rcutorture: Eliminate unused ts_rem local from rcu_trace_clock_local()
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
bloba12cc7ea99b608f2f36ffb24475c4561060d08c3
1 /*
2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 /**
10 * DOC: VC4 CRTC module
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * encoder's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, the CRTC is also
19 * responsible for writing the display list for the HVS channel that
20 * the CRTC will use.
22 * The 2835 has 3 different pixel valves. pv0 in the audio power
23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
24 * image domain can feed either HDMI or the SDTV controller. The
25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26 * SDTV, etc.) according to which output type is chosen in the mux.
28 * For power management, the pixel valve's registers are all clocked
29 * by the AXI clock, while the timings and FIFOs make use of the
30 * output-specific clock. Since the encoders also directly consume
31 * the CPRMAN clocks, and know what timings they need, they are the
32 * ones that set the clock.
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
45 struct vc4_crtc {
46 struct drm_crtc base;
47 const struct vc4_crtc_data *data;
48 void __iomem *regs;
50 /* Timestamp at start of vblank irq - unaffected by lock delays. */
51 ktime_t t_vblank;
53 /* Which HVS channel we're using for our CRTC. */
54 int channel;
56 u8 lut_r[256];
57 u8 lut_g[256];
58 u8 lut_b[256];
59 /* Size in pixels of the COB memory allocated to this CRTC. */
60 u32 cob_size;
62 struct drm_pending_vblank_event *event;
65 struct vc4_crtc_state {
66 struct drm_crtc_state base;
67 /* Dlist area for this CRTC configuration. */
68 struct drm_mm_node mm;
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
74 return (struct vc4_crtc *)crtc;
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
80 return (struct vc4_crtc_state *)crtc_state;
83 struct vc4_crtc_data {
84 /* Which channel of the HVS this pixelvalve sources from. */
85 int hvs_channel;
87 enum vc4_encoder_type encoder_types[4];
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 u32 reg;
96 const char *name;
97 } crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
100 CRTC_REG(PV_VSYNCD_EVEN),
101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
115 int i;
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
150 return 0;
152 #endif
154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 bool in_vblank_irq, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 u32 val;
163 int fifo_lines;
164 int vblank_lines;
165 bool ret = false;
167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
169 /* Get optional system timestamp before query. */
170 if (stime)
171 *stime = ktime_get();
174 * Read vertical scanline which is currently composed for our
175 * pixelvalve by the HVS, and also the scaler status.
177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
179 /* Get optional system timestamp after query. */
180 if (etime)
181 *etime = ktime_get();
183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
185 /* Vertical position of hvs composed scanline. */
186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 *hpos = 0;
189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 *vpos /= 2;
192 /* Use hpos to correct for field offset in interlaced mode. */
193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 *hpos += mode->crtc_htotal / 2;
197 /* This is the offset we need for translating hvs -> pv scanout pos. */
198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
200 if (fifo_lines > 0)
201 ret = true;
203 /* HVS more than fifo_lines into frame for compositing? */
204 if (*vpos > fifo_lines) {
206 * We are in active scanout and can get some meaningful results
207 * from HVS. The actual PV scanout can not trail behind more
208 * than fifo_lines as that is the fifo's capacity. Assume that
209 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 * refilling the fifo and PV consuming from the fifo, ie.
211 * whenever the PV consumes and frees up a scanline in the
212 * fifo, the HVS will immediately refill it, therefore
213 * incrementing vpos. Therefore we choose HVS read position -
214 * fifo size in scanlines as a estimate of the real scanout
215 * position of the PV.
217 *vpos -= fifo_lines + 1;
219 return ret;
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
231 vblank_lines = mode->vtotal - mode->vdisplay;
233 if (in_vblank_irq) {
235 * Assume the irq handler got called close to first
236 * line of vblank, so PV has about a full vblank
237 * scanlines to go, and as a base timestamp use the
238 * one taken at entry into vblank irq handler, so it
239 * is not affected by random delays due to lock
240 * contention on event_lock or vblank_time lock in
241 * the core.
243 *vpos = -vblank_lines;
245 if (stime)
246 *stime = vc4_crtc->t_vblank;
247 if (etime)
248 *etime = vc4_crtc->t_vblank;
251 * If the HVS fifo is not yet full then we know for certain
252 * we are at the very beginning of vblank, as the hvs just
253 * started refilling, and the stime and etime timestamps
254 * truly correspond to start of vblank.
256 * Unfortunately there's no way to report this to upper levels
257 * and make it more useful.
259 } else {
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
266 *vpos = 0;
269 return ret;
272 static void vc4_crtc_destroy(struct drm_crtc *crtc)
274 drm_crtc_cleanup(crtc);
277 static void
278 vc4_crtc_lut_load(struct drm_crtc *crtc)
280 struct drm_device *dev = crtc->dev;
281 struct vc4_dev *vc4 = to_vc4_dev(dev);
282 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283 u32 i;
285 /* The LUT memory is laid out with each HVS channel in order,
286 * each of which takes 256 writes for R, 256 for G, then 256
287 * for B.
289 HVS_WRITE(SCALER_GAMADDR,
290 SCALER_GAMADDR_AUTOINC |
291 (vc4_crtc->channel * 3 * crtc->gamma_size));
293 for (i = 0; i < crtc->gamma_size; i++)
294 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295 for (i = 0; i < crtc->gamma_size; i++)
296 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297 for (i = 0; i < crtc->gamma_size; i++)
298 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
301 static int
302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303 uint32_t size,
304 struct drm_modeset_acquire_ctx *ctx)
306 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307 u32 i;
309 for (i = 0; i < size; i++) {
310 vc4_crtc->lut_r[i] = r[i] >> 8;
311 vc4_crtc->lut_g[i] = g[i] >> 8;
312 vc4_crtc->lut_b[i] = b[i] >> 8;
315 vc4_crtc_lut_load(crtc);
317 return 0;
320 static u32 vc4_get_fifo_full_level(u32 format)
322 static const u32 fifo_len_bytes = 64;
323 static const u32 hvs_latency_pix = 6;
325 switch (format) {
326 case PV_CONTROL_FORMAT_DSIV_16:
327 case PV_CONTROL_FORMAT_DSIC_16:
328 return fifo_len_bytes - 2 * hvs_latency_pix;
329 case PV_CONTROL_FORMAT_DSIV_18:
330 return fifo_len_bytes - 14;
331 case PV_CONTROL_FORMAT_24:
332 case PV_CONTROL_FORMAT_DSIV_24:
333 default:
334 return fifo_len_bytes - 3 * hvs_latency_pix;
339 * Returns the encoder attached to the CRTC.
341 * VC4 can only scan out to one encoder at a time, while the DRM core
342 * allows drivers to push pixels to more than one encoder from the
343 * same CRTC.
345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
347 struct drm_connector *connector;
348 struct drm_connector_list_iter conn_iter;
350 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
351 drm_for_each_connector_iter(connector, &conn_iter) {
352 if (connector->state->crtc == crtc) {
353 drm_connector_list_iter_end(&conn_iter);
354 return connector->encoder;
357 drm_connector_list_iter_end(&conn_iter);
359 return NULL;
362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
364 struct drm_device *dev = crtc->dev;
365 struct vc4_dev *vc4 = to_vc4_dev(dev);
366 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
367 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
368 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
369 struct drm_crtc_state *state = crtc->state;
370 struct drm_display_mode *mode = &state->adjusted_mode;
371 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
372 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
373 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
374 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
375 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
376 bool debug_dump_regs = false;
378 if (debug_dump_regs) {
379 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
380 vc4_crtc_dump_regs(vc4_crtc);
383 /* Reset the PV fifo. */
384 CRTC_WRITE(PV_CONTROL, 0);
385 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
386 CRTC_WRITE(PV_CONTROL, 0);
388 CRTC_WRITE(PV_HORZA,
389 VC4_SET_FIELD((mode->htotal -
390 mode->hsync_end) * pixel_rep,
391 PV_HORZA_HBP) |
392 VC4_SET_FIELD((mode->hsync_end -
393 mode->hsync_start) * pixel_rep,
394 PV_HORZA_HSYNC));
395 CRTC_WRITE(PV_HORZB,
396 VC4_SET_FIELD((mode->hsync_start -
397 mode->hdisplay) * pixel_rep,
398 PV_HORZB_HFP) |
399 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
401 CRTC_WRITE(PV_VERTA,
402 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
403 PV_VERTA_VBP) |
404 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
405 PV_VERTA_VSYNC));
406 CRTC_WRITE(PV_VERTB,
407 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
408 PV_VERTB_VFP) |
409 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
411 if (interlace) {
412 CRTC_WRITE(PV_VERTA_EVEN,
413 VC4_SET_FIELD(mode->crtc_vtotal -
414 mode->crtc_vsync_end - 1,
415 PV_VERTA_VBP) |
416 VC4_SET_FIELD(mode->crtc_vsync_end -
417 mode->crtc_vsync_start,
418 PV_VERTA_VSYNC));
419 CRTC_WRITE(PV_VERTB_EVEN,
420 VC4_SET_FIELD(mode->crtc_vsync_start -
421 mode->crtc_vdisplay,
422 PV_VERTB_VFP) |
423 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
425 /* We set up first field even mode for HDMI. VEC's
426 * NTSC mode would want first field odd instead, once
427 * we support it (to do so, set ODD_FIRST and put the
428 * delay in VSYNCD_EVEN instead).
430 CRTC_WRITE(PV_V_CONTROL,
431 PV_VCONTROL_CONTINUOUS |
432 (is_dsi ? PV_VCONTROL_DSI : 0) |
433 PV_VCONTROL_INTERLACE |
434 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
435 PV_VCONTROL_ODD_DELAY));
436 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
437 } else {
438 CRTC_WRITE(PV_V_CONTROL,
439 PV_VCONTROL_CONTINUOUS |
440 (is_dsi ? PV_VCONTROL_DSI : 0));
443 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
445 CRTC_WRITE(PV_CONTROL,
446 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
447 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
448 PV_CONTROL_FIFO_LEVEL) |
449 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
450 PV_CONTROL_CLR_AT_START |
451 PV_CONTROL_TRIGGER_UNDERFLOW |
452 PV_CONTROL_WAIT_HSTART |
453 VC4_SET_FIELD(vc4_encoder->clock_select,
454 PV_CONTROL_CLK_SELECT) |
455 PV_CONTROL_FIFO_CLR |
456 PV_CONTROL_EN);
458 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
459 SCALER_DISPBKGND_AUTOHS |
460 SCALER_DISPBKGND_GAMMA |
461 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
463 /* Reload the LUT, since the SRAMs would have been disabled if
464 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
466 vc4_crtc_lut_load(crtc);
468 if (debug_dump_regs) {
469 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
470 vc4_crtc_dump_regs(vc4_crtc);
474 static void require_hvs_enabled(struct drm_device *dev)
476 struct vc4_dev *vc4 = to_vc4_dev(dev);
478 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
479 SCALER_DISPCTRL_ENABLE);
482 static void vc4_crtc_disable(struct drm_crtc *crtc)
484 struct drm_device *dev = crtc->dev;
485 struct vc4_dev *vc4 = to_vc4_dev(dev);
486 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
487 u32 chan = vc4_crtc->channel;
488 int ret;
489 require_hvs_enabled(dev);
491 /* Disable vblank irq handling before crtc is disabled. */
492 drm_crtc_vblank_off(crtc);
494 CRTC_WRITE(PV_V_CONTROL,
495 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
496 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
497 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
499 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
500 SCALER_DISPCTRLX_ENABLE) {
501 HVS_WRITE(SCALER_DISPCTRLX(chan),
502 SCALER_DISPCTRLX_RESET);
504 /* While the docs say that reset is self-clearing, it
505 * seems it doesn't actually.
507 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
510 /* Once we leave, the scaler should be disabled and its fifo empty. */
512 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
514 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
515 SCALER_DISPSTATX_MODE) !=
516 SCALER_DISPSTATX_MODE_DISABLED);
518 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
519 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
520 SCALER_DISPSTATX_EMPTY);
523 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
525 struct drm_device *dev = crtc->dev;
526 struct vc4_dev *vc4 = to_vc4_dev(dev);
527 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
528 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
530 if (crtc->state->event) {
531 unsigned long flags;
533 crtc->state->event->pipe = drm_crtc_index(crtc);
535 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
537 spin_lock_irqsave(&dev->event_lock, flags);
538 vc4_crtc->event = crtc->state->event;
539 crtc->state->event = NULL;
541 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
542 vc4_state->mm.start);
544 spin_unlock_irqrestore(&dev->event_lock, flags);
545 } else {
546 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
547 vc4_state->mm.start);
551 static void vc4_crtc_enable(struct drm_crtc *crtc)
553 struct drm_device *dev = crtc->dev;
554 struct vc4_dev *vc4 = to_vc4_dev(dev);
555 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
556 struct drm_crtc_state *state = crtc->state;
557 struct drm_display_mode *mode = &state->adjusted_mode;
559 require_hvs_enabled(dev);
561 /* Enable vblank irq handling before crtc is started otherwise
562 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
564 drm_crtc_vblank_on(crtc);
565 vc4_crtc_update_dlist(crtc);
567 /* Turn on the scaler, which will wait for vstart to start
568 * compositing.
570 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
571 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
572 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
573 SCALER_DISPCTRLX_ENABLE);
575 /* Turn on the pixel valve, which will emit the vstart signal. */
576 CRTC_WRITE(PV_V_CONTROL,
577 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
580 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
581 const struct drm_display_mode *mode,
582 struct drm_display_mode *adjusted_mode)
584 /* Do not allow doublescan modes from user space */
585 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
586 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
587 crtc->base.id);
588 return false;
591 return true;
594 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
595 struct drm_crtc_state *state)
597 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
598 struct drm_device *dev = crtc->dev;
599 struct vc4_dev *vc4 = to_vc4_dev(dev);
600 struct drm_plane *plane;
601 unsigned long flags;
602 const struct drm_plane_state *plane_state;
603 u32 dlist_count = 0;
604 int ret;
606 /* The pixelvalve can only feed one encoder (and encoders are
607 * 1:1 with connectors.)
609 if (hweight32(state->connector_mask) > 1)
610 return -EINVAL;
612 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
613 dlist_count += vc4_plane_dlist_size(plane_state);
615 dlist_count++; /* Account for SCALER_CTL0_END. */
617 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
618 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
619 dlist_count);
620 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
621 if (ret)
622 return ret;
624 return 0;
627 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
628 struct drm_crtc_state *old_state)
630 struct drm_device *dev = crtc->dev;
631 struct vc4_dev *vc4 = to_vc4_dev(dev);
632 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
633 struct drm_plane *plane;
634 bool debug_dump_regs = false;
635 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
636 u32 __iomem *dlist_next = dlist_start;
638 if (debug_dump_regs) {
639 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
640 vc4_hvs_dump_state(dev);
643 /* Copy all the active planes' dlist contents to the hardware dlist. */
644 drm_atomic_crtc_for_each_plane(plane, crtc) {
645 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
648 writel(SCALER_CTL0_END, dlist_next);
649 dlist_next++;
651 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
653 /* Only update DISPLIST if the CRTC was already running and is not
654 * being disabled.
655 * vc4_crtc_enable() takes care of updating the dlist just after
656 * re-enabling VBLANK interrupts and before enabling the engine.
657 * If the CRTC is being disabled, there's no point in updating this
658 * information.
660 if (crtc->state->active && old_state->active)
661 vc4_crtc_update_dlist(crtc);
663 if (debug_dump_regs) {
664 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
665 vc4_hvs_dump_state(dev);
669 static int vc4_enable_vblank(struct drm_crtc *crtc)
671 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
673 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
675 return 0;
678 static void vc4_disable_vblank(struct drm_crtc *crtc)
680 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
682 CRTC_WRITE(PV_INTEN, 0);
685 /* Must be called with the event lock held */
686 bool vc4_event_pending(struct drm_crtc *crtc)
688 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
690 return !!vc4_crtc->event;
693 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
695 struct drm_crtc *crtc = &vc4_crtc->base;
696 struct drm_device *dev = crtc->dev;
697 struct vc4_dev *vc4 = to_vc4_dev(dev);
698 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
699 u32 chan = vc4_crtc->channel;
700 unsigned long flags;
702 spin_lock_irqsave(&dev->event_lock, flags);
703 if (vc4_crtc->event &&
704 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
705 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
706 vc4_crtc->event = NULL;
707 drm_crtc_vblank_put(crtc);
709 spin_unlock_irqrestore(&dev->event_lock, flags);
712 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
714 struct vc4_crtc *vc4_crtc = data;
715 u32 stat = CRTC_READ(PV_INTSTAT);
716 irqreturn_t ret = IRQ_NONE;
718 if (stat & PV_INT_VFP_START) {
719 vc4_crtc->t_vblank = ktime_get();
720 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
721 drm_crtc_handle_vblank(&vc4_crtc->base);
722 vc4_crtc_handle_page_flip(vc4_crtc);
723 ret = IRQ_HANDLED;
726 return ret;
729 struct vc4_async_flip_state {
730 struct drm_crtc *crtc;
731 struct drm_framebuffer *fb;
732 struct drm_pending_vblank_event *event;
734 struct vc4_seqno_cb cb;
737 /* Called when the V3D execution for the BO being flipped to is done, so that
738 * we can actually update the plane's address to point to it.
740 static void
741 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
743 struct vc4_async_flip_state *flip_state =
744 container_of(cb, struct vc4_async_flip_state, cb);
745 struct drm_crtc *crtc = flip_state->crtc;
746 struct drm_device *dev = crtc->dev;
747 struct vc4_dev *vc4 = to_vc4_dev(dev);
748 struct drm_plane *plane = crtc->primary;
750 vc4_plane_async_set_fb(plane, flip_state->fb);
751 if (flip_state->event) {
752 unsigned long flags;
754 spin_lock_irqsave(&dev->event_lock, flags);
755 drm_crtc_send_vblank_event(crtc, flip_state->event);
756 spin_unlock_irqrestore(&dev->event_lock, flags);
759 drm_crtc_vblank_put(crtc);
760 drm_framebuffer_unreference(flip_state->fb);
761 kfree(flip_state);
763 up(&vc4->async_modeset);
766 /* Implements async (non-vblank-synced) page flips.
768 * The page flip ioctl needs to return immediately, so we grab the
769 * modeset semaphore on the pipe, and queue the address update for
770 * when V3D is done with the BO being flipped to.
772 static int vc4_async_page_flip(struct drm_crtc *crtc,
773 struct drm_framebuffer *fb,
774 struct drm_pending_vblank_event *event,
775 uint32_t flags)
777 struct drm_device *dev = crtc->dev;
778 struct vc4_dev *vc4 = to_vc4_dev(dev);
779 struct drm_plane *plane = crtc->primary;
780 int ret = 0;
781 struct vc4_async_flip_state *flip_state;
782 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
783 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
785 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
786 if (!flip_state)
787 return -ENOMEM;
789 drm_framebuffer_reference(fb);
790 flip_state->fb = fb;
791 flip_state->crtc = crtc;
792 flip_state->event = event;
794 /* Make sure all other async modesetes have landed. */
795 ret = down_interruptible(&vc4->async_modeset);
796 if (ret) {
797 drm_framebuffer_unreference(fb);
798 kfree(flip_state);
799 return ret;
802 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
804 /* Immediately update the plane's legacy fb pointer, so that later
805 * modeset prep sees the state that will be present when the semaphore
806 * is released.
808 drm_atomic_set_fb_for_plane(plane->state, fb);
809 plane->fb = fb;
811 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
812 vc4_async_page_flip_complete);
814 /* Driver takes ownership of state on successful async commit. */
815 return 0;
818 static int vc4_page_flip(struct drm_crtc *crtc,
819 struct drm_framebuffer *fb,
820 struct drm_pending_vblank_event *event,
821 uint32_t flags,
822 struct drm_modeset_acquire_ctx *ctx)
824 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
825 return vc4_async_page_flip(crtc, fb, event, flags);
826 else
827 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
830 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
832 struct vc4_crtc_state *vc4_state;
834 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
835 if (!vc4_state)
836 return NULL;
838 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
839 return &vc4_state->base;
842 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
843 struct drm_crtc_state *state)
845 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
846 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
848 if (vc4_state->mm.allocated) {
849 unsigned long flags;
851 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
852 drm_mm_remove_node(&vc4_state->mm);
853 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
857 drm_atomic_helper_crtc_destroy_state(crtc, state);
860 static void
861 vc4_crtc_reset(struct drm_crtc *crtc)
863 if (crtc->state)
864 __drm_atomic_helper_crtc_destroy_state(crtc->state);
866 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
867 if (crtc->state)
868 crtc->state->crtc = crtc;
871 static const struct drm_crtc_funcs vc4_crtc_funcs = {
872 .set_config = drm_atomic_helper_set_config,
873 .destroy = vc4_crtc_destroy,
874 .page_flip = vc4_page_flip,
875 .set_property = NULL,
876 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
877 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
878 .reset = vc4_crtc_reset,
879 .atomic_duplicate_state = vc4_crtc_duplicate_state,
880 .atomic_destroy_state = vc4_crtc_destroy_state,
881 .gamma_set = vc4_crtc_gamma_set,
882 .enable_vblank = vc4_enable_vblank,
883 .disable_vblank = vc4_disable_vblank,
886 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
887 .mode_set_nofb = vc4_crtc_mode_set_nofb,
888 .disable = vc4_crtc_disable,
889 .enable = vc4_crtc_enable,
890 .mode_fixup = vc4_crtc_mode_fixup,
891 .atomic_check = vc4_crtc_atomic_check,
892 .atomic_flush = vc4_crtc_atomic_flush,
895 static const struct vc4_crtc_data pv0_data = {
896 .hvs_channel = 0,
897 .encoder_types = {
898 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
899 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
903 static const struct vc4_crtc_data pv1_data = {
904 .hvs_channel = 2,
905 .encoder_types = {
906 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
907 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
911 static const struct vc4_crtc_data pv2_data = {
912 .hvs_channel = 1,
913 .encoder_types = {
914 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
915 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
919 static const struct of_device_id vc4_crtc_dt_match[] = {
920 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
921 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
922 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
926 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
927 struct drm_crtc *crtc)
929 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
930 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
931 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
932 struct drm_encoder *encoder;
934 drm_for_each_encoder(encoder, drm) {
935 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
936 int i;
938 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
939 if (vc4_encoder->type == encoder_types[i]) {
940 vc4_encoder->clock_select = i;
941 encoder->possible_crtcs |= drm_crtc_mask(crtc);
942 break;
948 static void
949 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
951 struct drm_device *drm = vc4_crtc->base.dev;
952 struct vc4_dev *vc4 = to_vc4_dev(drm);
953 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
954 /* Top/base are supposed to be 4-pixel aligned, but the
955 * Raspberry Pi firmware fills the low bits (which are
956 * presumably ignored).
958 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
959 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
961 vc4_crtc->cob_size = top - base + 4;
964 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
966 struct platform_device *pdev = to_platform_device(dev);
967 struct drm_device *drm = dev_get_drvdata(master);
968 struct vc4_crtc *vc4_crtc;
969 struct drm_crtc *crtc;
970 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
971 const struct of_device_id *match;
972 int ret, i;
974 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
975 if (!vc4_crtc)
976 return -ENOMEM;
977 crtc = &vc4_crtc->base;
979 match = of_match_device(vc4_crtc_dt_match, dev);
980 if (!match)
981 return -ENODEV;
982 vc4_crtc->data = match->data;
984 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
985 if (IS_ERR(vc4_crtc->regs))
986 return PTR_ERR(vc4_crtc->regs);
988 /* For now, we create just the primary and the legacy cursor
989 * planes. We should be able to stack more planes on easily,
990 * but to do that we would need to compute the bandwidth
991 * requirement of the plane configuration, and reject ones
992 * that will take too much.
994 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
995 if (IS_ERR(primary_plane)) {
996 dev_err(dev, "failed to construct primary plane\n");
997 ret = PTR_ERR(primary_plane);
998 goto err;
1001 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1002 &vc4_crtc_funcs, NULL);
1003 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1004 primary_plane->crtc = crtc;
1005 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1006 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1008 /* Set up some arbitrary number of planes. We're not limited
1009 * by a set number of physical registers, just the space in
1010 * the HVS (16k) and how small an plane can be (28 bytes).
1011 * However, each plane we set up takes up some memory, and
1012 * increases the cost of looping over planes, which atomic
1013 * modesetting does quite a bit. As a result, we pick a
1014 * modest number of planes to expose, that should hopefully
1015 * still cover any sane usecase.
1017 for (i = 0; i < 8; i++) {
1018 struct drm_plane *plane =
1019 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1021 if (IS_ERR(plane))
1022 continue;
1024 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1027 /* Set up the legacy cursor after overlay initialization,
1028 * since we overlay planes on the CRTC in the order they were
1029 * initialized.
1031 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1032 if (!IS_ERR(cursor_plane)) {
1033 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1034 cursor_plane->crtc = crtc;
1035 crtc->cursor = cursor_plane;
1038 vc4_crtc_get_cob_allocation(vc4_crtc);
1040 CRTC_WRITE(PV_INTEN, 0);
1041 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1042 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1043 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1044 if (ret)
1045 goto err_destroy_planes;
1047 vc4_set_crtc_possible_masks(drm, crtc);
1049 for (i = 0; i < crtc->gamma_size; i++) {
1050 vc4_crtc->lut_r[i] = i;
1051 vc4_crtc->lut_g[i] = i;
1052 vc4_crtc->lut_b[i] = i;
1055 platform_set_drvdata(pdev, vc4_crtc);
1057 return 0;
1059 err_destroy_planes:
1060 list_for_each_entry_safe(destroy_plane, temp,
1061 &drm->mode_config.plane_list, head) {
1062 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1063 destroy_plane->funcs->destroy(destroy_plane);
1065 err:
1066 return ret;
1069 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1070 void *data)
1072 struct platform_device *pdev = to_platform_device(dev);
1073 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1075 vc4_crtc_destroy(&vc4_crtc->base);
1077 CRTC_WRITE(PV_INTEN, 0);
1079 platform_set_drvdata(pdev, NULL);
1082 static const struct component_ops vc4_crtc_ops = {
1083 .bind = vc4_crtc_bind,
1084 .unbind = vc4_crtc_unbind,
1087 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1089 return component_add(&pdev->dev, &vc4_crtc_ops);
1092 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1094 component_del(&pdev->dev, &vc4_crtc_ops);
1095 return 0;
1098 struct platform_driver vc4_crtc_driver = {
1099 .probe = vc4_crtc_dev_probe,
1100 .remove = vc4_crtc_dev_remove,
1101 .driver = {
1102 .name = "vc4_crtc",
1103 .of_match_table = vc4_crtc_dt_match,