2 * RTC Driver for X-Powers AC100
4 * Copyright (c) 2016 Chen-Yu Tsai
6 * Chen-Yu Tsai <wens@csie.org>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 #include <linux/bcd.h>
19 #include <linux/clk-provider.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/mfd/ac100.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
27 #include <linux/platform_device.h>
28 #include <linux/regmap.h>
29 #include <linux/rtc.h>
30 #include <linux/types.h>
32 /* Control register */
33 #define AC100_RTC_CTRL_24HOUR BIT(0)
35 /* Clock output register bits */
36 #define AC100_CLKOUT_PRE_DIV_SHIFT 5
37 #define AC100_CLKOUT_PRE_DIV_WIDTH 3
38 #define AC100_CLKOUT_MUX_SHIFT 4
39 #define AC100_CLKOUT_MUX_WIDTH 1
40 #define AC100_CLKOUT_DIV_SHIFT 1
41 #define AC100_CLKOUT_DIV_WIDTH 3
42 #define AC100_CLKOUT_EN BIT(0)
45 #define AC100_RTC_SEC_MASK GENMASK(6, 0)
46 #define AC100_RTC_MIN_MASK GENMASK(6, 0)
47 #define AC100_RTC_HOU_MASK GENMASK(5, 0)
48 #define AC100_RTC_WEE_MASK GENMASK(2, 0)
49 #define AC100_RTC_DAY_MASK GENMASK(5, 0)
50 #define AC100_RTC_MON_MASK GENMASK(4, 0)
51 #define AC100_RTC_YEA_MASK GENMASK(7, 0)
52 #define AC100_RTC_YEA_LEAP BIT(15)
53 #define AC100_RTC_UPD_TRIGGER BIT(15)
55 /* Alarm (wall clock) */
56 #define AC100_ALM_INT_ENABLE BIT(0)
58 #define AC100_ALM_SEC_MASK GENMASK(6, 0)
59 #define AC100_ALM_MIN_MASK GENMASK(6, 0)
60 #define AC100_ALM_HOU_MASK GENMASK(5, 0)
61 #define AC100_ALM_WEE_MASK GENMASK(2, 0)
62 #define AC100_ALM_DAY_MASK GENMASK(5, 0)
63 #define AC100_ALM_MON_MASK GENMASK(4, 0)
64 #define AC100_ALM_YEA_MASK GENMASK(7, 0)
65 #define AC100_ALM_ENABLE_FLAG BIT(15)
66 #define AC100_ALM_UPD_TRIGGER BIT(15)
69 * The year parameter passed to the driver is usually an offset relative to
70 * the year 1900. This macro is used to convert this offset to another one
71 * relative to the minimum year allowed by the hardware.
73 * The year range is 1970 - 2069. This range is selected to match Allwinner's
76 #define AC100_YEAR_MIN 1970
77 #define AC100_YEAR_MAX 2069
78 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900)
82 struct regmap
*regmap
;
86 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
88 #define AC100_RTC_32K_NAME "ac100-rtc-32k"
89 #define AC100_RTC_32K_RATE 32768
90 #define AC100_CLKOUT_NUM 3
92 static const char * const ac100_clkout_names
[AC100_CLKOUT_NUM
] = {
98 struct ac100_rtc_dev
{
99 struct rtc_device
*rtc
;
101 struct regmap
*regmap
;
105 struct clk_hw
*rtc_32k_clk
;
106 struct ac100_clkout clks
[AC100_CLKOUT_NUM
];
107 struct clk_hw_onecell_data
*clk_data
;
111 * Clock controls for 3 clock output pins
114 static const struct clk_div_table ac100_clkout_prediv
[] = {
115 { .val
= 0, .div
= 1 },
116 { .val
= 1, .div
= 2 },
117 { .val
= 2, .div
= 4 },
118 { .val
= 3, .div
= 8 },
119 { .val
= 4, .div
= 16 },
120 { .val
= 5, .div
= 32 },
121 { .val
= 6, .div
= 64 },
122 { .val
= 7, .div
= 122 },
126 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
127 static unsigned long ac100_clkout_recalc_rate(struct clk_hw
*hw
,
130 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
131 unsigned int reg
, div
;
133 regmap_read(clk
->regmap
, clk
->offset
, ®
);
135 /* Handle pre-divider first */
136 if (prate
!= AC100_RTC_32K_RATE
) {
137 div
= (reg
>> AC100_CLKOUT_PRE_DIV_SHIFT
) &
138 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH
) - 1);
139 prate
= divider_recalc_rate(hw
, prate
, div
,
140 ac100_clkout_prediv
, 0,
141 AC100_CLKOUT_PRE_DIV_WIDTH
);
144 div
= (reg
>> AC100_CLKOUT_DIV_SHIFT
) &
145 (BIT(AC100_CLKOUT_DIV_WIDTH
) - 1);
146 return divider_recalc_rate(hw
, prate
, div
, NULL
,
147 CLK_DIVIDER_POWER_OF_TWO
,
148 AC100_CLKOUT_DIV_WIDTH
);
151 static long ac100_clkout_round_rate(struct clk_hw
*hw
, unsigned long rate
,
154 unsigned long best_rate
= 0, tmp_rate
, tmp_prate
;
157 if (prate
== AC100_RTC_32K_RATE
)
158 return divider_round_rate(hw
, rate
, &prate
, NULL
,
159 AC100_CLKOUT_DIV_WIDTH
,
160 CLK_DIVIDER_POWER_OF_TWO
);
162 for (i
= 0; ac100_clkout_prediv
[i
].div
; i
++) {
163 tmp_prate
= DIV_ROUND_UP(prate
, ac100_clkout_prediv
[i
].val
);
164 tmp_rate
= divider_round_rate(hw
, rate
, &tmp_prate
, NULL
,
165 AC100_CLKOUT_DIV_WIDTH
,
166 CLK_DIVIDER_POWER_OF_TWO
);
170 if (rate
- tmp_rate
< best_rate
- tmp_rate
)
171 best_rate
= tmp_rate
;
177 static int ac100_clkout_determine_rate(struct clk_hw
*hw
,
178 struct clk_rate_request
*req
)
180 struct clk_hw
*best_parent
;
181 unsigned long best
= 0;
182 int i
, num_parents
= clk_hw_get_num_parents(hw
);
184 for (i
= 0; i
< num_parents
; i
++) {
185 struct clk_hw
*parent
= clk_hw_get_parent_by_index(hw
, i
);
186 unsigned long tmp
, prate
;
189 * The clock has two parents, one is a fixed clock which is
190 * internally registered by the ac100 driver. The other parent
191 * is a clock from the codec side of the chip, which we
192 * properly declare and reference in the devicetree and is
193 * not implemented in any driver right now.
194 * If the clock core looks for the parent of that second
195 * missing clock, it can't find one that is registered and
197 * So we end up in a situation where clk_hw_get_num_parents
198 * returns the amount of clocks we can be parented to, but
199 * clk_hw_get_parent_by_index will not return the orphan
201 * Thus we need to check if the parent exists before
202 * we get the parent rate, so we could use the RTC
203 * without waiting for the codec to be supported.
208 prate
= clk_hw_get_rate(parent
);
210 tmp
= ac100_clkout_round_rate(hw
, req
->rate
, prate
);
214 if (req
->rate
- tmp
< req
->rate
- best
) {
216 best_parent
= parent
;
223 req
->best_parent_hw
= best_parent
;
224 req
->best_parent_rate
= best
;
230 static int ac100_clkout_set_rate(struct clk_hw
*hw
, unsigned long rate
,
233 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
234 int div
= 0, pre_div
= 0;
237 div
= divider_get_val(rate
* ac100_clkout_prediv
[pre_div
].div
,
238 prate
, NULL
, AC100_CLKOUT_DIV_WIDTH
,
239 CLK_DIVIDER_POWER_OF_TWO
);
242 } while (prate
!= AC100_RTC_32K_RATE
&&
243 ac100_clkout_prediv
[++pre_div
].div
);
248 pre_div
= ac100_clkout_prediv
[pre_div
].val
;
250 regmap_update_bits(clk
->regmap
, clk
->offset
,
251 ((1 << AC100_CLKOUT_DIV_WIDTH
) - 1) << AC100_CLKOUT_DIV_SHIFT
|
252 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH
) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT
,
253 (div
- 1) << AC100_CLKOUT_DIV_SHIFT
|
254 (pre_div
- 1) << AC100_CLKOUT_PRE_DIV_SHIFT
);
259 static int ac100_clkout_prepare(struct clk_hw
*hw
)
261 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
263 return regmap_update_bits(clk
->regmap
, clk
->offset
, AC100_CLKOUT_EN
,
267 static void ac100_clkout_unprepare(struct clk_hw
*hw
)
269 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
271 regmap_update_bits(clk
->regmap
, clk
->offset
, AC100_CLKOUT_EN
, 0);
274 static int ac100_clkout_is_prepared(struct clk_hw
*hw
)
276 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
279 regmap_read(clk
->regmap
, clk
->offset
, ®
);
281 return reg
& AC100_CLKOUT_EN
;
284 static u8
ac100_clkout_get_parent(struct clk_hw
*hw
)
286 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
289 regmap_read(clk
->regmap
, clk
->offset
, ®
);
291 return (reg
>> AC100_CLKOUT_MUX_SHIFT
) & 0x1;
294 static int ac100_clkout_set_parent(struct clk_hw
*hw
, u8 index
)
296 struct ac100_clkout
*clk
= to_ac100_clkout(hw
);
298 return regmap_update_bits(clk
->regmap
, clk
->offset
,
299 BIT(AC100_CLKOUT_MUX_SHIFT
),
300 index
? BIT(AC100_CLKOUT_MUX_SHIFT
) : 0);
303 static const struct clk_ops ac100_clkout_ops
= {
304 .prepare
= ac100_clkout_prepare
,
305 .unprepare
= ac100_clkout_unprepare
,
306 .is_prepared
= ac100_clkout_is_prepared
,
307 .recalc_rate
= ac100_clkout_recalc_rate
,
308 .determine_rate
= ac100_clkout_determine_rate
,
309 .get_parent
= ac100_clkout_get_parent
,
310 .set_parent
= ac100_clkout_set_parent
,
311 .set_rate
= ac100_clkout_set_rate
,
314 static int ac100_rtc_register_clks(struct ac100_rtc_dev
*chip
)
316 struct device_node
*np
= chip
->dev
->of_node
;
317 const char *parents
[2] = {AC100_RTC_32K_NAME
};
320 chip
->clk_data
= devm_kzalloc(chip
->dev
,
321 struct_size(chip
->clk_data
, hws
,
327 chip
->rtc_32k_clk
= clk_hw_register_fixed_rate(chip
->dev
,
331 if (IS_ERR(chip
->rtc_32k_clk
)) {
332 ret
= PTR_ERR(chip
->rtc_32k_clk
);
333 dev_err(chip
->dev
, "Failed to register RTC-32k clock: %d\n",
338 parents
[1] = of_clk_get_parent_name(np
, 0);
340 dev_err(chip
->dev
, "Failed to get ADDA 4M clock\n");
344 for (i
= 0; i
< AC100_CLKOUT_NUM
; i
++) {
345 struct ac100_clkout
*clk
= &chip
->clks
[i
];
346 struct clk_init_data init
= {
347 .name
= ac100_clkout_names
[i
],
348 .ops
= &ac100_clkout_ops
,
349 .parent_names
= parents
,
350 .num_parents
= ARRAY_SIZE(parents
),
354 of_property_read_string_index(np
, "clock-output-names",
356 clk
->regmap
= chip
->regmap
;
357 clk
->offset
= AC100_CLKOUT_CTRL1
+ i
;
358 clk
->hw
.init
= &init
;
360 ret
= devm_clk_hw_register(chip
->dev
, &clk
->hw
);
362 dev_err(chip
->dev
, "Failed to register clk '%s': %d\n",
364 goto err_unregister_rtc_32k
;
367 chip
->clk_data
->hws
[i
] = &clk
->hw
;
370 chip
->clk_data
->num
= i
;
371 ret
= of_clk_add_hw_provider(np
, of_clk_hw_onecell_get
, chip
->clk_data
);
373 goto err_unregister_rtc_32k
;
377 err_unregister_rtc_32k
:
378 clk_unregister_fixed_rate(chip
->rtc_32k_clk
->clk
);
383 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev
*chip
)
385 of_clk_del_provider(chip
->dev
->of_node
);
386 clk_unregister_fixed_rate(chip
->rtc_32k_clk
->clk
);
392 static int ac100_rtc_get_time(struct device
*dev
, struct rtc_time
*rtc_tm
)
394 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
395 struct regmap
*regmap
= chip
->regmap
;
399 ret
= regmap_bulk_read(regmap
, AC100_RTC_SEC
, reg
, 7);
403 rtc_tm
->tm_sec
= bcd2bin(reg
[0] & AC100_RTC_SEC_MASK
);
404 rtc_tm
->tm_min
= bcd2bin(reg
[1] & AC100_RTC_MIN_MASK
);
405 rtc_tm
->tm_hour
= bcd2bin(reg
[2] & AC100_RTC_HOU_MASK
);
406 rtc_tm
->tm_wday
= bcd2bin(reg
[3] & AC100_RTC_WEE_MASK
);
407 rtc_tm
->tm_mday
= bcd2bin(reg
[4] & AC100_RTC_DAY_MASK
);
408 rtc_tm
->tm_mon
= bcd2bin(reg
[5] & AC100_RTC_MON_MASK
) - 1;
409 rtc_tm
->tm_year
= bcd2bin(reg
[6] & AC100_RTC_YEA_MASK
) +
415 static int ac100_rtc_set_time(struct device
*dev
, struct rtc_time
*rtc_tm
)
417 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
418 struct regmap
*regmap
= chip
->regmap
;
422 /* our RTC has a limited year range... */
423 year
= rtc_tm
->tm_year
- AC100_YEAR_OFF
;
424 if (year
< 0 || year
> (AC100_YEAR_MAX
- 1900)) {
425 dev_err(dev
, "rtc only supports year in range %d - %d\n",
426 AC100_YEAR_MIN
, AC100_YEAR_MAX
);
431 reg
[0] = bin2bcd(rtc_tm
->tm_sec
) & AC100_RTC_SEC_MASK
;
432 reg
[1] = bin2bcd(rtc_tm
->tm_min
) & AC100_RTC_MIN_MASK
;
433 reg
[2] = bin2bcd(rtc_tm
->tm_hour
) & AC100_RTC_HOU_MASK
;
434 reg
[3] = bin2bcd(rtc_tm
->tm_wday
) & AC100_RTC_WEE_MASK
;
435 reg
[4] = bin2bcd(rtc_tm
->tm_mday
) & AC100_RTC_DAY_MASK
;
436 reg
[5] = bin2bcd(rtc_tm
->tm_mon
+ 1) & AC100_RTC_MON_MASK
;
437 reg
[6] = bin2bcd(year
) & AC100_RTC_YEA_MASK
;
439 reg
[7] = AC100_RTC_UPD_TRIGGER
;
441 /* Is it a leap year? */
442 if (is_leap_year(year
+ AC100_YEAR_OFF
+ 1900))
443 reg
[6] |= AC100_RTC_YEA_LEAP
;
445 return regmap_bulk_write(regmap
, AC100_RTC_SEC
, reg
, 8);
448 static int ac100_rtc_alarm_irq_enable(struct device
*dev
, unsigned int en
)
450 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
451 struct regmap
*regmap
= chip
->regmap
;
454 val
= en
? AC100_ALM_INT_ENABLE
: 0;
456 return regmap_write(regmap
, AC100_ALM_INT_ENA
, val
);
459 static int ac100_rtc_get_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
461 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
462 struct regmap
*regmap
= chip
->regmap
;
463 struct rtc_time
*alrm_tm
= &alrm
->time
;
468 ret
= regmap_read(regmap
, AC100_ALM_INT_ENA
, &val
);
472 alrm
->enabled
= !!(val
& AC100_ALM_INT_ENABLE
);
474 ret
= regmap_bulk_read(regmap
, AC100_ALM_SEC
, reg
, 7);
478 alrm_tm
->tm_sec
= bcd2bin(reg
[0] & AC100_ALM_SEC_MASK
);
479 alrm_tm
->tm_min
= bcd2bin(reg
[1] & AC100_ALM_MIN_MASK
);
480 alrm_tm
->tm_hour
= bcd2bin(reg
[2] & AC100_ALM_HOU_MASK
);
481 alrm_tm
->tm_wday
= bcd2bin(reg
[3] & AC100_ALM_WEE_MASK
);
482 alrm_tm
->tm_mday
= bcd2bin(reg
[4] & AC100_ALM_DAY_MASK
);
483 alrm_tm
->tm_mon
= bcd2bin(reg
[5] & AC100_ALM_MON_MASK
) - 1;
484 alrm_tm
->tm_year
= bcd2bin(reg
[6] & AC100_ALM_YEA_MASK
) +
490 static int ac100_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
492 struct ac100_rtc_dev
*chip
= dev_get_drvdata(dev
);
493 struct regmap
*regmap
= chip
->regmap
;
494 struct rtc_time
*alrm_tm
= &alrm
->time
;
499 /* our alarm has a limited year range... */
500 year
= alrm_tm
->tm_year
- AC100_YEAR_OFF
;
501 if (year
< 0 || year
> (AC100_YEAR_MAX
- 1900)) {
502 dev_err(dev
, "alarm only supports year in range %d - %d\n",
503 AC100_YEAR_MIN
, AC100_YEAR_MAX
);
508 reg
[0] = (bin2bcd(alrm_tm
->tm_sec
) & AC100_ALM_SEC_MASK
) |
509 AC100_ALM_ENABLE_FLAG
;
510 reg
[1] = (bin2bcd(alrm_tm
->tm_min
) & AC100_ALM_MIN_MASK
) |
511 AC100_ALM_ENABLE_FLAG
;
512 reg
[2] = (bin2bcd(alrm_tm
->tm_hour
) & AC100_ALM_HOU_MASK
) |
513 AC100_ALM_ENABLE_FLAG
;
514 /* Do not enable weekday alarm */
515 reg
[3] = bin2bcd(alrm_tm
->tm_wday
) & AC100_ALM_WEE_MASK
;
516 reg
[4] = (bin2bcd(alrm_tm
->tm_mday
) & AC100_ALM_DAY_MASK
) |
517 AC100_ALM_ENABLE_FLAG
;
518 reg
[5] = (bin2bcd(alrm_tm
->tm_mon
+ 1) & AC100_ALM_MON_MASK
) |
519 AC100_ALM_ENABLE_FLAG
;
520 reg
[6] = (bin2bcd(year
) & AC100_ALM_YEA_MASK
) |
521 AC100_ALM_ENABLE_FLAG
;
523 reg
[7] = AC100_ALM_UPD_TRIGGER
;
525 ret
= regmap_bulk_write(regmap
, AC100_ALM_SEC
, reg
, 8);
529 return ac100_rtc_alarm_irq_enable(dev
, alrm
->enabled
);
532 static irqreturn_t
ac100_rtc_irq(int irq
, void *data
)
534 struct ac100_rtc_dev
*chip
= data
;
535 struct regmap
*regmap
= chip
->regmap
;
536 unsigned int val
= 0;
539 mutex_lock(&chip
->rtc
->ops_lock
);
542 ret
= regmap_read(regmap
, AC100_ALM_INT_STA
, &val
);
546 if (val
& AC100_ALM_INT_ENABLE
) {
547 /* signal rtc framework */
548 rtc_update_irq(chip
->rtc
, 1, RTC_AF
| RTC_IRQF
);
551 ret
= regmap_write(regmap
, AC100_ALM_INT_STA
, val
);
555 /* disable interrupt */
556 ret
= ac100_rtc_alarm_irq_enable(chip
->dev
, 0);
562 mutex_unlock(&chip
->rtc
->ops_lock
);
566 static const struct rtc_class_ops ac100_rtc_ops
= {
567 .read_time
= ac100_rtc_get_time
,
568 .set_time
= ac100_rtc_set_time
,
569 .read_alarm
= ac100_rtc_get_alarm
,
570 .set_alarm
= ac100_rtc_set_alarm
,
571 .alarm_irq_enable
= ac100_rtc_alarm_irq_enable
,
574 static int ac100_rtc_probe(struct platform_device
*pdev
)
576 struct ac100_dev
*ac100
= dev_get_drvdata(pdev
->dev
.parent
);
577 struct ac100_rtc_dev
*chip
;
580 chip
= devm_kzalloc(&pdev
->dev
, sizeof(*chip
), GFP_KERNEL
);
584 platform_set_drvdata(pdev
, chip
);
585 chip
->dev
= &pdev
->dev
;
586 chip
->regmap
= ac100
->regmap
;
588 chip
->irq
= platform_get_irq(pdev
, 0);
590 dev_err(&pdev
->dev
, "No IRQ resource\n");
594 chip
->rtc
= devm_rtc_allocate_device(&pdev
->dev
);
595 if (IS_ERR(chip
->rtc
))
596 return PTR_ERR(chip
->rtc
);
598 chip
->rtc
->ops
= &ac100_rtc_ops
;
600 ret
= devm_request_threaded_irq(&pdev
->dev
, chip
->irq
, NULL
,
602 IRQF_SHARED
| IRQF_ONESHOT
,
603 dev_name(&pdev
->dev
), chip
);
605 dev_err(&pdev
->dev
, "Could not request IRQ\n");
609 /* always use 24 hour mode */
610 regmap_write_bits(chip
->regmap
, AC100_RTC_CTRL
, AC100_RTC_CTRL_24HOUR
,
611 AC100_RTC_CTRL_24HOUR
);
613 /* disable counter alarm interrupt */
614 regmap_write(chip
->regmap
, AC100_ALM_INT_ENA
, 0);
616 /* clear counter alarm pending interrupts */
617 regmap_write(chip
->regmap
, AC100_ALM_INT_STA
, AC100_ALM_INT_ENABLE
);
619 ret
= ac100_rtc_register_clks(chip
);
623 ret
= rtc_register_device(chip
->rtc
);
625 dev_err(&pdev
->dev
, "unable to register device\n");
629 dev_info(&pdev
->dev
, "RTC enabled\n");
634 static int ac100_rtc_remove(struct platform_device
*pdev
)
636 struct ac100_rtc_dev
*chip
= platform_get_drvdata(pdev
);
638 ac100_rtc_unregister_clks(chip
);
643 static const struct of_device_id ac100_rtc_match
[] = {
644 { .compatible
= "x-powers,ac100-rtc" },
647 MODULE_DEVICE_TABLE(of
, ac100_rtc_match
);
649 static struct platform_driver ac100_rtc_driver
= {
650 .probe
= ac100_rtc_probe
,
651 .remove
= ac100_rtc_remove
,
654 .of_match_table
= of_match_ptr(ac100_rtc_match
),
657 module_platform_driver(ac100_rtc_driver
);
659 MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
660 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
661 MODULE_LICENSE("GPL v2");