coresight: tmc: Configure DMA mask appropriately
[linux/fpc-iii.git] / block / blk-throttle.c
blobb78db2e5fdff1e158ea52c179313ff3eba282015
1 /*
2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
21 /* Throttling is performed over a slice and after that slice is renewed */
22 #define DFL_THROTL_SLICE_HD (HZ / 10)
23 #define DFL_THROTL_SLICE_SSD (HZ / 50)
24 #define MAX_THROTL_SLICE (HZ)
25 #define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26 #define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 /* default latency target is 0, eg, guarantee IO latency by default */
29 #define DFL_LATENCY_TARGET (0)
31 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
33 static struct blkcg_policy blkcg_policy_throtl;
35 /* A workqueue to queue throttle related work */
36 static struct workqueue_struct *kthrotld_workqueue;
39 * To implement hierarchical throttling, throtl_grps form a tree and bios
40 * are dispatched upwards level by level until they reach the top and get
41 * issued. When dispatching bios from the children and local group at each
42 * level, if the bios are dispatched into a single bio_list, there's a risk
43 * of a local or child group which can queue many bios at once filling up
44 * the list starving others.
46 * To avoid such starvation, dispatched bios are queued separately
47 * according to where they came from. When they are again dispatched to
48 * the parent, they're popped in round-robin order so that no single source
49 * hogs the dispatch window.
51 * throtl_qnode is used to keep the queued bios separated by their sources.
52 * Bios are queued to throtl_qnode which in turn is queued to
53 * throtl_service_queue and then dispatched in round-robin order.
55 * It's also used to track the reference counts on blkg's. A qnode always
56 * belongs to a throtl_grp and gets queued on itself or the parent, so
57 * incrementing the reference of the associated throtl_grp when a qnode is
58 * queued and decrementing when dequeued is enough to keep the whole blkg
59 * tree pinned while bios are in flight.
61 struct throtl_qnode {
62 struct list_head node; /* service_queue->queued[] */
63 struct bio_list bios; /* queued bios */
64 struct throtl_grp *tg; /* tg this qnode belongs to */
67 struct throtl_service_queue {
68 struct throtl_service_queue *parent_sq; /* the parent service_queue */
71 * Bios queued directly to this service_queue or dispatched from
72 * children throtl_grp's.
74 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
75 unsigned int nr_queued[2]; /* number of queued bios */
78 * RB tree of active children throtl_grp's, which are sorted by
79 * their ->disptime.
81 struct rb_root pending_tree; /* RB tree of active tgs */
82 struct rb_node *first_pending; /* first node in the tree */
83 unsigned int nr_pending; /* # queued in the tree */
84 unsigned long first_pending_disptime; /* disptime of the first tg */
85 struct timer_list pending_timer; /* fires on first_pending_disptime */
88 enum tg_state_flags {
89 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
90 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
93 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
95 enum {
96 LIMIT_LOW,
97 LIMIT_MAX,
98 LIMIT_CNT,
101 struct throtl_grp {
102 /* must be the first member */
103 struct blkg_policy_data pd;
105 /* active throtl group service_queue member */
106 struct rb_node rb_node;
108 /* throtl_data this group belongs to */
109 struct throtl_data *td;
111 /* this group's service queue */
112 struct throtl_service_queue service_queue;
115 * qnode_on_self is used when bios are directly queued to this
116 * throtl_grp so that local bios compete fairly with bios
117 * dispatched from children. qnode_on_parent is used when bios are
118 * dispatched from this throtl_grp into its parent and will compete
119 * with the sibling qnode_on_parents and the parent's
120 * qnode_on_self.
122 struct throtl_qnode qnode_on_self[2];
123 struct throtl_qnode qnode_on_parent[2];
126 * Dispatch time in jiffies. This is the estimated time when group
127 * will unthrottle and is ready to dispatch more bio. It is used as
128 * key to sort active groups in service tree.
130 unsigned long disptime;
132 unsigned int flags;
134 /* are there any throtl rules between this group and td? */
135 bool has_rules[2];
137 /* internally used bytes per second rate limits */
138 uint64_t bps[2][LIMIT_CNT];
139 /* user configured bps limits */
140 uint64_t bps_conf[2][LIMIT_CNT];
142 /* internally used IOPS limits */
143 unsigned int iops[2][LIMIT_CNT];
144 /* user configured IOPS limits */
145 unsigned int iops_conf[2][LIMIT_CNT];
147 /* Number of bytes disptached in current slice */
148 uint64_t bytes_disp[2];
149 /* Number of bio's dispatched in current slice */
150 unsigned int io_disp[2];
152 unsigned long last_low_overflow_time[2];
154 uint64_t last_bytes_disp[2];
155 unsigned int last_io_disp[2];
157 unsigned long last_check_time;
159 unsigned long latency_target; /* us */
160 /* When did we start a new slice */
161 unsigned long slice_start[2];
162 unsigned long slice_end[2];
164 unsigned long last_finish_time; /* ns / 1024 */
165 unsigned long checked_last_finish_time; /* ns / 1024 */
166 unsigned long avg_idletime; /* ns / 1024 */
167 unsigned long idletime_threshold; /* us */
169 unsigned int bio_cnt; /* total bios */
170 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
171 unsigned long bio_cnt_reset_time;
174 /* We measure latency for request size from <= 4k to >= 1M */
175 #define LATENCY_BUCKET_SIZE 9
177 struct latency_bucket {
178 unsigned long total_latency; /* ns / 1024 */
179 int samples;
182 struct avg_latency_bucket {
183 unsigned long latency; /* ns / 1024 */
184 bool valid;
187 struct throtl_data
189 /* service tree for active throtl groups */
190 struct throtl_service_queue service_queue;
192 struct request_queue *queue;
194 /* Total Number of queued bios on READ and WRITE lists */
195 unsigned int nr_queued[2];
197 unsigned int throtl_slice;
199 /* Work for dispatching throttled bios */
200 struct work_struct dispatch_work;
201 unsigned int limit_index;
202 bool limit_valid[LIMIT_CNT];
204 unsigned long dft_idletime_threshold; /* us */
206 unsigned long low_upgrade_time;
207 unsigned long low_downgrade_time;
209 unsigned int scale;
211 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
212 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
213 struct latency_bucket __percpu *latency_buckets;
214 unsigned long last_calculate_time;
216 bool track_bio_latency;
219 static void throtl_pending_timer_fn(unsigned long arg);
221 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
223 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
226 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
228 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
231 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
233 return pd_to_blkg(&tg->pd);
237 * sq_to_tg - return the throl_grp the specified service queue belongs to
238 * @sq: the throtl_service_queue of interest
240 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
241 * embedded in throtl_data, %NULL is returned.
243 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
245 if (sq && sq->parent_sq)
246 return container_of(sq, struct throtl_grp, service_queue);
247 else
248 return NULL;
252 * sq_to_td - return throtl_data the specified service queue belongs to
253 * @sq: the throtl_service_queue of interest
255 * A service_queue can be embedded in either a throtl_grp or throtl_data.
256 * Determine the associated throtl_data accordingly and return it.
258 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
260 struct throtl_grp *tg = sq_to_tg(sq);
262 if (tg)
263 return tg->td;
264 else
265 return container_of(sq, struct throtl_data, service_queue);
269 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
270 * make the IO dispatch more smooth.
271 * Scale up: linearly scale up according to lapsed time since upgrade. For
272 * every throtl_slice, the limit scales up 1/2 .low limit till the
273 * limit hits .max limit
274 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
276 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
278 /* arbitrary value to avoid too big scale */
279 if (td->scale < 4096 && time_after_eq(jiffies,
280 td->low_upgrade_time + td->scale * td->throtl_slice))
281 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
283 return low + (low >> 1) * td->scale;
286 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
288 struct blkcg_gq *blkg = tg_to_blkg(tg);
289 struct throtl_data *td;
290 uint64_t ret;
292 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
293 return U64_MAX;
295 td = tg->td;
296 ret = tg->bps[rw][td->limit_index];
297 if (ret == 0 && td->limit_index == LIMIT_LOW)
298 return tg->bps[rw][LIMIT_MAX];
300 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
301 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
302 uint64_t adjusted;
304 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
305 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
307 return ret;
310 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
312 struct blkcg_gq *blkg = tg_to_blkg(tg);
313 struct throtl_data *td;
314 unsigned int ret;
316 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
317 return UINT_MAX;
318 td = tg->td;
319 ret = tg->iops[rw][td->limit_index];
320 if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
321 return tg->iops[rw][LIMIT_MAX];
323 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
324 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
325 uint64_t adjusted;
327 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
328 if (adjusted > UINT_MAX)
329 adjusted = UINT_MAX;
330 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
332 return ret;
335 #define request_bucket_index(sectors) \
336 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
339 * throtl_log - log debug message via blktrace
340 * @sq: the service_queue being reported
341 * @fmt: printf format string
342 * @args: printf args
344 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
345 * throtl_grp; otherwise, just "throtl".
347 #define throtl_log(sq, fmt, args...) do { \
348 struct throtl_grp *__tg = sq_to_tg((sq)); \
349 struct throtl_data *__td = sq_to_td((sq)); \
351 (void)__td; \
352 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
353 break; \
354 if ((__tg)) { \
355 char __pbuf[128]; \
357 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
358 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
359 } else { \
360 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
362 } while (0)
364 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
366 INIT_LIST_HEAD(&qn->node);
367 bio_list_init(&qn->bios);
368 qn->tg = tg;
372 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
373 * @bio: bio being added
374 * @qn: qnode to add bio to
375 * @queued: the service_queue->queued[] list @qn belongs to
377 * Add @bio to @qn and put @qn on @queued if it's not already on.
378 * @qn->tg's reference count is bumped when @qn is activated. See the
379 * comment on top of throtl_qnode definition for details.
381 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
382 struct list_head *queued)
384 bio_list_add(&qn->bios, bio);
385 if (list_empty(&qn->node)) {
386 list_add_tail(&qn->node, queued);
387 blkg_get(tg_to_blkg(qn->tg));
392 * throtl_peek_queued - peek the first bio on a qnode list
393 * @queued: the qnode list to peek
395 static struct bio *throtl_peek_queued(struct list_head *queued)
397 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
398 struct bio *bio;
400 if (list_empty(queued))
401 return NULL;
403 bio = bio_list_peek(&qn->bios);
404 WARN_ON_ONCE(!bio);
405 return bio;
409 * throtl_pop_queued - pop the first bio form a qnode list
410 * @queued: the qnode list to pop a bio from
411 * @tg_to_put: optional out argument for throtl_grp to put
413 * Pop the first bio from the qnode list @queued. After popping, the first
414 * qnode is removed from @queued if empty or moved to the end of @queued so
415 * that the popping order is round-robin.
417 * When the first qnode is removed, its associated throtl_grp should be put
418 * too. If @tg_to_put is NULL, this function automatically puts it;
419 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
420 * responsible for putting it.
422 static struct bio *throtl_pop_queued(struct list_head *queued,
423 struct throtl_grp **tg_to_put)
425 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
426 struct bio *bio;
428 if (list_empty(queued))
429 return NULL;
431 bio = bio_list_pop(&qn->bios);
432 WARN_ON_ONCE(!bio);
434 if (bio_list_empty(&qn->bios)) {
435 list_del_init(&qn->node);
436 if (tg_to_put)
437 *tg_to_put = qn->tg;
438 else
439 blkg_put(tg_to_blkg(qn->tg));
440 } else {
441 list_move_tail(&qn->node, queued);
444 return bio;
447 /* init a service_queue, assumes the caller zeroed it */
448 static void throtl_service_queue_init(struct throtl_service_queue *sq)
450 INIT_LIST_HEAD(&sq->queued[0]);
451 INIT_LIST_HEAD(&sq->queued[1]);
452 sq->pending_tree = RB_ROOT;
453 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
454 (unsigned long)sq);
457 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
459 struct throtl_grp *tg;
460 int rw;
462 tg = kzalloc_node(sizeof(*tg), gfp, node);
463 if (!tg)
464 return NULL;
466 throtl_service_queue_init(&tg->service_queue);
468 for (rw = READ; rw <= WRITE; rw++) {
469 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
470 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
473 RB_CLEAR_NODE(&tg->rb_node);
474 tg->bps[READ][LIMIT_MAX] = U64_MAX;
475 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
476 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
477 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
478 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
479 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
480 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
481 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
482 /* LIMIT_LOW will have default value 0 */
484 tg->latency_target = DFL_LATENCY_TARGET;
486 return &tg->pd;
489 static void throtl_pd_init(struct blkg_policy_data *pd)
491 struct throtl_grp *tg = pd_to_tg(pd);
492 struct blkcg_gq *blkg = tg_to_blkg(tg);
493 struct throtl_data *td = blkg->q->td;
494 struct throtl_service_queue *sq = &tg->service_queue;
497 * If on the default hierarchy, we switch to properly hierarchical
498 * behavior where limits on a given throtl_grp are applied to the
499 * whole subtree rather than just the group itself. e.g. If 16M
500 * read_bps limit is set on the root group, the whole system can't
501 * exceed 16M for the device.
503 * If not on the default hierarchy, the broken flat hierarchy
504 * behavior is retained where all throtl_grps are treated as if
505 * they're all separate root groups right below throtl_data.
506 * Limits of a group don't interact with limits of other groups
507 * regardless of the position of the group in the hierarchy.
509 sq->parent_sq = &td->service_queue;
510 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
511 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
512 tg->td = td;
514 tg->idletime_threshold = td->dft_idletime_threshold;
518 * Set has_rules[] if @tg or any of its parents have limits configured.
519 * This doesn't require walking up to the top of the hierarchy as the
520 * parent's has_rules[] is guaranteed to be correct.
522 static void tg_update_has_rules(struct throtl_grp *tg)
524 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
525 struct throtl_data *td = tg->td;
526 int rw;
528 for (rw = READ; rw <= WRITE; rw++)
529 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
530 (td->limit_valid[td->limit_index] &&
531 (tg_bps_limit(tg, rw) != U64_MAX ||
532 tg_iops_limit(tg, rw) != UINT_MAX));
535 static void throtl_pd_online(struct blkg_policy_data *pd)
537 struct throtl_grp *tg = pd_to_tg(pd);
539 * We don't want new groups to escape the limits of its ancestors.
540 * Update has_rules[] after a new group is brought online.
542 tg_update_has_rules(tg);
545 static void blk_throtl_update_limit_valid(struct throtl_data *td)
547 struct cgroup_subsys_state *pos_css;
548 struct blkcg_gq *blkg;
549 bool low_valid = false;
551 rcu_read_lock();
552 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
553 struct throtl_grp *tg = blkg_to_tg(blkg);
555 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
556 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
557 low_valid = true;
559 rcu_read_unlock();
561 td->limit_valid[LIMIT_LOW] = low_valid;
564 static void throtl_upgrade_state(struct throtl_data *td);
565 static void throtl_pd_offline(struct blkg_policy_data *pd)
567 struct throtl_grp *tg = pd_to_tg(pd);
569 tg->bps[READ][LIMIT_LOW] = 0;
570 tg->bps[WRITE][LIMIT_LOW] = 0;
571 tg->iops[READ][LIMIT_LOW] = 0;
572 tg->iops[WRITE][LIMIT_LOW] = 0;
574 blk_throtl_update_limit_valid(tg->td);
576 if (!tg->td->limit_valid[tg->td->limit_index])
577 throtl_upgrade_state(tg->td);
580 static void throtl_pd_free(struct blkg_policy_data *pd)
582 struct throtl_grp *tg = pd_to_tg(pd);
584 del_timer_sync(&tg->service_queue.pending_timer);
585 kfree(tg);
588 static struct throtl_grp *
589 throtl_rb_first(struct throtl_service_queue *parent_sq)
591 /* Service tree is empty */
592 if (!parent_sq->nr_pending)
593 return NULL;
595 if (!parent_sq->first_pending)
596 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
598 if (parent_sq->first_pending)
599 return rb_entry_tg(parent_sq->first_pending);
601 return NULL;
604 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
606 rb_erase(n, root);
607 RB_CLEAR_NODE(n);
610 static void throtl_rb_erase(struct rb_node *n,
611 struct throtl_service_queue *parent_sq)
613 if (parent_sq->first_pending == n)
614 parent_sq->first_pending = NULL;
615 rb_erase_init(n, &parent_sq->pending_tree);
616 --parent_sq->nr_pending;
619 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
621 struct throtl_grp *tg;
623 tg = throtl_rb_first(parent_sq);
624 if (!tg)
625 return;
627 parent_sq->first_pending_disptime = tg->disptime;
630 static void tg_service_queue_add(struct throtl_grp *tg)
632 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
633 struct rb_node **node = &parent_sq->pending_tree.rb_node;
634 struct rb_node *parent = NULL;
635 struct throtl_grp *__tg;
636 unsigned long key = tg->disptime;
637 int left = 1;
639 while (*node != NULL) {
640 parent = *node;
641 __tg = rb_entry_tg(parent);
643 if (time_before(key, __tg->disptime))
644 node = &parent->rb_left;
645 else {
646 node = &parent->rb_right;
647 left = 0;
651 if (left)
652 parent_sq->first_pending = &tg->rb_node;
654 rb_link_node(&tg->rb_node, parent, node);
655 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
658 static void __throtl_enqueue_tg(struct throtl_grp *tg)
660 tg_service_queue_add(tg);
661 tg->flags |= THROTL_TG_PENDING;
662 tg->service_queue.parent_sq->nr_pending++;
665 static void throtl_enqueue_tg(struct throtl_grp *tg)
667 if (!(tg->flags & THROTL_TG_PENDING))
668 __throtl_enqueue_tg(tg);
671 static void __throtl_dequeue_tg(struct throtl_grp *tg)
673 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
674 tg->flags &= ~THROTL_TG_PENDING;
677 static void throtl_dequeue_tg(struct throtl_grp *tg)
679 if (tg->flags & THROTL_TG_PENDING)
680 __throtl_dequeue_tg(tg);
683 /* Call with queue lock held */
684 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
685 unsigned long expires)
687 unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
690 * Since we are adjusting the throttle limit dynamically, the sleep
691 * time calculated according to previous limit might be invalid. It's
692 * possible the cgroup sleep time is very long and no other cgroups
693 * have IO running so notify the limit changes. Make sure the cgroup
694 * doesn't sleep too long to avoid the missed notification.
696 if (time_after(expires, max_expire))
697 expires = max_expire;
698 mod_timer(&sq->pending_timer, expires);
699 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
700 expires - jiffies, jiffies);
704 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
705 * @sq: the service_queue to schedule dispatch for
706 * @force: force scheduling
708 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
709 * dispatch time of the first pending child. Returns %true if either timer
710 * is armed or there's no pending child left. %false if the current
711 * dispatch window is still open and the caller should continue
712 * dispatching.
714 * If @force is %true, the dispatch timer is always scheduled and this
715 * function is guaranteed to return %true. This is to be used when the
716 * caller can't dispatch itself and needs to invoke pending_timer
717 * unconditionally. Note that forced scheduling is likely to induce short
718 * delay before dispatch starts even if @sq->first_pending_disptime is not
719 * in the future and thus shouldn't be used in hot paths.
721 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
722 bool force)
724 /* any pending children left? */
725 if (!sq->nr_pending)
726 return true;
728 update_min_dispatch_time(sq);
730 /* is the next dispatch time in the future? */
731 if (force || time_after(sq->first_pending_disptime, jiffies)) {
732 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
733 return true;
736 /* tell the caller to continue dispatching */
737 return false;
740 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
741 bool rw, unsigned long start)
743 tg->bytes_disp[rw] = 0;
744 tg->io_disp[rw] = 0;
747 * Previous slice has expired. We must have trimmed it after last
748 * bio dispatch. That means since start of last slice, we never used
749 * that bandwidth. Do try to make use of that bandwidth while giving
750 * credit.
752 if (time_after_eq(start, tg->slice_start[rw]))
753 tg->slice_start[rw] = start;
755 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
756 throtl_log(&tg->service_queue,
757 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
758 rw == READ ? 'R' : 'W', tg->slice_start[rw],
759 tg->slice_end[rw], jiffies);
762 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
764 tg->bytes_disp[rw] = 0;
765 tg->io_disp[rw] = 0;
766 tg->slice_start[rw] = jiffies;
767 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
768 throtl_log(&tg->service_queue,
769 "[%c] new slice start=%lu end=%lu jiffies=%lu",
770 rw == READ ? 'R' : 'W', tg->slice_start[rw],
771 tg->slice_end[rw], jiffies);
774 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
775 unsigned long jiffy_end)
777 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
780 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
781 unsigned long jiffy_end)
783 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
784 throtl_log(&tg->service_queue,
785 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
786 rw == READ ? 'R' : 'W', tg->slice_start[rw],
787 tg->slice_end[rw], jiffies);
790 /* Determine if previously allocated or extended slice is complete or not */
791 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
793 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
794 return false;
796 return 1;
799 /* Trim the used slices and adjust slice start accordingly */
800 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
802 unsigned long nr_slices, time_elapsed, io_trim;
803 u64 bytes_trim, tmp;
805 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
808 * If bps are unlimited (-1), then time slice don't get
809 * renewed. Don't try to trim the slice if slice is used. A new
810 * slice will start when appropriate.
812 if (throtl_slice_used(tg, rw))
813 return;
816 * A bio has been dispatched. Also adjust slice_end. It might happen
817 * that initially cgroup limit was very low resulting in high
818 * slice_end, but later limit was bumped up and bio was dispached
819 * sooner, then we need to reduce slice_end. A high bogus slice_end
820 * is bad because it does not allow new slice to start.
823 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
825 time_elapsed = jiffies - tg->slice_start[rw];
827 nr_slices = time_elapsed / tg->td->throtl_slice;
829 if (!nr_slices)
830 return;
831 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
832 do_div(tmp, HZ);
833 bytes_trim = tmp;
835 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
838 if (!bytes_trim && !io_trim)
839 return;
841 if (tg->bytes_disp[rw] >= bytes_trim)
842 tg->bytes_disp[rw] -= bytes_trim;
843 else
844 tg->bytes_disp[rw] = 0;
846 if (tg->io_disp[rw] >= io_trim)
847 tg->io_disp[rw] -= io_trim;
848 else
849 tg->io_disp[rw] = 0;
851 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
853 throtl_log(&tg->service_queue,
854 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
855 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
856 tg->slice_start[rw], tg->slice_end[rw], jiffies);
859 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
860 unsigned long *wait)
862 bool rw = bio_data_dir(bio);
863 unsigned int io_allowed;
864 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
865 u64 tmp;
867 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
869 /* Slice has just started. Consider one slice interval */
870 if (!jiffy_elapsed)
871 jiffy_elapsed_rnd = tg->td->throtl_slice;
873 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
876 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
877 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
878 * will allow dispatch after 1 second and after that slice should
879 * have been trimmed.
882 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
883 do_div(tmp, HZ);
885 if (tmp > UINT_MAX)
886 io_allowed = UINT_MAX;
887 else
888 io_allowed = tmp;
890 if (tg->io_disp[rw] + 1 <= io_allowed) {
891 if (wait)
892 *wait = 0;
893 return true;
896 /* Calc approx time to dispatch */
897 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
899 if (jiffy_wait > jiffy_elapsed)
900 jiffy_wait = jiffy_wait - jiffy_elapsed;
901 else
902 jiffy_wait = 1;
904 if (wait)
905 *wait = jiffy_wait;
906 return 0;
909 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
910 unsigned long *wait)
912 bool rw = bio_data_dir(bio);
913 u64 bytes_allowed, extra_bytes, tmp;
914 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
916 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
918 /* Slice has just started. Consider one slice interval */
919 if (!jiffy_elapsed)
920 jiffy_elapsed_rnd = tg->td->throtl_slice;
922 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
924 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
925 do_div(tmp, HZ);
926 bytes_allowed = tmp;
928 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
929 if (wait)
930 *wait = 0;
931 return true;
934 /* Calc approx time to dispatch */
935 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
936 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
938 if (!jiffy_wait)
939 jiffy_wait = 1;
942 * This wait time is without taking into consideration the rounding
943 * up we did. Add that time also.
945 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
946 if (wait)
947 *wait = jiffy_wait;
948 return 0;
952 * Returns whether one can dispatch a bio or not. Also returns approx number
953 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
955 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
956 unsigned long *wait)
958 bool rw = bio_data_dir(bio);
959 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
962 * Currently whole state machine of group depends on first bio
963 * queued in the group bio list. So one should not be calling
964 * this function with a different bio if there are other bios
965 * queued.
967 BUG_ON(tg->service_queue.nr_queued[rw] &&
968 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
970 /* If tg->bps = -1, then BW is unlimited */
971 if (tg_bps_limit(tg, rw) == U64_MAX &&
972 tg_iops_limit(tg, rw) == UINT_MAX) {
973 if (wait)
974 *wait = 0;
975 return true;
979 * If previous slice expired, start a new one otherwise renew/extend
980 * existing slice to make sure it is at least throtl_slice interval
981 * long since now. New slice is started only for empty throttle group.
982 * If there is queued bio, that means there should be an active
983 * slice and it should be extended instead.
985 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
986 throtl_start_new_slice(tg, rw);
987 else {
988 if (time_before(tg->slice_end[rw],
989 jiffies + tg->td->throtl_slice))
990 throtl_extend_slice(tg, rw,
991 jiffies + tg->td->throtl_slice);
994 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
995 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
996 if (wait)
997 *wait = 0;
998 return 1;
1001 max_wait = max(bps_wait, iops_wait);
1003 if (wait)
1004 *wait = max_wait;
1006 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1007 throtl_extend_slice(tg, rw, jiffies + max_wait);
1009 return 0;
1012 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1014 bool rw = bio_data_dir(bio);
1016 /* Charge the bio to the group */
1017 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1018 tg->io_disp[rw]++;
1019 tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
1020 tg->last_io_disp[rw]++;
1023 * BIO_THROTTLED is used to prevent the same bio to be throttled
1024 * more than once as a throttled bio will go through blk-throtl the
1025 * second time when it eventually gets issued. Set it when a bio
1026 * is being charged to a tg.
1028 if (!bio_flagged(bio, BIO_THROTTLED))
1029 bio_set_flag(bio, BIO_THROTTLED);
1033 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1034 * @bio: bio to add
1035 * @qn: qnode to use
1036 * @tg: the target throtl_grp
1038 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1039 * tg->qnode_on_self[] is used.
1041 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1042 struct throtl_grp *tg)
1044 struct throtl_service_queue *sq = &tg->service_queue;
1045 bool rw = bio_data_dir(bio);
1047 if (!qn)
1048 qn = &tg->qnode_on_self[rw];
1051 * If @tg doesn't currently have any bios queued in the same
1052 * direction, queueing @bio can change when @tg should be
1053 * dispatched. Mark that @tg was empty. This is automatically
1054 * cleaered on the next tg_update_disptime().
1056 if (!sq->nr_queued[rw])
1057 tg->flags |= THROTL_TG_WAS_EMPTY;
1059 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1061 sq->nr_queued[rw]++;
1062 throtl_enqueue_tg(tg);
1065 static void tg_update_disptime(struct throtl_grp *tg)
1067 struct throtl_service_queue *sq = &tg->service_queue;
1068 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1069 struct bio *bio;
1071 bio = throtl_peek_queued(&sq->queued[READ]);
1072 if (bio)
1073 tg_may_dispatch(tg, bio, &read_wait);
1075 bio = throtl_peek_queued(&sq->queued[WRITE]);
1076 if (bio)
1077 tg_may_dispatch(tg, bio, &write_wait);
1079 min_wait = min(read_wait, write_wait);
1080 disptime = jiffies + min_wait;
1082 /* Update dispatch time */
1083 throtl_dequeue_tg(tg);
1084 tg->disptime = disptime;
1085 throtl_enqueue_tg(tg);
1087 /* see throtl_add_bio_tg() */
1088 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1091 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1092 struct throtl_grp *parent_tg, bool rw)
1094 if (throtl_slice_used(parent_tg, rw)) {
1095 throtl_start_new_slice_with_credit(parent_tg, rw,
1096 child_tg->slice_start[rw]);
1101 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1103 struct throtl_service_queue *sq = &tg->service_queue;
1104 struct throtl_service_queue *parent_sq = sq->parent_sq;
1105 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1106 struct throtl_grp *tg_to_put = NULL;
1107 struct bio *bio;
1110 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1111 * from @tg may put its reference and @parent_sq might end up
1112 * getting released prematurely. Remember the tg to put and put it
1113 * after @bio is transferred to @parent_sq.
1115 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1116 sq->nr_queued[rw]--;
1118 throtl_charge_bio(tg, bio);
1121 * If our parent is another tg, we just need to transfer @bio to
1122 * the parent using throtl_add_bio_tg(). If our parent is
1123 * @td->service_queue, @bio is ready to be issued. Put it on its
1124 * bio_lists[] and decrease total number queued. The caller is
1125 * responsible for issuing these bios.
1127 if (parent_tg) {
1128 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1129 start_parent_slice_with_credit(tg, parent_tg, rw);
1130 } else {
1131 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1132 &parent_sq->queued[rw]);
1133 BUG_ON(tg->td->nr_queued[rw] <= 0);
1134 tg->td->nr_queued[rw]--;
1137 throtl_trim_slice(tg, rw);
1139 if (tg_to_put)
1140 blkg_put(tg_to_blkg(tg_to_put));
1143 static int throtl_dispatch_tg(struct throtl_grp *tg)
1145 struct throtl_service_queue *sq = &tg->service_queue;
1146 unsigned int nr_reads = 0, nr_writes = 0;
1147 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1148 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1149 struct bio *bio;
1151 /* Try to dispatch 75% READS and 25% WRITES */
1153 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1154 tg_may_dispatch(tg, bio, NULL)) {
1156 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1157 nr_reads++;
1159 if (nr_reads >= max_nr_reads)
1160 break;
1163 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1164 tg_may_dispatch(tg, bio, NULL)) {
1166 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1167 nr_writes++;
1169 if (nr_writes >= max_nr_writes)
1170 break;
1173 return nr_reads + nr_writes;
1176 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1178 unsigned int nr_disp = 0;
1180 while (1) {
1181 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1182 struct throtl_service_queue *sq = &tg->service_queue;
1184 if (!tg)
1185 break;
1187 if (time_before(jiffies, tg->disptime))
1188 break;
1190 throtl_dequeue_tg(tg);
1192 nr_disp += throtl_dispatch_tg(tg);
1194 if (sq->nr_queued[0] || sq->nr_queued[1])
1195 tg_update_disptime(tg);
1197 if (nr_disp >= throtl_quantum)
1198 break;
1201 return nr_disp;
1204 static bool throtl_can_upgrade(struct throtl_data *td,
1205 struct throtl_grp *this_tg);
1207 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1208 * @arg: the throtl_service_queue being serviced
1210 * This timer is armed when a child throtl_grp with active bio's become
1211 * pending and queued on the service_queue's pending_tree and expires when
1212 * the first child throtl_grp should be dispatched. This function
1213 * dispatches bio's from the children throtl_grps to the parent
1214 * service_queue.
1216 * If the parent's parent is another throtl_grp, dispatching is propagated
1217 * by either arming its pending_timer or repeating dispatch directly. If
1218 * the top-level service_tree is reached, throtl_data->dispatch_work is
1219 * kicked so that the ready bio's are issued.
1221 static void throtl_pending_timer_fn(unsigned long arg)
1223 struct throtl_service_queue *sq = (void *)arg;
1224 struct throtl_grp *tg = sq_to_tg(sq);
1225 struct throtl_data *td = sq_to_td(sq);
1226 struct request_queue *q = td->queue;
1227 struct throtl_service_queue *parent_sq;
1228 bool dispatched;
1229 int ret;
1231 spin_lock_irq(q->queue_lock);
1232 if (throtl_can_upgrade(td, NULL))
1233 throtl_upgrade_state(td);
1235 again:
1236 parent_sq = sq->parent_sq;
1237 dispatched = false;
1239 while (true) {
1240 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1241 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1242 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1244 ret = throtl_select_dispatch(sq);
1245 if (ret) {
1246 throtl_log(sq, "bios disp=%u", ret);
1247 dispatched = true;
1250 if (throtl_schedule_next_dispatch(sq, false))
1251 break;
1253 /* this dispatch windows is still open, relax and repeat */
1254 spin_unlock_irq(q->queue_lock);
1255 cpu_relax();
1256 spin_lock_irq(q->queue_lock);
1259 if (!dispatched)
1260 goto out_unlock;
1262 if (parent_sq) {
1263 /* @parent_sq is another throl_grp, propagate dispatch */
1264 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1265 tg_update_disptime(tg);
1266 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1267 /* window is already open, repeat dispatching */
1268 sq = parent_sq;
1269 tg = sq_to_tg(sq);
1270 goto again;
1273 } else {
1274 /* reached the top-level, queue issueing */
1275 queue_work(kthrotld_workqueue, &td->dispatch_work);
1277 out_unlock:
1278 spin_unlock_irq(q->queue_lock);
1282 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1283 * @work: work item being executed
1285 * This function is queued for execution when bio's reach the bio_lists[]
1286 * of throtl_data->service_queue. Those bio's are ready and issued by this
1287 * function.
1289 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1291 struct throtl_data *td = container_of(work, struct throtl_data,
1292 dispatch_work);
1293 struct throtl_service_queue *td_sq = &td->service_queue;
1294 struct request_queue *q = td->queue;
1295 struct bio_list bio_list_on_stack;
1296 struct bio *bio;
1297 struct blk_plug plug;
1298 int rw;
1300 bio_list_init(&bio_list_on_stack);
1302 spin_lock_irq(q->queue_lock);
1303 for (rw = READ; rw <= WRITE; rw++)
1304 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1305 bio_list_add(&bio_list_on_stack, bio);
1306 spin_unlock_irq(q->queue_lock);
1308 if (!bio_list_empty(&bio_list_on_stack)) {
1309 blk_start_plug(&plug);
1310 while((bio = bio_list_pop(&bio_list_on_stack)))
1311 generic_make_request(bio);
1312 blk_finish_plug(&plug);
1316 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1317 int off)
1319 struct throtl_grp *tg = pd_to_tg(pd);
1320 u64 v = *(u64 *)((void *)tg + off);
1322 if (v == U64_MAX)
1323 return 0;
1324 return __blkg_prfill_u64(sf, pd, v);
1327 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1328 int off)
1330 struct throtl_grp *tg = pd_to_tg(pd);
1331 unsigned int v = *(unsigned int *)((void *)tg + off);
1333 if (v == UINT_MAX)
1334 return 0;
1335 return __blkg_prfill_u64(sf, pd, v);
1338 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1340 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1341 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1342 return 0;
1345 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1347 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1348 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1349 return 0;
1352 static void tg_conf_updated(struct throtl_grp *tg)
1354 struct throtl_service_queue *sq = &tg->service_queue;
1355 struct cgroup_subsys_state *pos_css;
1356 struct blkcg_gq *blkg;
1358 throtl_log(&tg->service_queue,
1359 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1360 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1361 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1364 * Update has_rules[] flags for the updated tg's subtree. A tg is
1365 * considered to have rules if either the tg itself or any of its
1366 * ancestors has rules. This identifies groups without any
1367 * restrictions in the whole hierarchy and allows them to bypass
1368 * blk-throttle.
1370 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1371 tg_update_has_rules(blkg_to_tg(blkg));
1374 * We're already holding queue_lock and know @tg is valid. Let's
1375 * apply the new config directly.
1377 * Restart the slices for both READ and WRITES. It might happen
1378 * that a group's limit are dropped suddenly and we don't want to
1379 * account recently dispatched IO with new low rate.
1381 throtl_start_new_slice(tg, 0);
1382 throtl_start_new_slice(tg, 1);
1384 if (tg->flags & THROTL_TG_PENDING) {
1385 tg_update_disptime(tg);
1386 throtl_schedule_next_dispatch(sq->parent_sq, true);
1390 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1391 char *buf, size_t nbytes, loff_t off, bool is_u64)
1393 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1394 struct blkg_conf_ctx ctx;
1395 struct throtl_grp *tg;
1396 int ret;
1397 u64 v;
1399 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1400 if (ret)
1401 return ret;
1403 ret = -EINVAL;
1404 if (sscanf(ctx.body, "%llu", &v) != 1)
1405 goto out_finish;
1406 if (!v)
1407 v = U64_MAX;
1409 tg = blkg_to_tg(ctx.blkg);
1411 if (is_u64)
1412 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1413 else
1414 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1416 tg_conf_updated(tg);
1417 ret = 0;
1418 out_finish:
1419 blkg_conf_finish(&ctx);
1420 return ret ?: nbytes;
1423 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1424 char *buf, size_t nbytes, loff_t off)
1426 return tg_set_conf(of, buf, nbytes, off, true);
1429 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1430 char *buf, size_t nbytes, loff_t off)
1432 return tg_set_conf(of, buf, nbytes, off, false);
1435 static struct cftype throtl_legacy_files[] = {
1437 .name = "throttle.read_bps_device",
1438 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1439 .seq_show = tg_print_conf_u64,
1440 .write = tg_set_conf_u64,
1443 .name = "throttle.write_bps_device",
1444 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1445 .seq_show = tg_print_conf_u64,
1446 .write = tg_set_conf_u64,
1449 .name = "throttle.read_iops_device",
1450 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1451 .seq_show = tg_print_conf_uint,
1452 .write = tg_set_conf_uint,
1455 .name = "throttle.write_iops_device",
1456 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1457 .seq_show = tg_print_conf_uint,
1458 .write = tg_set_conf_uint,
1461 .name = "throttle.io_service_bytes",
1462 .private = (unsigned long)&blkcg_policy_throtl,
1463 .seq_show = blkg_print_stat_bytes,
1466 .name = "throttle.io_serviced",
1467 .private = (unsigned long)&blkcg_policy_throtl,
1468 .seq_show = blkg_print_stat_ios,
1470 { } /* terminate */
1473 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1474 int off)
1476 struct throtl_grp *tg = pd_to_tg(pd);
1477 const char *dname = blkg_dev_name(pd->blkg);
1478 char bufs[4][21] = { "max", "max", "max", "max" };
1479 u64 bps_dft;
1480 unsigned int iops_dft;
1481 char idle_time[26] = "";
1482 char latency_time[26] = "";
1484 if (!dname)
1485 return 0;
1487 if (off == LIMIT_LOW) {
1488 bps_dft = 0;
1489 iops_dft = 0;
1490 } else {
1491 bps_dft = U64_MAX;
1492 iops_dft = UINT_MAX;
1495 if (tg->bps_conf[READ][off] == bps_dft &&
1496 tg->bps_conf[WRITE][off] == bps_dft &&
1497 tg->iops_conf[READ][off] == iops_dft &&
1498 tg->iops_conf[WRITE][off] == iops_dft &&
1499 (off != LIMIT_LOW ||
1500 (tg->idletime_threshold == tg->td->dft_idletime_threshold &&
1501 tg->latency_target == DFL_LATENCY_TARGET)))
1502 return 0;
1504 if (tg->bps_conf[READ][off] != bps_dft)
1505 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1506 tg->bps_conf[READ][off]);
1507 if (tg->bps_conf[WRITE][off] != bps_dft)
1508 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1509 tg->bps_conf[WRITE][off]);
1510 if (tg->iops_conf[READ][off] != iops_dft)
1511 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1512 tg->iops_conf[READ][off]);
1513 if (tg->iops_conf[WRITE][off] != iops_dft)
1514 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1515 tg->iops_conf[WRITE][off]);
1516 if (off == LIMIT_LOW) {
1517 if (tg->idletime_threshold == ULONG_MAX)
1518 strcpy(idle_time, " idle=max");
1519 else
1520 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1521 tg->idletime_threshold);
1523 if (tg->latency_target == ULONG_MAX)
1524 strcpy(latency_time, " latency=max");
1525 else
1526 snprintf(latency_time, sizeof(latency_time),
1527 " latency=%lu", tg->latency_target);
1530 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1531 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1532 latency_time);
1533 return 0;
1536 static int tg_print_limit(struct seq_file *sf, void *v)
1538 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1539 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1540 return 0;
1543 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1544 char *buf, size_t nbytes, loff_t off)
1546 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1547 struct blkg_conf_ctx ctx;
1548 struct throtl_grp *tg;
1549 u64 v[4];
1550 unsigned long idle_time;
1551 unsigned long latency_time;
1552 int ret;
1553 int index = of_cft(of)->private;
1555 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1556 if (ret)
1557 return ret;
1559 tg = blkg_to_tg(ctx.blkg);
1561 v[0] = tg->bps_conf[READ][index];
1562 v[1] = tg->bps_conf[WRITE][index];
1563 v[2] = tg->iops_conf[READ][index];
1564 v[3] = tg->iops_conf[WRITE][index];
1566 idle_time = tg->idletime_threshold;
1567 latency_time = tg->latency_target;
1568 while (true) {
1569 char tok[27]; /* wiops=18446744073709551616 */
1570 char *p;
1571 u64 val = U64_MAX;
1572 int len;
1574 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1575 break;
1576 if (tok[0] == '\0')
1577 break;
1578 ctx.body += len;
1580 ret = -EINVAL;
1581 p = tok;
1582 strsep(&p, "=");
1583 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1584 goto out_finish;
1586 ret = -ERANGE;
1587 if (!val)
1588 goto out_finish;
1590 ret = -EINVAL;
1591 if (!strcmp(tok, "rbps"))
1592 v[0] = val;
1593 else if (!strcmp(tok, "wbps"))
1594 v[1] = val;
1595 else if (!strcmp(tok, "riops"))
1596 v[2] = min_t(u64, val, UINT_MAX);
1597 else if (!strcmp(tok, "wiops"))
1598 v[3] = min_t(u64, val, UINT_MAX);
1599 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1600 idle_time = val;
1601 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1602 latency_time = val;
1603 else
1604 goto out_finish;
1607 tg->bps_conf[READ][index] = v[0];
1608 tg->bps_conf[WRITE][index] = v[1];
1609 tg->iops_conf[READ][index] = v[2];
1610 tg->iops_conf[WRITE][index] = v[3];
1612 if (index == LIMIT_MAX) {
1613 tg->bps[READ][index] = v[0];
1614 tg->bps[WRITE][index] = v[1];
1615 tg->iops[READ][index] = v[2];
1616 tg->iops[WRITE][index] = v[3];
1618 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1619 tg->bps_conf[READ][LIMIT_MAX]);
1620 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1621 tg->bps_conf[WRITE][LIMIT_MAX]);
1622 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1623 tg->iops_conf[READ][LIMIT_MAX]);
1624 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1625 tg->iops_conf[WRITE][LIMIT_MAX]);
1627 if (index == LIMIT_LOW) {
1628 blk_throtl_update_limit_valid(tg->td);
1629 if (tg->td->limit_valid[LIMIT_LOW])
1630 tg->td->limit_index = LIMIT_LOW;
1631 tg->idletime_threshold = (idle_time == ULONG_MAX) ?
1632 ULONG_MAX : idle_time;
1633 tg->latency_target = (latency_time == ULONG_MAX) ?
1634 ULONG_MAX : latency_time;
1636 tg_conf_updated(tg);
1637 ret = 0;
1638 out_finish:
1639 blkg_conf_finish(&ctx);
1640 return ret ?: nbytes;
1643 static struct cftype throtl_files[] = {
1644 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1646 .name = "low",
1647 .flags = CFTYPE_NOT_ON_ROOT,
1648 .seq_show = tg_print_limit,
1649 .write = tg_set_limit,
1650 .private = LIMIT_LOW,
1652 #endif
1654 .name = "max",
1655 .flags = CFTYPE_NOT_ON_ROOT,
1656 .seq_show = tg_print_limit,
1657 .write = tg_set_limit,
1658 .private = LIMIT_MAX,
1660 { } /* terminate */
1663 static void throtl_shutdown_wq(struct request_queue *q)
1665 struct throtl_data *td = q->td;
1667 cancel_work_sync(&td->dispatch_work);
1670 static struct blkcg_policy blkcg_policy_throtl = {
1671 .dfl_cftypes = throtl_files,
1672 .legacy_cftypes = throtl_legacy_files,
1674 .pd_alloc_fn = throtl_pd_alloc,
1675 .pd_init_fn = throtl_pd_init,
1676 .pd_online_fn = throtl_pd_online,
1677 .pd_offline_fn = throtl_pd_offline,
1678 .pd_free_fn = throtl_pd_free,
1681 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1683 unsigned long rtime = jiffies, wtime = jiffies;
1685 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1686 rtime = tg->last_low_overflow_time[READ];
1687 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1688 wtime = tg->last_low_overflow_time[WRITE];
1689 return min(rtime, wtime);
1692 /* tg should not be an intermediate node */
1693 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1695 struct throtl_service_queue *parent_sq;
1696 struct throtl_grp *parent = tg;
1697 unsigned long ret = __tg_last_low_overflow_time(tg);
1699 while (true) {
1700 parent_sq = parent->service_queue.parent_sq;
1701 parent = sq_to_tg(parent_sq);
1702 if (!parent)
1703 break;
1706 * The parent doesn't have low limit, it always reaches low
1707 * limit. Its overflow time is useless for children
1709 if (!parent->bps[READ][LIMIT_LOW] &&
1710 !parent->iops[READ][LIMIT_LOW] &&
1711 !parent->bps[WRITE][LIMIT_LOW] &&
1712 !parent->iops[WRITE][LIMIT_LOW])
1713 continue;
1714 if (time_after(__tg_last_low_overflow_time(parent), ret))
1715 ret = __tg_last_low_overflow_time(parent);
1717 return ret;
1720 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1723 * cgroup is idle if:
1724 * - single idle is too long, longer than a fixed value (in case user
1725 * configure a too big threshold) or 4 times of slice
1726 * - average think time is more than threshold
1727 * - IO latency is largely below threshold
1729 unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1731 time = min_t(unsigned long, MAX_IDLE_TIME, time);
1732 return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1733 tg->avg_idletime > tg->idletime_threshold ||
1734 (tg->latency_target && tg->bio_cnt &&
1735 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1738 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1740 struct throtl_service_queue *sq = &tg->service_queue;
1741 bool read_limit, write_limit;
1744 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1745 * reaches), it's ok to upgrade to next limit
1747 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1748 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1749 if (!read_limit && !write_limit)
1750 return true;
1751 if (read_limit && sq->nr_queued[READ] &&
1752 (!write_limit || sq->nr_queued[WRITE]))
1753 return true;
1754 if (write_limit && sq->nr_queued[WRITE] &&
1755 (!read_limit || sq->nr_queued[READ]))
1756 return true;
1758 if (time_after_eq(jiffies,
1759 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1760 throtl_tg_is_idle(tg))
1761 return true;
1762 return false;
1765 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1767 while (true) {
1768 if (throtl_tg_can_upgrade(tg))
1769 return true;
1770 tg = sq_to_tg(tg->service_queue.parent_sq);
1771 if (!tg || !tg_to_blkg(tg)->parent)
1772 return false;
1774 return false;
1777 static bool throtl_can_upgrade(struct throtl_data *td,
1778 struct throtl_grp *this_tg)
1780 struct cgroup_subsys_state *pos_css;
1781 struct blkcg_gq *blkg;
1783 if (td->limit_index != LIMIT_LOW)
1784 return false;
1786 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1787 return false;
1789 rcu_read_lock();
1790 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1791 struct throtl_grp *tg = blkg_to_tg(blkg);
1793 if (tg == this_tg)
1794 continue;
1795 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1796 continue;
1797 if (!throtl_hierarchy_can_upgrade(tg)) {
1798 rcu_read_unlock();
1799 return false;
1802 rcu_read_unlock();
1803 return true;
1806 static void throtl_upgrade_check(struct throtl_grp *tg)
1808 unsigned long now = jiffies;
1810 if (tg->td->limit_index != LIMIT_LOW)
1811 return;
1813 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1814 return;
1816 tg->last_check_time = now;
1818 if (!time_after_eq(now,
1819 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1820 return;
1822 if (throtl_can_upgrade(tg->td, NULL))
1823 throtl_upgrade_state(tg->td);
1826 static void throtl_upgrade_state(struct throtl_data *td)
1828 struct cgroup_subsys_state *pos_css;
1829 struct blkcg_gq *blkg;
1831 td->limit_index = LIMIT_MAX;
1832 td->low_upgrade_time = jiffies;
1833 td->scale = 0;
1834 rcu_read_lock();
1835 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1836 struct throtl_grp *tg = blkg_to_tg(blkg);
1837 struct throtl_service_queue *sq = &tg->service_queue;
1839 tg->disptime = jiffies - 1;
1840 throtl_select_dispatch(sq);
1841 throtl_schedule_next_dispatch(sq, false);
1843 rcu_read_unlock();
1844 throtl_select_dispatch(&td->service_queue);
1845 throtl_schedule_next_dispatch(&td->service_queue, false);
1846 queue_work(kthrotld_workqueue, &td->dispatch_work);
1849 static void throtl_downgrade_state(struct throtl_data *td, int new)
1851 td->scale /= 2;
1853 if (td->scale) {
1854 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1855 return;
1858 td->limit_index = new;
1859 td->low_downgrade_time = jiffies;
1862 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1864 struct throtl_data *td = tg->td;
1865 unsigned long now = jiffies;
1868 * If cgroup is below low limit, consider downgrade and throttle other
1869 * cgroups
1871 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1872 time_after_eq(now, tg_last_low_overflow_time(tg) +
1873 td->throtl_slice) &&
1874 (!throtl_tg_is_idle(tg) ||
1875 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1876 return true;
1877 return false;
1880 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1882 while (true) {
1883 if (!throtl_tg_can_downgrade(tg))
1884 return false;
1885 tg = sq_to_tg(tg->service_queue.parent_sq);
1886 if (!tg || !tg_to_blkg(tg)->parent)
1887 break;
1889 return true;
1892 static void throtl_downgrade_check(struct throtl_grp *tg)
1894 uint64_t bps;
1895 unsigned int iops;
1896 unsigned long elapsed_time;
1897 unsigned long now = jiffies;
1899 if (tg->td->limit_index != LIMIT_MAX ||
1900 !tg->td->limit_valid[LIMIT_LOW])
1901 return;
1902 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1903 return;
1904 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1905 return;
1907 elapsed_time = now - tg->last_check_time;
1908 tg->last_check_time = now;
1910 if (time_before(now, tg_last_low_overflow_time(tg) +
1911 tg->td->throtl_slice))
1912 return;
1914 if (tg->bps[READ][LIMIT_LOW]) {
1915 bps = tg->last_bytes_disp[READ] * HZ;
1916 do_div(bps, elapsed_time);
1917 if (bps >= tg->bps[READ][LIMIT_LOW])
1918 tg->last_low_overflow_time[READ] = now;
1921 if (tg->bps[WRITE][LIMIT_LOW]) {
1922 bps = tg->last_bytes_disp[WRITE] * HZ;
1923 do_div(bps, elapsed_time);
1924 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1925 tg->last_low_overflow_time[WRITE] = now;
1928 if (tg->iops[READ][LIMIT_LOW]) {
1929 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1930 if (iops >= tg->iops[READ][LIMIT_LOW])
1931 tg->last_low_overflow_time[READ] = now;
1934 if (tg->iops[WRITE][LIMIT_LOW]) {
1935 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1936 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1937 tg->last_low_overflow_time[WRITE] = now;
1941 * If cgroup is below low limit, consider downgrade and throttle other
1942 * cgroups
1944 if (throtl_hierarchy_can_downgrade(tg))
1945 throtl_downgrade_state(tg->td, LIMIT_LOW);
1947 tg->last_bytes_disp[READ] = 0;
1948 tg->last_bytes_disp[WRITE] = 0;
1949 tg->last_io_disp[READ] = 0;
1950 tg->last_io_disp[WRITE] = 0;
1953 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1955 unsigned long now = ktime_get_ns() >> 10;
1956 unsigned long last_finish_time = tg->last_finish_time;
1958 if (now <= last_finish_time || last_finish_time == 0 ||
1959 last_finish_time == tg->checked_last_finish_time)
1960 return;
1962 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1963 tg->checked_last_finish_time = last_finish_time;
1966 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1967 static void throtl_update_latency_buckets(struct throtl_data *td)
1969 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
1970 int i, cpu;
1971 unsigned long last_latency = 0;
1972 unsigned long latency;
1974 if (!blk_queue_nonrot(td->queue))
1975 return;
1976 if (time_before(jiffies, td->last_calculate_time + HZ))
1977 return;
1978 td->last_calculate_time = jiffies;
1980 memset(avg_latency, 0, sizeof(avg_latency));
1981 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1982 struct latency_bucket *tmp = &td->tmp_buckets[i];
1984 for_each_possible_cpu(cpu) {
1985 struct latency_bucket *bucket;
1987 /* this isn't race free, but ok in practice */
1988 bucket = per_cpu_ptr(td->latency_buckets, cpu);
1989 tmp->total_latency += bucket[i].total_latency;
1990 tmp->samples += bucket[i].samples;
1991 bucket[i].total_latency = 0;
1992 bucket[i].samples = 0;
1995 if (tmp->samples >= 32) {
1996 int samples = tmp->samples;
1998 latency = tmp->total_latency;
2000 tmp->total_latency = 0;
2001 tmp->samples = 0;
2002 latency /= samples;
2003 if (latency == 0)
2004 continue;
2005 avg_latency[i].latency = latency;
2009 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2010 if (!avg_latency[i].latency) {
2011 if (td->avg_buckets[i].latency < last_latency)
2012 td->avg_buckets[i].latency = last_latency;
2013 continue;
2016 if (!td->avg_buckets[i].valid)
2017 latency = avg_latency[i].latency;
2018 else
2019 latency = (td->avg_buckets[i].latency * 7 +
2020 avg_latency[i].latency) >> 3;
2022 td->avg_buckets[i].latency = max(latency, last_latency);
2023 td->avg_buckets[i].valid = true;
2024 last_latency = td->avg_buckets[i].latency;
2027 #else
2028 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2031 #endif
2033 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2035 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2036 int ret;
2038 ret = bio_associate_current(bio);
2039 if (ret == 0 || ret == -EBUSY)
2040 bio->bi_cg_private = tg;
2041 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2042 #else
2043 bio_associate_current(bio);
2044 #endif
2047 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2048 struct bio *bio)
2050 struct throtl_qnode *qn = NULL;
2051 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2052 struct throtl_service_queue *sq;
2053 bool rw = bio_data_dir(bio);
2054 bool throttled = false;
2055 struct throtl_data *td = tg->td;
2057 WARN_ON_ONCE(!rcu_read_lock_held());
2059 /* see throtl_charge_bio() */
2060 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2061 goto out;
2063 spin_lock_irq(q->queue_lock);
2065 throtl_update_latency_buckets(td);
2067 if (unlikely(blk_queue_bypass(q)))
2068 goto out_unlock;
2070 blk_throtl_assoc_bio(tg, bio);
2071 blk_throtl_update_idletime(tg);
2073 sq = &tg->service_queue;
2075 again:
2076 while (true) {
2077 if (tg->last_low_overflow_time[rw] == 0)
2078 tg->last_low_overflow_time[rw] = jiffies;
2079 throtl_downgrade_check(tg);
2080 throtl_upgrade_check(tg);
2081 /* throtl is FIFO - if bios are already queued, should queue */
2082 if (sq->nr_queued[rw])
2083 break;
2085 /* if above limits, break to queue */
2086 if (!tg_may_dispatch(tg, bio, NULL)) {
2087 tg->last_low_overflow_time[rw] = jiffies;
2088 if (throtl_can_upgrade(td, tg)) {
2089 throtl_upgrade_state(td);
2090 goto again;
2092 break;
2095 /* within limits, let's charge and dispatch directly */
2096 throtl_charge_bio(tg, bio);
2099 * We need to trim slice even when bios are not being queued
2100 * otherwise it might happen that a bio is not queued for
2101 * a long time and slice keeps on extending and trim is not
2102 * called for a long time. Now if limits are reduced suddenly
2103 * we take into account all the IO dispatched so far at new
2104 * low rate and * newly queued IO gets a really long dispatch
2105 * time.
2107 * So keep on trimming slice even if bio is not queued.
2109 throtl_trim_slice(tg, rw);
2112 * @bio passed through this layer without being throttled.
2113 * Climb up the ladder. If we''re already at the top, it
2114 * can be executed directly.
2116 qn = &tg->qnode_on_parent[rw];
2117 sq = sq->parent_sq;
2118 tg = sq_to_tg(sq);
2119 if (!tg)
2120 goto out_unlock;
2123 /* out-of-limit, queue to @tg */
2124 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2125 rw == READ ? 'R' : 'W',
2126 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2127 tg_bps_limit(tg, rw),
2128 tg->io_disp[rw], tg_iops_limit(tg, rw),
2129 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2131 tg->last_low_overflow_time[rw] = jiffies;
2133 td->nr_queued[rw]++;
2134 throtl_add_bio_tg(bio, qn, tg);
2135 throttled = true;
2138 * Update @tg's dispatch time and force schedule dispatch if @tg
2139 * was empty before @bio. The forced scheduling isn't likely to
2140 * cause undue delay as @bio is likely to be dispatched directly if
2141 * its @tg's disptime is not in the future.
2143 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2144 tg_update_disptime(tg);
2145 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2148 out_unlock:
2149 spin_unlock_irq(q->queue_lock);
2150 out:
2152 * As multiple blk-throtls may stack in the same issue path, we
2153 * don't want bios to leave with the flag set. Clear the flag if
2154 * being issued.
2156 if (!throttled)
2157 bio_clear_flag(bio, BIO_THROTTLED);
2159 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2160 if (throttled || !td->track_bio_latency)
2161 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2162 #endif
2163 return throttled;
2166 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2167 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2168 int op, unsigned long time)
2170 struct latency_bucket *latency;
2171 int index;
2173 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2174 !blk_queue_nonrot(td->queue))
2175 return;
2177 index = request_bucket_index(size);
2179 latency = get_cpu_ptr(td->latency_buckets);
2180 latency[index].total_latency += time;
2181 latency[index].samples++;
2182 put_cpu_ptr(td->latency_buckets);
2185 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2187 struct request_queue *q = rq->q;
2188 struct throtl_data *td = q->td;
2190 throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2191 req_op(rq), time_ns >> 10);
2194 void blk_throtl_bio_endio(struct bio *bio)
2196 struct throtl_grp *tg;
2197 u64 finish_time_ns;
2198 unsigned long finish_time;
2199 unsigned long start_time;
2200 unsigned long lat;
2202 tg = bio->bi_cg_private;
2203 if (!tg)
2204 return;
2205 bio->bi_cg_private = NULL;
2207 finish_time_ns = ktime_get_ns();
2208 tg->last_finish_time = finish_time_ns >> 10;
2210 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2211 finish_time = __blk_stat_time(finish_time_ns) >> 10;
2212 if (!start_time || finish_time <= start_time)
2213 return;
2215 lat = finish_time - start_time;
2216 /* this is only for bio based driver */
2217 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2218 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2219 bio_op(bio), lat);
2221 if (tg->latency_target) {
2222 int bucket;
2223 unsigned int threshold;
2225 bucket = request_bucket_index(
2226 blk_stat_size(&bio->bi_issue_stat));
2227 threshold = tg->td->avg_buckets[bucket].latency +
2228 tg->latency_target;
2229 if (lat > threshold)
2230 tg->bad_bio_cnt++;
2232 * Not race free, could get wrong count, which means cgroups
2233 * will be throttled
2235 tg->bio_cnt++;
2238 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2239 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2240 tg->bio_cnt /= 2;
2241 tg->bad_bio_cnt /= 2;
2244 #endif
2247 * Dispatch all bios from all children tg's queued on @parent_sq. On
2248 * return, @parent_sq is guaranteed to not have any active children tg's
2249 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2251 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2253 struct throtl_grp *tg;
2255 while ((tg = throtl_rb_first(parent_sq))) {
2256 struct throtl_service_queue *sq = &tg->service_queue;
2257 struct bio *bio;
2259 throtl_dequeue_tg(tg);
2261 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2262 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2263 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2264 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2269 * blk_throtl_drain - drain throttled bios
2270 * @q: request_queue to drain throttled bios for
2272 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2274 void blk_throtl_drain(struct request_queue *q)
2275 __releases(q->queue_lock) __acquires(q->queue_lock)
2277 struct throtl_data *td = q->td;
2278 struct blkcg_gq *blkg;
2279 struct cgroup_subsys_state *pos_css;
2280 struct bio *bio;
2281 int rw;
2283 queue_lockdep_assert_held(q);
2284 rcu_read_lock();
2287 * Drain each tg while doing post-order walk on the blkg tree, so
2288 * that all bios are propagated to td->service_queue. It'd be
2289 * better to walk service_queue tree directly but blkg walk is
2290 * easier.
2292 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2293 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2295 /* finally, transfer bios from top-level tg's into the td */
2296 tg_drain_bios(&td->service_queue);
2298 rcu_read_unlock();
2299 spin_unlock_irq(q->queue_lock);
2301 /* all bios now should be in td->service_queue, issue them */
2302 for (rw = READ; rw <= WRITE; rw++)
2303 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2304 NULL)))
2305 generic_make_request(bio);
2307 spin_lock_irq(q->queue_lock);
2310 int blk_throtl_init(struct request_queue *q)
2312 struct throtl_data *td;
2313 int ret;
2315 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2316 if (!td)
2317 return -ENOMEM;
2318 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2319 LATENCY_BUCKET_SIZE, __alignof__(u64));
2320 if (!td->latency_buckets) {
2321 kfree(td);
2322 return -ENOMEM;
2325 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2326 throtl_service_queue_init(&td->service_queue);
2328 q->td = td;
2329 td->queue = q;
2331 td->limit_valid[LIMIT_MAX] = true;
2332 td->limit_index = LIMIT_MAX;
2333 td->low_upgrade_time = jiffies;
2334 td->low_downgrade_time = jiffies;
2336 /* activate policy */
2337 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2338 if (ret) {
2339 free_percpu(td->latency_buckets);
2340 kfree(td);
2342 return ret;
2345 void blk_throtl_exit(struct request_queue *q)
2347 BUG_ON(!q->td);
2348 throtl_shutdown_wq(q);
2349 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2350 free_percpu(q->td->latency_buckets);
2351 kfree(q->td);
2354 void blk_throtl_register_queue(struct request_queue *q)
2356 struct throtl_data *td;
2357 struct cgroup_subsys_state *pos_css;
2358 struct blkcg_gq *blkg;
2360 td = q->td;
2361 BUG_ON(!td);
2363 if (blk_queue_nonrot(q)) {
2364 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2365 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2366 } else {
2367 td->throtl_slice = DFL_THROTL_SLICE_HD;
2368 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2370 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2371 /* if no low limit, use previous default */
2372 td->throtl_slice = DFL_THROTL_SLICE_HD;
2373 #endif
2375 td->track_bio_latency = !q->mq_ops && !q->request_fn;
2376 if (!td->track_bio_latency)
2377 blk_stat_enable_accounting(q);
2380 * some tg are created before queue is fully initialized, eg, nonrot
2381 * isn't initialized yet
2383 rcu_read_lock();
2384 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2385 struct throtl_grp *tg = blkg_to_tg(blkg);
2387 tg->idletime_threshold = td->dft_idletime_threshold;
2389 rcu_read_unlock();
2392 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2393 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2395 if (!q->td)
2396 return -EINVAL;
2397 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2400 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2401 const char *page, size_t count)
2403 unsigned long v;
2404 unsigned long t;
2406 if (!q->td)
2407 return -EINVAL;
2408 if (kstrtoul(page, 10, &v))
2409 return -EINVAL;
2410 t = msecs_to_jiffies(v);
2411 if (t == 0 || t > MAX_THROTL_SLICE)
2412 return -EINVAL;
2413 q->td->throtl_slice = t;
2414 return count;
2416 #endif
2418 static int __init throtl_init(void)
2420 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2421 if (!kthrotld_workqueue)
2422 panic("Failed to create kthrotld\n");
2424 return blkcg_policy_register(&blkcg_policy_throtl);
2427 module_init(throtl_init);