4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/irq_regs.h>
28 static DEFINE_PER_CPU(struct arm_pmu
*, cpu_armpmu
);
29 static DEFINE_PER_CPU(int, cpu_irq
);
31 static inline u64
arm_pmu_event_max_period(struct perf_event
*event
)
33 if (event
->hw
.flags
& ARMPMU_EVT_64BIT
)
34 return GENMASK_ULL(63, 0);
36 return GENMASK_ULL(31, 0);
40 armpmu_map_cache_event(const unsigned (*cache_map
)
41 [PERF_COUNT_HW_CACHE_MAX
]
42 [PERF_COUNT_HW_CACHE_OP_MAX
]
43 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
46 unsigned int cache_type
, cache_op
, cache_result
, ret
;
48 cache_type
= (config
>> 0) & 0xff;
49 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
52 cache_op
= (config
>> 8) & 0xff;
53 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
56 cache_result
= (config
>> 16) & 0xff;
57 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
63 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
65 if (ret
== CACHE_OP_UNSUPPORTED
)
72 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
76 if (config
>= PERF_COUNT_HW_MAX
)
82 mapping
= (*event_map
)[config
];
83 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
87 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
89 return (int)(config
& raw_event_mask
);
93 armpmu_map_event(struct perf_event
*event
,
94 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
95 const unsigned (*cache_map
)
96 [PERF_COUNT_HW_CACHE_MAX
]
97 [PERF_COUNT_HW_CACHE_OP_MAX
]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
101 u64 config
= event
->attr
.config
;
102 int type
= event
->attr
.type
;
104 if (type
== event
->pmu
->type
)
105 return armpmu_map_raw_event(raw_event_mask
, config
);
108 case PERF_TYPE_HARDWARE
:
109 return armpmu_map_hw_event(event_map
, config
);
110 case PERF_TYPE_HW_CACHE
:
111 return armpmu_map_cache_event(cache_map
, config
);
113 return armpmu_map_raw_event(raw_event_mask
, config
);
119 int armpmu_event_set_period(struct perf_event
*event
)
121 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
122 struct hw_perf_event
*hwc
= &event
->hw
;
123 s64 left
= local64_read(&hwc
->period_left
);
124 s64 period
= hwc
->sample_period
;
128 max_period
= arm_pmu_event_max_period(event
);
129 if (unlikely(left
<= -period
)) {
131 local64_set(&hwc
->period_left
, left
);
132 hwc
->last_period
= period
;
136 if (unlikely(left
<= 0)) {
138 local64_set(&hwc
->period_left
, left
);
139 hwc
->last_period
= period
;
144 * Limit the maximum period to prevent the counter value
145 * from overtaking the one we are about to program. In
146 * effect we are reducing max_period to account for
147 * interrupt latency (and we are being very conservative).
149 if (left
> (max_period
>> 1))
150 left
= (max_period
>> 1);
152 local64_set(&hwc
->prev_count
, (u64
)-left
);
154 armpmu
->write_counter(event
, (u64
)(-left
) & max_period
);
156 perf_event_update_userpage(event
);
161 u64
armpmu_event_update(struct perf_event
*event
)
163 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
164 struct hw_perf_event
*hwc
= &event
->hw
;
165 u64 delta
, prev_raw_count
, new_raw_count
;
166 u64 max_period
= arm_pmu_event_max_period(event
);
169 prev_raw_count
= local64_read(&hwc
->prev_count
);
170 new_raw_count
= armpmu
->read_counter(event
);
172 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
173 new_raw_count
) != prev_raw_count
)
176 delta
= (new_raw_count
- prev_raw_count
) & max_period
;
178 local64_add(delta
, &event
->count
);
179 local64_sub(delta
, &hwc
->period_left
);
181 return new_raw_count
;
185 armpmu_read(struct perf_event
*event
)
187 armpmu_event_update(event
);
191 armpmu_stop(struct perf_event
*event
, int flags
)
193 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
194 struct hw_perf_event
*hwc
= &event
->hw
;
197 * ARM pmu always has to update the counter, so ignore
198 * PERF_EF_UPDATE, see comments in armpmu_start().
200 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
201 armpmu
->disable(event
);
202 armpmu_event_update(event
);
203 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
207 static void armpmu_start(struct perf_event
*event
, int flags
)
209 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
210 struct hw_perf_event
*hwc
= &event
->hw
;
213 * ARM pmu always has to reprogram the period, so ignore
214 * PERF_EF_RELOAD, see the comment below.
216 if (flags
& PERF_EF_RELOAD
)
217 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
221 * Set the period again. Some counters can't be stopped, so when we
222 * were stopped we simply disabled the IRQ source and the counter
223 * may have been left counting. If we don't do this step then we may
224 * get an interrupt too soon or *way* too late if the overflow has
225 * happened since disabling.
227 armpmu_event_set_period(event
);
228 armpmu
->enable(event
);
232 armpmu_del(struct perf_event
*event
, int flags
)
234 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
235 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
236 struct hw_perf_event
*hwc
= &event
->hw
;
239 armpmu_stop(event
, PERF_EF_UPDATE
);
240 hw_events
->events
[idx
] = NULL
;
241 armpmu
->clear_event_idx(hw_events
, event
);
242 perf_event_update_userpage(event
);
243 /* Clear the allocated counter */
248 armpmu_add(struct perf_event
*event
, int flags
)
250 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
251 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
252 struct hw_perf_event
*hwc
= &event
->hw
;
255 /* An event following a process won't be stopped earlier */
256 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
259 /* If we don't have a space for the counter then finish early. */
260 idx
= armpmu
->get_event_idx(hw_events
, event
);
265 * If there is an event in the counter we are going to use then make
266 * sure it is disabled.
269 armpmu
->disable(event
);
270 hw_events
->events
[idx
] = event
;
272 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
273 if (flags
& PERF_EF_START
)
274 armpmu_start(event
, PERF_EF_RELOAD
);
276 /* Propagate our changes to the userspace mapping. */
277 perf_event_update_userpage(event
);
283 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
284 struct perf_event
*event
)
286 struct arm_pmu
*armpmu
;
288 if (is_software_event(event
))
292 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
293 * core perf code won't check that the pmu->ctx == leader->ctx
294 * until after pmu->event_init(event).
296 if (event
->pmu
!= pmu
)
299 if (event
->state
< PERF_EVENT_STATE_OFF
)
302 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
305 armpmu
= to_arm_pmu(event
->pmu
);
306 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
310 validate_group(struct perf_event
*event
)
312 struct perf_event
*sibling
, *leader
= event
->group_leader
;
313 struct pmu_hw_events fake_pmu
;
316 * Initialise the fake PMU. We only need to populate the
317 * used_mask for the purposes of validation.
319 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
321 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
324 for_each_sibling_event(sibling
, leader
) {
325 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
329 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
335 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
337 struct arm_pmu
*armpmu
;
339 u64 start_clock
, finish_clock
;
342 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
343 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
344 * do any necessary shifting, we just need to perform the first
347 armpmu
= *(void **)dev
;
348 if (WARN_ON_ONCE(!armpmu
))
351 start_clock
= sched_clock();
352 ret
= armpmu
->handle_irq(armpmu
);
353 finish_clock
= sched_clock();
355 perf_sample_event_took(finish_clock
- start_clock
);
360 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
362 return attr
->exclude_idle
|| attr
->exclude_user
||
363 attr
->exclude_kernel
|| attr
->exclude_hv
;
367 __hw_perf_event_init(struct perf_event
*event
)
369 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
370 struct hw_perf_event
*hwc
= &event
->hw
;
374 mapping
= armpmu
->map_event(event
);
377 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
383 * We don't assign an index until we actually place the event onto
384 * hardware. Use -1 to signify that we haven't decided where to put it
385 * yet. For SMP systems, each core has it's own PMU so we can't do any
386 * clever allocation or constraints checking at this point.
389 hwc
->config_base
= 0;
394 * Check whether we need to exclude the counter from certain modes.
396 if ((!armpmu
->set_event_filter
||
397 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
398 event_requires_mode_exclusion(&event
->attr
)) {
399 pr_debug("ARM performance counters do not support "
405 * Store the event encoding into the config_base field.
407 hwc
->config_base
|= (unsigned long)mapping
;
409 if (!is_sampling_event(event
)) {
411 * For non-sampling runs, limit the sample_period to half
412 * of the counter width. That way, the new counter value
413 * is far less likely to overtake the previous one unless
414 * you have some serious IRQ latency issues.
416 hwc
->sample_period
= arm_pmu_event_max_period(event
) >> 1;
417 hwc
->last_period
= hwc
->sample_period
;
418 local64_set(&hwc
->period_left
, hwc
->sample_period
);
421 if (event
->group_leader
!= event
) {
422 if (validate_group(event
) != 0)
429 static int armpmu_event_init(struct perf_event
*event
)
431 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
434 * Reject CPU-affine events for CPUs that are of a different class to
435 * that which this PMU handles. Process-following events (where
436 * event->cpu == -1) can be migrated between CPUs, and thus we have to
437 * reject them later (in armpmu_add) if they're scheduled on a
438 * different class of CPU.
440 if (event
->cpu
!= -1 &&
441 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
444 /* does not support taken branch sampling */
445 if (has_branch_stack(event
))
448 if (armpmu
->map_event(event
) == -ENOENT
)
451 return __hw_perf_event_init(event
);
454 static void armpmu_enable(struct pmu
*pmu
)
456 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
457 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
458 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
460 /* For task-bound events we may be called on other CPUs */
461 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
465 armpmu
->start(armpmu
);
468 static void armpmu_disable(struct pmu
*pmu
)
470 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
472 /* For task-bound events we may be called on other CPUs */
473 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
476 armpmu
->stop(armpmu
);
480 * In heterogeneous systems, events are specific to a particular
481 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
482 * the same microarchitecture.
484 static int armpmu_filter_match(struct perf_event
*event
)
486 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
487 unsigned int cpu
= smp_processor_id();
490 ret
= cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
491 if (ret
&& armpmu
->filter_match
)
492 return armpmu
->filter_match(event
);
497 static ssize_t
armpmu_cpumask_show(struct device
*dev
,
498 struct device_attribute
*attr
, char *buf
)
500 struct arm_pmu
*armpmu
= to_arm_pmu(dev_get_drvdata(dev
));
501 return cpumap_print_to_pagebuf(true, buf
, &armpmu
->supported_cpus
);
504 static DEVICE_ATTR(cpus
, S_IRUGO
, armpmu_cpumask_show
, NULL
);
506 static struct attribute
*armpmu_common_attrs
[] = {
511 static struct attribute_group armpmu_common_attr_group
= {
512 .attrs
= armpmu_common_attrs
,
515 /* Set at runtime when we know what CPU type we are. */
516 static struct arm_pmu
*__oprofile_cpu_pmu
;
519 * Despite the names, these two functions are CPU-specific and are used
520 * by the OProfile/perf code.
522 const char *perf_pmu_name(void)
524 if (!__oprofile_cpu_pmu
)
527 return __oprofile_cpu_pmu
->name
;
529 EXPORT_SYMBOL_GPL(perf_pmu_name
);
531 int perf_num_counters(void)
535 if (__oprofile_cpu_pmu
!= NULL
)
536 max_events
= __oprofile_cpu_pmu
->num_events
;
540 EXPORT_SYMBOL_GPL(perf_num_counters
);
542 static int armpmu_count_irq_users(const int irq
)
546 for_each_possible_cpu(cpu
) {
547 if (per_cpu(cpu_irq
, cpu
) == irq
)
554 void armpmu_free_irq(int irq
, int cpu
)
556 if (per_cpu(cpu_irq
, cpu
) == 0)
558 if (WARN_ON(irq
!= per_cpu(cpu_irq
, cpu
)))
561 if (!irq_is_percpu_devid(irq
))
562 free_irq(irq
, per_cpu_ptr(&cpu_armpmu
, cpu
));
563 else if (armpmu_count_irq_users(irq
) == 1)
564 free_percpu_irq(irq
, &cpu_armpmu
);
566 per_cpu(cpu_irq
, cpu
) = 0;
569 int armpmu_request_irq(int irq
, int cpu
)
572 const irq_handler_t handler
= armpmu_dispatch_irq
;
576 if (!irq_is_percpu_devid(irq
)) {
577 unsigned long irq_flags
;
579 err
= irq_force_affinity(irq
, cpumask_of(cpu
));
581 if (err
&& num_possible_cpus() > 1) {
582 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
587 irq_flags
= IRQF_PERCPU
|
591 irq_set_status_flags(irq
, IRQ_NOAUTOEN
);
592 err
= request_irq(irq
, handler
, irq_flags
, "arm-pmu",
593 per_cpu_ptr(&cpu_armpmu
, cpu
));
594 } else if (armpmu_count_irq_users(irq
) == 0) {
595 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
602 per_cpu(cpu_irq
, cpu
) = irq
;
606 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq
);
610 static int armpmu_get_cpu_irq(struct arm_pmu
*pmu
, int cpu
)
612 struct pmu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
613 return per_cpu(hw_events
->irq
, cpu
);
617 * PMU hardware loses all context when a CPU goes offline.
618 * When a CPU is hotplugged back in, since some hardware registers are
619 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
620 * junk values out of them.
622 static int arm_perf_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
624 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
627 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
632 per_cpu(cpu_armpmu
, cpu
) = pmu
;
634 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
636 if (irq_is_percpu_devid(irq
))
637 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
645 static int arm_perf_teardown_cpu(unsigned int cpu
, struct hlist_node
*node
)
647 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
650 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
653 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
655 if (irq_is_percpu_devid(irq
))
656 disable_percpu_irq(irq
);
658 disable_irq_nosync(irq
);
661 per_cpu(cpu_armpmu
, cpu
) = NULL
;
667 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
669 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
670 struct perf_event
*event
;
673 for (idx
= 0; idx
< armpmu
->num_events
; idx
++) {
674 event
= hw_events
->events
[idx
];
681 * Stop and update the counter
683 armpmu_stop(event
, PERF_EF_UPDATE
);
686 case CPU_PM_ENTER_FAILED
:
688 * Restore and enable the counter.
689 * armpmu_start() indirectly calls
691 * perf_event_update_userpage()
693 * that requires RCU read locking to be functional,
694 * wrap the call within RCU_NONIDLE to make the
695 * RCU subsystem aware this cpu is not idle from
696 * an RCU perspective for the armpmu_start() call
699 RCU_NONIDLE(armpmu_start(event
, PERF_EF_RELOAD
));
707 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
710 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
711 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
712 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
714 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
718 * Always reset the PMU registers on power-up even if
719 * there are no events running.
721 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
722 armpmu
->reset(armpmu
);
729 armpmu
->stop(armpmu
);
730 cpu_pm_pmu_setup(armpmu
, cmd
);
733 cpu_pm_pmu_setup(armpmu
, cmd
);
734 case CPU_PM_ENTER_FAILED
:
735 armpmu
->start(armpmu
);
744 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
746 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
747 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
750 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
752 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
755 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
756 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
759 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
763 err
= cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING
,
768 err
= cpu_pm_pmu_register(cpu_pmu
);
775 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
781 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
783 cpu_pm_pmu_unregister(cpu_pmu
);
784 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
788 static struct arm_pmu
*__armpmu_alloc(gfp_t flags
)
793 pmu
= kzalloc(sizeof(*pmu
), flags
);
795 pr_info("failed to allocate PMU device!\n");
799 pmu
->hw_events
= alloc_percpu_gfp(struct pmu_hw_events
, flags
);
800 if (!pmu
->hw_events
) {
801 pr_info("failed to allocate per-cpu PMU data.\n");
805 pmu
->pmu
= (struct pmu
) {
806 .pmu_enable
= armpmu_enable
,
807 .pmu_disable
= armpmu_disable
,
808 .event_init
= armpmu_event_init
,
811 .start
= armpmu_start
,
814 .filter_match
= armpmu_filter_match
,
815 .attr_groups
= pmu
->attr_groups
,
817 * This is a CPU PMU potentially in a heterogeneous
818 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
819 * and we have taken ctx sharing into account (e.g. with our
820 * pmu::filter_match callback and pmu::event_init group
823 .capabilities
= PERF_PMU_CAP_HETEROGENEOUS_CPUS
,
826 pmu
->attr_groups
[ARMPMU_ATTR_GROUP_COMMON
] =
827 &armpmu_common_attr_group
;
829 for_each_possible_cpu(cpu
) {
830 struct pmu_hw_events
*events
;
832 events
= per_cpu_ptr(pmu
->hw_events
, cpu
);
833 raw_spin_lock_init(&events
->pmu_lock
);
834 events
->percpu_pmu
= pmu
;
845 struct arm_pmu
*armpmu_alloc(void)
847 return __armpmu_alloc(GFP_KERNEL
);
850 struct arm_pmu
*armpmu_alloc_atomic(void)
852 return __armpmu_alloc(GFP_ATOMIC
);
856 void armpmu_free(struct arm_pmu
*pmu
)
858 free_percpu(pmu
->hw_events
);
862 int armpmu_register(struct arm_pmu
*pmu
)
866 ret
= cpu_pmu_init(pmu
);
870 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
874 if (!__oprofile_cpu_pmu
)
875 __oprofile_cpu_pmu
= pmu
;
877 pr_info("enabled with %s PMU driver, %d counters available\n",
878 pmu
->name
, pmu
->num_events
);
883 cpu_pmu_destroy(pmu
);
887 static int arm_pmu_hp_init(void)
891 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING
,
892 "perf/arm/pmu:starting",
893 arm_perf_starting_cpu
,
894 arm_perf_teardown_cpu
);
896 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
900 subsys_initcall(arm_pmu_hp_init
);