2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id
; /* kernel internal index number */
54 unsigned nr
; /* number of io_events */
55 unsigned head
; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
60 unsigned compat_features
;
61 unsigned incompat_features
;
62 unsigned header_length
; /* size of aio_ring */
65 struct io_event io_events
[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
73 struct kioctx __rcu
*table
[];
77 unsigned reqs_available
;
81 struct completion comp
;
86 struct percpu_ref users
;
89 struct percpu_ref reqs
;
91 unsigned long user_id
;
93 struct __percpu kioctx_cpu
*cpu
;
96 * For percpu reqs_available, number of slots we move to/from global
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
109 /* Size of ringbuffer, in units of struct io_event */
112 unsigned long mmap_base
;
113 unsigned long mmap_size
;
115 struct page
**ring_pages
;
118 struct rcu_head free_rcu
;
119 struct work_struct free_work
; /* see free_ioctx() */
122 * signals when all in-flight requests are done
124 struct ctx_rq_wait
*rq_wait
;
128 * This counts the number of available slots in the ringbuffer,
129 * so we avoid overflowing it: it's decremented (if positive)
130 * when allocating a kiocb and incremented when the resulting
131 * io_event is pulled off the ringbuffer.
133 * We batch accesses to it with a percpu version.
135 atomic_t reqs_available
;
136 } ____cacheline_aligned_in_smp
;
140 struct list_head active_reqs
; /* used for cancellation */
141 } ____cacheline_aligned_in_smp
;
144 struct mutex ring_lock
;
145 wait_queue_head_t wait
;
146 } ____cacheline_aligned_in_smp
;
150 unsigned completed_events
;
151 spinlock_t completion_lock
;
152 } ____cacheline_aligned_in_smp
;
154 struct page
*internal_pages
[AIO_RING_PAGES
];
155 struct file
*aio_ring_file
;
160 /*------ sysctl variables----*/
161 static DEFINE_SPINLOCK(aio_nr_lock
);
162 unsigned long aio_nr
; /* current system wide number of aio requests */
163 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
164 /*----end sysctl variables---*/
166 static struct kmem_cache
*kiocb_cachep
;
167 static struct kmem_cache
*kioctx_cachep
;
169 static struct vfsmount
*aio_mnt
;
171 static const struct file_operations aio_ring_fops
;
172 static const struct address_space_operations aio_ctx_aops
;
174 /* Backing dev info for aio fs.
175 * -no dirty page accounting or writeback happens
177 static struct backing_dev_info aio_fs_backing_dev_info
= {
180 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_MAP_COPY
,
183 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
185 struct qstr
this = QSTR_INIT("[aio]", 5);
188 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
190 return ERR_CAST(inode
);
192 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
193 inode
->i_mapping
->private_data
= ctx
;
194 inode
->i_mapping
->backing_dev_info
= &aio_fs_backing_dev_info
;
195 inode
->i_size
= PAGE_SIZE
* nr_pages
;
197 path
.dentry
= d_alloc_pseudo(aio_mnt
->mnt_sb
, &this);
200 return ERR_PTR(-ENOMEM
);
202 path
.mnt
= mntget(aio_mnt
);
204 d_instantiate(path
.dentry
, inode
);
205 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
, &aio_ring_fops
);
211 file
->f_flags
= O_RDWR
;
212 file
->private_data
= ctx
;
216 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
217 int flags
, const char *dev_name
, void *data
)
219 static const struct dentry_operations ops
= {
220 .d_dname
= simple_dname
,
222 return mount_pseudo(fs_type
, "aio:", NULL
, &ops
, 0xa10a10a1);
226 * Creates the slab caches used by the aio routines, panic on
227 * failure as this is done early during the boot sequence.
229 static int __init
aio_setup(void)
231 static struct file_system_type aio_fs
= {
234 .kill_sb
= kill_anon_super
,
235 .fs_flags
= FS_NOEXEC
,
237 aio_mnt
= kern_mount(&aio_fs
);
239 panic("Failed to create aio fs mount.");
241 if (bdi_init(&aio_fs_backing_dev_info
))
242 panic("Failed to init aio fs backing dev info.");
244 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
245 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
247 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page
));
251 __initcall(aio_setup
);
253 static void put_aio_ring_file(struct kioctx
*ctx
)
255 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
257 truncate_setsize(aio_ring_file
->f_inode
, 0);
259 /* Prevent further access to the kioctx from migratepages */
260 spin_lock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
261 aio_ring_file
->f_inode
->i_mapping
->private_data
= NULL
;
262 ctx
->aio_ring_file
= NULL
;
263 spin_unlock(&aio_ring_file
->f_inode
->i_mapping
->private_lock
);
269 static void aio_free_ring(struct kioctx
*ctx
)
273 /* Disconnect the kiotx from the ring file. This prevents future
274 * accesses to the kioctx from page migration.
276 put_aio_ring_file(ctx
);
278 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
280 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
281 page_count(ctx
->ring_pages
[i
]));
282 page
= ctx
->ring_pages
[i
];
285 ctx
->ring_pages
[i
] = NULL
;
289 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
290 kfree(ctx
->ring_pages
);
291 ctx
->ring_pages
= NULL
;
295 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
297 vma
->vm_ops
= &generic_file_vm_ops
;
301 static const struct file_operations aio_ring_fops
= {
302 .mmap
= aio_ring_mmap
,
305 #if IS_ENABLED(CONFIG_MIGRATION)
306 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
307 struct page
*old
, enum migrate_mode mode
)
316 /* mapping->private_lock here protects against the kioctx teardown. */
317 spin_lock(&mapping
->private_lock
);
318 ctx
= mapping
->private_data
;
324 /* The ring_lock mutex. The prevents aio_read_events() from writing
325 * to the ring's head, and prevents page migration from mucking in
326 * a partially initialized kiotx.
328 if (!mutex_trylock(&ctx
->ring_lock
)) {
334 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
335 /* Make sure the old page hasn't already been changed */
336 if (ctx
->ring_pages
[idx
] != old
)
344 /* Writeback must be complete */
345 BUG_ON(PageWriteback(old
));
348 rc
= migrate_page_move_mapping(mapping
, new, old
, NULL
, mode
, 1);
349 if (rc
!= MIGRATEPAGE_SUCCESS
) {
354 /* Take completion_lock to prevent other writes to the ring buffer
355 * while the old page is copied to the new. This prevents new
356 * events from being lost.
358 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
359 migrate_page_copy(new, old
);
360 BUG_ON(ctx
->ring_pages
[idx
] != old
);
361 ctx
->ring_pages
[idx
] = new;
362 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
364 /* The old page is no longer accessible. */
368 mutex_unlock(&ctx
->ring_lock
);
370 spin_unlock(&mapping
->private_lock
);
375 static const struct address_space_operations aio_ctx_aops
= {
376 .set_page_dirty
= __set_page_dirty_no_writeback
,
377 #if IS_ENABLED(CONFIG_MIGRATION)
378 .migratepage
= aio_migratepage
,
382 static int aio_setup_ring(struct kioctx
*ctx
)
384 struct aio_ring
*ring
;
385 unsigned nr_events
= ctx
->max_reqs
;
386 struct mm_struct
*mm
= current
->mm
;
387 unsigned long size
, unused
;
392 /* Compensate for the ring buffer's head/tail overlap entry */
393 nr_events
+= 2; /* 1 is required, 2 for good luck */
395 size
= sizeof(struct aio_ring
);
396 size
+= sizeof(struct io_event
) * nr_events
;
398 nr_pages
= PFN_UP(size
);
402 file
= aio_private_file(ctx
, nr_pages
);
404 ctx
->aio_ring_file
= NULL
;
408 ctx
->aio_ring_file
= file
;
409 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
410 / sizeof(struct io_event
);
412 ctx
->ring_pages
= ctx
->internal_pages
;
413 if (nr_pages
> AIO_RING_PAGES
) {
414 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
416 if (!ctx
->ring_pages
) {
417 put_aio_ring_file(ctx
);
422 for (i
= 0; i
< nr_pages
; i
++) {
424 page
= find_or_create_page(file
->f_inode
->i_mapping
,
425 i
, GFP_HIGHUSER
| __GFP_ZERO
);
428 pr_debug("pid(%d) page[%d]->count=%d\n",
429 current
->pid
, i
, page_count(page
));
430 SetPageUptodate(page
);
433 ctx
->ring_pages
[i
] = page
;
437 if (unlikely(i
!= nr_pages
)) {
442 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
443 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
445 down_write(&mm
->mmap_sem
);
446 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
447 PROT_READ
| PROT_WRITE
,
448 MAP_SHARED
, 0, &unused
);
449 up_write(&mm
->mmap_sem
);
450 if (IS_ERR((void *)ctx
->mmap_base
)) {
456 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
458 ctx
->user_id
= ctx
->mmap_base
;
459 ctx
->nr_events
= nr_events
; /* trusted copy */
461 ring
= kmap_atomic(ctx
->ring_pages
[0]);
462 ring
->nr
= nr_events
; /* user copy */
464 ring
->head
= ring
->tail
= 0;
465 ring
->magic
= AIO_RING_MAGIC
;
466 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
467 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
468 ring
->header_length
= sizeof(struct aio_ring
);
470 flush_dcache_page(ctx
->ring_pages
[0]);
475 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
476 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
477 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
479 void kiocb_set_cancel_fn(struct kiocb
*req
, kiocb_cancel_fn
*cancel
)
481 struct kioctx
*ctx
= req
->ki_ctx
;
484 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
486 if (!req
->ki_list
.next
)
487 list_add(&req
->ki_list
, &ctx
->active_reqs
);
489 req
->ki_cancel
= cancel
;
491 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
493 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
495 static int kiocb_cancel(struct kiocb
*kiocb
)
497 kiocb_cancel_fn
*old
, *cancel
;
500 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
501 * actually has a cancel function, hence the cmpxchg()
504 cancel
= ACCESS_ONCE(kiocb
->ki_cancel
);
506 if (!cancel
|| cancel
== KIOCB_CANCELLED
)
510 cancel
= cmpxchg(&kiocb
->ki_cancel
, old
, KIOCB_CANCELLED
);
511 } while (cancel
!= old
);
513 return cancel(kiocb
);
517 * free_ioctx() should be RCU delayed to synchronize against the RCU
518 * protected lookup_ioctx() and also needs process context to call
519 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
522 static void free_ioctx(struct work_struct
*work
)
524 struct kioctx
*ctx
= container_of(work
, struct kioctx
, free_work
);
526 pr_debug("freeing %p\n", ctx
);
529 free_percpu(ctx
->cpu
);
530 kmem_cache_free(kioctx_cachep
, ctx
);
533 static void free_ioctx_rcufn(struct rcu_head
*head
)
535 struct kioctx
*ctx
= container_of(head
, struct kioctx
, free_rcu
);
537 INIT_WORK(&ctx
->free_work
, free_ioctx
);
538 schedule_work(&ctx
->free_work
);
541 static void free_ioctx_reqs(struct percpu_ref
*ref
)
543 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
545 /* At this point we know that there are no any in-flight requests */
546 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
547 complete(&ctx
->rq_wait
->comp
);
549 /* Synchronize against RCU protected table->table[] dereferences */
550 call_rcu(&ctx
->free_rcu
, free_ioctx_rcufn
);
554 * When this function runs, the kioctx has been removed from the "hash table"
555 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
556 * now it's safe to cancel any that need to be.
558 static void free_ioctx_users(struct percpu_ref
*ref
)
560 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
563 spin_lock_irq(&ctx
->ctx_lock
);
565 while (!list_empty(&ctx
->active_reqs
)) {
566 req
= list_first_entry(&ctx
->active_reqs
,
567 struct kiocb
, ki_list
);
569 list_del_init(&req
->ki_list
);
573 spin_unlock_irq(&ctx
->ctx_lock
);
575 percpu_ref_kill(&ctx
->reqs
);
576 percpu_ref_put(&ctx
->reqs
);
579 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
582 struct kioctx_table
*table
, *old
;
583 struct aio_ring
*ring
;
585 spin_lock(&mm
->ioctx_lock
);
586 table
= rcu_dereference_raw(mm
->ioctx_table
);
590 for (i
= 0; i
< table
->nr
; i
++)
591 if (!rcu_access_pointer(table
->table
[i
])) {
593 rcu_assign_pointer(table
->table
[i
], ctx
);
594 spin_unlock(&mm
->ioctx_lock
);
596 /* While kioctx setup is in progress,
597 * we are protected from page migration
598 * changes ring_pages by ->ring_lock.
600 ring
= kmap_atomic(ctx
->ring_pages
[0]);
606 new_nr
= (table
? table
->nr
: 1) * 4;
607 spin_unlock(&mm
->ioctx_lock
);
609 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
616 spin_lock(&mm
->ioctx_lock
);
617 old
= rcu_dereference_raw(mm
->ioctx_table
);
620 rcu_assign_pointer(mm
->ioctx_table
, table
);
621 } else if (table
->nr
> old
->nr
) {
622 memcpy(table
->table
, old
->table
,
623 old
->nr
* sizeof(struct kioctx
*));
625 rcu_assign_pointer(mm
->ioctx_table
, table
);
634 static void aio_nr_sub(unsigned nr
)
636 spin_lock(&aio_nr_lock
);
637 if (WARN_ON(aio_nr
- nr
> aio_nr
))
641 spin_unlock(&aio_nr_lock
);
645 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
647 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
649 struct mm_struct
*mm
= current
->mm
;
654 * We keep track of the number of available ringbuffer slots, to prevent
655 * overflow (reqs_available), and we also use percpu counters for this.
657 * So since up to half the slots might be on other cpu's percpu counters
658 * and unavailable, double nr_events so userspace sees what they
659 * expected: additionally, we move req_batch slots to/from percpu
660 * counters at a time, so make sure that isn't 0:
662 nr_events
= max(nr_events
, num_possible_cpus() * 4);
665 /* Prevent overflows */
666 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
667 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
668 pr_debug("ENOMEM: nr_events too high\n");
669 return ERR_PTR(-EINVAL
);
672 if (!nr_events
|| (unsigned long)nr_events
> (aio_max_nr
* 2UL))
673 return ERR_PTR(-EAGAIN
);
675 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
677 return ERR_PTR(-ENOMEM
);
679 ctx
->max_reqs
= nr_events
;
681 spin_lock_init(&ctx
->ctx_lock
);
682 spin_lock_init(&ctx
->completion_lock
);
683 mutex_init(&ctx
->ring_lock
);
684 /* Protect against page migration throughout kiotx setup by keeping
685 * the ring_lock mutex held until setup is complete. */
686 mutex_lock(&ctx
->ring_lock
);
687 init_waitqueue_head(&ctx
->wait
);
689 INIT_LIST_HEAD(&ctx
->active_reqs
);
691 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
))
694 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
))
697 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
701 err
= aio_setup_ring(ctx
);
705 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
706 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
707 if (ctx
->req_batch
< 1)
710 /* limit the number of system wide aios */
711 spin_lock(&aio_nr_lock
);
712 if (aio_nr
+ nr_events
> (aio_max_nr
* 2UL) ||
713 aio_nr
+ nr_events
< aio_nr
) {
714 spin_unlock(&aio_nr_lock
);
718 aio_nr
+= ctx
->max_reqs
;
719 spin_unlock(&aio_nr_lock
);
721 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
722 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
724 err
= ioctx_add_table(ctx
, mm
);
728 /* Release the ring_lock mutex now that all setup is complete. */
729 mutex_unlock(&ctx
->ring_lock
);
731 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
732 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
736 aio_nr_sub(ctx
->max_reqs
);
738 atomic_set(&ctx
->dead
, 1);
740 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
743 mutex_unlock(&ctx
->ring_lock
);
744 free_percpu(ctx
->cpu
);
745 free_percpu(ctx
->reqs
.pcpu_count
);
746 free_percpu(ctx
->users
.pcpu_count
);
747 kmem_cache_free(kioctx_cachep
, ctx
);
748 pr_debug("error allocating ioctx %d\n", err
);
753 * Cancels all outstanding aio requests on an aio context. Used
754 * when the processes owning a context have all exited to encourage
755 * the rapid destruction of the kioctx.
757 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
758 struct ctx_rq_wait
*wait
)
760 struct kioctx_table
*table
;
762 if (atomic_xchg(&ctx
->dead
, 1))
766 spin_lock(&mm
->ioctx_lock
);
767 table
= rcu_dereference_raw(mm
->ioctx_table
);
768 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
769 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
770 spin_unlock(&mm
->ioctx_lock
);
772 /* free_ioctx_reqs() will do the necessary RCU synchronization */
773 wake_up_all(&ctx
->wait
);
776 * It'd be more correct to do this in free_ioctx(), after all
777 * the outstanding kiocbs have finished - but by then io_destroy
778 * has already returned, so io_setup() could potentially return
779 * -EAGAIN with no ioctxs actually in use (as far as userspace
782 aio_nr_sub(ctx
->max_reqs
);
785 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
788 percpu_ref_kill(&ctx
->users
);
792 /* wait_on_sync_kiocb:
793 * Waits on the given sync kiocb to complete.
795 ssize_t
wait_on_sync_kiocb(struct kiocb
*req
)
797 while (!req
->ki_ctx
) {
798 set_current_state(TASK_UNINTERRUPTIBLE
);
803 __set_current_state(TASK_RUNNING
);
804 return req
->ki_user_data
;
806 EXPORT_SYMBOL(wait_on_sync_kiocb
);
809 * exit_aio: called when the last user of mm goes away. At this point, there is
810 * no way for any new requests to be submited or any of the io_* syscalls to be
811 * called on the context.
813 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
816 void exit_aio(struct mm_struct
*mm
)
818 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
819 struct ctx_rq_wait wait
;
825 atomic_set(&wait
.count
, table
->nr
);
826 init_completion(&wait
.comp
);
829 for (i
= 0; i
< table
->nr
; ++i
) {
831 rcu_dereference_protected(table
->table
[i
], true);
839 * We don't need to bother with munmap() here - exit_mmap(mm)
840 * is coming and it'll unmap everything. And we simply can't,
841 * this is not necessarily our ->mm.
842 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
843 * that it needs to unmap the area, just set it to 0.
846 kill_ioctx(mm
, ctx
, &wait
);
849 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
850 /* Wait until all IO for the context are done. */
851 wait_for_completion(&wait
.comp
);
854 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
858 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
860 struct kioctx_cpu
*kcpu
;
864 kcpu
= this_cpu_ptr(ctx
->cpu
);
866 local_irq_save(flags
);
867 kcpu
->reqs_available
+= nr
;
869 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
870 kcpu
->reqs_available
-= ctx
->req_batch
;
871 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
874 local_irq_restore(flags
);
878 static bool get_reqs_available(struct kioctx
*ctx
)
880 struct kioctx_cpu
*kcpu
;
885 kcpu
= this_cpu_ptr(ctx
->cpu
);
887 local_irq_save(flags
);
888 if (!kcpu
->reqs_available
) {
889 int old
, avail
= atomic_read(&ctx
->reqs_available
);
892 if (avail
< ctx
->req_batch
)
896 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
897 avail
, avail
- ctx
->req_batch
);
898 } while (avail
!= old
);
900 kcpu
->reqs_available
+= ctx
->req_batch
;
904 kcpu
->reqs_available
--;
906 local_irq_restore(flags
);
911 /* refill_reqs_available
912 * Updates the reqs_available reference counts used for tracking the
913 * number of free slots in the completion ring. This can be called
914 * from aio_complete() (to optimistically update reqs_available) or
915 * from aio_get_req() (the we're out of events case). It must be
916 * called holding ctx->completion_lock.
918 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
921 unsigned events_in_ring
, completed
;
923 /* Clamp head since userland can write to it. */
924 head
%= ctx
->nr_events
;
926 events_in_ring
= tail
- head
;
928 events_in_ring
= ctx
->nr_events
- (head
- tail
);
930 completed
= ctx
->completed_events
;
931 if (events_in_ring
< completed
)
932 completed
-= events_in_ring
;
939 ctx
->completed_events
-= completed
;
940 put_reqs_available(ctx
, completed
);
943 /* user_refill_reqs_available
944 * Called to refill reqs_available when aio_get_req() encounters an
945 * out of space in the completion ring.
947 static void user_refill_reqs_available(struct kioctx
*ctx
)
949 spin_lock_irq(&ctx
->completion_lock
);
950 if (ctx
->completed_events
) {
951 struct aio_ring
*ring
;
954 /* Access of ring->head may race with aio_read_events_ring()
955 * here, but that's okay since whether we read the old version
956 * or the new version, and either will be valid. The important
957 * part is that head cannot pass tail since we prevent
958 * aio_complete() from updating tail by holding
959 * ctx->completion_lock. Even if head is invalid, the check
960 * against ctx->completed_events below will make sure we do the
963 ring
= kmap_atomic(ctx
->ring_pages
[0]);
967 refill_reqs_available(ctx
, head
, ctx
->tail
);
970 spin_unlock_irq(&ctx
->completion_lock
);
974 * Allocate a slot for an aio request.
975 * Returns NULL if no requests are free.
977 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
981 if (!get_reqs_available(ctx
)) {
982 user_refill_reqs_available(ctx
);
983 if (!get_reqs_available(ctx
))
987 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
|__GFP_ZERO
);
991 percpu_ref_get(&ctx
->reqs
);
996 put_reqs_available(ctx
, 1);
1000 static void kiocb_free(struct kiocb
*req
)
1004 if (req
->ki_eventfd
!= NULL
)
1005 eventfd_ctx_put(req
->ki_eventfd
);
1006 kmem_cache_free(kiocb_cachep
, req
);
1009 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1011 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1012 struct mm_struct
*mm
= current
->mm
;
1013 struct kioctx
*ctx
, *ret
= NULL
;
1014 struct kioctx_table
*table
;
1017 if (get_user(id
, &ring
->id
))
1021 table
= rcu_dereference(mm
->ioctx_table
);
1023 if (!table
|| id
>= table
->nr
)
1026 ctx
= rcu_dereference(table
->table
[id
]);
1027 if (ctx
&& ctx
->user_id
== ctx_id
) {
1028 percpu_ref_get(&ctx
->users
);
1037 * Called when the io request on the given iocb is complete.
1039 void aio_complete(struct kiocb
*iocb
, long res
, long res2
)
1041 struct kioctx
*ctx
= iocb
->ki_ctx
;
1042 struct aio_ring
*ring
;
1043 struct io_event
*ev_page
, *event
;
1044 unsigned tail
, pos
, head
;
1045 unsigned long flags
;
1048 * Special case handling for sync iocbs:
1049 * - events go directly into the iocb for fast handling
1050 * - the sync task with the iocb in its stack holds the single iocb
1051 * ref, no other paths have a way to get another ref
1052 * - the sync task helpfully left a reference to itself in the iocb
1054 if (is_sync_kiocb(iocb
)) {
1055 iocb
->ki_user_data
= res
;
1057 iocb
->ki_ctx
= ERR_PTR(-EXDEV
);
1058 wake_up_process(iocb
->ki_obj
.tsk
);
1062 if (iocb
->ki_list
.next
) {
1063 unsigned long flags
;
1065 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1066 list_del(&iocb
->ki_list
);
1067 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1071 * Add a completion event to the ring buffer. Must be done holding
1072 * ctx->completion_lock to prevent other code from messing with the tail
1073 * pointer since we might be called from irq context.
1075 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1078 pos
= tail
+ AIO_EVENTS_OFFSET
;
1080 if (++tail
>= ctx
->nr_events
)
1083 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1084 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1086 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
1087 event
->data
= iocb
->ki_user_data
;
1091 kunmap_atomic(ev_page
);
1092 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1094 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1095 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
1098 /* after flagging the request as done, we
1099 * must never even look at it again
1101 smp_wmb(); /* make event visible before updating tail */
1105 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1108 kunmap_atomic(ring
);
1109 flush_dcache_page(ctx
->ring_pages
[0]);
1111 ctx
->completed_events
++;
1112 if (ctx
->completed_events
> 1)
1113 refill_reqs_available(ctx
, head
, tail
);
1114 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1116 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1119 * Check if the user asked us to deliver the result through an
1120 * eventfd. The eventfd_signal() function is safe to be called
1123 if (iocb
->ki_eventfd
!= NULL
)
1124 eventfd_signal(iocb
->ki_eventfd
, 1);
1126 /* everything turned out well, dispose of the aiocb. */
1130 * We have to order our ring_info tail store above and test
1131 * of the wait list below outside the wait lock. This is
1132 * like in wake_up_bit() where clearing a bit has to be
1133 * ordered with the unlocked test.
1137 if (waitqueue_active(&ctx
->wait
))
1138 wake_up(&ctx
->wait
);
1140 percpu_ref_put(&ctx
->reqs
);
1142 EXPORT_SYMBOL(aio_complete
);
1145 * Pull an event off of the ioctx's event ring. Returns the number of
1148 static long aio_read_events_ring(struct kioctx
*ctx
,
1149 struct io_event __user
*event
, long nr
)
1151 struct aio_ring
*ring
;
1152 unsigned head
, tail
, pos
;
1156 mutex_lock(&ctx
->ring_lock
);
1158 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1159 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1162 kunmap_atomic(ring
);
1165 * Ensure that once we've read the current tail pointer, that
1166 * we also see the events that were stored up to the tail.
1170 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1175 head
%= ctx
->nr_events
;
1176 tail
%= ctx
->nr_events
;
1180 struct io_event
*ev
;
1183 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1187 avail
= min(avail
, nr
- ret
);
1188 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
-
1189 ((head
+ AIO_EVENTS_OFFSET
) % AIO_EVENTS_PER_PAGE
));
1191 pos
= head
+ AIO_EVENTS_OFFSET
;
1192 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1193 pos
%= AIO_EVENTS_PER_PAGE
;
1196 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1197 sizeof(*ev
) * avail
);
1200 if (unlikely(copy_ret
)) {
1207 head
%= ctx
->nr_events
;
1210 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1212 kunmap_atomic(ring
);
1213 flush_dcache_page(ctx
->ring_pages
[0]);
1215 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1217 mutex_unlock(&ctx
->ring_lock
);
1222 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1223 struct io_event __user
*event
, long *i
)
1225 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1230 if (unlikely(atomic_read(&ctx
->dead
)))
1236 return ret
< 0 || *i
>= min_nr
;
1239 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1240 struct io_event __user
*event
,
1241 struct timespec __user
*timeout
)
1243 ktime_t until
= { .tv64
= KTIME_MAX
};
1249 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1252 until
= timespec_to_ktime(ts
);
1256 * Note that aio_read_events() is being called as the conditional - i.e.
1257 * we're calling it after prepare_to_wait() has set task state to
1258 * TASK_INTERRUPTIBLE.
1260 * But aio_read_events() can block, and if it blocks it's going to flip
1261 * the task state back to TASK_RUNNING.
1263 * This should be ok, provided it doesn't flip the state back to
1264 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1265 * will only happen if the mutex_lock() call blocks, and we then find
1266 * the ringbuffer empty. So in practice we should be ok, but it's
1267 * something to be aware of when touching this code.
1269 wait_event_interruptible_hrtimeout(ctx
->wait
,
1270 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
), until
);
1272 if (!ret
&& signal_pending(current
))
1279 * Create an aio_context capable of receiving at least nr_events.
1280 * ctxp must not point to an aio_context that already exists, and
1281 * must be initialized to 0 prior to the call. On successful
1282 * creation of the aio_context, *ctxp is filled in with the resulting
1283 * handle. May fail with -EINVAL if *ctxp is not initialized,
1284 * if the specified nr_events exceeds internal limits. May fail
1285 * with -EAGAIN if the specified nr_events exceeds the user's limit
1286 * of available events. May fail with -ENOMEM if insufficient kernel
1287 * resources are available. May fail with -EFAULT if an invalid
1288 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1291 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1293 struct kioctx
*ioctx
= NULL
;
1297 ret
= get_user(ctx
, ctxp
);
1302 if (unlikely(ctx
|| nr_events
== 0)) {
1303 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1308 ioctx
= ioctx_alloc(nr_events
);
1309 ret
= PTR_ERR(ioctx
);
1310 if (!IS_ERR(ioctx
)) {
1311 ret
= put_user(ioctx
->user_id
, ctxp
);
1313 kill_ioctx(current
->mm
, ioctx
, NULL
);
1314 percpu_ref_put(&ioctx
->users
);
1322 * Destroy the aio_context specified. May cancel any outstanding
1323 * AIOs and block on completion. Will fail with -ENOSYS if not
1324 * implemented. May fail with -EINVAL if the context pointed to
1327 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1329 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1330 if (likely(NULL
!= ioctx
)) {
1331 struct ctx_rq_wait wait
;
1334 init_completion(&wait
.comp
);
1335 atomic_set(&wait
.count
, 1);
1337 /* Pass requests_done to kill_ioctx() where it can be set
1338 * in a thread-safe way. If we try to set it here then we have
1339 * a race condition if two io_destroy() called simultaneously.
1341 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1342 percpu_ref_put(&ioctx
->users
);
1344 /* Wait until all IO for the context are done. Otherwise kernel
1345 * keep using user-space buffers even if user thinks the context
1349 wait_for_completion(&wait
.comp
);
1353 pr_debug("EINVAL: io_destroy: invalid context id\n");
1357 typedef ssize_t (aio_rw_op
)(struct kiocb
*, const struct iovec
*,
1358 unsigned long, loff_t
);
1359 typedef ssize_t (rw_iter_op
)(struct kiocb
*, struct iov_iter
*);
1361 static ssize_t
aio_setup_vectored_rw(struct kiocb
*kiocb
,
1362 int rw
, char __user
*buf
,
1363 unsigned long *nr_segs
,
1364 struct iovec
**iovec
,
1369 *nr_segs
= kiocb
->ki_nbytes
;
1371 #ifdef CONFIG_COMPAT
1373 ret
= compat_rw_copy_check_uvector(rw
,
1374 (struct compat_iovec __user
*)buf
,
1375 *nr_segs
, 1, *iovec
, iovec
);
1378 ret
= rw_copy_check_uvector(rw
,
1379 (struct iovec __user
*)buf
,
1380 *nr_segs
, 1, *iovec
, iovec
);
1384 /* ki_nbytes now reflect bytes instead of segs */
1385 kiocb
->ki_nbytes
= ret
;
1389 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
,
1390 int rw
, char __user
*buf
,
1391 unsigned long *nr_segs
,
1392 struct iovec
*iovec
)
1394 size_t len
= kiocb
->ki_nbytes
;
1396 if (len
> MAX_RW_COUNT
)
1399 if (unlikely(!access_ok(!rw
, buf
, len
)))
1402 iovec
->iov_base
= buf
;
1403 iovec
->iov_len
= len
;
1410 * Performs the initial checks and aio retry method
1411 * setup for the kiocb at the time of io submission.
1413 static ssize_t
aio_run_iocb(struct kiocb
*req
, unsigned opcode
,
1414 char __user
*buf
, bool compat
)
1416 struct file
*file
= req
->ki_filp
;
1418 unsigned long nr_segs
;
1422 rw_iter_op
*iter_op
;
1423 struct iovec inline_vec
, *iovec
= &inline_vec
;
1424 struct iov_iter iter
;
1427 case IOCB_CMD_PREAD
:
1428 case IOCB_CMD_PREADV
:
1431 rw_op
= file
->f_op
->aio_read
;
1432 iter_op
= file
->f_op
->read_iter
;
1435 case IOCB_CMD_PWRITE
:
1436 case IOCB_CMD_PWRITEV
:
1439 rw_op
= file
->f_op
->aio_write
;
1440 iter_op
= file
->f_op
->write_iter
;
1443 if (unlikely(!(file
->f_mode
& mode
)))
1446 if (!rw_op
&& !iter_op
)
1449 ret
= (opcode
== IOCB_CMD_PREADV
||
1450 opcode
== IOCB_CMD_PWRITEV
)
1451 ? aio_setup_vectored_rw(req
, rw
, buf
, &nr_segs
,
1453 : aio_setup_single_vector(req
, rw
, buf
, &nr_segs
,
1456 ret
= rw_verify_area(rw
, file
, &req
->ki_pos
, req
->ki_nbytes
);
1458 if (iovec
!= &inline_vec
)
1463 req
->ki_nbytes
= ret
;
1465 /* XXX: move/kill - rw_verify_area()? */
1466 /* This matches the pread()/pwrite() logic */
1467 if (req
->ki_pos
< 0) {
1473 file_start_write(file
);
1476 iov_iter_init(&iter
, rw
, iovec
, nr_segs
, req
->ki_nbytes
);
1477 ret
= iter_op(req
, &iter
);
1479 ret
= rw_op(req
, iovec
, nr_segs
, req
->ki_pos
);
1483 file_end_write(file
);
1486 case IOCB_CMD_FDSYNC
:
1487 if (!file
->f_op
->aio_fsync
)
1490 ret
= file
->f_op
->aio_fsync(req
, 1);
1493 case IOCB_CMD_FSYNC
:
1494 if (!file
->f_op
->aio_fsync
)
1497 ret
= file
->f_op
->aio_fsync(req
, 0);
1501 pr_debug("EINVAL: no operation provided\n");
1505 if (iovec
!= &inline_vec
)
1508 if (ret
!= -EIOCBQUEUED
) {
1510 * There's no easy way to restart the syscall since other AIO's
1511 * may be already running. Just fail this IO with EINTR.
1513 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
1514 ret
== -ERESTARTNOHAND
||
1515 ret
== -ERESTART_RESTARTBLOCK
))
1517 aio_complete(req
, ret
, 0);
1523 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1524 struct iocb
*iocb
, bool compat
)
1529 /* enforce forwards compatibility on users */
1530 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1531 pr_debug("EINVAL: reserve field set\n");
1535 /* prevent overflows */
1537 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1538 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1539 ((ssize_t
)iocb
->aio_nbytes
< 0)
1541 pr_debug("EINVAL: io_submit: overflow check\n");
1545 req
= aio_get_req(ctx
);
1549 req
->ki_filp
= fget(iocb
->aio_fildes
);
1550 if (unlikely(!req
->ki_filp
)) {
1555 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1557 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1558 * instance of the file* now. The file descriptor must be
1559 * an eventfd() fd, and will be signaled for each completed
1560 * event using the eventfd_signal() function.
1562 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1563 if (IS_ERR(req
->ki_eventfd
)) {
1564 ret
= PTR_ERR(req
->ki_eventfd
);
1565 req
->ki_eventfd
= NULL
;
1570 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1571 if (unlikely(ret
)) {
1572 pr_debug("EFAULT: aio_key\n");
1576 req
->ki_obj
.user
= user_iocb
;
1577 req
->ki_user_data
= iocb
->aio_data
;
1578 req
->ki_pos
= iocb
->aio_offset
;
1579 req
->ki_nbytes
= iocb
->aio_nbytes
;
1581 ret
= aio_run_iocb(req
, iocb
->aio_lio_opcode
,
1582 (char __user
*)(unsigned long)iocb
->aio_buf
,
1589 put_reqs_available(ctx
, 1);
1590 percpu_ref_put(&ctx
->reqs
);
1595 long do_io_submit(aio_context_t ctx_id
, long nr
,
1596 struct iocb __user
*__user
*iocbpp
, bool compat
)
1601 struct blk_plug plug
;
1603 if (unlikely(nr
< 0))
1606 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1607 nr
= LONG_MAX
/sizeof(*iocbpp
);
1609 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1612 ctx
= lookup_ioctx(ctx_id
);
1613 if (unlikely(!ctx
)) {
1614 pr_debug("EINVAL: invalid context id\n");
1618 blk_start_plug(&plug
);
1621 * AKPM: should this return a partial result if some of the IOs were
1622 * successfully submitted?
1624 for (i
=0; i
<nr
; i
++) {
1625 struct iocb __user
*user_iocb
;
1628 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1633 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1638 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, compat
);
1642 blk_finish_plug(&plug
);
1644 percpu_ref_put(&ctx
->users
);
1649 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1650 * the number of iocbs queued. May return -EINVAL if the aio_context
1651 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1652 * *iocbpp[0] is not properly initialized, if the operation specified
1653 * is invalid for the file descriptor in the iocb. May fail with
1654 * -EFAULT if any of the data structures point to invalid data. May
1655 * fail with -EBADF if the file descriptor specified in the first
1656 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1657 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1658 * fail with -ENOSYS if not implemented.
1660 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1661 struct iocb __user
* __user
*, iocbpp
)
1663 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1667 * Finds a given iocb for cancellation.
1669 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1672 struct list_head
*pos
;
1674 assert_spin_locked(&ctx
->ctx_lock
);
1676 if (key
!= KIOCB_KEY
)
1679 /* TODO: use a hash or array, this sucks. */
1680 list_for_each(pos
, &ctx
->active_reqs
) {
1681 struct kiocb
*kiocb
= list_kiocb(pos
);
1682 if (kiocb
->ki_obj
.user
== iocb
)
1689 * Attempts to cancel an iocb previously passed to io_submit. If
1690 * the operation is successfully cancelled, the resulting event is
1691 * copied into the memory pointed to by result without being placed
1692 * into the completion queue and 0 is returned. May fail with
1693 * -EFAULT if any of the data structures pointed to are invalid.
1694 * May fail with -EINVAL if aio_context specified by ctx_id is
1695 * invalid. May fail with -EAGAIN if the iocb specified was not
1696 * cancelled. Will fail with -ENOSYS if not implemented.
1698 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1699 struct io_event __user
*, result
)
1702 struct kiocb
*kiocb
;
1706 ret
= get_user(key
, &iocb
->aio_key
);
1710 ctx
= lookup_ioctx(ctx_id
);
1714 spin_lock_irq(&ctx
->ctx_lock
);
1716 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1718 ret
= kiocb_cancel(kiocb
);
1722 spin_unlock_irq(&ctx
->ctx_lock
);
1726 * The result argument is no longer used - the io_event is
1727 * always delivered via the ring buffer. -EINPROGRESS indicates
1728 * cancellation is progress:
1733 percpu_ref_put(&ctx
->users
);
1739 * Attempts to read at least min_nr events and up to nr events from
1740 * the completion queue for the aio_context specified by ctx_id. If
1741 * it succeeds, the number of read events is returned. May fail with
1742 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1743 * out of range, if timeout is out of range. May fail with -EFAULT
1744 * if any of the memory specified is invalid. May return 0 or
1745 * < min_nr if the timeout specified by timeout has elapsed
1746 * before sufficient events are available, where timeout == NULL
1747 * specifies an infinite timeout. Note that the timeout pointed to by
1748 * timeout is relative. Will fail with -ENOSYS if not implemented.
1750 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1753 struct io_event __user
*, events
,
1754 struct timespec __user
*, timeout
)
1756 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1759 if (likely(ioctx
)) {
1760 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1761 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1762 percpu_ref_put(&ioctx
->users
);