x86/speculation/l1tf: Protect NUMA-balance entries against L1TF
[linux/fpc-iii.git] / fs / binfmt_elf.c
blob57464b34d153431aa3e582c21715fd3556654769
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
50 int, int, unsigned long);
52 #ifdef CONFIG_USELIB
53 static int load_elf_library(struct file *);
54 #else
55 #define load_elf_library NULL
56 #endif
59 * If we don't support core dumping, then supply a NULL so we
60 * don't even try.
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params *cprm);
64 #else
65 #define elf_core_dump NULL
66 #endif
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
70 #else
71 #define ELF_MIN_ALIGN PAGE_SIZE
72 #endif
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
76 #endif
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
82 static struct linux_binfmt elf_format = {
83 .module = THIS_MODULE,
84 .load_binary = load_elf_binary,
85 .load_shlib = load_elf_library,
86 .core_dump = elf_core_dump,
87 .min_coredump = ELF_EXEC_PAGESIZE,
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
92 static int set_brk(unsigned long start, unsigned long end)
94 start = ELF_PAGEALIGN(start);
95 end = ELF_PAGEALIGN(end);
96 if (end > start) {
97 unsigned long addr;
98 addr = vm_brk(start, end - start);
99 if (BAD_ADDR(addr))
100 return addr;
102 current->mm->start_brk = current->mm->brk = end;
103 return 0;
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
109 be in memory
111 static int padzero(unsigned long elf_bss)
113 unsigned long nbyte;
115 nbyte = ELF_PAGEOFFSET(elf_bss);
116 if (nbyte) {
117 nbyte = ELF_MIN_ALIGN - nbyte;
118 if (clear_user((void __user *) elf_bss, nbyte))
119 return -EFAULT;
121 return 0;
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
131 old_sp; })
132 #else
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
137 #endif
139 #ifndef ELF_BASE_PLATFORM
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 #define ELF_BASE_PLATFORM NULL
146 #endif
148 static int
149 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
150 unsigned long load_addr, unsigned long interp_load_addr)
152 unsigned long p = bprm->p;
153 int argc = bprm->argc;
154 int envc = bprm->envc;
155 elf_addr_t __user *argv;
156 elf_addr_t __user *envp;
157 elf_addr_t __user *sp;
158 elf_addr_t __user *u_platform;
159 elf_addr_t __user *u_base_platform;
160 elf_addr_t __user *u_rand_bytes;
161 const char *k_platform = ELF_PLATFORM;
162 const char *k_base_platform = ELF_BASE_PLATFORM;
163 unsigned char k_rand_bytes[16];
164 int items;
165 elf_addr_t *elf_info;
166 int ei_index = 0;
167 const struct cred *cred = current_cred();
168 struct vm_area_struct *vma;
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
176 p = arch_align_stack(p);
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
182 * merely difficult.
184 u_platform = NULL;
185 if (k_platform) {
186 size_t len = strlen(k_platform) + 1;
188 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
189 if (__copy_to_user(u_platform, k_platform, len))
190 return -EFAULT;
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
197 u_base_platform = NULL;
198 if (k_base_platform) {
199 size_t len = strlen(k_base_platform) + 1;
201 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 if (__copy_to_user(u_base_platform, k_base_platform, len))
203 return -EFAULT;
207 * Generate 16 random bytes for userspace PRNG seeding.
209 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
210 u_rand_bytes = (elf_addr_t __user *)
211 STACK_ALLOC(p, sizeof(k_rand_bytes));
212 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
213 return -EFAULT;
215 /* Create the ELF interpreter info */
216 elf_info = (elf_addr_t *)current->mm->saved_auxv;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
219 do { \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
222 } while (0)
224 #ifdef ARCH_DLINFO
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
227 * AUXV.
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
231 ARCH_DLINFO;
232 #endif
233 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
234 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
235 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
236 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
237 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
238 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
239 NEW_AUX_ENT(AT_BASE, interp_load_addr);
240 NEW_AUX_ENT(AT_FLAGS, 0);
241 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
242 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
243 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
244 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
245 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
246 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
247 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
248 #ifdef ELF_HWCAP2
249 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
250 #endif
251 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
252 if (k_platform) {
253 NEW_AUX_ENT(AT_PLATFORM,
254 (elf_addr_t)(unsigned long)u_platform);
256 if (k_base_platform) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM,
258 (elf_addr_t)(unsigned long)u_base_platform);
260 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
261 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
263 #undef NEW_AUX_ENT
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info[ei_index], 0,
266 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
268 /* And advance past the AT_NULL entry. */
269 ei_index += 2;
271 sp = STACK_ADD(p, ei_index);
273 items = (argc + 1) + (envc + 1) + 1;
274 bprm->p = STACK_ROUND(sp, items);
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
279 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
280 #else
281 sp = (elf_addr_t __user *)bprm->p;
282 #endif
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
289 vma = find_extend_vma(current->mm, bprm->p);
290 if (!vma)
291 return -EFAULT;
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc, sp++))
295 return -EFAULT;
296 argv = sp;
297 envp = argv + argc + 1;
299 /* Populate argv and envp */
300 p = current->mm->arg_end = current->mm->arg_start;
301 while (argc-- > 0) {
302 size_t len;
303 if (__put_user((elf_addr_t)p, argv++))
304 return -EFAULT;
305 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
306 if (!len || len > MAX_ARG_STRLEN)
307 return -EINVAL;
308 p += len;
310 if (__put_user(0, argv))
311 return -EFAULT;
312 current->mm->arg_end = current->mm->env_start = p;
313 while (envc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, envp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
322 if (__put_user(0, envp))
323 return -EFAULT;
324 current->mm->env_end = p;
326 /* Put the elf_info on the stack in the right place. */
327 sp = (elf_addr_t __user *)envp + 1;
328 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
329 return -EFAULT;
330 return 0;
333 #ifndef elf_map
335 static unsigned long elf_map(struct file *filep, unsigned long addr,
336 struct elf_phdr *eppnt, int prot, int type,
337 unsigned long total_size)
339 unsigned long map_addr;
340 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
341 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
342 addr = ELF_PAGESTART(addr);
343 size = ELF_PAGEALIGN(size);
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
347 if (!size)
348 return addr;
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
358 if (total_size) {
359 total_size = ELF_PAGEALIGN(total_size);
360 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
361 if (!BAD_ADDR(map_addr))
362 vm_munmap(map_addr+size, total_size-size);
363 } else
364 map_addr = vm_mmap(filep, addr, size, prot, type, off);
366 return(map_addr);
369 #endif /* !elf_map */
371 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
373 int i, first_idx = -1, last_idx = -1;
375 for (i = 0; i < nr; i++) {
376 if (cmds[i].p_type == PT_LOAD) {
377 last_idx = i;
378 if (first_idx == -1)
379 first_idx = i;
382 if (first_idx == -1)
383 return 0;
385 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
386 ELF_PAGESTART(cmds[first_idx].p_vaddr);
390 /* This is much more generalized than the library routine read function,
391 so we keep this separate. Technically the library read function
392 is only provided so that we can read a.out libraries that have
393 an ELF header */
395 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
396 struct file *interpreter, unsigned long *interp_map_addr,
397 unsigned long no_base)
399 struct elf_phdr *elf_phdata;
400 struct elf_phdr *eppnt;
401 unsigned long load_addr = 0;
402 int load_addr_set = 0;
403 unsigned long last_bss = 0, elf_bss = 0;
404 unsigned long error = ~0UL;
405 unsigned long total_size;
406 int retval, i, size;
408 /* First of all, some simple consistency checks */
409 if (interp_elf_ex->e_type != ET_EXEC &&
410 interp_elf_ex->e_type != ET_DYN)
411 goto out;
412 if (!elf_check_arch(interp_elf_ex))
413 goto out;
414 if (!interpreter->f_op->mmap)
415 goto out;
418 * If the size of this structure has changed, then punt, since
419 * we will be doing the wrong thing.
421 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
422 goto out;
423 if (interp_elf_ex->e_phnum < 1 ||
424 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
425 goto out;
427 /* Now read in all of the header information */
428 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
429 if (size > ELF_MIN_ALIGN)
430 goto out;
431 elf_phdata = kmalloc(size, GFP_KERNEL);
432 if (!elf_phdata)
433 goto out;
435 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
436 (char *)elf_phdata, size);
437 error = -EIO;
438 if (retval != size) {
439 if (retval < 0)
440 error = retval;
441 goto out_close;
444 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
445 if (!total_size) {
446 error = -EINVAL;
447 goto out_close;
450 eppnt = elf_phdata;
451 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
452 if (eppnt->p_type == PT_LOAD) {
453 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
454 int elf_prot = 0;
455 unsigned long vaddr = 0;
456 unsigned long k, map_addr;
458 if (eppnt->p_flags & PF_R)
459 elf_prot = PROT_READ;
460 if (eppnt->p_flags & PF_W)
461 elf_prot |= PROT_WRITE;
462 if (eppnt->p_flags & PF_X)
463 elf_prot |= PROT_EXEC;
464 vaddr = eppnt->p_vaddr;
465 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
466 elf_type |= MAP_FIXED;
467 else if (no_base && interp_elf_ex->e_type == ET_DYN)
468 load_addr = -vaddr;
470 map_addr = elf_map(interpreter, load_addr + vaddr,
471 eppnt, elf_prot, elf_type, total_size);
472 total_size = 0;
473 if (!*interp_map_addr)
474 *interp_map_addr = map_addr;
475 error = map_addr;
476 if (BAD_ADDR(map_addr))
477 goto out_close;
479 if (!load_addr_set &&
480 interp_elf_ex->e_type == ET_DYN) {
481 load_addr = map_addr - ELF_PAGESTART(vaddr);
482 load_addr_set = 1;
486 * Check to see if the section's size will overflow the
487 * allowed task size. Note that p_filesz must always be
488 * <= p_memsize so it's only necessary to check p_memsz.
490 k = load_addr + eppnt->p_vaddr;
491 if (BAD_ADDR(k) ||
492 eppnt->p_filesz > eppnt->p_memsz ||
493 eppnt->p_memsz > TASK_SIZE ||
494 TASK_SIZE - eppnt->p_memsz < k) {
495 error = -ENOMEM;
496 goto out_close;
500 * Find the end of the file mapping for this phdr, and
501 * keep track of the largest address we see for this.
503 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
504 if (k > elf_bss)
505 elf_bss = k;
508 * Do the same thing for the memory mapping - between
509 * elf_bss and last_bss is the bss section.
511 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
512 if (k > last_bss)
513 last_bss = k;
517 if (last_bss > elf_bss) {
519 * Now fill out the bss section. First pad the last page up
520 * to the page boundary, and then perform a mmap to make sure
521 * that there are zero-mapped pages up to and including the
522 * last bss page.
524 if (padzero(elf_bss)) {
525 error = -EFAULT;
526 goto out_close;
529 /* What we have mapped so far */
530 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
532 /* Map the last of the bss segment */
533 error = vm_brk(elf_bss, last_bss - elf_bss);
534 if (BAD_ADDR(error))
535 goto out_close;
538 error = load_addr;
540 out_close:
541 kfree(elf_phdata);
542 out:
543 return error;
547 * These are the functions used to load ELF style executables and shared
548 * libraries. There is no binary dependent code anywhere else.
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
553 #endif
555 static unsigned long randomize_stack_top(unsigned long stack_top)
557 unsigned long random_variable = 0;
559 if ((current->flags & PF_RANDOMIZE) &&
560 !(current->personality & ADDR_NO_RANDOMIZE)) {
561 random_variable = (unsigned long) get_random_int();
562 random_variable &= STACK_RND_MASK;
563 random_variable <<= PAGE_SHIFT;
565 #ifdef CONFIG_STACK_GROWSUP
566 return PAGE_ALIGN(stack_top) + random_variable;
567 #else
568 return PAGE_ALIGN(stack_top) - random_variable;
569 #endif
572 static int load_elf_binary(struct linux_binprm *bprm)
574 struct file *interpreter = NULL; /* to shut gcc up */
575 unsigned long load_addr = 0, load_bias = 0;
576 int load_addr_set = 0;
577 char * elf_interpreter = NULL;
578 unsigned long error;
579 struct elf_phdr *elf_ppnt, *elf_phdata;
580 unsigned long elf_bss, elf_brk;
581 int retval, i;
582 unsigned int size;
583 unsigned long elf_entry;
584 unsigned long interp_load_addr = 0;
585 unsigned long start_code, end_code, start_data, end_data;
586 unsigned long reloc_func_desc __maybe_unused = 0;
587 int executable_stack = EXSTACK_DEFAULT;
588 struct pt_regs *regs = current_pt_regs();
589 struct {
590 struct elfhdr elf_ex;
591 struct elfhdr interp_elf_ex;
592 } *loc;
594 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
595 if (!loc) {
596 retval = -ENOMEM;
597 goto out_ret;
600 /* Get the exec-header */
601 loc->elf_ex = *((struct elfhdr *)bprm->buf);
603 retval = -ENOEXEC;
604 /* First of all, some simple consistency checks */
605 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
606 goto out;
608 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
609 goto out;
610 if (!elf_check_arch(&loc->elf_ex))
611 goto out;
612 if (!bprm->file->f_op->mmap)
613 goto out;
615 /* Now read in all of the header information */
616 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
617 goto out;
618 if (loc->elf_ex.e_phnum < 1 ||
619 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
620 goto out;
621 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
622 retval = -ENOMEM;
623 elf_phdata = kmalloc(size, GFP_KERNEL);
624 if (!elf_phdata)
625 goto out;
627 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
628 (char *)elf_phdata, size);
629 if (retval != size) {
630 if (retval >= 0)
631 retval = -EIO;
632 goto out_free_ph;
635 elf_ppnt = elf_phdata;
636 elf_bss = 0;
637 elf_brk = 0;
639 start_code = ~0UL;
640 end_code = 0;
641 start_data = 0;
642 end_data = 0;
644 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
645 if (elf_ppnt->p_type == PT_INTERP) {
646 /* This is the program interpreter used for
647 * shared libraries - for now assume that this
648 * is an a.out format binary
650 retval = -ENOEXEC;
651 if (elf_ppnt->p_filesz > PATH_MAX ||
652 elf_ppnt->p_filesz < 2)
653 goto out_free_ph;
655 retval = -ENOMEM;
656 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
657 GFP_KERNEL);
658 if (!elf_interpreter)
659 goto out_free_ph;
661 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
662 elf_interpreter,
663 elf_ppnt->p_filesz);
664 if (retval != elf_ppnt->p_filesz) {
665 if (retval >= 0)
666 retval = -EIO;
667 goto out_free_interp;
669 /* make sure path is NULL terminated */
670 retval = -ENOEXEC;
671 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
672 goto out_free_interp;
674 interpreter = open_exec(elf_interpreter);
675 retval = PTR_ERR(interpreter);
676 if (IS_ERR(interpreter))
677 goto out_free_interp;
680 * If the binary is not readable then enforce
681 * mm->dumpable = 0 regardless of the interpreter's
682 * permissions.
684 would_dump(bprm, interpreter);
686 /* Get the exec headers */
687 retval = kernel_read(interpreter, 0,
688 (void *)&loc->interp_elf_ex,
689 sizeof(loc->interp_elf_ex));
690 if (retval != sizeof(loc->interp_elf_ex)) {
691 if (retval >= 0)
692 retval = -EIO;
693 goto out_free_dentry;
696 break;
698 elf_ppnt++;
701 elf_ppnt = elf_phdata;
702 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
703 if (elf_ppnt->p_type == PT_GNU_STACK) {
704 if (elf_ppnt->p_flags & PF_X)
705 executable_stack = EXSTACK_ENABLE_X;
706 else
707 executable_stack = EXSTACK_DISABLE_X;
708 break;
711 /* Some simple consistency checks for the interpreter */
712 if (elf_interpreter) {
713 retval = -ELIBBAD;
714 /* Not an ELF interpreter */
715 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
716 goto out_free_dentry;
717 /* Verify the interpreter has a valid arch */
718 if (!elf_check_arch(&loc->interp_elf_ex))
719 goto out_free_dentry;
722 /* Flush all traces of the currently running executable */
723 retval = flush_old_exec(bprm);
724 if (retval)
725 goto out_free_dentry;
727 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
728 may depend on the personality. */
729 SET_PERSONALITY(loc->elf_ex);
730 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
731 current->personality |= READ_IMPLIES_EXEC;
733 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
734 current->flags |= PF_RANDOMIZE;
736 setup_new_exec(bprm);
738 /* Do this so that we can load the interpreter, if need be. We will
739 change some of these later */
740 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
741 executable_stack);
742 if (retval < 0) {
743 send_sig(SIGKILL, current, 0);
744 goto out_free_dentry;
747 current->mm->start_stack = bprm->p;
749 /* Now we do a little grungy work by mmapping the ELF image into
750 the correct location in memory. */
751 for(i = 0, elf_ppnt = elf_phdata;
752 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
753 int elf_prot = 0, elf_flags;
754 unsigned long k, vaddr;
755 unsigned long total_size = 0;
757 if (elf_ppnt->p_type != PT_LOAD)
758 continue;
760 if (unlikely (elf_brk > elf_bss)) {
761 unsigned long nbyte;
763 /* There was a PT_LOAD segment with p_memsz > p_filesz
764 before this one. Map anonymous pages, if needed,
765 and clear the area. */
766 retval = set_brk(elf_bss + load_bias,
767 elf_brk + load_bias);
768 if (retval) {
769 send_sig(SIGKILL, current, 0);
770 goto out_free_dentry;
772 nbyte = ELF_PAGEOFFSET(elf_bss);
773 if (nbyte) {
774 nbyte = ELF_MIN_ALIGN - nbyte;
775 if (nbyte > elf_brk - elf_bss)
776 nbyte = elf_brk - elf_bss;
777 if (clear_user((void __user *)elf_bss +
778 load_bias, nbyte)) {
780 * This bss-zeroing can fail if the ELF
781 * file specifies odd protections. So
782 * we don't check the return value
788 if (elf_ppnt->p_flags & PF_R)
789 elf_prot |= PROT_READ;
790 if (elf_ppnt->p_flags & PF_W)
791 elf_prot |= PROT_WRITE;
792 if (elf_ppnt->p_flags & PF_X)
793 elf_prot |= PROT_EXEC;
795 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
797 vaddr = elf_ppnt->p_vaddr;
798 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
799 elf_flags |= MAP_FIXED;
800 } else if (loc->elf_ex.e_type == ET_DYN) {
801 /* Try and get dynamic programs out of the way of the
802 * default mmap base, as well as whatever program they
803 * might try to exec. This is because the brk will
804 * follow the loader, and is not movable. */
805 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
806 /* Memory randomization might have been switched off
807 * in runtime via sysctl or explicit setting of
808 * personality flags.
809 * If that is the case, retain the original non-zero
810 * load_bias value in order to establish proper
811 * non-randomized mappings.
813 if (current->flags & PF_RANDOMIZE)
814 load_bias = 0;
815 else
816 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
817 #else
818 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
819 #endif
820 total_size = total_mapping_size(elf_phdata,
821 loc->elf_ex.e_phnum);
822 if (!total_size) {
823 retval = -EINVAL;
824 goto out_free_dentry;
828 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
829 elf_prot, elf_flags, total_size);
830 if (BAD_ADDR(error)) {
831 send_sig(SIGKILL, current, 0);
832 retval = IS_ERR((void *)error) ?
833 PTR_ERR((void*)error) : -EINVAL;
834 goto out_free_dentry;
837 if (!load_addr_set) {
838 load_addr_set = 1;
839 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
840 if (loc->elf_ex.e_type == ET_DYN) {
841 load_bias += error -
842 ELF_PAGESTART(load_bias + vaddr);
843 load_addr += load_bias;
844 reloc_func_desc = load_bias;
847 k = elf_ppnt->p_vaddr;
848 if (k < start_code)
849 start_code = k;
850 if (start_data < k)
851 start_data = k;
854 * Check to see if the section's size will overflow the
855 * allowed task size. Note that p_filesz must always be
856 * <= p_memsz so it is only necessary to check p_memsz.
858 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
859 elf_ppnt->p_memsz > TASK_SIZE ||
860 TASK_SIZE - elf_ppnt->p_memsz < k) {
861 /* set_brk can never work. Avoid overflows. */
862 send_sig(SIGKILL, current, 0);
863 retval = -EINVAL;
864 goto out_free_dentry;
867 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
869 if (k > elf_bss)
870 elf_bss = k;
871 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
872 end_code = k;
873 if (end_data < k)
874 end_data = k;
875 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
876 if (k > elf_brk)
877 elf_brk = k;
880 loc->elf_ex.e_entry += load_bias;
881 elf_bss += load_bias;
882 elf_brk += load_bias;
883 start_code += load_bias;
884 end_code += load_bias;
885 start_data += load_bias;
886 end_data += load_bias;
888 /* Calling set_brk effectively mmaps the pages that we need
889 * for the bss and break sections. We must do this before
890 * mapping in the interpreter, to make sure it doesn't wind
891 * up getting placed where the bss needs to go.
893 retval = set_brk(elf_bss, elf_brk);
894 if (retval) {
895 send_sig(SIGKILL, current, 0);
896 goto out_free_dentry;
898 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
899 send_sig(SIGSEGV, current, 0);
900 retval = -EFAULT; /* Nobody gets to see this, but.. */
901 goto out_free_dentry;
904 if (elf_interpreter) {
905 unsigned long interp_map_addr = 0;
907 elf_entry = load_elf_interp(&loc->interp_elf_ex,
908 interpreter,
909 &interp_map_addr,
910 load_bias);
911 if (!IS_ERR((void *)elf_entry)) {
913 * load_elf_interp() returns relocation
914 * adjustment
916 interp_load_addr = elf_entry;
917 elf_entry += loc->interp_elf_ex.e_entry;
919 if (BAD_ADDR(elf_entry)) {
920 force_sig(SIGSEGV, current);
921 retval = IS_ERR((void *)elf_entry) ?
922 (int)elf_entry : -EINVAL;
923 goto out_free_dentry;
925 reloc_func_desc = interp_load_addr;
927 allow_write_access(interpreter);
928 fput(interpreter);
929 kfree(elf_interpreter);
930 } else {
931 elf_entry = loc->elf_ex.e_entry;
932 if (BAD_ADDR(elf_entry)) {
933 force_sig(SIGSEGV, current);
934 retval = -EINVAL;
935 goto out_free_dentry;
939 kfree(elf_phdata);
941 set_binfmt(&elf_format);
943 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
944 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
945 if (retval < 0) {
946 send_sig(SIGKILL, current, 0);
947 goto out;
949 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
951 install_exec_creds(bprm);
952 retval = create_elf_tables(bprm, &loc->elf_ex,
953 load_addr, interp_load_addr);
954 if (retval < 0) {
955 send_sig(SIGKILL, current, 0);
956 goto out;
958 /* N.B. passed_fileno might not be initialized? */
959 current->mm->end_code = end_code;
960 current->mm->start_code = start_code;
961 current->mm->start_data = start_data;
962 current->mm->end_data = end_data;
963 current->mm->start_stack = bprm->p;
965 #ifdef arch_randomize_brk
966 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
967 current->mm->brk = current->mm->start_brk =
968 arch_randomize_brk(current->mm);
969 #ifdef CONFIG_COMPAT_BRK
970 current->brk_randomized = 1;
971 #endif
973 #endif
975 if (current->personality & MMAP_PAGE_ZERO) {
976 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
977 and some applications "depend" upon this behavior.
978 Since we do not have the power to recompile these, we
979 emulate the SVr4 behavior. Sigh. */
980 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
981 MAP_FIXED | MAP_PRIVATE, 0);
984 #ifdef ELF_PLAT_INIT
986 * The ABI may specify that certain registers be set up in special
987 * ways (on i386 %edx is the address of a DT_FINI function, for
988 * example. In addition, it may also specify (eg, PowerPC64 ELF)
989 * that the e_entry field is the address of the function descriptor
990 * for the startup routine, rather than the address of the startup
991 * routine itself. This macro performs whatever initialization to
992 * the regs structure is required as well as any relocations to the
993 * function descriptor entries when executing dynamically links apps.
995 ELF_PLAT_INIT(regs, reloc_func_desc);
996 #endif
998 start_thread(regs, elf_entry, bprm->p);
999 retval = 0;
1000 out:
1001 kfree(loc);
1002 out_ret:
1003 return retval;
1005 /* error cleanup */
1006 out_free_dentry:
1007 allow_write_access(interpreter);
1008 if (interpreter)
1009 fput(interpreter);
1010 out_free_interp:
1011 kfree(elf_interpreter);
1012 out_free_ph:
1013 kfree(elf_phdata);
1014 goto out;
1017 #ifdef CONFIG_USELIB
1018 /* This is really simpleminded and specialized - we are loading an
1019 a.out library that is given an ELF header. */
1020 static int load_elf_library(struct file *file)
1022 struct elf_phdr *elf_phdata;
1023 struct elf_phdr *eppnt;
1024 unsigned long elf_bss, bss, len;
1025 int retval, error, i, j;
1026 struct elfhdr elf_ex;
1028 error = -ENOEXEC;
1029 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1030 if (retval != sizeof(elf_ex))
1031 goto out;
1033 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1034 goto out;
1036 /* First of all, some simple consistency checks */
1037 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1038 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1039 goto out;
1041 /* Now read in all of the header information */
1043 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1044 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1046 error = -ENOMEM;
1047 elf_phdata = kmalloc(j, GFP_KERNEL);
1048 if (!elf_phdata)
1049 goto out;
1051 eppnt = elf_phdata;
1052 error = -ENOEXEC;
1053 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1054 if (retval != j)
1055 goto out_free_ph;
1057 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1058 if ((eppnt + i)->p_type == PT_LOAD)
1059 j++;
1060 if (j != 1)
1061 goto out_free_ph;
1063 while (eppnt->p_type != PT_LOAD)
1064 eppnt++;
1066 /* Now use mmap to map the library into memory. */
1067 error = vm_mmap(file,
1068 ELF_PAGESTART(eppnt->p_vaddr),
1069 (eppnt->p_filesz +
1070 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1071 PROT_READ | PROT_WRITE | PROT_EXEC,
1072 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1073 (eppnt->p_offset -
1074 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1075 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1076 goto out_free_ph;
1078 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1079 if (padzero(elf_bss)) {
1080 error = -EFAULT;
1081 goto out_free_ph;
1084 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1085 ELF_MIN_ALIGN - 1);
1086 bss = eppnt->p_memsz + eppnt->p_vaddr;
1087 if (bss > len)
1088 vm_brk(len, bss - len);
1089 error = 0;
1091 out_free_ph:
1092 kfree(elf_phdata);
1093 out:
1094 return error;
1096 #endif /* #ifdef CONFIG_USELIB */
1098 #ifdef CONFIG_ELF_CORE
1100 * ELF core dumper
1102 * Modelled on fs/exec.c:aout_core_dump()
1103 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1107 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1108 * that are useful for post-mortem analysis are included in every core dump.
1109 * In that way we ensure that the core dump is fully interpretable later
1110 * without matching up the same kernel and hardware config to see what PC values
1111 * meant. These special mappings include - vDSO, vsyscall, and other
1112 * architecture specific mappings
1114 static bool always_dump_vma(struct vm_area_struct *vma)
1116 /* Any vsyscall mappings? */
1117 if (vma == get_gate_vma(vma->vm_mm))
1118 return true;
1121 * Assume that all vmas with a .name op should always be dumped.
1122 * If this changes, a new vm_ops field can easily be added.
1124 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1125 return true;
1128 * arch_vma_name() returns non-NULL for special architecture mappings,
1129 * such as vDSO sections.
1131 if (arch_vma_name(vma))
1132 return true;
1134 return false;
1138 * Decide what to dump of a segment, part, all or none.
1140 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1141 unsigned long mm_flags)
1143 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1145 /* always dump the vdso and vsyscall sections */
1146 if (always_dump_vma(vma))
1147 goto whole;
1149 if (vma->vm_flags & VM_DONTDUMP)
1150 return 0;
1152 /* Hugetlb memory check */
1153 if (vma->vm_flags & VM_HUGETLB) {
1154 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1155 goto whole;
1156 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1157 goto whole;
1158 return 0;
1161 /* Do not dump I/O mapped devices or special mappings */
1162 if (vma->vm_flags & VM_IO)
1163 return 0;
1165 /* By default, dump shared memory if mapped from an anonymous file. */
1166 if (vma->vm_flags & VM_SHARED) {
1167 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1168 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1169 goto whole;
1170 return 0;
1173 /* Dump segments that have been written to. */
1174 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1175 goto whole;
1176 if (vma->vm_file == NULL)
1177 return 0;
1179 if (FILTER(MAPPED_PRIVATE))
1180 goto whole;
1183 * If this looks like the beginning of a DSO or executable mapping,
1184 * check for an ELF header. If we find one, dump the first page to
1185 * aid in determining what was mapped here.
1187 if (FILTER(ELF_HEADERS) &&
1188 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1189 u32 __user *header = (u32 __user *) vma->vm_start;
1190 u32 word;
1191 mm_segment_t fs = get_fs();
1193 * Doing it this way gets the constant folded by GCC.
1195 union {
1196 u32 cmp;
1197 char elfmag[SELFMAG];
1198 } magic;
1199 BUILD_BUG_ON(SELFMAG != sizeof word);
1200 magic.elfmag[EI_MAG0] = ELFMAG0;
1201 magic.elfmag[EI_MAG1] = ELFMAG1;
1202 magic.elfmag[EI_MAG2] = ELFMAG2;
1203 magic.elfmag[EI_MAG3] = ELFMAG3;
1205 * Switch to the user "segment" for get_user(),
1206 * then put back what elf_core_dump() had in place.
1208 set_fs(USER_DS);
1209 if (unlikely(get_user(word, header)))
1210 word = 0;
1211 set_fs(fs);
1212 if (word == magic.cmp)
1213 return PAGE_SIZE;
1216 #undef FILTER
1218 return 0;
1220 whole:
1221 return vma->vm_end - vma->vm_start;
1224 /* An ELF note in memory */
1225 struct memelfnote
1227 const char *name;
1228 int type;
1229 unsigned int datasz;
1230 void *data;
1233 static int notesize(struct memelfnote *en)
1235 int sz;
1237 sz = sizeof(struct elf_note);
1238 sz += roundup(strlen(en->name) + 1, 4);
1239 sz += roundup(en->datasz, 4);
1241 return sz;
1244 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1246 struct elf_note en;
1247 en.n_namesz = strlen(men->name) + 1;
1248 en.n_descsz = men->datasz;
1249 en.n_type = men->type;
1251 return dump_emit(cprm, &en, sizeof(en)) &&
1252 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1253 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1256 static void fill_elf_header(struct elfhdr *elf, int segs,
1257 u16 machine, u32 flags)
1259 memset(elf, 0, sizeof(*elf));
1261 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1262 elf->e_ident[EI_CLASS] = ELF_CLASS;
1263 elf->e_ident[EI_DATA] = ELF_DATA;
1264 elf->e_ident[EI_VERSION] = EV_CURRENT;
1265 elf->e_ident[EI_OSABI] = ELF_OSABI;
1267 elf->e_type = ET_CORE;
1268 elf->e_machine = machine;
1269 elf->e_version = EV_CURRENT;
1270 elf->e_phoff = sizeof(struct elfhdr);
1271 elf->e_flags = flags;
1272 elf->e_ehsize = sizeof(struct elfhdr);
1273 elf->e_phentsize = sizeof(struct elf_phdr);
1274 elf->e_phnum = segs;
1276 return;
1279 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1281 phdr->p_type = PT_NOTE;
1282 phdr->p_offset = offset;
1283 phdr->p_vaddr = 0;
1284 phdr->p_paddr = 0;
1285 phdr->p_filesz = sz;
1286 phdr->p_memsz = 0;
1287 phdr->p_flags = 0;
1288 phdr->p_align = 0;
1289 return;
1292 static void fill_note(struct memelfnote *note, const char *name, int type,
1293 unsigned int sz, void *data)
1295 note->name = name;
1296 note->type = type;
1297 note->datasz = sz;
1298 note->data = data;
1299 return;
1303 * fill up all the fields in prstatus from the given task struct, except
1304 * registers which need to be filled up separately.
1306 static void fill_prstatus(struct elf_prstatus *prstatus,
1307 struct task_struct *p, long signr)
1309 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1310 prstatus->pr_sigpend = p->pending.signal.sig[0];
1311 prstatus->pr_sighold = p->blocked.sig[0];
1312 rcu_read_lock();
1313 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1314 rcu_read_unlock();
1315 prstatus->pr_pid = task_pid_vnr(p);
1316 prstatus->pr_pgrp = task_pgrp_vnr(p);
1317 prstatus->pr_sid = task_session_vnr(p);
1318 if (thread_group_leader(p)) {
1319 struct task_cputime cputime;
1322 * This is the record for the group leader. It shows the
1323 * group-wide total, not its individual thread total.
1325 thread_group_cputime(p, &cputime);
1326 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1327 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1328 } else {
1329 cputime_t utime, stime;
1331 task_cputime(p, &utime, &stime);
1332 cputime_to_timeval(utime, &prstatus->pr_utime);
1333 cputime_to_timeval(stime, &prstatus->pr_stime);
1335 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1336 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1339 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1340 struct mm_struct *mm)
1342 const struct cred *cred;
1343 unsigned int i, len;
1345 /* first copy the parameters from user space */
1346 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1348 len = mm->arg_end - mm->arg_start;
1349 if (len >= ELF_PRARGSZ)
1350 len = ELF_PRARGSZ-1;
1351 if (copy_from_user(&psinfo->pr_psargs,
1352 (const char __user *)mm->arg_start, len))
1353 return -EFAULT;
1354 for(i = 0; i < len; i++)
1355 if (psinfo->pr_psargs[i] == 0)
1356 psinfo->pr_psargs[i] = ' ';
1357 psinfo->pr_psargs[len] = 0;
1359 rcu_read_lock();
1360 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1361 rcu_read_unlock();
1362 psinfo->pr_pid = task_pid_vnr(p);
1363 psinfo->pr_pgrp = task_pgrp_vnr(p);
1364 psinfo->pr_sid = task_session_vnr(p);
1366 i = p->state ? ffz(~p->state) + 1 : 0;
1367 psinfo->pr_state = i;
1368 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1369 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1370 psinfo->pr_nice = task_nice(p);
1371 psinfo->pr_flag = p->flags;
1372 rcu_read_lock();
1373 cred = __task_cred(p);
1374 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1375 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1376 rcu_read_unlock();
1377 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1379 return 0;
1382 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1384 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1385 int i = 0;
1387 i += 2;
1388 while (auxv[i - 2] != AT_NULL);
1389 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1392 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1393 const siginfo_t *siginfo)
1395 mm_segment_t old_fs = get_fs();
1396 set_fs(KERNEL_DS);
1397 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1398 set_fs(old_fs);
1399 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1402 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1404 * Format of NT_FILE note:
1406 * long count -- how many files are mapped
1407 * long page_size -- units for file_ofs
1408 * array of [COUNT] elements of
1409 * long start
1410 * long end
1411 * long file_ofs
1412 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1414 static int fill_files_note(struct memelfnote *note)
1416 struct vm_area_struct *vma;
1417 unsigned count, size, names_ofs, remaining, n;
1418 user_long_t *data;
1419 user_long_t *start_end_ofs;
1420 char *name_base, *name_curpos;
1422 /* *Estimated* file count and total data size needed */
1423 count = current->mm->map_count;
1424 size = count * 64;
1426 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1427 alloc:
1428 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1429 return -EINVAL;
1430 size = round_up(size, PAGE_SIZE);
1431 data = vmalloc(size);
1432 if (!data)
1433 return -ENOMEM;
1435 start_end_ofs = data + 2;
1436 name_base = name_curpos = ((char *)data) + names_ofs;
1437 remaining = size - names_ofs;
1438 count = 0;
1439 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1440 struct file *file;
1441 const char *filename;
1443 file = vma->vm_file;
1444 if (!file)
1445 continue;
1446 filename = d_path(&file->f_path, name_curpos, remaining);
1447 if (IS_ERR(filename)) {
1448 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1449 vfree(data);
1450 size = size * 5 / 4;
1451 goto alloc;
1453 continue;
1456 /* d_path() fills at the end, move name down */
1457 /* n = strlen(filename) + 1: */
1458 n = (name_curpos + remaining) - filename;
1459 remaining = filename - name_curpos;
1460 memmove(name_curpos, filename, n);
1461 name_curpos += n;
1463 *start_end_ofs++ = vma->vm_start;
1464 *start_end_ofs++ = vma->vm_end;
1465 *start_end_ofs++ = vma->vm_pgoff;
1466 count++;
1469 /* Now we know exact count of files, can store it */
1470 data[0] = count;
1471 data[1] = PAGE_SIZE;
1473 * Count usually is less than current->mm->map_count,
1474 * we need to move filenames down.
1476 n = current->mm->map_count - count;
1477 if (n != 0) {
1478 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1479 memmove(name_base - shift_bytes, name_base,
1480 name_curpos - name_base);
1481 name_curpos -= shift_bytes;
1484 size = name_curpos - (char *)data;
1485 fill_note(note, "CORE", NT_FILE, size, data);
1486 return 0;
1489 #ifdef CORE_DUMP_USE_REGSET
1490 #include <linux/regset.h>
1492 struct elf_thread_core_info {
1493 struct elf_thread_core_info *next;
1494 struct task_struct *task;
1495 struct elf_prstatus prstatus;
1496 struct memelfnote notes[0];
1499 struct elf_note_info {
1500 struct elf_thread_core_info *thread;
1501 struct memelfnote psinfo;
1502 struct memelfnote signote;
1503 struct memelfnote auxv;
1504 struct memelfnote files;
1505 user_siginfo_t csigdata;
1506 size_t size;
1507 int thread_notes;
1511 * When a regset has a writeback hook, we call it on each thread before
1512 * dumping user memory. On register window machines, this makes sure the
1513 * user memory backing the register data is up to date before we read it.
1515 static void do_thread_regset_writeback(struct task_struct *task,
1516 const struct user_regset *regset)
1518 if (regset->writeback)
1519 regset->writeback(task, regset, 1);
1522 #ifndef PR_REG_SIZE
1523 #define PR_REG_SIZE(S) sizeof(S)
1524 #endif
1526 #ifndef PRSTATUS_SIZE
1527 #define PRSTATUS_SIZE(S) sizeof(S)
1528 #endif
1530 #ifndef PR_REG_PTR
1531 #define PR_REG_PTR(S) (&((S)->pr_reg))
1532 #endif
1534 #ifndef SET_PR_FPVALID
1535 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1536 #endif
1538 static int fill_thread_core_info(struct elf_thread_core_info *t,
1539 const struct user_regset_view *view,
1540 long signr, size_t *total)
1542 unsigned int i;
1545 * NT_PRSTATUS is the one special case, because the regset data
1546 * goes into the pr_reg field inside the note contents, rather
1547 * than being the whole note contents. We fill the reset in here.
1548 * We assume that regset 0 is NT_PRSTATUS.
1550 fill_prstatus(&t->prstatus, t->task, signr);
1551 (void) view->regsets[0].get(t->task, &view->regsets[0],
1552 0, PR_REG_SIZE(t->prstatus.pr_reg),
1553 PR_REG_PTR(&t->prstatus), NULL);
1555 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1556 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1557 *total += notesize(&t->notes[0]);
1559 do_thread_regset_writeback(t->task, &view->regsets[0]);
1562 * Each other regset might generate a note too. For each regset
1563 * that has no core_note_type or is inactive, we leave t->notes[i]
1564 * all zero and we'll know to skip writing it later.
1566 for (i = 1; i < view->n; ++i) {
1567 const struct user_regset *regset = &view->regsets[i];
1568 do_thread_regset_writeback(t->task, regset);
1569 if (regset->core_note_type && regset->get &&
1570 (!regset->active || regset->active(t->task, regset))) {
1571 int ret;
1572 size_t size = regset->n * regset->size;
1573 void *data = kmalloc(size, GFP_KERNEL);
1574 if (unlikely(!data))
1575 return 0;
1576 ret = regset->get(t->task, regset,
1577 0, size, data, NULL);
1578 if (unlikely(ret))
1579 kfree(data);
1580 else {
1581 if (regset->core_note_type != NT_PRFPREG)
1582 fill_note(&t->notes[i], "LINUX",
1583 regset->core_note_type,
1584 size, data);
1585 else {
1586 SET_PR_FPVALID(&t->prstatus, 1);
1587 fill_note(&t->notes[i], "CORE",
1588 NT_PRFPREG, size, data);
1590 *total += notesize(&t->notes[i]);
1595 return 1;
1598 static int fill_note_info(struct elfhdr *elf, int phdrs,
1599 struct elf_note_info *info,
1600 const siginfo_t *siginfo, struct pt_regs *regs)
1602 struct task_struct *dump_task = current;
1603 const struct user_regset_view *view = task_user_regset_view(dump_task);
1604 struct elf_thread_core_info *t;
1605 struct elf_prpsinfo *psinfo;
1606 struct core_thread *ct;
1607 unsigned int i;
1609 info->size = 0;
1610 info->thread = NULL;
1612 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1613 if (psinfo == NULL) {
1614 info->psinfo.data = NULL; /* So we don't free this wrongly */
1615 return 0;
1618 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1621 * Figure out how many notes we're going to need for each thread.
1623 info->thread_notes = 0;
1624 for (i = 0; i < view->n; ++i)
1625 if (view->regsets[i].core_note_type != 0)
1626 ++info->thread_notes;
1629 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1630 * since it is our one special case.
1632 if (unlikely(info->thread_notes == 0) ||
1633 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1634 WARN_ON(1);
1635 return 0;
1639 * Initialize the ELF file header.
1641 fill_elf_header(elf, phdrs,
1642 view->e_machine, view->e_flags);
1645 * Allocate a structure for each thread.
1647 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1648 t = kzalloc(offsetof(struct elf_thread_core_info,
1649 notes[info->thread_notes]),
1650 GFP_KERNEL);
1651 if (unlikely(!t))
1652 return 0;
1654 t->task = ct->task;
1655 if (ct->task == dump_task || !info->thread) {
1656 t->next = info->thread;
1657 info->thread = t;
1658 } else {
1660 * Make sure to keep the original task at
1661 * the head of the list.
1663 t->next = info->thread->next;
1664 info->thread->next = t;
1669 * Now fill in each thread's information.
1671 for (t = info->thread; t != NULL; t = t->next)
1672 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1673 return 0;
1676 * Fill in the two process-wide notes.
1678 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1679 info->size += notesize(&info->psinfo);
1681 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1682 info->size += notesize(&info->signote);
1684 fill_auxv_note(&info->auxv, current->mm);
1685 info->size += notesize(&info->auxv);
1687 if (fill_files_note(&info->files) == 0)
1688 info->size += notesize(&info->files);
1690 return 1;
1693 static size_t get_note_info_size(struct elf_note_info *info)
1695 return info->size;
1699 * Write all the notes for each thread. When writing the first thread, the
1700 * process-wide notes are interleaved after the first thread-specific note.
1702 static int write_note_info(struct elf_note_info *info,
1703 struct coredump_params *cprm)
1705 bool first = true;
1706 struct elf_thread_core_info *t = info->thread;
1708 do {
1709 int i;
1711 if (!writenote(&t->notes[0], cprm))
1712 return 0;
1714 if (first && !writenote(&info->psinfo, cprm))
1715 return 0;
1716 if (first && !writenote(&info->signote, cprm))
1717 return 0;
1718 if (first && !writenote(&info->auxv, cprm))
1719 return 0;
1720 if (first && info->files.data &&
1721 !writenote(&info->files, cprm))
1722 return 0;
1724 for (i = 1; i < info->thread_notes; ++i)
1725 if (t->notes[i].data &&
1726 !writenote(&t->notes[i], cprm))
1727 return 0;
1729 first = false;
1730 t = t->next;
1731 } while (t);
1733 return 1;
1736 static void free_note_info(struct elf_note_info *info)
1738 struct elf_thread_core_info *threads = info->thread;
1739 while (threads) {
1740 unsigned int i;
1741 struct elf_thread_core_info *t = threads;
1742 threads = t->next;
1743 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1744 for (i = 1; i < info->thread_notes; ++i)
1745 kfree(t->notes[i].data);
1746 kfree(t);
1748 kfree(info->psinfo.data);
1749 vfree(info->files.data);
1752 #else
1754 /* Here is the structure in which status of each thread is captured. */
1755 struct elf_thread_status
1757 struct list_head list;
1758 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1759 elf_fpregset_t fpu; /* NT_PRFPREG */
1760 struct task_struct *thread;
1761 #ifdef ELF_CORE_COPY_XFPREGS
1762 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1763 #endif
1764 struct memelfnote notes[3];
1765 int num_notes;
1769 * In order to add the specific thread information for the elf file format,
1770 * we need to keep a linked list of every threads pr_status and then create
1771 * a single section for them in the final core file.
1773 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1775 int sz = 0;
1776 struct task_struct *p = t->thread;
1777 t->num_notes = 0;
1779 fill_prstatus(&t->prstatus, p, signr);
1780 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1782 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1783 &(t->prstatus));
1784 t->num_notes++;
1785 sz += notesize(&t->notes[0]);
1787 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1788 &t->fpu))) {
1789 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1790 &(t->fpu));
1791 t->num_notes++;
1792 sz += notesize(&t->notes[1]);
1795 #ifdef ELF_CORE_COPY_XFPREGS
1796 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1797 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1798 sizeof(t->xfpu), &t->xfpu);
1799 t->num_notes++;
1800 sz += notesize(&t->notes[2]);
1802 #endif
1803 return sz;
1806 struct elf_note_info {
1807 struct memelfnote *notes;
1808 struct memelfnote *notes_files;
1809 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1810 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1811 struct list_head thread_list;
1812 elf_fpregset_t *fpu;
1813 #ifdef ELF_CORE_COPY_XFPREGS
1814 elf_fpxregset_t *xfpu;
1815 #endif
1816 user_siginfo_t csigdata;
1817 int thread_status_size;
1818 int numnote;
1821 static int elf_note_info_init(struct elf_note_info *info)
1823 memset(info, 0, sizeof(*info));
1824 INIT_LIST_HEAD(&info->thread_list);
1826 /* Allocate space for ELF notes */
1827 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1828 if (!info->notes)
1829 return 0;
1830 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1831 if (!info->psinfo)
1832 return 0;
1833 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1834 if (!info->prstatus)
1835 return 0;
1836 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1837 if (!info->fpu)
1838 return 0;
1839 #ifdef ELF_CORE_COPY_XFPREGS
1840 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1841 if (!info->xfpu)
1842 return 0;
1843 #endif
1844 return 1;
1847 static int fill_note_info(struct elfhdr *elf, int phdrs,
1848 struct elf_note_info *info,
1849 const siginfo_t *siginfo, struct pt_regs *regs)
1851 struct list_head *t;
1852 struct core_thread *ct;
1853 struct elf_thread_status *ets;
1855 if (!elf_note_info_init(info))
1856 return 0;
1858 for (ct = current->mm->core_state->dumper.next;
1859 ct; ct = ct->next) {
1860 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1861 if (!ets)
1862 return 0;
1864 ets->thread = ct->task;
1865 list_add(&ets->list, &info->thread_list);
1868 list_for_each(t, &info->thread_list) {
1869 int sz;
1871 ets = list_entry(t, struct elf_thread_status, list);
1872 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1873 info->thread_status_size += sz;
1875 /* now collect the dump for the current */
1876 memset(info->prstatus, 0, sizeof(*info->prstatus));
1877 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1878 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1880 /* Set up header */
1881 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1884 * Set up the notes in similar form to SVR4 core dumps made
1885 * with info from their /proc.
1888 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1889 sizeof(*info->prstatus), info->prstatus);
1890 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1891 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1892 sizeof(*info->psinfo), info->psinfo);
1894 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1895 fill_auxv_note(info->notes + 3, current->mm);
1896 info->numnote = 4;
1898 if (fill_files_note(info->notes + info->numnote) == 0) {
1899 info->notes_files = info->notes + info->numnote;
1900 info->numnote++;
1903 /* Try to dump the FPU. */
1904 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1905 info->fpu);
1906 if (info->prstatus->pr_fpvalid)
1907 fill_note(info->notes + info->numnote++,
1908 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1909 #ifdef ELF_CORE_COPY_XFPREGS
1910 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1911 fill_note(info->notes + info->numnote++,
1912 "LINUX", ELF_CORE_XFPREG_TYPE,
1913 sizeof(*info->xfpu), info->xfpu);
1914 #endif
1916 return 1;
1919 static size_t get_note_info_size(struct elf_note_info *info)
1921 int sz = 0;
1922 int i;
1924 for (i = 0; i < info->numnote; i++)
1925 sz += notesize(info->notes + i);
1927 sz += info->thread_status_size;
1929 return sz;
1932 static int write_note_info(struct elf_note_info *info,
1933 struct coredump_params *cprm)
1935 int i;
1936 struct list_head *t;
1938 for (i = 0; i < info->numnote; i++)
1939 if (!writenote(info->notes + i, cprm))
1940 return 0;
1942 /* write out the thread status notes section */
1943 list_for_each(t, &info->thread_list) {
1944 struct elf_thread_status *tmp =
1945 list_entry(t, struct elf_thread_status, list);
1947 for (i = 0; i < tmp->num_notes; i++)
1948 if (!writenote(&tmp->notes[i], cprm))
1949 return 0;
1952 return 1;
1955 static void free_note_info(struct elf_note_info *info)
1957 while (!list_empty(&info->thread_list)) {
1958 struct list_head *tmp = info->thread_list.next;
1959 list_del(tmp);
1960 kfree(list_entry(tmp, struct elf_thread_status, list));
1963 /* Free data possibly allocated by fill_files_note(): */
1964 if (info->notes_files)
1965 vfree(info->notes_files->data);
1967 kfree(info->prstatus);
1968 kfree(info->psinfo);
1969 kfree(info->notes);
1970 kfree(info->fpu);
1971 #ifdef ELF_CORE_COPY_XFPREGS
1972 kfree(info->xfpu);
1973 #endif
1976 #endif
1978 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1979 struct vm_area_struct *gate_vma)
1981 struct vm_area_struct *ret = tsk->mm->mmap;
1983 if (ret)
1984 return ret;
1985 return gate_vma;
1988 * Helper function for iterating across a vma list. It ensures that the caller
1989 * will visit `gate_vma' prior to terminating the search.
1991 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1992 struct vm_area_struct *gate_vma)
1994 struct vm_area_struct *ret;
1996 ret = this_vma->vm_next;
1997 if (ret)
1998 return ret;
1999 if (this_vma == gate_vma)
2000 return NULL;
2001 return gate_vma;
2004 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2005 elf_addr_t e_shoff, int segs)
2007 elf->e_shoff = e_shoff;
2008 elf->e_shentsize = sizeof(*shdr4extnum);
2009 elf->e_shnum = 1;
2010 elf->e_shstrndx = SHN_UNDEF;
2012 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2014 shdr4extnum->sh_type = SHT_NULL;
2015 shdr4extnum->sh_size = elf->e_shnum;
2016 shdr4extnum->sh_link = elf->e_shstrndx;
2017 shdr4extnum->sh_info = segs;
2020 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2021 unsigned long mm_flags)
2023 struct vm_area_struct *vma;
2024 size_t size = 0;
2026 for (vma = first_vma(current, gate_vma); vma != NULL;
2027 vma = next_vma(vma, gate_vma))
2028 size += vma_dump_size(vma, mm_flags);
2029 return size;
2033 * Actual dumper
2035 * This is a two-pass process; first we find the offsets of the bits,
2036 * and then they are actually written out. If we run out of core limit
2037 * we just truncate.
2039 static int elf_core_dump(struct coredump_params *cprm)
2041 int has_dumped = 0;
2042 mm_segment_t fs;
2043 int segs;
2044 struct vm_area_struct *vma, *gate_vma;
2045 struct elfhdr *elf = NULL;
2046 loff_t offset = 0, dataoff;
2047 struct elf_note_info info = { };
2048 struct elf_phdr *phdr4note = NULL;
2049 struct elf_shdr *shdr4extnum = NULL;
2050 Elf_Half e_phnum;
2051 elf_addr_t e_shoff;
2054 * We no longer stop all VM operations.
2056 * This is because those proceses that could possibly change map_count
2057 * or the mmap / vma pages are now blocked in do_exit on current
2058 * finishing this core dump.
2060 * Only ptrace can touch these memory addresses, but it doesn't change
2061 * the map_count or the pages allocated. So no possibility of crashing
2062 * exists while dumping the mm->vm_next areas to the core file.
2065 /* alloc memory for large data structures: too large to be on stack */
2066 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2067 if (!elf)
2068 goto out;
2070 * The number of segs are recored into ELF header as 16bit value.
2071 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2073 segs = current->mm->map_count;
2074 segs += elf_core_extra_phdrs();
2076 gate_vma = get_gate_vma(current->mm);
2077 if (gate_vma != NULL)
2078 segs++;
2080 /* for notes section */
2081 segs++;
2083 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2084 * this, kernel supports extended numbering. Have a look at
2085 * include/linux/elf.h for further information. */
2086 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2089 * Collect all the non-memory information about the process for the
2090 * notes. This also sets up the file header.
2092 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2093 goto cleanup;
2095 has_dumped = 1;
2097 fs = get_fs();
2098 set_fs(KERNEL_DS);
2100 offset += sizeof(*elf); /* Elf header */
2101 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2103 /* Write notes phdr entry */
2105 size_t sz = get_note_info_size(&info);
2107 sz += elf_coredump_extra_notes_size();
2109 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2110 if (!phdr4note)
2111 goto end_coredump;
2113 fill_elf_note_phdr(phdr4note, sz, offset);
2114 offset += sz;
2117 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2119 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2120 offset += elf_core_extra_data_size();
2121 e_shoff = offset;
2123 if (e_phnum == PN_XNUM) {
2124 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2125 if (!shdr4extnum)
2126 goto end_coredump;
2127 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2130 offset = dataoff;
2132 if (!dump_emit(cprm, elf, sizeof(*elf)))
2133 goto end_coredump;
2135 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2136 goto end_coredump;
2138 /* Write program headers for segments dump */
2139 for (vma = first_vma(current, gate_vma); vma != NULL;
2140 vma = next_vma(vma, gate_vma)) {
2141 struct elf_phdr phdr;
2143 phdr.p_type = PT_LOAD;
2144 phdr.p_offset = offset;
2145 phdr.p_vaddr = vma->vm_start;
2146 phdr.p_paddr = 0;
2147 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2148 phdr.p_memsz = vma->vm_end - vma->vm_start;
2149 offset += phdr.p_filesz;
2150 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2151 if (vma->vm_flags & VM_WRITE)
2152 phdr.p_flags |= PF_W;
2153 if (vma->vm_flags & VM_EXEC)
2154 phdr.p_flags |= PF_X;
2155 phdr.p_align = ELF_EXEC_PAGESIZE;
2157 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2158 goto end_coredump;
2161 if (!elf_core_write_extra_phdrs(cprm, offset))
2162 goto end_coredump;
2164 /* write out the notes section */
2165 if (!write_note_info(&info, cprm))
2166 goto end_coredump;
2168 if (elf_coredump_extra_notes_write(cprm))
2169 goto end_coredump;
2171 /* Align to page */
2172 if (!dump_skip(cprm, dataoff - cprm->written))
2173 goto end_coredump;
2175 for (vma = first_vma(current, gate_vma); vma != NULL;
2176 vma = next_vma(vma, gate_vma)) {
2177 unsigned long addr;
2178 unsigned long end;
2180 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2182 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2183 struct page *page;
2184 int stop;
2186 page = get_dump_page(addr);
2187 if (page) {
2188 void *kaddr = kmap(page);
2189 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2190 kunmap(page);
2191 page_cache_release(page);
2192 } else
2193 stop = !dump_skip(cprm, PAGE_SIZE);
2194 if (stop)
2195 goto end_coredump;
2199 if (!elf_core_write_extra_data(cprm))
2200 goto end_coredump;
2202 if (e_phnum == PN_XNUM) {
2203 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2204 goto end_coredump;
2207 end_coredump:
2208 set_fs(fs);
2210 cleanup:
2211 free_note_info(&info);
2212 kfree(shdr4extnum);
2213 kfree(phdr4note);
2214 kfree(elf);
2215 out:
2216 return has_dumped;
2219 #endif /* CONFIG_ELF_CORE */
2221 static int __init init_elf_binfmt(void)
2223 register_binfmt(&elf_format);
2224 return 0;
2227 static void __exit exit_elf_binfmt(void)
2229 /* Remove the COFF and ELF loaders. */
2230 unregister_binfmt(&elf_format);
2233 core_initcall(init_elf_binfmt);
2234 module_exit(exit_elf_binfmt);
2235 MODULE_LICENSE("GPL");