struct page *page;
4807 void *fsdata;
4808 int err;
4809 unsigned int flags = 0;
4810 if (nofs)
4811 flags |= AOP_FLAG_NOFS;
4813 retry:
4814 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4815 flags, &page, &fsdata);
4816 if (err)
4817 goto fail;
4819 memcpy(page_address(page), symname, len-1);
4821 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4822 page, fsdata);
4823 if (err < 0)
4824 goto fail;
4825 if (err < len-1)
4826 goto retry;
4828 mark_inode_dirty(inode);
4829 return 0;
4830 fail:
4831 return err;
4833 EXPORT_SYMBOL(__page_symlink);
4835 int page_symlink(struct inode *inode, const char *symname, int len)
4837 return __page_symlink(inode, symname, len,
4838 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4840 EXPORT_SYMBOL(page_symlink);
4842 const struct inode_operations page_symlink_inode_operations = {
4843 .get_link = page_get_link,
4845 EXPORT_SYMBOL(page_symlink_inode_operations);