2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
42 #define user_long_t long
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
48 static int load_elf_binary(struct linux_binprm
*bprm
);
49 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
50 int, int, unsigned long);
53 static int load_elf_library(struct file
*);
55 #define load_elf_library NULL
59 * If we don't support core dumping, then supply a NULL so we
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params
*cprm
);
65 #define elf_core_dump NULL
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
71 #define ELF_MIN_ALIGN PAGE_SIZE
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
82 static struct linux_binfmt elf_format
= {
83 .module
= THIS_MODULE
,
84 .load_binary
= load_elf_binary
,
85 .load_shlib
= load_elf_library
,
86 .core_dump
= elf_core_dump
,
87 .min_coredump
= ELF_EXEC_PAGESIZE
,
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
92 static int set_brk(unsigned long start
, unsigned long end
)
94 start
= ELF_PAGEALIGN(start
);
95 end
= ELF_PAGEALIGN(end
);
98 addr
= vm_brk(start
, end
- start
);
102 current
->mm
->start_brk
= current
->mm
->brk
= end
;
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
111 static int padzero(unsigned long elf_bss
)
115 nbyte
= ELF_PAGEOFFSET(elf_bss
);
117 nbyte
= ELF_MIN_ALIGN
- nbyte
;
118 if (clear_user((void __user
*) elf_bss
, nbyte
))
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
139 #ifndef ELF_BASE_PLATFORM
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 #define ELF_BASE_PLATFORM NULL
149 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
150 unsigned long load_addr
, unsigned long interp_load_addr
)
152 unsigned long p
= bprm
->p
;
153 int argc
= bprm
->argc
;
154 int envc
= bprm
->envc
;
155 elf_addr_t __user
*argv
;
156 elf_addr_t __user
*envp
;
157 elf_addr_t __user
*sp
;
158 elf_addr_t __user
*u_platform
;
159 elf_addr_t __user
*u_base_platform
;
160 elf_addr_t __user
*u_rand_bytes
;
161 const char *k_platform
= ELF_PLATFORM
;
162 const char *k_base_platform
= ELF_BASE_PLATFORM
;
163 unsigned char k_rand_bytes
[16];
165 elf_addr_t
*elf_info
;
167 const struct cred
*cred
= current_cred();
168 struct vm_area_struct
*vma
;
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
176 p
= arch_align_stack(p
);
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
186 size_t len
= strlen(k_platform
) + 1;
188 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
189 if (__copy_to_user(u_platform
, k_platform
, len
))
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
197 u_base_platform
= NULL
;
198 if (k_base_platform
) {
199 size_t len
= strlen(k_base_platform
) + 1;
201 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
202 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
207 * Generate 16 random bytes for userspace PRNG seeding.
209 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
210 u_rand_bytes
= (elf_addr_t __user
*)
211 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
212 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
215 /* Create the ELF interpreter info */
216 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
233 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
234 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
235 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
236 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
237 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
238 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
239 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
240 NEW_AUX_ENT(AT_FLAGS
, 0);
241 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
242 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
243 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
244 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
245 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
246 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
247 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
249 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
251 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
253 NEW_AUX_ENT(AT_PLATFORM
,
254 (elf_addr_t
)(unsigned long)u_platform
);
256 if (k_base_platform
) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM
,
258 (elf_addr_t
)(unsigned long)u_base_platform
);
260 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
261 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info
[ei_index
], 0,
266 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
268 /* And advance past the AT_NULL entry. */
271 sp
= STACK_ADD(p
, ei_index
);
273 items
= (argc
+ 1) + (envc
+ 1) + 1;
274 bprm
->p
= STACK_ROUND(sp
, items
);
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
279 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
281 sp
= (elf_addr_t __user
*)bprm
->p
;
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
289 vma
= find_extend_vma(current
->mm
, bprm
->p
);
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc
, sp
++))
297 envp
= argv
+ argc
+ 1;
299 /* Populate argv and envp */
300 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
303 if (__put_user((elf_addr_t
)p
, argv
++))
305 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
306 if (!len
|| len
> MAX_ARG_STRLEN
)
310 if (__put_user(0, argv
))
312 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
315 if (__put_user((elf_addr_t
)p
, envp
++))
317 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
318 if (!len
|| len
> MAX_ARG_STRLEN
)
322 if (__put_user(0, envp
))
324 current
->mm
->env_end
= p
;
326 /* Put the elf_info on the stack in the right place. */
327 sp
= (elf_addr_t __user
*)envp
+ 1;
328 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
335 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
336 struct elf_phdr
*eppnt
, int prot
, int type
,
337 unsigned long total_size
)
339 unsigned long map_addr
;
340 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
341 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
342 addr
= ELF_PAGESTART(addr
);
343 size
= ELF_PAGEALIGN(size
);
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
359 total_size
= ELF_PAGEALIGN(total_size
);
360 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
361 if (!BAD_ADDR(map_addr
))
362 vm_munmap(map_addr
+size
, total_size
-size
);
364 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
369 #endif /* !elf_map */
371 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
373 int i
, first_idx
= -1, last_idx
= -1;
375 for (i
= 0; i
< nr
; i
++) {
376 if (cmds
[i
].p_type
== PT_LOAD
) {
385 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
386 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
390 /* This is much more generalized than the library routine read function,
391 so we keep this separate. Technically the library read function
392 is only provided so that we can read a.out libraries that have
395 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
396 struct file
*interpreter
, unsigned long *interp_map_addr
,
397 unsigned long no_base
)
399 struct elf_phdr
*elf_phdata
;
400 struct elf_phdr
*eppnt
;
401 unsigned long load_addr
= 0;
402 int load_addr_set
= 0;
403 unsigned long last_bss
= 0, elf_bss
= 0;
404 unsigned long error
= ~0UL;
405 unsigned long total_size
;
408 /* First of all, some simple consistency checks */
409 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
410 interp_elf_ex
->e_type
!= ET_DYN
)
412 if (!elf_check_arch(interp_elf_ex
))
414 if (!interpreter
->f_op
->mmap
)
418 * If the size of this structure has changed, then punt, since
419 * we will be doing the wrong thing.
421 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
423 if (interp_elf_ex
->e_phnum
< 1 ||
424 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
427 /* Now read in all of the header information */
428 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
429 if (size
> ELF_MIN_ALIGN
)
431 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
435 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
436 (char *)elf_phdata
, size
);
438 if (retval
!= size
) {
444 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
451 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
452 if (eppnt
->p_type
== PT_LOAD
) {
453 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
455 unsigned long vaddr
= 0;
456 unsigned long k
, map_addr
;
458 if (eppnt
->p_flags
& PF_R
)
459 elf_prot
= PROT_READ
;
460 if (eppnt
->p_flags
& PF_W
)
461 elf_prot
|= PROT_WRITE
;
462 if (eppnt
->p_flags
& PF_X
)
463 elf_prot
|= PROT_EXEC
;
464 vaddr
= eppnt
->p_vaddr
;
465 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
466 elf_type
|= MAP_FIXED
;
467 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
470 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
471 eppnt
, elf_prot
, elf_type
, total_size
);
473 if (!*interp_map_addr
)
474 *interp_map_addr
= map_addr
;
476 if (BAD_ADDR(map_addr
))
479 if (!load_addr_set
&&
480 interp_elf_ex
->e_type
== ET_DYN
) {
481 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
486 * Check to see if the section's size will overflow the
487 * allowed task size. Note that p_filesz must always be
488 * <= p_memsize so it's only necessary to check p_memsz.
490 k
= load_addr
+ eppnt
->p_vaddr
;
492 eppnt
->p_filesz
> eppnt
->p_memsz
||
493 eppnt
->p_memsz
> TASK_SIZE
||
494 TASK_SIZE
- eppnt
->p_memsz
< k
) {
500 * Find the end of the file mapping for this phdr, and
501 * keep track of the largest address we see for this.
503 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
508 * Do the same thing for the memory mapping - between
509 * elf_bss and last_bss is the bss section.
511 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
517 if (last_bss
> elf_bss
) {
519 * Now fill out the bss section. First pad the last page up
520 * to the page boundary, and then perform a mmap to make sure
521 * that there are zero-mapped pages up to and including the
524 if (padzero(elf_bss
)) {
529 /* What we have mapped so far */
530 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
532 /* Map the last of the bss segment */
533 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
547 * These are the functions used to load ELF style executables and shared
548 * libraries. There is no binary dependent code anywhere else.
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
555 static unsigned long randomize_stack_top(unsigned long stack_top
)
557 unsigned long random_variable
= 0;
559 if ((current
->flags
& PF_RANDOMIZE
) &&
560 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
561 random_variable
= (unsigned long) get_random_int();
562 random_variable
&= STACK_RND_MASK
;
563 random_variable
<<= PAGE_SHIFT
;
565 #ifdef CONFIG_STACK_GROWSUP
566 return PAGE_ALIGN(stack_top
) + random_variable
;
568 return PAGE_ALIGN(stack_top
) - random_variable
;
572 static int load_elf_binary(struct linux_binprm
*bprm
)
574 struct file
*interpreter
= NULL
; /* to shut gcc up */
575 unsigned long load_addr
= 0, load_bias
= 0;
576 int load_addr_set
= 0;
577 char * elf_interpreter
= NULL
;
579 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
580 unsigned long elf_bss
, elf_brk
;
583 unsigned long elf_entry
;
584 unsigned long interp_load_addr
= 0;
585 unsigned long start_code
, end_code
, start_data
, end_data
;
586 unsigned long reloc_func_desc __maybe_unused
= 0;
587 int executable_stack
= EXSTACK_DEFAULT
;
588 struct pt_regs
*regs
= current_pt_regs();
590 struct elfhdr elf_ex
;
591 struct elfhdr interp_elf_ex
;
594 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
600 /* Get the exec-header */
601 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
604 /* First of all, some simple consistency checks */
605 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
608 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
610 if (!elf_check_arch(&loc
->elf_ex
))
612 if (!bprm
->file
->f_op
->mmap
)
615 /* Now read in all of the header information */
616 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
618 if (loc
->elf_ex
.e_phnum
< 1 ||
619 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
621 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
623 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
627 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
628 (char *)elf_phdata
, size
);
629 if (retval
!= size
) {
635 elf_ppnt
= elf_phdata
;
644 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
645 if (elf_ppnt
->p_type
== PT_INTERP
) {
646 /* This is the program interpreter used for
647 * shared libraries - for now assume that this
648 * is an a.out format binary
651 if (elf_ppnt
->p_filesz
> PATH_MAX
||
652 elf_ppnt
->p_filesz
< 2)
656 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
658 if (!elf_interpreter
)
661 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
664 if (retval
!= elf_ppnt
->p_filesz
) {
667 goto out_free_interp
;
669 /* make sure path is NULL terminated */
671 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
672 goto out_free_interp
;
674 interpreter
= open_exec(elf_interpreter
);
675 retval
= PTR_ERR(interpreter
);
676 if (IS_ERR(interpreter
))
677 goto out_free_interp
;
680 * If the binary is not readable then enforce
681 * mm->dumpable = 0 regardless of the interpreter's
684 would_dump(bprm
, interpreter
);
686 /* Get the exec headers */
687 retval
= kernel_read(interpreter
, 0,
688 (void *)&loc
->interp_elf_ex
,
689 sizeof(loc
->interp_elf_ex
));
690 if (retval
!= sizeof(loc
->interp_elf_ex
)) {
693 goto out_free_dentry
;
701 elf_ppnt
= elf_phdata
;
702 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
703 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
704 if (elf_ppnt
->p_flags
& PF_X
)
705 executable_stack
= EXSTACK_ENABLE_X
;
707 executable_stack
= EXSTACK_DISABLE_X
;
711 /* Some simple consistency checks for the interpreter */
712 if (elf_interpreter
) {
714 /* Not an ELF interpreter */
715 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
716 goto out_free_dentry
;
717 /* Verify the interpreter has a valid arch */
718 if (!elf_check_arch(&loc
->interp_elf_ex
))
719 goto out_free_dentry
;
722 /* Flush all traces of the currently running executable */
723 retval
= flush_old_exec(bprm
);
725 goto out_free_dentry
;
727 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
728 may depend on the personality. */
729 SET_PERSONALITY(loc
->elf_ex
);
730 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
731 current
->personality
|= READ_IMPLIES_EXEC
;
733 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
734 current
->flags
|= PF_RANDOMIZE
;
736 setup_new_exec(bprm
);
738 /* Do this so that we can load the interpreter, if need be. We will
739 change some of these later */
740 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
743 send_sig(SIGKILL
, current
, 0);
744 goto out_free_dentry
;
747 current
->mm
->start_stack
= bprm
->p
;
749 /* Now we do a little grungy work by mmapping the ELF image into
750 the correct location in memory. */
751 for(i
= 0, elf_ppnt
= elf_phdata
;
752 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
753 int elf_prot
= 0, elf_flags
;
754 unsigned long k
, vaddr
;
755 unsigned long total_size
= 0;
757 if (elf_ppnt
->p_type
!= PT_LOAD
)
760 if (unlikely (elf_brk
> elf_bss
)) {
763 /* There was a PT_LOAD segment with p_memsz > p_filesz
764 before this one. Map anonymous pages, if needed,
765 and clear the area. */
766 retval
= set_brk(elf_bss
+ load_bias
,
767 elf_brk
+ load_bias
);
769 send_sig(SIGKILL
, current
, 0);
770 goto out_free_dentry
;
772 nbyte
= ELF_PAGEOFFSET(elf_bss
);
774 nbyte
= ELF_MIN_ALIGN
- nbyte
;
775 if (nbyte
> elf_brk
- elf_bss
)
776 nbyte
= elf_brk
- elf_bss
;
777 if (clear_user((void __user
*)elf_bss
+
780 * This bss-zeroing can fail if the ELF
781 * file specifies odd protections. So
782 * we don't check the return value
788 if (elf_ppnt
->p_flags
& PF_R
)
789 elf_prot
|= PROT_READ
;
790 if (elf_ppnt
->p_flags
& PF_W
)
791 elf_prot
|= PROT_WRITE
;
792 if (elf_ppnt
->p_flags
& PF_X
)
793 elf_prot
|= PROT_EXEC
;
795 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
797 vaddr
= elf_ppnt
->p_vaddr
;
798 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
799 elf_flags
|= MAP_FIXED
;
800 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
801 /* Try and get dynamic programs out of the way of the
802 * default mmap base, as well as whatever program they
803 * might try to exec. This is because the brk will
804 * follow the loader, and is not movable. */
805 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
806 /* Memory randomization might have been switched off
807 * in runtime via sysctl or explicit setting of
809 * If that is the case, retain the original non-zero
810 * load_bias value in order to establish proper
811 * non-randomized mappings.
813 if (current
->flags
& PF_RANDOMIZE
)
816 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
818 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
820 total_size
= total_mapping_size(elf_phdata
,
821 loc
->elf_ex
.e_phnum
);
824 goto out_free_dentry
;
828 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
829 elf_prot
, elf_flags
, total_size
);
830 if (BAD_ADDR(error
)) {
831 send_sig(SIGKILL
, current
, 0);
832 retval
= IS_ERR((void *)error
) ?
833 PTR_ERR((void*)error
) : -EINVAL
;
834 goto out_free_dentry
;
837 if (!load_addr_set
) {
839 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
840 if (loc
->elf_ex
.e_type
== ET_DYN
) {
842 ELF_PAGESTART(load_bias
+ vaddr
);
843 load_addr
+= load_bias
;
844 reloc_func_desc
= load_bias
;
847 k
= elf_ppnt
->p_vaddr
;
854 * Check to see if the section's size will overflow the
855 * allowed task size. Note that p_filesz must always be
856 * <= p_memsz so it is only necessary to check p_memsz.
858 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
859 elf_ppnt
->p_memsz
> TASK_SIZE
||
860 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
861 /* set_brk can never work. Avoid overflows. */
862 send_sig(SIGKILL
, current
, 0);
864 goto out_free_dentry
;
867 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
871 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
875 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
880 loc
->elf_ex
.e_entry
+= load_bias
;
881 elf_bss
+= load_bias
;
882 elf_brk
+= load_bias
;
883 start_code
+= load_bias
;
884 end_code
+= load_bias
;
885 start_data
+= load_bias
;
886 end_data
+= load_bias
;
888 /* Calling set_brk effectively mmaps the pages that we need
889 * for the bss and break sections. We must do this before
890 * mapping in the interpreter, to make sure it doesn't wind
891 * up getting placed where the bss needs to go.
893 retval
= set_brk(elf_bss
, elf_brk
);
895 send_sig(SIGKILL
, current
, 0);
896 goto out_free_dentry
;
898 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
899 send_sig(SIGSEGV
, current
, 0);
900 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
901 goto out_free_dentry
;
904 if (elf_interpreter
) {
905 unsigned long interp_map_addr
= 0;
907 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
911 if (!IS_ERR((void *)elf_entry
)) {
913 * load_elf_interp() returns relocation
916 interp_load_addr
= elf_entry
;
917 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
919 if (BAD_ADDR(elf_entry
)) {
920 force_sig(SIGSEGV
, current
);
921 retval
= IS_ERR((void *)elf_entry
) ?
922 (int)elf_entry
: -EINVAL
;
923 goto out_free_dentry
;
925 reloc_func_desc
= interp_load_addr
;
927 allow_write_access(interpreter
);
929 kfree(elf_interpreter
);
931 elf_entry
= loc
->elf_ex
.e_entry
;
932 if (BAD_ADDR(elf_entry
)) {
933 force_sig(SIGSEGV
, current
);
935 goto out_free_dentry
;
941 set_binfmt(&elf_format
);
943 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
944 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
946 send_sig(SIGKILL
, current
, 0);
949 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
951 install_exec_creds(bprm
);
952 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
953 load_addr
, interp_load_addr
);
955 send_sig(SIGKILL
, current
, 0);
958 /* N.B. passed_fileno might not be initialized? */
959 current
->mm
->end_code
= end_code
;
960 current
->mm
->start_code
= start_code
;
961 current
->mm
->start_data
= start_data
;
962 current
->mm
->end_data
= end_data
;
963 current
->mm
->start_stack
= bprm
->p
;
965 #ifdef arch_randomize_brk
966 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
967 current
->mm
->brk
= current
->mm
->start_brk
=
968 arch_randomize_brk(current
->mm
);
969 #ifdef CONFIG_COMPAT_BRK
970 current
->brk_randomized
= 1;
975 if (current
->personality
& MMAP_PAGE_ZERO
) {
976 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
977 and some applications "depend" upon this behavior.
978 Since we do not have the power to recompile these, we
979 emulate the SVr4 behavior. Sigh. */
980 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
981 MAP_FIXED
| MAP_PRIVATE
, 0);
986 * The ABI may specify that certain registers be set up in special
987 * ways (on i386 %edx is the address of a DT_FINI function, for
988 * example. In addition, it may also specify (eg, PowerPC64 ELF)
989 * that the e_entry field is the address of the function descriptor
990 * for the startup routine, rather than the address of the startup
991 * routine itself. This macro performs whatever initialization to
992 * the regs structure is required as well as any relocations to the
993 * function descriptor entries when executing dynamically links apps.
995 ELF_PLAT_INIT(regs
, reloc_func_desc
);
998 start_thread(regs
, elf_entry
, bprm
->p
);
1007 allow_write_access(interpreter
);
1011 kfree(elf_interpreter
);
1017 #ifdef CONFIG_USELIB
1018 /* This is really simpleminded and specialized - we are loading an
1019 a.out library that is given an ELF header. */
1020 static int load_elf_library(struct file
*file
)
1022 struct elf_phdr
*elf_phdata
;
1023 struct elf_phdr
*eppnt
;
1024 unsigned long elf_bss
, bss
, len
;
1025 int retval
, error
, i
, j
;
1026 struct elfhdr elf_ex
;
1029 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1030 if (retval
!= sizeof(elf_ex
))
1033 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1036 /* First of all, some simple consistency checks */
1037 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1038 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1041 /* Now read in all of the header information */
1043 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1044 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1047 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1053 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1057 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1058 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1063 while (eppnt
->p_type
!= PT_LOAD
)
1066 /* Now use mmap to map the library into memory. */
1067 error
= vm_mmap(file
,
1068 ELF_PAGESTART(eppnt
->p_vaddr
),
1070 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1071 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1072 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1074 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1075 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1078 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1079 if (padzero(elf_bss
)) {
1084 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1086 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1088 vm_brk(len
, bss
- len
);
1096 #endif /* #ifdef CONFIG_USELIB */
1098 #ifdef CONFIG_ELF_CORE
1102 * Modelled on fs/exec.c:aout_core_dump()
1103 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1107 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1108 * that are useful for post-mortem analysis are included in every core dump.
1109 * In that way we ensure that the core dump is fully interpretable later
1110 * without matching up the same kernel and hardware config to see what PC values
1111 * meant. These special mappings include - vDSO, vsyscall, and other
1112 * architecture specific mappings
1114 static bool always_dump_vma(struct vm_area_struct
*vma
)
1116 /* Any vsyscall mappings? */
1117 if (vma
== get_gate_vma(vma
->vm_mm
))
1121 * Assume that all vmas with a .name op should always be dumped.
1122 * If this changes, a new vm_ops field can easily be added.
1124 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1128 * arch_vma_name() returns non-NULL for special architecture mappings,
1129 * such as vDSO sections.
1131 if (arch_vma_name(vma
))
1138 * Decide what to dump of a segment, part, all or none.
1140 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1141 unsigned long mm_flags
)
1143 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1145 /* always dump the vdso and vsyscall sections */
1146 if (always_dump_vma(vma
))
1149 if (vma
->vm_flags
& VM_DONTDUMP
)
1152 /* Hugetlb memory check */
1153 if (vma
->vm_flags
& VM_HUGETLB
) {
1154 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1156 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1161 /* Do not dump I/O mapped devices or special mappings */
1162 if (vma
->vm_flags
& VM_IO
)
1165 /* By default, dump shared memory if mapped from an anonymous file. */
1166 if (vma
->vm_flags
& VM_SHARED
) {
1167 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1168 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1173 /* Dump segments that have been written to. */
1174 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1176 if (vma
->vm_file
== NULL
)
1179 if (FILTER(MAPPED_PRIVATE
))
1183 * If this looks like the beginning of a DSO or executable mapping,
1184 * check for an ELF header. If we find one, dump the first page to
1185 * aid in determining what was mapped here.
1187 if (FILTER(ELF_HEADERS
) &&
1188 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1189 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1191 mm_segment_t fs
= get_fs();
1193 * Doing it this way gets the constant folded by GCC.
1197 char elfmag
[SELFMAG
];
1199 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1200 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1201 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1202 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1203 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1205 * Switch to the user "segment" for get_user(),
1206 * then put back what elf_core_dump() had in place.
1209 if (unlikely(get_user(word
, header
)))
1212 if (word
== magic
.cmp
)
1221 return vma
->vm_end
- vma
->vm_start
;
1224 /* An ELF note in memory */
1229 unsigned int datasz
;
1233 static int notesize(struct memelfnote
*en
)
1237 sz
= sizeof(struct elf_note
);
1238 sz
+= roundup(strlen(en
->name
) + 1, 4);
1239 sz
+= roundup(en
->datasz
, 4);
1244 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1247 en
.n_namesz
= strlen(men
->name
) + 1;
1248 en
.n_descsz
= men
->datasz
;
1249 en
.n_type
= men
->type
;
1251 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1252 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1253 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1256 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1257 u16 machine
, u32 flags
)
1259 memset(elf
, 0, sizeof(*elf
));
1261 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1262 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1263 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1264 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1265 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1267 elf
->e_type
= ET_CORE
;
1268 elf
->e_machine
= machine
;
1269 elf
->e_version
= EV_CURRENT
;
1270 elf
->e_phoff
= sizeof(struct elfhdr
);
1271 elf
->e_flags
= flags
;
1272 elf
->e_ehsize
= sizeof(struct elfhdr
);
1273 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1274 elf
->e_phnum
= segs
;
1279 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1281 phdr
->p_type
= PT_NOTE
;
1282 phdr
->p_offset
= offset
;
1285 phdr
->p_filesz
= sz
;
1292 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1293 unsigned int sz
, void *data
)
1303 * fill up all the fields in prstatus from the given task struct, except
1304 * registers which need to be filled up separately.
1306 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1307 struct task_struct
*p
, long signr
)
1309 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1310 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1311 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1313 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1315 prstatus
->pr_pid
= task_pid_vnr(p
);
1316 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1317 prstatus
->pr_sid
= task_session_vnr(p
);
1318 if (thread_group_leader(p
)) {
1319 struct task_cputime cputime
;
1322 * This is the record for the group leader. It shows the
1323 * group-wide total, not its individual thread total.
1325 thread_group_cputime(p
, &cputime
);
1326 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1327 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1329 cputime_t utime
, stime
;
1331 task_cputime(p
, &utime
, &stime
);
1332 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1333 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1335 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1336 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1339 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1340 struct mm_struct
*mm
)
1342 const struct cred
*cred
;
1343 unsigned int i
, len
;
1345 /* first copy the parameters from user space */
1346 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1348 len
= mm
->arg_end
- mm
->arg_start
;
1349 if (len
>= ELF_PRARGSZ
)
1350 len
= ELF_PRARGSZ
-1;
1351 if (copy_from_user(&psinfo
->pr_psargs
,
1352 (const char __user
*)mm
->arg_start
, len
))
1354 for(i
= 0; i
< len
; i
++)
1355 if (psinfo
->pr_psargs
[i
] == 0)
1356 psinfo
->pr_psargs
[i
] = ' ';
1357 psinfo
->pr_psargs
[len
] = 0;
1360 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1362 psinfo
->pr_pid
= task_pid_vnr(p
);
1363 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1364 psinfo
->pr_sid
= task_session_vnr(p
);
1366 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1367 psinfo
->pr_state
= i
;
1368 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1369 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1370 psinfo
->pr_nice
= task_nice(p
);
1371 psinfo
->pr_flag
= p
->flags
;
1373 cred
= __task_cred(p
);
1374 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1375 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1377 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1382 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1384 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1388 while (auxv
[i
- 2] != AT_NULL
);
1389 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1392 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1393 const siginfo_t
*siginfo
)
1395 mm_segment_t old_fs
= get_fs();
1397 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1399 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1402 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1404 * Format of NT_FILE note:
1406 * long count -- how many files are mapped
1407 * long page_size -- units for file_ofs
1408 * array of [COUNT] elements of
1412 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1414 static int fill_files_note(struct memelfnote
*note
)
1416 struct vm_area_struct
*vma
;
1417 unsigned count
, size
, names_ofs
, remaining
, n
;
1419 user_long_t
*start_end_ofs
;
1420 char *name_base
, *name_curpos
;
1422 /* *Estimated* file count and total data size needed */
1423 count
= current
->mm
->map_count
;
1426 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1428 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1430 size
= round_up(size
, PAGE_SIZE
);
1431 data
= vmalloc(size
);
1435 start_end_ofs
= data
+ 2;
1436 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1437 remaining
= size
- names_ofs
;
1439 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1441 const char *filename
;
1443 file
= vma
->vm_file
;
1446 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1447 if (IS_ERR(filename
)) {
1448 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1450 size
= size
* 5 / 4;
1456 /* d_path() fills at the end, move name down */
1457 /* n = strlen(filename) + 1: */
1458 n
= (name_curpos
+ remaining
) - filename
;
1459 remaining
= filename
- name_curpos
;
1460 memmove(name_curpos
, filename
, n
);
1463 *start_end_ofs
++ = vma
->vm_start
;
1464 *start_end_ofs
++ = vma
->vm_end
;
1465 *start_end_ofs
++ = vma
->vm_pgoff
;
1469 /* Now we know exact count of files, can store it */
1471 data
[1] = PAGE_SIZE
;
1473 * Count usually is less than current->mm->map_count,
1474 * we need to move filenames down.
1476 n
= current
->mm
->map_count
- count
;
1478 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1479 memmove(name_base
- shift_bytes
, name_base
,
1480 name_curpos
- name_base
);
1481 name_curpos
-= shift_bytes
;
1484 size
= name_curpos
- (char *)data
;
1485 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1489 #ifdef CORE_DUMP_USE_REGSET
1490 #include <linux/regset.h>
1492 struct elf_thread_core_info
{
1493 struct elf_thread_core_info
*next
;
1494 struct task_struct
*task
;
1495 struct elf_prstatus prstatus
;
1496 struct memelfnote notes
[0];
1499 struct elf_note_info
{
1500 struct elf_thread_core_info
*thread
;
1501 struct memelfnote psinfo
;
1502 struct memelfnote signote
;
1503 struct memelfnote auxv
;
1504 struct memelfnote files
;
1505 user_siginfo_t csigdata
;
1511 * When a regset has a writeback hook, we call it on each thread before
1512 * dumping user memory. On register window machines, this makes sure the
1513 * user memory backing the register data is up to date before we read it.
1515 static void do_thread_regset_writeback(struct task_struct
*task
,
1516 const struct user_regset
*regset
)
1518 if (regset
->writeback
)
1519 regset
->writeback(task
, regset
, 1);
1523 #define PR_REG_SIZE(S) sizeof(S)
1526 #ifndef PRSTATUS_SIZE
1527 #define PRSTATUS_SIZE(S) sizeof(S)
1531 #define PR_REG_PTR(S) (&((S)->pr_reg))
1534 #ifndef SET_PR_FPVALID
1535 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1538 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1539 const struct user_regset_view
*view
,
1540 long signr
, size_t *total
)
1545 * NT_PRSTATUS is the one special case, because the regset data
1546 * goes into the pr_reg field inside the note contents, rather
1547 * than being the whole note contents. We fill the reset in here.
1548 * We assume that regset 0 is NT_PRSTATUS.
1550 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1551 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1552 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1553 PR_REG_PTR(&t
->prstatus
), NULL
);
1555 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1556 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1557 *total
+= notesize(&t
->notes
[0]);
1559 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1562 * Each other regset might generate a note too. For each regset
1563 * that has no core_note_type or is inactive, we leave t->notes[i]
1564 * all zero and we'll know to skip writing it later.
1566 for (i
= 1; i
< view
->n
; ++i
) {
1567 const struct user_regset
*regset
= &view
->regsets
[i
];
1568 do_thread_regset_writeback(t
->task
, regset
);
1569 if (regset
->core_note_type
&& regset
->get
&&
1570 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1572 size_t size
= regset
->n
* regset
->size
;
1573 void *data
= kmalloc(size
, GFP_KERNEL
);
1574 if (unlikely(!data
))
1576 ret
= regset
->get(t
->task
, regset
,
1577 0, size
, data
, NULL
);
1581 if (regset
->core_note_type
!= NT_PRFPREG
)
1582 fill_note(&t
->notes
[i
], "LINUX",
1583 regset
->core_note_type
,
1586 SET_PR_FPVALID(&t
->prstatus
, 1);
1587 fill_note(&t
->notes
[i
], "CORE",
1588 NT_PRFPREG
, size
, data
);
1590 *total
+= notesize(&t
->notes
[i
]);
1598 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1599 struct elf_note_info
*info
,
1600 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1602 struct task_struct
*dump_task
= current
;
1603 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1604 struct elf_thread_core_info
*t
;
1605 struct elf_prpsinfo
*psinfo
;
1606 struct core_thread
*ct
;
1610 info
->thread
= NULL
;
1612 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1613 if (psinfo
== NULL
) {
1614 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1618 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1621 * Figure out how many notes we're going to need for each thread.
1623 info
->thread_notes
= 0;
1624 for (i
= 0; i
< view
->n
; ++i
)
1625 if (view
->regsets
[i
].core_note_type
!= 0)
1626 ++info
->thread_notes
;
1629 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1630 * since it is our one special case.
1632 if (unlikely(info
->thread_notes
== 0) ||
1633 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1639 * Initialize the ELF file header.
1641 fill_elf_header(elf
, phdrs
,
1642 view
->e_machine
, view
->e_flags
);
1645 * Allocate a structure for each thread.
1647 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1648 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1649 notes
[info
->thread_notes
]),
1655 if (ct
->task
== dump_task
|| !info
->thread
) {
1656 t
->next
= info
->thread
;
1660 * Make sure to keep the original task at
1661 * the head of the list.
1663 t
->next
= info
->thread
->next
;
1664 info
->thread
->next
= t
;
1669 * Now fill in each thread's information.
1671 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1672 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1676 * Fill in the two process-wide notes.
1678 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1679 info
->size
+= notesize(&info
->psinfo
);
1681 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1682 info
->size
+= notesize(&info
->signote
);
1684 fill_auxv_note(&info
->auxv
, current
->mm
);
1685 info
->size
+= notesize(&info
->auxv
);
1687 if (fill_files_note(&info
->files
) == 0)
1688 info
->size
+= notesize(&info
->files
);
1693 static size_t get_note_info_size(struct elf_note_info
*info
)
1699 * Write all the notes for each thread. When writing the first thread, the
1700 * process-wide notes are interleaved after the first thread-specific note.
1702 static int write_note_info(struct elf_note_info
*info
,
1703 struct coredump_params
*cprm
)
1706 struct elf_thread_core_info
*t
= info
->thread
;
1711 if (!writenote(&t
->notes
[0], cprm
))
1714 if (first
&& !writenote(&info
->psinfo
, cprm
))
1716 if (first
&& !writenote(&info
->signote
, cprm
))
1718 if (first
&& !writenote(&info
->auxv
, cprm
))
1720 if (first
&& info
->files
.data
&&
1721 !writenote(&info
->files
, cprm
))
1724 for (i
= 1; i
< info
->thread_notes
; ++i
)
1725 if (t
->notes
[i
].data
&&
1726 !writenote(&t
->notes
[i
], cprm
))
1736 static void free_note_info(struct elf_note_info
*info
)
1738 struct elf_thread_core_info
*threads
= info
->thread
;
1741 struct elf_thread_core_info
*t
= threads
;
1743 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1744 for (i
= 1; i
< info
->thread_notes
; ++i
)
1745 kfree(t
->notes
[i
].data
);
1748 kfree(info
->psinfo
.data
);
1749 vfree(info
->files
.data
);
1754 /* Here is the structure in which status of each thread is captured. */
1755 struct elf_thread_status
1757 struct list_head list
;
1758 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1759 elf_fpregset_t fpu
; /* NT_PRFPREG */
1760 struct task_struct
*thread
;
1761 #ifdef ELF_CORE_COPY_XFPREGS
1762 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1764 struct memelfnote notes
[3];
1769 * In order to add the specific thread information for the elf file format,
1770 * we need to keep a linked list of every threads pr_status and then create
1771 * a single section for them in the final core file.
1773 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1776 struct task_struct
*p
= t
->thread
;
1779 fill_prstatus(&t
->prstatus
, p
, signr
);
1780 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1782 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1785 sz
+= notesize(&t
->notes
[0]);
1787 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1789 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1792 sz
+= notesize(&t
->notes
[1]);
1795 #ifdef ELF_CORE_COPY_XFPREGS
1796 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1797 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1798 sizeof(t
->xfpu
), &t
->xfpu
);
1800 sz
+= notesize(&t
->notes
[2]);
1806 struct elf_note_info
{
1807 struct memelfnote
*notes
;
1808 struct memelfnote
*notes_files
;
1809 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1810 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1811 struct list_head thread_list
;
1812 elf_fpregset_t
*fpu
;
1813 #ifdef ELF_CORE_COPY_XFPREGS
1814 elf_fpxregset_t
*xfpu
;
1816 user_siginfo_t csigdata
;
1817 int thread_status_size
;
1821 static int elf_note_info_init(struct elf_note_info
*info
)
1823 memset(info
, 0, sizeof(*info
));
1824 INIT_LIST_HEAD(&info
->thread_list
);
1826 /* Allocate space for ELF notes */
1827 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1830 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1833 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1834 if (!info
->prstatus
)
1836 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1839 #ifdef ELF_CORE_COPY_XFPREGS
1840 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1847 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1848 struct elf_note_info
*info
,
1849 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1851 struct list_head
*t
;
1852 struct core_thread
*ct
;
1853 struct elf_thread_status
*ets
;
1855 if (!elf_note_info_init(info
))
1858 for (ct
= current
->mm
->core_state
->dumper
.next
;
1859 ct
; ct
= ct
->next
) {
1860 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1864 ets
->thread
= ct
->task
;
1865 list_add(&ets
->list
, &info
->thread_list
);
1868 list_for_each(t
, &info
->thread_list
) {
1871 ets
= list_entry(t
, struct elf_thread_status
, list
);
1872 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1873 info
->thread_status_size
+= sz
;
1875 /* now collect the dump for the current */
1876 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1877 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1878 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1881 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
1884 * Set up the notes in similar form to SVR4 core dumps made
1885 * with info from their /proc.
1888 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1889 sizeof(*info
->prstatus
), info
->prstatus
);
1890 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1891 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1892 sizeof(*info
->psinfo
), info
->psinfo
);
1894 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1895 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1898 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
1899 info
->notes_files
= info
->notes
+ info
->numnote
;
1903 /* Try to dump the FPU. */
1904 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1906 if (info
->prstatus
->pr_fpvalid
)
1907 fill_note(info
->notes
+ info
->numnote
++,
1908 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1909 #ifdef ELF_CORE_COPY_XFPREGS
1910 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1911 fill_note(info
->notes
+ info
->numnote
++,
1912 "LINUX", ELF_CORE_XFPREG_TYPE
,
1913 sizeof(*info
->xfpu
), info
->xfpu
);
1919 static size_t get_note_info_size(struct elf_note_info
*info
)
1924 for (i
= 0; i
< info
->numnote
; i
++)
1925 sz
+= notesize(info
->notes
+ i
);
1927 sz
+= info
->thread_status_size
;
1932 static int write_note_info(struct elf_note_info
*info
,
1933 struct coredump_params
*cprm
)
1936 struct list_head
*t
;
1938 for (i
= 0; i
< info
->numnote
; i
++)
1939 if (!writenote(info
->notes
+ i
, cprm
))
1942 /* write out the thread status notes section */
1943 list_for_each(t
, &info
->thread_list
) {
1944 struct elf_thread_status
*tmp
=
1945 list_entry(t
, struct elf_thread_status
, list
);
1947 for (i
= 0; i
< tmp
->num_notes
; i
++)
1948 if (!writenote(&tmp
->notes
[i
], cprm
))
1955 static void free_note_info(struct elf_note_info
*info
)
1957 while (!list_empty(&info
->thread_list
)) {
1958 struct list_head
*tmp
= info
->thread_list
.next
;
1960 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1963 /* Free data possibly allocated by fill_files_note(): */
1964 if (info
->notes_files
)
1965 vfree(info
->notes_files
->data
);
1967 kfree(info
->prstatus
);
1968 kfree(info
->psinfo
);
1971 #ifdef ELF_CORE_COPY_XFPREGS
1978 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1979 struct vm_area_struct
*gate_vma
)
1981 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1988 * Helper function for iterating across a vma list. It ensures that the caller
1989 * will visit `gate_vma' prior to terminating the search.
1991 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1992 struct vm_area_struct
*gate_vma
)
1994 struct vm_area_struct
*ret
;
1996 ret
= this_vma
->vm_next
;
1999 if (this_vma
== gate_vma
)
2004 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2005 elf_addr_t e_shoff
, int segs
)
2007 elf
->e_shoff
= e_shoff
;
2008 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2010 elf
->e_shstrndx
= SHN_UNDEF
;
2012 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2014 shdr4extnum
->sh_type
= SHT_NULL
;
2015 shdr4extnum
->sh_size
= elf
->e_shnum
;
2016 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2017 shdr4extnum
->sh_info
= segs
;
2020 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
2021 unsigned long mm_flags
)
2023 struct vm_area_struct
*vma
;
2026 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2027 vma
= next_vma(vma
, gate_vma
))
2028 size
+= vma_dump_size(vma
, mm_flags
);
2035 * This is a two-pass process; first we find the offsets of the bits,
2036 * and then they are actually written out. If we run out of core limit
2039 static int elf_core_dump(struct coredump_params
*cprm
)
2044 struct vm_area_struct
*vma
, *gate_vma
;
2045 struct elfhdr
*elf
= NULL
;
2046 loff_t offset
= 0, dataoff
;
2047 struct elf_note_info info
= { };
2048 struct elf_phdr
*phdr4note
= NULL
;
2049 struct elf_shdr
*shdr4extnum
= NULL
;
2054 * We no longer stop all VM operations.
2056 * This is because those proceses that could possibly change map_count
2057 * or the mmap / vma pages are now blocked in do_exit on current
2058 * finishing this core dump.
2060 * Only ptrace can touch these memory addresses, but it doesn't change
2061 * the map_count or the pages allocated. So no possibility of crashing
2062 * exists while dumping the mm->vm_next areas to the core file.
2065 /* alloc memory for large data structures: too large to be on stack */
2066 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2070 * The number of segs are recored into ELF header as 16bit value.
2071 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2073 segs
= current
->mm
->map_count
;
2074 segs
+= elf_core_extra_phdrs();
2076 gate_vma
= get_gate_vma(current
->mm
);
2077 if (gate_vma
!= NULL
)
2080 /* for notes section */
2083 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2084 * this, kernel supports extended numbering. Have a look at
2085 * include/linux/elf.h for further information. */
2086 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2089 * Collect all the non-memory information about the process for the
2090 * notes. This also sets up the file header.
2092 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2100 offset
+= sizeof(*elf
); /* Elf header */
2101 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2103 /* Write notes phdr entry */
2105 size_t sz
= get_note_info_size(&info
);
2107 sz
+= elf_coredump_extra_notes_size();
2109 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2113 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2117 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2119 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2120 offset
+= elf_core_extra_data_size();
2123 if (e_phnum
== PN_XNUM
) {
2124 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2127 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2132 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2135 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2138 /* Write program headers for segments dump */
2139 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2140 vma
= next_vma(vma
, gate_vma
)) {
2141 struct elf_phdr phdr
;
2143 phdr
.p_type
= PT_LOAD
;
2144 phdr
.p_offset
= offset
;
2145 phdr
.p_vaddr
= vma
->vm_start
;
2147 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2148 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2149 offset
+= phdr
.p_filesz
;
2150 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2151 if (vma
->vm_flags
& VM_WRITE
)
2152 phdr
.p_flags
|= PF_W
;
2153 if (vma
->vm_flags
& VM_EXEC
)
2154 phdr
.p_flags
|= PF_X
;
2155 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2157 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2161 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2164 /* write out the notes section */
2165 if (!write_note_info(&info
, cprm
))
2168 if (elf_coredump_extra_notes_write(cprm
))
2172 if (!dump_skip(cprm
, dataoff
- cprm
->written
))
2175 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2176 vma
= next_vma(vma
, gate_vma
)) {
2180 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2182 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2186 page
= get_dump_page(addr
);
2188 void *kaddr
= kmap(page
);
2189 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2191 page_cache_release(page
);
2193 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2199 if (!elf_core_write_extra_data(cprm
))
2202 if (e_phnum
== PN_XNUM
) {
2203 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2211 free_note_info(&info
);
2219 #endif /* CONFIG_ELF_CORE */
2221 static int __init
init_elf_binfmt(void)
2223 register_binfmt(&elf_format
);
2227 static void __exit
exit_elf_binfmt(void)
2229 /* Remove the COFF and ELF loaders. */
2230 unregister_binfmt(&elf_format
);
2233 core_initcall(init_elf_binfmt
);
2234 module_exit(exit_elf_binfmt
);
2235 MODULE_LICENSE("GPL");