perf python: Do not force closing original perf descriptor in evlist.get_pollfd()
[linux/fpc-iii.git] / drivers / usb / dwc2 / hcd.h
blob3f9bccc95add1fc777cfb2938aa46fdec77e119b
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 #ifndef __DWC2_HCD_H__
38 #define __DWC2_HCD_H__
41 * This file contains the structures, constants, and interfaces for the
42 * Host Contoller Driver (HCD)
44 * The Host Controller Driver (HCD) is responsible for translating requests
45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
46 * It isolates the USBD from the specifics of the controller by providing an
47 * API to the USBD.
50 struct dwc2_qh;
52 /**
53 * struct dwc2_host_chan - Software host channel descriptor
55 * @hc_num: Host channel number, used for register address lookup
56 * @dev_addr: Address of the device
57 * @ep_num: Endpoint of the device
58 * @ep_is_in: Endpoint direction
59 * @speed: Device speed. One of the following values:
60 * - USB_SPEED_LOW
61 * - USB_SPEED_FULL
62 * - USB_SPEED_HIGH
63 * @ep_type: Endpoint type. One of the following values:
64 * - USB_ENDPOINT_XFER_CONTROL: 0
65 * - USB_ENDPOINT_XFER_ISOC: 1
66 * - USB_ENDPOINT_XFER_BULK: 2
67 * - USB_ENDPOINT_XFER_INTR: 3
68 * @max_packet: Max packet size in bytes
69 * @data_pid_start: PID for initial transaction.
70 * 0: DATA0
71 * 1: DATA2
72 * 2: DATA1
73 * 3: MDATA (non-Control EP),
74 * SETUP (Control EP)
75 * @multi_count: Number of additional periodic transactions per
76 * (micro)frame
77 * @xfer_buf: Pointer to current transfer buffer position
78 * @xfer_dma: DMA address of xfer_buf
79 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
80 * DWORD aligned
81 * @xfer_len: Total number of bytes to transfer
82 * @xfer_count: Number of bytes transferred so far
83 * @start_pkt_count: Packet count at start of transfer
84 * @xfer_started: True if the transfer has been started
85 * @do_ping: True if a PING request should be issued on this channel
86 * @error_state: True if the error count for this transaction is non-zero
87 * @halt_on_queue: True if this channel should be halted the next time a
88 * request is queued for the channel. This is necessary in
89 * slave mode if no request queue space is available when
90 * an attempt is made to halt the channel.
91 * @halt_pending: True if the host channel has been halted, but the core
92 * is not finished flushing queued requests
93 * @do_split: Enable split for the channel
94 * @complete_split: Enable complete split
95 * @hub_addr: Address of high speed hub for the split
96 * @hub_port: Port of the low/full speed device for the split
97 * @xact_pos: Split transaction position. One of the following values:
98 * - DWC2_HCSPLT_XACTPOS_MID
99 * - DWC2_HCSPLT_XACTPOS_BEGIN
100 * - DWC2_HCSPLT_XACTPOS_END
101 * - DWC2_HCSPLT_XACTPOS_ALL
102 * @requests: Number of requests issued for this channel since it was
103 * assigned to the current transfer (not counting PINGs)
104 * @schinfo: Scheduling micro-frame bitmap
105 * @ntd: Number of transfer descriptors for the transfer
106 * @halt_status: Reason for halting the host channel
107 * @hcint: Contents of the HCINT register when the interrupt came
108 * @qh: QH for the transfer being processed by this channel
109 * @hc_list_entry: For linking to list of host channels
110 * @desc_list_addr: Current QH's descriptor list DMA address
111 * @desc_list_sz: Current QH's descriptor list size
112 * @split_order_list_entry: List entry for keeping track of the order of splits
114 * This structure represents the state of a single host channel when acting in
115 * host mode. It contains the data items needed to transfer packets to an
116 * endpoint via a host channel.
118 struct dwc2_host_chan {
119 u8 hc_num;
121 unsigned dev_addr:7;
122 unsigned ep_num:4;
123 unsigned ep_is_in:1;
124 unsigned speed:4;
125 unsigned ep_type:2;
126 unsigned max_packet:11;
127 unsigned data_pid_start:2;
128 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
129 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
130 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
131 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
132 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
134 unsigned multi_count:2;
136 u8 *xfer_buf;
137 dma_addr_t xfer_dma;
138 dma_addr_t align_buf;
139 u32 xfer_len;
140 u32 xfer_count;
141 u16 start_pkt_count;
142 u8 xfer_started;
143 u8 do_ping;
144 u8 error_state;
145 u8 halt_on_queue;
146 u8 halt_pending;
147 u8 do_split;
148 u8 complete_split;
149 u8 hub_addr;
150 u8 hub_port;
151 u8 xact_pos;
152 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
153 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
157 u8 requests;
158 u8 schinfo;
159 u16 ntd;
160 enum dwc2_halt_status halt_status;
161 u32 hcint;
162 struct dwc2_qh *qh;
163 struct list_head hc_list_entry;
164 dma_addr_t desc_list_addr;
165 u32 desc_list_sz;
166 struct list_head split_order_list_entry;
169 struct dwc2_hcd_pipe_info {
170 u8 dev_addr;
171 u8 ep_num;
172 u8 pipe_type;
173 u8 pipe_dir;
174 u16 mps;
177 struct dwc2_hcd_iso_packet_desc {
178 u32 offset;
179 u32 length;
180 u32 actual_length;
181 u32 status;
184 struct dwc2_qtd;
186 struct dwc2_hcd_urb {
187 void *priv;
188 struct dwc2_qtd *qtd;
189 void *buf;
190 dma_addr_t dma;
191 void *setup_packet;
192 dma_addr_t setup_dma;
193 u32 length;
194 u32 actual_length;
195 u32 status;
196 u32 error_count;
197 u32 packet_count;
198 u32 flags;
199 u16 interval;
200 struct dwc2_hcd_pipe_info pipe_info;
201 struct dwc2_hcd_iso_packet_desc iso_descs[0];
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 DWC2_CONTROL_SETUP,
207 DWC2_CONTROL_DATA,
208 DWC2_CONTROL_STATUS,
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 DWC2_TRANSACTION_NONE,
214 DWC2_TRANSACTION_PERIODIC,
215 DWC2_TRANSACTION_NON_PERIODIC,
216 DWC2_TRANSACTION_ALL,
219 /* The number of elements per LS bitmap (per port on multi_tt) */
220 #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
221 BITS_PER_LONG)
224 * struct dwc2_tt - dwc2 data associated with a usb_tt
226 * @refcount: Number of Queue Heads (QHs) holding a reference.
227 * @usb_tt: Pointer back to the official usb_tt.
228 * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
229 * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
230 * elements (so sizeof(long) times that in bytes).
232 * This structure is stored in the hcpriv of the official usb_tt.
234 struct dwc2_tt {
235 int refcount;
236 struct usb_tt *usb_tt;
237 unsigned long periodic_bitmaps[];
241 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
243 * @start_schedule_us: The start time on the main bus schedule. Note that
244 * the main bus schedule is tightly packed and this
245 * time should be interpreted as tightly packed (so
246 * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
247 * instead of 125 us).
248 * @duration_us: How long this transfer goes.
251 struct dwc2_hs_transfer_time {
252 u32 start_schedule_us;
253 u16 duration_us;
257 * struct dwc2_qh - Software queue head structure
259 * @hsotg: The HCD state structure for the DWC OTG controller
260 * @ep_type: Endpoint type. One of the following values:
261 * - USB_ENDPOINT_XFER_CONTROL
262 * - USB_ENDPOINT_XFER_BULK
263 * - USB_ENDPOINT_XFER_INT
264 * - USB_ENDPOINT_XFER_ISOC
265 * @ep_is_in: Endpoint direction
266 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
267 * @dev_speed: Device speed. One of the following values:
268 * - USB_SPEED_LOW
269 * - USB_SPEED_FULL
270 * - USB_SPEED_HIGH
271 * @data_toggle: Determines the PID of the next data packet for
272 * non-controltransfers. Ignored for control transfers.
273 * One of the following values:
274 * - DWC2_HC_PID_DATA0
275 * - DWC2_HC_PID_DATA1
276 * @ping_state: Ping state
277 * @do_split: Full/low speed endpoint on high-speed hub requires split
278 * @td_first: Index of first activated isochronous transfer descriptor
279 * @td_last: Index of last activated isochronous transfer descriptor
280 * @host_us: Bandwidth in microseconds per transfer as seen by host
281 * @device_us: Bandwidth in microseconds per transfer as seen by device
282 * @host_interval: Interval between transfers as seen by the host. If
283 * the host is high speed and the device is low speed this
284 * will be 8 times device interval.
285 * @device_interval: Interval between transfers as seen by the device.
286 * interval.
287 * @next_active_frame: (Micro)frame _before_ we next need to put something on
288 * the bus. We'll move the qh to active here. If the
289 * host is in high speed mode this will be a uframe. If
290 * the host is in low speed mode this will be a full frame.
291 * @start_active_frame: If we are partway through a split transfer, this will be
292 * what next_active_frame was when we started. Otherwise
293 * it should always be the same as next_active_frame.
294 * @num_hs_transfers: Number of transfers in hs_transfers.
295 * Normally this is 1 but can be more than one for splits.
296 * Always >= 1 unless the host is in low/full speed mode.
297 * @hs_transfers: Transfers that are scheduled as seen by the high speed
298 * bus. Not used if host is in low or full speed mode (but
299 * note that it IS USED if the device is low or full speed
300 * as long as the HOST is in high speed mode).
301 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
302 * schedule that's being used by this device. This
303 * will be on the periodic_bitmap in a
304 * "struct dwc2_tt". Not used if this device is high
305 * speed. Note that this is in "schedule slice" which
306 * is tightly packed.
307 * @ntd: Actual number of transfer descriptors in a list
308 * @dw_align_buf: Used instead of original buffer if its physical address
309 * is not dword-aligned
310 * @dw_align_buf_dma: DMA address for dw_align_buf
311 * @qtd_list: List of QTDs for this QH
312 * @channel: Host channel currently processing transfers for this QH
313 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
314 * schedule
315 * @desc_list: List of transfer descriptors
316 * @desc_list_dma: Physical address of desc_list
317 * @desc_list_sz: Size of descriptors list
318 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
319 * descriptor and indicates original XferSize value for the
320 * descriptor
321 * @unreserve_timer: Timer for releasing periodic reservation.
322 * @wait_timer: Timer used to wait before re-queuing.
323 * @dwc_tt: Pointer to our tt info (or NULL if no tt).
324 * @ttport: Port number within our tt.
325 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
326 * @unreserve_pending: True if we planned to unreserve but haven't yet.
327 * @schedule_low_speed: True if we have a low/full speed component (either the
328 * host is in low/full speed mode or do_split).
329 * @want_wait: We should wait before re-queuing; only matters for non-
330 * periodic transfers and is ignored for periodic ones.
331 * @wait_timer_cancel: Set to true to cancel the wait_timer.
333 * @tt_buffer_dirty: True if EP's TT buffer is not clean.
334 * A Queue Head (QH) holds the static characteristics of an endpoint and
335 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
336 * be entered in either the non-periodic or periodic schedule.
338 struct dwc2_qh {
339 struct dwc2_hsotg *hsotg;
340 u8 ep_type;
341 u8 ep_is_in;
342 u16 maxp;
343 u8 dev_speed;
344 u8 data_toggle;
345 u8 ping_state;
346 u8 do_split;
347 u8 td_first;
348 u8 td_last;
349 u16 host_us;
350 u16 device_us;
351 u16 host_interval;
352 u16 device_interval;
353 u16 next_active_frame;
354 u16 start_active_frame;
355 s16 num_hs_transfers;
356 struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
357 u32 ls_start_schedule_slice;
358 u16 ntd;
359 u8 *dw_align_buf;
360 dma_addr_t dw_align_buf_dma;
361 struct list_head qtd_list;
362 struct dwc2_host_chan *channel;
363 struct list_head qh_list_entry;
364 struct dwc2_dma_desc *desc_list;
365 dma_addr_t desc_list_dma;
366 u32 desc_list_sz;
367 u32 *n_bytes;
368 struct timer_list unreserve_timer;
369 struct timer_list wait_timer;
370 struct dwc2_tt *dwc_tt;
371 int ttport;
372 unsigned tt_buffer_dirty:1;
373 unsigned unreserve_pending:1;
374 unsigned schedule_low_speed:1;
375 unsigned want_wait:1;
376 unsigned wait_timer_cancel:1;
380 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
382 * @control_phase: Current phase for control transfers (Setup, Data, or
383 * Status)
384 * @in_process: Indicates if this QTD is currently processed by HW
385 * @data_toggle: Determines the PID of the next data packet for the
386 * data phase of control transfers. Ignored for other
387 * transfer types. One of the following values:
388 * - DWC2_HC_PID_DATA0
389 * - DWC2_HC_PID_DATA1
390 * @complete_split: Keeps track of the current split type for FS/LS
391 * endpoints on a HS Hub
392 * @isoc_split_pos: Position of the ISOC split in full/low speed
393 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
394 * transfer. A frame descriptor describes the buffer
395 * position and length of the data to be transferred in the
396 * next scheduled (micro)frame of an isochronous transfer.
397 * It also holds status for that transaction. The frame
398 * index starts at 0.
399 * @isoc_split_offset: Position of the ISOC split in the buffer for the
400 * current frame
401 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
402 * @error_count: Holds the number of bus errors that have occurred for
403 * a transaction within this transfer
404 * @n_desc: Number of DMA descriptors for this QTD
405 * @isoc_frame_index_last: Last activated frame (packet) index, used in
406 * descriptor DMA mode only
407 * @num_naks: Number of NAKs received on this QTD.
408 * @urb: URB for this transfer
409 * @qh: Queue head for this QTD
410 * @qtd_list_entry: For linking to the QH's list of QTDs
411 * @isoc_td_first: Index of first activated isochronous transfer
412 * descriptor in Descriptor DMA mode
413 * @isoc_td_last: Index of last activated isochronous transfer
414 * descriptor in Descriptor DMA mode
416 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
417 * interrupt, or isochronous transfer. A single QTD is created for each URB
418 * (of one of these types) submitted to the HCD. The transfer associated with
419 * a QTD may require one or multiple transactions.
421 * A QTD is linked to a Queue Head, which is entered in either the
422 * non-periodic or periodic schedule for execution. When a QTD is chosen for
423 * execution, some or all of its transactions may be executed. After
424 * execution, the state of the QTD is updated. The QTD may be retired if all
425 * its transactions are complete or if an error occurred. Otherwise, it
426 * remains in the schedule so more transactions can be executed later.
428 struct dwc2_qtd {
429 enum dwc2_control_phase control_phase;
430 u8 in_process;
431 u8 data_toggle;
432 u8 complete_split;
433 u8 isoc_split_pos;
434 u16 isoc_frame_index;
435 u16 isoc_split_offset;
436 u16 isoc_td_last;
437 u16 isoc_td_first;
438 u32 ssplit_out_xfer_count;
439 u8 error_count;
440 u8 n_desc;
441 u16 isoc_frame_index_last;
442 u16 num_naks;
443 struct dwc2_hcd_urb *urb;
444 struct dwc2_qh *qh;
445 struct list_head qtd_list_entry;
448 #ifdef DEBUG
449 struct hc_xfer_info {
450 struct dwc2_hsotg *hsotg;
451 struct dwc2_host_chan *chan;
453 #endif
455 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
457 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
458 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
460 return (struct usb_hcd *)hsotg->priv;
464 * Inline used to disable one channel interrupt. Channel interrupts are
465 * disabled when the channel is halted or released by the interrupt handler.
466 * There is no need to handle further interrupts of that type until the
467 * channel is re-assigned. In fact, subsequent handling may cause crashes
468 * because the channel structures are cleaned up when the channel is released.
470 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
472 u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
474 mask &= ~intr;
475 dwc2_writel(hsotg, mask, HCINTMSK(chnum));
478 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
479 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
480 enum dwc2_halt_status halt_status);
481 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
482 struct dwc2_host_chan *chan);
485 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
486 * are read as 1, they won't clear when written back.
488 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
490 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
492 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
493 return hprt0;
496 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
498 return pipe->ep_num;
501 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
503 return pipe->pipe_type;
506 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
508 return pipe->mps;
511 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
513 return pipe->dev_addr;
516 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
518 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
521 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
523 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
526 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
528 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
531 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
533 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
536 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
538 return pipe->pipe_dir == USB_DIR_IN;
541 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
543 return !dwc2_hcd_is_pipe_in(pipe);
546 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
547 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
549 /* Transaction Execution Functions */
550 enum dwc2_transaction_type dwc2_hcd_select_transactions(
551 struct dwc2_hsotg *hsotg);
552 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
553 enum dwc2_transaction_type tr_type);
555 /* Schedule Queue Functions */
556 /* Implemented in hcd_queue.c */
557 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
558 struct dwc2_hcd_urb *urb,
559 gfp_t mem_flags);
560 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
561 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
562 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
563 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
564 int sched_csplit);
566 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
567 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
568 struct dwc2_qh *qh);
570 /* Unlinks and frees a QTD */
571 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
572 struct dwc2_qtd *qtd,
573 struct dwc2_qh *qh)
575 list_del(&qtd->qtd_list_entry);
576 kfree(qtd);
577 qtd = NULL;
580 /* Descriptor DMA support functions */
581 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
582 struct dwc2_qh *qh);
583 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
584 struct dwc2_host_chan *chan, int chnum,
585 enum dwc2_halt_status halt_status);
587 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
588 gfp_t mem_flags);
589 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
591 /* Check if QH is non-periodic */
592 #define dwc2_qh_is_non_per(_qh_ptr_) \
593 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
594 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
596 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
597 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
598 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
599 static inline bool dbg_urb(struct urb *urb) { return true; }
600 static inline bool dbg_perio(void) { return true; }
601 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
602 static inline bool dbg_hc(struct dwc2_host_chan *hc)
604 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
605 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
608 static inline bool dbg_qh(struct dwc2_qh *qh)
610 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
611 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
614 static inline bool dbg_urb(struct urb *urb)
616 return usb_pipetype(urb->pipe) == PIPE_BULK ||
617 usb_pipetype(urb->pipe) == PIPE_CONTROL;
620 static inline bool dbg_perio(void) { return false; }
621 #endif
623 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
624 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
626 /* Packet size for any kind of endpoint descriptor */
627 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
630 * Returns true if frame1 index is greater than frame2 index. The comparison
631 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
632 * frame number when the max index frame number is reached.
634 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
636 u16 diff = fr_idx1 - fr_idx2;
637 u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
639 return diff && !sign;
643 * Returns true if frame1 is less than or equal to frame2. The comparison is
644 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
645 * frame number when the max frame number is reached.
647 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
649 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
653 * Returns true if frame1 is greater than frame2. The comparison is done
654 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
655 * number when the max frame number is reached.
657 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
659 return (frame1 != frame2) &&
660 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
664 * Increments frame by the amount specified by inc. The addition is done
665 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
667 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
669 return (frame + inc) & HFNUM_MAX_FRNUM;
672 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
674 return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
677 static inline u16 dwc2_full_frame_num(u16 frame)
679 return (frame & HFNUM_MAX_FRNUM) >> 3;
682 static inline u16 dwc2_micro_frame_num(u16 frame)
684 return frame & 0x7;
688 * Returns the Core Interrupt Status register contents, ANDed with the Core
689 * Interrupt Mask register contents
691 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
693 return dwc2_readl(hsotg, GINTSTS) &
694 dwc2_readl(hsotg, GINTMSK);
697 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
699 return dwc2_urb->status;
702 static inline u32 dwc2_hcd_urb_get_actual_length(
703 struct dwc2_hcd_urb *dwc2_urb)
705 return dwc2_urb->actual_length;
708 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
710 return dwc2_urb->error_count;
713 static inline void dwc2_hcd_urb_set_iso_desc_params(
714 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
715 u32 length)
717 dwc2_urb->iso_descs[desc_num].offset = offset;
718 dwc2_urb->iso_descs[desc_num].length = length;
721 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
722 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
724 return dwc2_urb->iso_descs[desc_num].status;
727 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
728 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
730 return dwc2_urb->iso_descs[desc_num].actual_length;
733 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
734 struct usb_host_endpoint *ep)
736 struct dwc2_qh *qh = ep->hcpriv;
738 if (qh && !list_empty(&qh->qh_list_entry))
739 return 1;
741 return 0;
744 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
745 struct usb_host_endpoint *ep)
747 struct dwc2_qh *qh = ep->hcpriv;
749 if (!qh) {
750 WARN_ON(1);
751 return 0;
754 return qh->host_us;
757 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
758 struct dwc2_host_chan *chan, int chnum,
759 struct dwc2_qtd *qtd);
761 /* HCD Core API */
764 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
766 * @hsotg: The DWC2 HCD
768 * Returns IRQ_HANDLED if interrupt is handled
769 * Return IRQ_NONE if interrupt is not handled
771 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
774 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
776 * @hsotg: The DWC2 HCD
778 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
781 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
782 * and 0 otherwise
784 * @hsotg: The DWC2 HCD
786 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
789 * dwc2_hcd_dump_state() - Dumps hsotg state
791 * @hsotg: The DWC2 HCD
793 * NOTE: This function will be removed once the peripheral controller code
794 * is integrated and the driver is stable
796 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
798 /* URB interface */
800 /* Transfer flags */
801 #define URB_GIVEBACK_ASAP 0x1
802 #define URB_SEND_ZERO_PACKET 0x2
804 /* Host driver callbacks */
805 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
806 void *context, gfp_t mem_flags,
807 int *ttport);
809 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
810 struct dwc2_tt *dwc_tt);
811 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
812 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
813 int status);
815 #endif /* __DWC2_HCD_H__ */