1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
68 static void transport_handle_queue_full(struct se_cmd
*cmd
,
69 struct se_device
*dev
, int err
, bool write_pending
);
70 static int transport_put_cmd(struct se_cmd
*cmd
);
71 static void target_complete_ok_work(struct work_struct
*work
);
73 int init_se_kmem_caches(void)
75 se_sess_cache
= kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session
), __alignof__(struct se_session
),
79 pr_err("kmem_cache_create() for struct se_session"
83 se_ua_cache
= kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua
), __alignof__(struct se_ua
),
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache
;
90 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration
),
92 __alignof__(struct t10_pr_registration
), 0, NULL
);
93 if (!t10_pr_reg_cache
) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 goto out_free_ua_cache
;
98 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
101 if (!t10_alua_lu_gp_cache
) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 goto out_free_pr_reg_cache
;
106 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member
),
108 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
109 if (!t10_alua_lu_gp_mem_cache
) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 goto out_free_lu_gp_cache
;
114 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp
),
116 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
117 if (!t10_alua_tg_pt_gp_cache
) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 goto out_free_lu_gp_mem_cache
;
122 t10_alua_lba_map_cache
= kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map
),
125 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
126 if (!t10_alua_lba_map_cache
) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
129 goto out_free_tg_pt_gp_cache
;
131 t10_alua_lba_map_mem_cache
= kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member
),
134 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
135 if (!t10_alua_lba_map_mem_cache
) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
138 goto out_free_lba_map_cache
;
141 target_completion_wq
= alloc_workqueue("target_completion",
143 if (!target_completion_wq
)
144 goto out_free_lba_map_mem_cache
;
148 out_free_lba_map_mem_cache
:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
150 out_free_lba_map_cache
:
151 kmem_cache_destroy(t10_alua_lba_map_cache
);
152 out_free_tg_pt_gp_cache
:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
154 out_free_lu_gp_mem_cache
:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
156 out_free_lu_gp_cache
:
157 kmem_cache_destroy(t10_alua_lu_gp_cache
);
158 out_free_pr_reg_cache
:
159 kmem_cache_destroy(t10_pr_reg_cache
);
161 kmem_cache_destroy(se_ua_cache
);
163 kmem_cache_destroy(se_sess_cache
);
168 void release_se_kmem_caches(void)
170 destroy_workqueue(target_completion_wq
);
171 kmem_cache_destroy(se_sess_cache
);
172 kmem_cache_destroy(se_ua_cache
);
173 kmem_cache_destroy(t10_pr_reg_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_cache
);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_cache
);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
183 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
186 * Allocate a new row index for the entry type specified
188 u32
scsi_get_new_index(scsi_index_t type
)
192 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
194 spin_lock(&scsi_mib_index_lock
);
195 new_index
= ++scsi_mib_index
[type
];
196 spin_unlock(&scsi_mib_index_lock
);
201 void transport_subsystem_check_init(void)
204 static int sub_api_initialized
;
206 if (sub_api_initialized
)
209 ret
= request_module("target_core_iblock");
211 pr_err("Unable to load target_core_iblock\n");
213 ret
= request_module("target_core_file");
215 pr_err("Unable to load target_core_file\n");
217 ret
= request_module("target_core_pscsi");
219 pr_err("Unable to load target_core_pscsi\n");
221 ret
= request_module("target_core_user");
223 pr_err("Unable to load target_core_user\n");
225 sub_api_initialized
= 1;
228 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
230 struct se_session
*se_sess
;
232 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
234 pr_err("Unable to allocate struct se_session from"
236 return ERR_PTR(-ENOMEM
);
238 INIT_LIST_HEAD(&se_sess
->sess_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
241 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
242 spin_lock_init(&se_sess
->sess_cmd_lock
);
243 se_sess
->sup_prot_ops
= sup_prot_ops
;
247 EXPORT_SYMBOL(transport_init_session
);
249 int transport_alloc_session_tags(struct se_session
*se_sess
,
250 unsigned int tag_num
, unsigned int tag_size
)
254 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
255 GFP_KERNEL
| __GFP_NOWARN
| __GFP_RETRY_MAYFAIL
);
256 if (!se_sess
->sess_cmd_map
) {
257 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
258 if (!se_sess
->sess_cmd_map
) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
264 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num
);
268 kvfree(se_sess
->sess_cmd_map
);
269 se_sess
->sess_cmd_map
= NULL
;
275 EXPORT_SYMBOL(transport_alloc_session_tags
);
277 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
278 unsigned int tag_size
,
279 enum target_prot_op sup_prot_ops
)
281 struct se_session
*se_sess
;
284 if (tag_num
!= 0 && !tag_size
) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num
);
287 return ERR_PTR(-EINVAL
);
289 if (!tag_num
&& tag_size
) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size
);
292 return ERR_PTR(-EINVAL
);
295 se_sess
= transport_init_session(sup_prot_ops
);
299 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
301 transport_free_session(se_sess
);
302 return ERR_PTR(-ENOMEM
);
307 EXPORT_SYMBOL(transport_init_session_tags
);
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312 void __transport_register_session(
313 struct se_portal_group
*se_tpg
,
314 struct se_node_acl
*se_nacl
,
315 struct se_session
*se_sess
,
316 void *fabric_sess_ptr
)
318 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
319 unsigned char buf
[PR_REG_ISID_LEN
];
321 se_sess
->se_tpg
= se_tpg
;
322 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
340 if (se_nacl
->saved_prot_type
)
341 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
342 else if (tfo
->tpg_check_prot_fabric_only
)
343 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
344 tfo
->tpg_check_prot_fabric_only(se_tpg
);
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
349 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
350 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
351 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
352 &buf
[0], PR_REG_ISID_LEN
);
353 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
356 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
361 se_nacl
->nacl_sess
= se_sess
;
363 list_add_tail(&se_sess
->sess_acl_list
,
364 &se_nacl
->acl_sess_list
);
365 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
367 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
372 EXPORT_SYMBOL(__transport_register_session
);
374 void transport_register_session(
375 struct se_portal_group
*se_tpg
,
376 struct se_node_acl
*se_nacl
,
377 struct se_session
*se_sess
,
378 void *fabric_sess_ptr
)
382 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
383 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
384 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
386 EXPORT_SYMBOL(transport_register_session
);
389 target_alloc_session(struct se_portal_group
*tpg
,
390 unsigned int tag_num
, unsigned int tag_size
,
391 enum target_prot_op prot_op
,
392 const char *initiatorname
, void *private,
393 int (*callback
)(struct se_portal_group
*,
394 struct se_session
*, void *))
396 struct se_session
*sess
;
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
403 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
405 sess
= transport_init_session(prot_op
);
410 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
411 (unsigned char *)initiatorname
);
412 if (!sess
->se_node_acl
) {
413 transport_free_session(sess
);
414 return ERR_PTR(-EACCES
);
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
420 if (callback
!= NULL
) {
421 int rc
= callback(tpg
, sess
, private);
423 transport_free_session(sess
);
428 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
431 EXPORT_SYMBOL(target_alloc_session
);
433 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
435 struct se_session
*se_sess
;
438 spin_lock_bh(&se_tpg
->session_lock
);
439 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
440 if (!se_sess
->se_node_acl
)
442 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
444 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
447 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
448 se_sess
->se_node_acl
->initiatorname
);
449 len
+= 1; /* Include NULL terminator */
451 spin_unlock_bh(&se_tpg
->session_lock
);
455 EXPORT_SYMBOL(target_show_dynamic_sessions
);
457 static void target_complete_nacl(struct kref
*kref
)
459 struct se_node_acl
*nacl
= container_of(kref
,
460 struct se_node_acl
, acl_kref
);
461 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
463 if (!nacl
->dynamic_stop
) {
464 complete(&nacl
->acl_free_comp
);
468 mutex_lock(&se_tpg
->acl_node_mutex
);
469 list_del(&nacl
->acl_list
);
470 mutex_unlock(&se_tpg
->acl_node_mutex
);
472 core_tpg_wait_for_nacl_pr_ref(nacl
);
473 core_free_device_list_for_node(nacl
, se_tpg
);
477 void target_put_nacl(struct se_node_acl
*nacl
)
479 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
481 EXPORT_SYMBOL(target_put_nacl
);
483 void transport_deregister_session_configfs(struct se_session
*se_sess
)
485 struct se_node_acl
*se_nacl
;
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
490 se_nacl
= se_sess
->se_node_acl
;
492 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
493 if (!list_empty(&se_sess
->sess_acl_list
))
494 list_del_init(&se_sess
->sess_acl_list
);
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
500 if (list_empty(&se_nacl
->acl_sess_list
))
501 se_nacl
->nacl_sess
= NULL
;
503 se_nacl
->nacl_sess
= container_of(
504 se_nacl
->acl_sess_list
.prev
,
505 struct se_session
, sess_acl_list
);
507 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
510 EXPORT_SYMBOL(transport_deregister_session_configfs
);
512 void transport_free_session(struct se_session
*se_sess
)
514 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
521 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
522 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
525 se_sess
->se_node_acl
= NULL
;
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
532 mutex_lock(&se_tpg
->acl_node_mutex
);
533 if (se_nacl
->dynamic_node_acl
&&
534 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
535 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
536 if (list_empty(&se_nacl
->acl_sess_list
))
537 se_nacl
->dynamic_stop
= true;
538 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
540 if (se_nacl
->dynamic_stop
)
541 list_del(&se_nacl
->acl_list
);
543 mutex_unlock(&se_tpg
->acl_node_mutex
);
545 if (se_nacl
->dynamic_stop
)
546 target_put_nacl(se_nacl
);
548 target_put_nacl(se_nacl
);
550 if (se_sess
->sess_cmd_map
) {
551 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
552 kvfree(se_sess
->sess_cmd_map
);
554 kmem_cache_free(se_sess_cache
, se_sess
);
556 EXPORT_SYMBOL(transport_free_session
);
558 void transport_deregister_session(struct se_session
*se_sess
)
560 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
564 transport_free_session(se_sess
);
568 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
569 list_del(&se_sess
->sess_list
);
570 se_sess
->se_tpg
= NULL
;
571 se_sess
->fabric_sess_ptr
= NULL
;
572 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg
->se_tpg_tfo
->get_fabric_name());
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
585 transport_free_session(se_sess
);
587 EXPORT_SYMBOL(transport_deregister_session
);
589 static void target_remove_from_state_list(struct se_cmd
*cmd
)
591 struct se_device
*dev
= cmd
->se_dev
;
597 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
598 if (cmd
->state_active
) {
599 list_del(&cmd
->state_list
);
600 cmd
->state_active
= false;
602 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
605 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
609 target_remove_from_state_list(cmd
);
612 * Clear struct se_cmd->se_lun before the handoff to FE.
616 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
618 * Determine if frontend context caller is requesting the stopping of
619 * this command for frontend exceptions.
621 if (cmd
->transport_state
& CMD_T_STOP
) {
622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
623 __func__
, __LINE__
, cmd
->tag
);
625 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
627 complete_all(&cmd
->t_transport_stop_comp
);
630 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
631 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
634 * Some fabric modules like tcm_loop can release their internally
635 * allocated I/O reference and struct se_cmd now.
637 * Fabric modules are expected to return '1' here if the se_cmd being
638 * passed is released at this point, or zero if not being released.
640 return cmd
->se_tfo
->check_stop_free(cmd
);
643 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
645 struct se_lun
*lun
= cmd
->se_lun
;
650 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
651 percpu_ref_put(&lun
->lun_ref
);
654 int transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
656 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
659 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
660 transport_lun_remove_cmd(cmd
);
662 * Allow the fabric driver to unmap any resources before
663 * releasing the descriptor via TFO->release_cmd()
666 cmd
->se_tfo
->aborted_task(cmd
);
668 if (transport_cmd_check_stop_to_fabric(cmd
))
670 if (remove
&& ack_kref
)
671 ret
= transport_put_cmd(cmd
);
676 static void target_complete_failure_work(struct work_struct
*work
)
678 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
680 transport_generic_request_failure(cmd
,
681 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
685 * Used when asking transport to copy Sense Data from the underlying
686 * Linux/SCSI struct scsi_cmnd
688 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
690 struct se_device
*dev
= cmd
->se_dev
;
692 WARN_ON(!cmd
->se_lun
);
697 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
700 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
702 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
703 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
704 return cmd
->sense_buffer
;
707 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
709 unsigned char *cmd_sense_buf
;
712 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
713 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
714 if (!cmd_sense_buf
) {
715 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
719 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
720 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
721 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
723 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
725 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
727 struct se_device
*dev
= cmd
->se_dev
;
731 cmd
->scsi_status
= scsi_status
;
733 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
734 switch (cmd
->scsi_status
) {
735 case SAM_STAT_CHECK_CONDITION
:
736 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
747 * Check for case where an explicit ABORT_TASK has been received
748 * and transport_wait_for_tasks() will be waiting for completion..
750 if (cmd
->transport_state
& CMD_T_ABORTED
||
751 cmd
->transport_state
& CMD_T_STOP
) {
752 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
754 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
755 * release se_device->caw_sem obtained by sbc_compare_and_write()
756 * since target_complete_ok_work() or target_complete_failure_work()
757 * won't be called to invoke the normal CAW completion callbacks.
759 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
762 complete_all(&cmd
->t_transport_stop_comp
);
764 } else if (!success
) {
765 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
767 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
770 cmd
->t_state
= TRANSPORT_COMPLETE
;
771 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
772 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
774 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
775 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
777 queue_work(target_completion_wq
, &cmd
->work
);
779 EXPORT_SYMBOL(target_complete_cmd
);
781 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
783 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
784 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
785 cmd
->residual_count
+= cmd
->data_length
- length
;
787 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
788 cmd
->residual_count
= cmd
->data_length
- length
;
791 cmd
->data_length
= length
;
794 target_complete_cmd(cmd
, scsi_status
);
796 EXPORT_SYMBOL(target_complete_cmd_with_length
);
798 static void target_add_to_state_list(struct se_cmd
*cmd
)
800 struct se_device
*dev
= cmd
->se_dev
;
803 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
804 if (!cmd
->state_active
) {
805 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
806 cmd
->state_active
= true;
808 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
812 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
814 static void transport_write_pending_qf(struct se_cmd
*cmd
);
815 static void transport_complete_qf(struct se_cmd
*cmd
);
817 void target_qf_do_work(struct work_struct
*work
)
819 struct se_device
*dev
= container_of(work
, struct se_device
,
821 LIST_HEAD(qf_cmd_list
);
822 struct se_cmd
*cmd
, *cmd_tmp
;
824 spin_lock_irq(&dev
->qf_cmd_lock
);
825 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
826 spin_unlock_irq(&dev
->qf_cmd_lock
);
828 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
829 list_del(&cmd
->se_qf_node
);
830 atomic_dec_mb(&dev
->dev_qf_count
);
832 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
833 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
834 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
835 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
838 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
839 transport_write_pending_qf(cmd
);
840 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
841 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
842 transport_complete_qf(cmd
);
846 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
848 switch (cmd
->data_direction
) {
851 case DMA_FROM_DEVICE
:
855 case DMA_BIDIRECTIONAL
:
864 void transport_dump_dev_state(
865 struct se_device
*dev
,
869 *bl
+= sprintf(b
+ *bl
, "Status: ");
870 if (dev
->export_count
)
871 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
873 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
875 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
876 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
877 dev
->dev_attrib
.block_size
,
878 dev
->dev_attrib
.hw_max_sectors
);
879 *bl
+= sprintf(b
+ *bl
, " ");
882 void transport_dump_vpd_proto_id(
884 unsigned char *p_buf
,
887 unsigned char buf
[VPD_TMP_BUF_SIZE
];
890 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
891 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
893 switch (vpd
->protocol_identifier
) {
895 sprintf(buf
+len
, "Fibre Channel\n");
898 sprintf(buf
+len
, "Parallel SCSI\n");
901 sprintf(buf
+len
, "SSA\n");
904 sprintf(buf
+len
, "IEEE 1394\n");
907 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
911 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
914 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
917 sprintf(buf
+len
, "Automation/Drive Interface Transport"
921 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
924 sprintf(buf
+len
, "Unknown 0x%02x\n",
925 vpd
->protocol_identifier
);
930 strncpy(p_buf
, buf
, p_buf_len
);
936 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
939 * Check if the Protocol Identifier Valid (PIV) bit is set..
941 * from spc3r23.pdf section 7.5.1
943 if (page_83
[1] & 0x80) {
944 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
945 vpd
->protocol_identifier_set
= 1;
946 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
949 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
951 int transport_dump_vpd_assoc(
953 unsigned char *p_buf
,
956 unsigned char buf
[VPD_TMP_BUF_SIZE
];
960 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
961 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
963 switch (vpd
->association
) {
965 sprintf(buf
+len
, "addressed logical unit\n");
968 sprintf(buf
+len
, "target port\n");
971 sprintf(buf
+len
, "SCSI target device\n");
974 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
980 strncpy(p_buf
, buf
, p_buf_len
);
987 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
990 * The VPD identification association..
992 * from spc3r23.pdf Section 7.6.3.1 Table 297
994 vpd
->association
= (page_83
[1] & 0x30);
995 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
997 EXPORT_SYMBOL(transport_set_vpd_assoc
);
999 int transport_dump_vpd_ident_type(
1000 struct t10_vpd
*vpd
,
1001 unsigned char *p_buf
,
1004 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1008 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1009 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1011 switch (vpd
->device_identifier_type
) {
1013 sprintf(buf
+len
, "Vendor specific\n");
1016 sprintf(buf
+len
, "T10 Vendor ID based\n");
1019 sprintf(buf
+len
, "EUI-64 based\n");
1022 sprintf(buf
+len
, "NAA\n");
1025 sprintf(buf
+len
, "Relative target port identifier\n");
1028 sprintf(buf
+len
, "SCSI name string\n");
1031 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1032 vpd
->device_identifier_type
);
1038 if (p_buf_len
< strlen(buf
)+1)
1040 strncpy(p_buf
, buf
, p_buf_len
);
1042 pr_debug("%s", buf
);
1048 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1051 * The VPD identifier type..
1053 * from spc3r23.pdf Section 7.6.3.1 Table 298
1055 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1056 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1058 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1060 int transport_dump_vpd_ident(
1061 struct t10_vpd
*vpd
,
1062 unsigned char *p_buf
,
1065 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1068 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1070 switch (vpd
->device_identifier_code_set
) {
1071 case 0x01: /* Binary */
1072 snprintf(buf
, sizeof(buf
),
1073 "T10 VPD Binary Device Identifier: %s\n",
1074 &vpd
->device_identifier
[0]);
1076 case 0x02: /* ASCII */
1077 snprintf(buf
, sizeof(buf
),
1078 "T10 VPD ASCII Device Identifier: %s\n",
1079 &vpd
->device_identifier
[0]);
1081 case 0x03: /* UTF-8 */
1082 snprintf(buf
, sizeof(buf
),
1083 "T10 VPD UTF-8 Device Identifier: %s\n",
1084 &vpd
->device_identifier
[0]);
1087 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1088 " 0x%02x", vpd
->device_identifier_code_set
);
1094 strncpy(p_buf
, buf
, p_buf_len
);
1096 pr_debug("%s", buf
);
1102 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1104 static const char hex_str
[] = "0123456789abcdef";
1105 int j
= 0, i
= 4; /* offset to start of the identifier */
1108 * The VPD Code Set (encoding)
1110 * from spc3r23.pdf Section 7.6.3.1 Table 296
1112 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1113 switch (vpd
->device_identifier_code_set
) {
1114 case 0x01: /* Binary */
1115 vpd
->device_identifier
[j
++] =
1116 hex_str
[vpd
->device_identifier_type
];
1117 while (i
< (4 + page_83
[3])) {
1118 vpd
->device_identifier
[j
++] =
1119 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1120 vpd
->device_identifier
[j
++] =
1121 hex_str
[page_83
[i
] & 0x0f];
1125 case 0x02: /* ASCII */
1126 case 0x03: /* UTF-8 */
1127 while (i
< (4 + page_83
[3]))
1128 vpd
->device_identifier
[j
++] = page_83
[i
++];
1134 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1136 EXPORT_SYMBOL(transport_set_vpd_ident
);
1138 static sense_reason_t
1139 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1144 if (!cmd
->se_tfo
->max_data_sg_nents
)
1145 return TCM_NO_SENSE
;
1147 * Check if fabric enforced maximum SGL entries per I/O descriptor
1148 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1149 * residual_count and reduce original cmd->data_length to maximum
1150 * length based on single PAGE_SIZE entry scatter-lists.
1152 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1153 if (cmd
->data_length
> mtl
) {
1155 * If an existing CDB overflow is present, calculate new residual
1156 * based on CDB size minus fabric maximum transfer length.
1158 * If an existing CDB underflow is present, calculate new residual
1159 * based on original cmd->data_length minus fabric maximum transfer
1162 * Otherwise, set the underflow residual based on cmd->data_length
1163 * minus fabric maximum transfer length.
1165 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1166 cmd
->residual_count
= (size
- mtl
);
1167 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1168 u32 orig_dl
= size
+ cmd
->residual_count
;
1169 cmd
->residual_count
= (orig_dl
- mtl
);
1171 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1172 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1174 cmd
->data_length
= mtl
;
1176 * Reset sbc_check_prot() calculated protection payload
1177 * length based upon the new smaller MTL.
1179 if (cmd
->prot_length
) {
1180 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1181 cmd
->prot_length
= dev
->prot_length
* sectors
;
1184 return TCM_NO_SENSE
;
1188 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1190 struct se_device
*dev
= cmd
->se_dev
;
1192 if (cmd
->unknown_data_length
) {
1193 cmd
->data_length
= size
;
1194 } else if (size
!= cmd
->data_length
) {
1195 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1196 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1197 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1198 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1200 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1201 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1202 pr_err_ratelimited("Rejecting underflow/overflow"
1203 " for WRITE data CDB\n");
1204 return TCM_INVALID_CDB_FIELD
;
1207 * Some fabric drivers like iscsi-target still expect to
1208 * always reject overflow writes. Reject this case until
1209 * full fabric driver level support for overflow writes
1210 * is introduced tree-wide.
1212 if (size
> cmd
->data_length
) {
1213 pr_err_ratelimited("Rejecting overflow for"
1214 " WRITE control CDB\n");
1215 return TCM_INVALID_CDB_FIELD
;
1219 * Reject READ_* or WRITE_* with overflow/underflow for
1220 * type SCF_SCSI_DATA_CDB.
1222 if (dev
->dev_attrib
.block_size
!= 512) {
1223 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1224 " CDB on non 512-byte sector setup subsystem"
1225 " plugin: %s\n", dev
->transport
->name
);
1226 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1227 return TCM_INVALID_CDB_FIELD
;
1230 * For the overflow case keep the existing fabric provided
1231 * ->data_length. Otherwise for the underflow case, reset
1232 * ->data_length to the smaller SCSI expected data transfer
1235 if (size
> cmd
->data_length
) {
1236 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1237 cmd
->residual_count
= (size
- cmd
->data_length
);
1239 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1240 cmd
->residual_count
= (cmd
->data_length
- size
);
1241 cmd
->data_length
= size
;
1245 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1250 * Used by fabric modules containing a local struct se_cmd within their
1251 * fabric dependent per I/O descriptor.
1253 * Preserves the value of @cmd->tag.
1255 void transport_init_se_cmd(
1257 const struct target_core_fabric_ops
*tfo
,
1258 struct se_session
*se_sess
,
1262 unsigned char *sense_buffer
)
1264 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1265 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1266 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1267 INIT_LIST_HEAD(&cmd
->state_list
);
1268 init_completion(&cmd
->t_transport_stop_comp
);
1269 init_completion(&cmd
->cmd_wait_comp
);
1270 spin_lock_init(&cmd
->t_state_lock
);
1271 INIT_WORK(&cmd
->work
, NULL
);
1272 kref_init(&cmd
->cmd_kref
);
1275 cmd
->se_sess
= se_sess
;
1276 cmd
->data_length
= data_length
;
1277 cmd
->data_direction
= data_direction
;
1278 cmd
->sam_task_attr
= task_attr
;
1279 cmd
->sense_buffer
= sense_buffer
;
1281 cmd
->state_active
= false;
1283 EXPORT_SYMBOL(transport_init_se_cmd
);
1285 static sense_reason_t
1286 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1288 struct se_device
*dev
= cmd
->se_dev
;
1291 * Check if SAM Task Attribute emulation is enabled for this
1292 * struct se_device storage object
1294 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1297 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1298 pr_debug("SAM Task Attribute ACA"
1299 " emulation is not supported\n");
1300 return TCM_INVALID_CDB_FIELD
;
1307 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1309 struct se_device
*dev
= cmd
->se_dev
;
1313 * Ensure that the received CDB is less than the max (252 + 8) bytes
1314 * for VARIABLE_LENGTH_CMD
1316 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1317 pr_err("Received SCSI CDB with command_size: %d that"
1318 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1319 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1320 return TCM_INVALID_CDB_FIELD
;
1323 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1324 * allocate the additional extended CDB buffer now.. Otherwise
1325 * setup the pointer from __t_task_cdb to t_task_cdb.
1327 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1328 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1330 if (!cmd
->t_task_cdb
) {
1331 pr_err("Unable to allocate cmd->t_task_cdb"
1332 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1333 scsi_command_size(cdb
),
1334 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1335 return TCM_OUT_OF_RESOURCES
;
1338 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1340 * Copy the original CDB into cmd->
1342 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1344 trace_target_sequencer_start(cmd
);
1346 ret
= dev
->transport
->parse_cdb(cmd
);
1347 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1348 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1349 cmd
->se_tfo
->get_fabric_name(),
1350 cmd
->se_sess
->se_node_acl
->initiatorname
,
1351 cmd
->t_task_cdb
[0]);
1355 ret
= transport_check_alloc_task_attr(cmd
);
1359 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1360 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1363 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1366 * Used by fabric module frontends to queue tasks directly.
1367 * May only be used from process context.
1369 int transport_handle_cdb_direct(
1376 pr_err("cmd->se_lun is NULL\n");
1379 if (in_interrupt()) {
1381 pr_err("transport_generic_handle_cdb cannot be called"
1382 " from interrupt context\n");
1386 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1387 * outstanding descriptors are handled correctly during shutdown via
1388 * transport_wait_for_tasks()
1390 * Also, we don't take cmd->t_state_lock here as we only expect
1391 * this to be called for initial descriptor submission.
1393 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1394 cmd
->transport_state
|= CMD_T_ACTIVE
;
1397 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1398 * so follow TRANSPORT_NEW_CMD processing thread context usage
1399 * and call transport_generic_request_failure() if necessary..
1401 ret
= transport_generic_new_cmd(cmd
);
1403 transport_generic_request_failure(cmd
, ret
);
1406 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1409 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1410 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1412 if (!sgl
|| !sgl_count
)
1416 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1417 * scatterlists already have been set to follow what the fabric
1418 * passes for the original expected data transfer length.
1420 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1421 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1422 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1423 return TCM_INVALID_CDB_FIELD
;
1426 cmd
->t_data_sg
= sgl
;
1427 cmd
->t_data_nents
= sgl_count
;
1428 cmd
->t_bidi_data_sg
= sgl_bidi
;
1429 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1431 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1436 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1437 * se_cmd + use pre-allocated SGL memory.
1439 * @se_cmd: command descriptor to submit
1440 * @se_sess: associated se_sess for endpoint
1441 * @cdb: pointer to SCSI CDB
1442 * @sense: pointer to SCSI sense buffer
1443 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1444 * @data_length: fabric expected data transfer length
1445 * @task_addr: SAM task attribute
1446 * @data_dir: DMA data direction
1447 * @flags: flags for command submission from target_sc_flags_tables
1448 * @sgl: struct scatterlist memory for unidirectional mapping
1449 * @sgl_count: scatterlist count for unidirectional mapping
1450 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1451 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1452 * @sgl_prot: struct scatterlist memory protection information
1453 * @sgl_prot_count: scatterlist count for protection information
1455 * Task tags are supported if the caller has set @se_cmd->tag.
1457 * Returns non zero to signal active I/O shutdown failure. All other
1458 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1459 * but still return zero here.
1461 * This may only be called from process context, and also currently
1462 * assumes internal allocation of fabric payload buffer by target-core.
1464 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1465 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1466 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1467 struct scatterlist
*sgl
, u32 sgl_count
,
1468 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1469 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1471 struct se_portal_group
*se_tpg
;
1475 se_tpg
= se_sess
->se_tpg
;
1477 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1478 BUG_ON(in_interrupt());
1480 * Initialize se_cmd for target operation. From this point
1481 * exceptions are handled by sending exception status via
1482 * target_core_fabric_ops->queue_status() callback
1484 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1485 data_length
, data_dir
, task_attr
, sense
);
1487 if (flags
& TARGET_SCF_USE_CPUID
)
1488 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1490 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1492 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1493 se_cmd
->unknown_data_length
= 1;
1495 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1496 * se_sess->sess_cmd_list. A second kref_get here is necessary
1497 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1498 * kref_put() to happen during fabric packet acknowledgement.
1500 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1504 * Signal bidirectional data payloads to target-core
1506 if (flags
& TARGET_SCF_BIDI_OP
)
1507 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1509 * Locate se_lun pointer and attach it to struct se_cmd
1511 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1513 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1514 target_put_sess_cmd(se_cmd
);
1518 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1520 transport_generic_request_failure(se_cmd
, rc
);
1525 * Save pointers for SGLs containing protection information,
1528 if (sgl_prot_count
) {
1529 se_cmd
->t_prot_sg
= sgl_prot
;
1530 se_cmd
->t_prot_nents
= sgl_prot_count
;
1531 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1535 * When a non zero sgl_count has been passed perform SGL passthrough
1536 * mapping for pre-allocated fabric memory instead of having target
1537 * core perform an internal SGL allocation..
1539 if (sgl_count
!= 0) {
1543 * A work-around for tcm_loop as some userspace code via
1544 * scsi-generic do not memset their associated read buffers,
1545 * so go ahead and do that here for type non-data CDBs. Also
1546 * note that this is currently guaranteed to be a single SGL
1547 * for this case by target core in target_setup_cmd_from_cdb()
1548 * -> transport_generic_cmd_sequencer().
1550 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1551 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1552 unsigned char *buf
= NULL
;
1555 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1558 memset(buf
, 0, sgl
->length
);
1559 kunmap(sg_page(sgl
));
1563 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1564 sgl_bidi
, sgl_bidi_count
);
1566 transport_generic_request_failure(se_cmd
, rc
);
1572 * Check if we need to delay processing because of ALUA
1573 * Active/NonOptimized primary access state..
1575 core_alua_check_nonop_delay(se_cmd
);
1577 transport_handle_cdb_direct(se_cmd
);
1580 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1583 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1585 * @se_cmd: command descriptor to submit
1586 * @se_sess: associated se_sess for endpoint
1587 * @cdb: pointer to SCSI CDB
1588 * @sense: pointer to SCSI sense buffer
1589 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1590 * @data_length: fabric expected data transfer length
1591 * @task_addr: SAM task attribute
1592 * @data_dir: DMA data direction
1593 * @flags: flags for command submission from target_sc_flags_tables
1595 * Task tags are supported if the caller has set @se_cmd->tag.
1597 * Returns non zero to signal active I/O shutdown failure. All other
1598 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1599 * but still return zero here.
1601 * This may only be called from process context, and also currently
1602 * assumes internal allocation of fabric payload buffer by target-core.
1604 * It also assumes interal target core SGL memory allocation.
1606 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1607 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1608 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1610 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1611 unpacked_lun
, data_length
, task_attr
, data_dir
,
1612 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1614 EXPORT_SYMBOL(target_submit_cmd
);
1616 static void target_complete_tmr_failure(struct work_struct
*work
)
1618 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1620 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1621 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1623 transport_lun_remove_cmd(se_cmd
);
1624 transport_cmd_check_stop_to_fabric(se_cmd
);
1627 static bool target_lookup_lun_from_tag(struct se_session
*se_sess
, u64 tag
,
1630 struct se_cmd
*se_cmd
;
1631 unsigned long flags
;
1634 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
1635 list_for_each_entry(se_cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
) {
1636 if (se_cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
1639 if (se_cmd
->tag
== tag
) {
1640 *unpacked_lun
= se_cmd
->orig_fe_lun
;
1645 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
1651 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1654 * @se_cmd: command descriptor to submit
1655 * @se_sess: associated se_sess for endpoint
1656 * @sense: pointer to SCSI sense buffer
1657 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1658 * @fabric_context: fabric context for TMR req
1659 * @tm_type: Type of TM request
1660 * @gfp: gfp type for caller
1661 * @tag: referenced task tag for TMR_ABORT_TASK
1662 * @flags: submit cmd flags
1664 * Callable from all contexts.
1667 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1668 unsigned char *sense
, u64 unpacked_lun
,
1669 void *fabric_tmr_ptr
, unsigned char tm_type
,
1670 gfp_t gfp
, u64 tag
, int flags
)
1672 struct se_portal_group
*se_tpg
;
1675 se_tpg
= se_sess
->se_tpg
;
1678 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1679 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1681 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1682 * allocation failure.
1684 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1688 if (tm_type
== TMR_ABORT_TASK
)
1689 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1691 /* See target_submit_cmd for commentary */
1692 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1694 core_tmr_release_req(se_cmd
->se_tmr_req
);
1698 * If this is ABORT_TASK with no explicit fabric provided LUN,
1699 * go ahead and search active session tags for a match to figure
1700 * out unpacked_lun for the original se_cmd.
1702 if (tm_type
== TMR_ABORT_TASK
&& (flags
& TARGET_SCF_LOOKUP_LUN_FROM_TAG
)) {
1703 if (!target_lookup_lun_from_tag(se_sess
, tag
, &unpacked_lun
))
1707 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1711 transport_generic_handle_tmr(se_cmd
);
1715 * For callback during failure handling, push this work off
1716 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1719 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1720 schedule_work(&se_cmd
->work
);
1723 EXPORT_SYMBOL(target_submit_tmr
);
1726 * Handle SAM-esque emulation for generic transport request failures.
1728 void transport_generic_request_failure(struct se_cmd
*cmd
,
1729 sense_reason_t sense_reason
)
1731 int ret
= 0, post_ret
= 0;
1733 if (transport_check_aborted_status(cmd
, 1))
1736 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1738 target_show_cmd("-----[ ", cmd
);
1741 * For SAM Task Attribute emulation for failed struct se_cmd
1743 transport_complete_task_attr(cmd
);
1745 * Handle special case for COMPARE_AND_WRITE failure, where the
1746 * callback is expected to drop the per device ->caw_sem.
1748 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1749 cmd
->transport_complete_callback
)
1750 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1752 switch (sense_reason
) {
1753 case TCM_NON_EXISTENT_LUN
:
1754 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1755 case TCM_INVALID_CDB_FIELD
:
1756 case TCM_INVALID_PARAMETER_LIST
:
1757 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1758 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1759 case TCM_UNKNOWN_MODE_PAGE
:
1760 case TCM_WRITE_PROTECTED
:
1761 case TCM_ADDRESS_OUT_OF_RANGE
:
1762 case TCM_CHECK_CONDITION_ABORT_CMD
:
1763 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1764 case TCM_CHECK_CONDITION_NOT_READY
:
1765 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1766 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1767 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1768 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1769 case TCM_TOO_MANY_TARGET_DESCS
:
1770 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1771 case TCM_TOO_MANY_SEGMENT_DESCS
:
1772 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1774 case TCM_OUT_OF_RESOURCES
:
1775 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1777 case TCM_RESERVATION_CONFLICT
:
1779 * No SENSE Data payload for this case, set SCSI Status
1780 * and queue the response to $FABRIC_MOD.
1782 * Uses linux/include/scsi/scsi.h SAM status codes defs
1784 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1786 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1787 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1790 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1793 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1794 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1795 cmd
->orig_fe_lun
, 0x2C,
1796 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1798 trace_target_cmd_complete(cmd
);
1799 ret
= cmd
->se_tfo
->queue_status(cmd
);
1804 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1805 cmd
->t_task_cdb
[0], sense_reason
);
1806 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1810 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1815 transport_lun_remove_cmd(cmd
);
1816 transport_cmd_check_stop_to_fabric(cmd
);
1820 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1822 EXPORT_SYMBOL(transport_generic_request_failure
);
1824 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1828 if (!cmd
->execute_cmd
) {
1829 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1834 * Check for an existing UNIT ATTENTION condition after
1835 * target_handle_task_attr() has done SAM task attr
1836 * checking, and possibly have already defered execution
1837 * out to target_restart_delayed_cmds() context.
1839 ret
= target_scsi3_ua_check(cmd
);
1843 ret
= target_alua_state_check(cmd
);
1847 ret
= target_check_reservation(cmd
);
1849 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1854 ret
= cmd
->execute_cmd(cmd
);
1858 spin_lock_irq(&cmd
->t_state_lock
);
1859 cmd
->transport_state
&= ~CMD_T_SENT
;
1860 spin_unlock_irq(&cmd
->t_state_lock
);
1862 transport_generic_request_failure(cmd
, ret
);
1865 static int target_write_prot_action(struct se_cmd
*cmd
)
1869 * Perform WRITE_INSERT of PI using software emulation when backend
1870 * device has PI enabled, if the transport has not already generated
1871 * PI using hardware WRITE_INSERT offload.
1873 switch (cmd
->prot_op
) {
1874 case TARGET_PROT_DOUT_INSERT
:
1875 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1876 sbc_dif_generate(cmd
);
1878 case TARGET_PROT_DOUT_STRIP
:
1879 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1882 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1883 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1884 sectors
, 0, cmd
->t_prot_sg
, 0);
1885 if (unlikely(cmd
->pi_err
)) {
1886 spin_lock_irq(&cmd
->t_state_lock
);
1887 cmd
->transport_state
&= ~CMD_T_SENT
;
1888 spin_unlock_irq(&cmd
->t_state_lock
);
1889 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1900 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1902 struct se_device
*dev
= cmd
->se_dev
;
1904 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1907 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1910 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1911 * to allow the passed struct se_cmd list of tasks to the front of the list.
1913 switch (cmd
->sam_task_attr
) {
1915 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1916 cmd
->t_task_cdb
[0]);
1918 case TCM_ORDERED_TAG
:
1919 atomic_inc_mb(&dev
->dev_ordered_sync
);
1921 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1922 cmd
->t_task_cdb
[0]);
1925 * Execute an ORDERED command if no other older commands
1926 * exist that need to be completed first.
1928 if (!atomic_read(&dev
->simple_cmds
))
1933 * For SIMPLE and UNTAGGED Task Attribute commands
1935 atomic_inc_mb(&dev
->simple_cmds
);
1939 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1942 spin_lock(&dev
->delayed_cmd_lock
);
1943 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1944 spin_unlock(&dev
->delayed_cmd_lock
);
1946 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1947 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1951 static int __transport_check_aborted_status(struct se_cmd
*, int);
1953 void target_execute_cmd(struct se_cmd
*cmd
)
1956 * Determine if frontend context caller is requesting the stopping of
1957 * this command for frontend exceptions.
1959 * If the received CDB has aleady been aborted stop processing it here.
1961 spin_lock_irq(&cmd
->t_state_lock
);
1962 if (__transport_check_aborted_status(cmd
, 1)) {
1963 spin_unlock_irq(&cmd
->t_state_lock
);
1966 if (cmd
->transport_state
& CMD_T_STOP
) {
1967 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1968 __func__
, __LINE__
, cmd
->tag
);
1970 spin_unlock_irq(&cmd
->t_state_lock
);
1971 complete_all(&cmd
->t_transport_stop_comp
);
1975 cmd
->t_state
= TRANSPORT_PROCESSING
;
1976 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
1977 spin_unlock_irq(&cmd
->t_state_lock
);
1979 if (target_write_prot_action(cmd
))
1982 if (target_handle_task_attr(cmd
)) {
1983 spin_lock_irq(&cmd
->t_state_lock
);
1984 cmd
->transport_state
&= ~CMD_T_SENT
;
1985 spin_unlock_irq(&cmd
->t_state_lock
);
1989 __target_execute_cmd(cmd
, true);
1991 EXPORT_SYMBOL(target_execute_cmd
);
1994 * Process all commands up to the last received ORDERED task attribute which
1995 * requires another blocking boundary
1997 static void target_restart_delayed_cmds(struct se_device
*dev
)
2002 spin_lock(&dev
->delayed_cmd_lock
);
2003 if (list_empty(&dev
->delayed_cmd_list
)) {
2004 spin_unlock(&dev
->delayed_cmd_lock
);
2008 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2009 struct se_cmd
, se_delayed_node
);
2010 list_del(&cmd
->se_delayed_node
);
2011 spin_unlock(&dev
->delayed_cmd_lock
);
2013 __target_execute_cmd(cmd
, true);
2015 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2021 * Called from I/O completion to determine which dormant/delayed
2022 * and ordered cmds need to have their tasks added to the execution queue.
2024 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2026 struct se_device
*dev
= cmd
->se_dev
;
2028 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2031 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2034 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2035 atomic_dec_mb(&dev
->simple_cmds
);
2036 dev
->dev_cur_ordered_id
++;
2037 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2038 dev
->dev_cur_ordered_id
++;
2039 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2040 dev
->dev_cur_ordered_id
);
2041 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2042 atomic_dec_mb(&dev
->dev_ordered_sync
);
2044 dev
->dev_cur_ordered_id
++;
2045 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2046 dev
->dev_cur_ordered_id
);
2049 target_restart_delayed_cmds(dev
);
2052 static void transport_complete_qf(struct se_cmd
*cmd
)
2056 transport_complete_task_attr(cmd
);
2058 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2059 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2060 * the same callbacks should not be retried. Return CHECK_CONDITION
2061 * if a scsi_status is not already set.
2063 * If a fabric driver ->queue_status() has returned non zero, always
2064 * keep retrying no matter what..
2066 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2067 if (cmd
->scsi_status
)
2070 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2071 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2072 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2073 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2077 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2080 switch (cmd
->data_direction
) {
2081 case DMA_FROM_DEVICE
:
2082 if (cmd
->scsi_status
)
2085 trace_target_cmd_complete(cmd
);
2086 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2089 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2090 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2093 /* Fall through for DMA_TO_DEVICE */
2096 trace_target_cmd_complete(cmd
);
2097 ret
= cmd
->se_tfo
->queue_status(cmd
);
2104 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2107 transport_lun_remove_cmd(cmd
);
2108 transport_cmd_check_stop_to_fabric(cmd
);
2111 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2112 int err
, bool write_pending
)
2115 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2116 * ->queue_data_in() callbacks from new process context.
2118 * Otherwise for other errors, transport_complete_qf() will send
2119 * CHECK_CONDITION via ->queue_status() instead of attempting to
2120 * retry associated fabric driver data-transfer callbacks.
2122 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2123 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2124 TRANSPORT_COMPLETE_QF_OK
;
2126 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2127 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2130 spin_lock_irq(&dev
->qf_cmd_lock
);
2131 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2132 atomic_inc_mb(&dev
->dev_qf_count
);
2133 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2135 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2138 static bool target_read_prot_action(struct se_cmd
*cmd
)
2140 switch (cmd
->prot_op
) {
2141 case TARGET_PROT_DIN_STRIP
:
2142 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2143 u32 sectors
= cmd
->data_length
>>
2144 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2146 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2147 sectors
, 0, cmd
->t_prot_sg
,
2153 case TARGET_PROT_DIN_INSERT
:
2154 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2157 sbc_dif_generate(cmd
);
2166 static void target_complete_ok_work(struct work_struct
*work
)
2168 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2172 * Check if we need to move delayed/dormant tasks from cmds on the
2173 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2176 transport_complete_task_attr(cmd
);
2179 * Check to schedule QUEUE_FULL work, or execute an existing
2180 * cmd->transport_qf_callback()
2182 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2183 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2186 * Check if we need to send a sense buffer from
2187 * the struct se_cmd in question.
2189 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2190 WARN_ON(!cmd
->scsi_status
);
2191 ret
= transport_send_check_condition_and_sense(
2196 transport_lun_remove_cmd(cmd
);
2197 transport_cmd_check_stop_to_fabric(cmd
);
2201 * Check for a callback, used by amongst other things
2202 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2204 if (cmd
->transport_complete_callback
) {
2206 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2207 bool zero_dl
= !(cmd
->data_length
);
2210 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2211 if (!rc
&& !post_ret
) {
2217 ret
= transport_send_check_condition_and_sense(cmd
,
2222 transport_lun_remove_cmd(cmd
);
2223 transport_cmd_check_stop_to_fabric(cmd
);
2229 switch (cmd
->data_direction
) {
2230 case DMA_FROM_DEVICE
:
2231 if (cmd
->scsi_status
)
2234 atomic_long_add(cmd
->data_length
,
2235 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2237 * Perform READ_STRIP of PI using software emulation when
2238 * backend had PI enabled, if the transport will not be
2239 * performing hardware READ_STRIP offload.
2241 if (target_read_prot_action(cmd
)) {
2242 ret
= transport_send_check_condition_and_sense(cmd
,
2247 transport_lun_remove_cmd(cmd
);
2248 transport_cmd_check_stop_to_fabric(cmd
);
2252 trace_target_cmd_complete(cmd
);
2253 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2258 atomic_long_add(cmd
->data_length
,
2259 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2261 * Check if we need to send READ payload for BIDI-COMMAND
2263 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2264 atomic_long_add(cmd
->data_length
,
2265 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2266 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2271 /* Fall through for DMA_TO_DEVICE */
2274 trace_target_cmd_complete(cmd
);
2275 ret
= cmd
->se_tfo
->queue_status(cmd
);
2283 transport_lun_remove_cmd(cmd
);
2284 transport_cmd_check_stop_to_fabric(cmd
);
2288 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2289 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2291 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2294 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2296 struct scatterlist
*sg
;
2299 for_each_sg(sgl
, sg
, nents
, count
)
2300 __free_page(sg_page(sg
));
2304 EXPORT_SYMBOL(target_free_sgl
);
2306 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2309 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2310 * emulation, and free + reset pointers if necessary..
2312 if (!cmd
->t_data_sg_orig
)
2315 kfree(cmd
->t_data_sg
);
2316 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2317 cmd
->t_data_sg_orig
= NULL
;
2318 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2319 cmd
->t_data_nents_orig
= 0;
2322 static inline void transport_free_pages(struct se_cmd
*cmd
)
2324 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2325 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2326 cmd
->t_prot_sg
= NULL
;
2327 cmd
->t_prot_nents
= 0;
2330 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2332 * Release special case READ buffer payload required for
2333 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2335 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2336 target_free_sgl(cmd
->t_bidi_data_sg
,
2337 cmd
->t_bidi_data_nents
);
2338 cmd
->t_bidi_data_sg
= NULL
;
2339 cmd
->t_bidi_data_nents
= 0;
2341 transport_reset_sgl_orig(cmd
);
2344 transport_reset_sgl_orig(cmd
);
2346 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2347 cmd
->t_data_sg
= NULL
;
2348 cmd
->t_data_nents
= 0;
2350 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2351 cmd
->t_bidi_data_sg
= NULL
;
2352 cmd
->t_bidi_data_nents
= 0;
2356 * transport_put_cmd - release a reference to a command
2357 * @cmd: command to release
2359 * This routine releases our reference to the command and frees it if possible.
2361 static int transport_put_cmd(struct se_cmd
*cmd
)
2363 BUG_ON(!cmd
->se_tfo
);
2365 * If this cmd has been setup with target_get_sess_cmd(), drop
2366 * the kref and call ->release_cmd() in kref callback.
2368 return target_put_sess_cmd(cmd
);
2371 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2373 struct scatterlist
*sg
= cmd
->t_data_sg
;
2374 struct page
**pages
;
2378 * We need to take into account a possible offset here for fabrics like
2379 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2380 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2382 if (!cmd
->t_data_nents
)
2386 if (cmd
->t_data_nents
== 1)
2387 return kmap(sg_page(sg
)) + sg
->offset
;
2389 /* >1 page. use vmap */
2390 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2394 /* convert sg[] to pages[] */
2395 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2396 pages
[i
] = sg_page(sg
);
2399 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2401 if (!cmd
->t_data_vmap
)
2404 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2406 EXPORT_SYMBOL(transport_kmap_data_sg
);
2408 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2410 if (!cmd
->t_data_nents
) {
2412 } else if (cmd
->t_data_nents
== 1) {
2413 kunmap(sg_page(cmd
->t_data_sg
));
2417 vunmap(cmd
->t_data_vmap
);
2418 cmd
->t_data_vmap
= NULL
;
2420 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2423 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2424 bool zero_page
, bool chainable
)
2426 struct scatterlist
*sg
;
2428 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2429 unsigned int nalloc
, nent
;
2432 nalloc
= nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2435 sg
= kmalloc_array(nalloc
, sizeof(struct scatterlist
), GFP_KERNEL
);
2439 sg_init_table(sg
, nalloc
);
2442 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2443 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2447 sg_set_page(&sg
[i
], page
, page_len
, 0);
2458 __free_page(sg_page(&sg
[i
]));
2463 EXPORT_SYMBOL(target_alloc_sgl
);
2466 * Allocate any required resources to execute the command. For writes we
2467 * might not have the payload yet, so notify the fabric via a call to
2468 * ->write_pending instead. Otherwise place it on the execution queue.
2471 transport_generic_new_cmd(struct se_cmd
*cmd
)
2473 unsigned long flags
;
2475 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2477 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2478 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2479 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2480 cmd
->prot_length
, true, false);
2482 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2486 * Determine is the TCM fabric module has already allocated physical
2487 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2490 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2493 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2494 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2497 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2498 bidi_length
= cmd
->t_task_nolb
*
2499 cmd
->se_dev
->dev_attrib
.block_size
;
2501 bidi_length
= cmd
->data_length
;
2503 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2504 &cmd
->t_bidi_data_nents
,
2505 bidi_length
, zero_flag
, false);
2507 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2510 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2511 cmd
->data_length
, zero_flag
, false);
2513 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2514 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2517 * Special case for COMPARE_AND_WRITE with fabrics
2518 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2520 u32 caw_length
= cmd
->t_task_nolb
*
2521 cmd
->se_dev
->dev_attrib
.block_size
;
2523 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2524 &cmd
->t_bidi_data_nents
,
2525 caw_length
, zero_flag
, false);
2527 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2530 * If this command is not a write we can execute it right here,
2531 * for write buffers we need to notify the fabric driver first
2532 * and let it call back once the write buffers are ready.
2534 target_add_to_state_list(cmd
);
2535 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2536 target_execute_cmd(cmd
);
2540 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2541 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2543 * Determine if frontend context caller is requesting the stopping of
2544 * this command for frontend exceptions.
2546 if (cmd
->transport_state
& CMD_T_STOP
) {
2547 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2548 __func__
, __LINE__
, cmd
->tag
);
2550 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2552 complete_all(&cmd
->t_transport_stop_comp
);
2555 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2556 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2558 ret
= cmd
->se_tfo
->write_pending(cmd
);
2565 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2566 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2569 EXPORT_SYMBOL(transport_generic_new_cmd
);
2571 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2575 ret
= cmd
->se_tfo
->write_pending(cmd
);
2577 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2579 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2584 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2585 unsigned long *flags
);
2587 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2589 unsigned long flags
;
2591 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2592 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2593 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2596 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2599 bool aborted
= false, tas
= false;
2601 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2602 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2603 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2605 if (!aborted
|| tas
)
2606 ret
= transport_put_cmd(cmd
);
2609 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2611 * Handle WRITE failure case where transport_generic_new_cmd()
2612 * has already added se_cmd to state_list, but fabric has
2613 * failed command before I/O submission.
2615 if (cmd
->state_active
)
2616 target_remove_from_state_list(cmd
);
2619 transport_lun_remove_cmd(cmd
);
2621 if (!aborted
|| tas
)
2622 ret
= transport_put_cmd(cmd
);
2625 * If the task has been internally aborted due to TMR ABORT_TASK
2626 * or LUN_RESET, target_core_tmr.c is responsible for performing
2627 * the remaining calls to target_put_sess_cmd(), and not the
2628 * callers of this function.
2631 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2632 wait_for_completion(&cmd
->cmd_wait_comp
);
2633 cmd
->se_tfo
->release_cmd(cmd
);
2638 EXPORT_SYMBOL(transport_generic_free_cmd
);
2640 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2641 * @se_cmd: command descriptor to add
2642 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2644 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2646 struct se_session
*se_sess
= se_cmd
->se_sess
;
2647 unsigned long flags
;
2651 * Add a second kref if the fabric caller is expecting to handle
2652 * fabric acknowledgement that requires two target_put_sess_cmd()
2653 * invocations before se_cmd descriptor release.
2656 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2659 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2662 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2663 if (se_sess
->sess_tearing_down
) {
2667 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2669 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2671 if (ret
&& ack_kref
)
2672 target_put_sess_cmd(se_cmd
);
2676 EXPORT_SYMBOL(target_get_sess_cmd
);
2678 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2680 transport_free_pages(cmd
);
2682 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2683 core_tmr_release_req(cmd
->se_tmr_req
);
2684 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2685 kfree(cmd
->t_task_cdb
);
2688 static void target_release_cmd_kref(struct kref
*kref
)
2690 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2691 struct se_session
*se_sess
= se_cmd
->se_sess
;
2692 unsigned long flags
;
2696 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2698 spin_lock(&se_cmd
->t_state_lock
);
2699 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2700 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2701 spin_unlock(&se_cmd
->t_state_lock
);
2703 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2704 list_del_init(&se_cmd
->se_cmd_list
);
2705 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2706 target_free_cmd_mem(se_cmd
);
2707 complete(&se_cmd
->cmd_wait_comp
);
2710 list_del_init(&se_cmd
->se_cmd_list
);
2711 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2714 target_free_cmd_mem(se_cmd
);
2715 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2719 * target_put_sess_cmd - decrease the command reference count
2720 * @se_cmd: command to drop a reference from
2722 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2723 * refcount to drop to zero. Returns zero otherwise.
2725 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2727 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2729 EXPORT_SYMBOL(target_put_sess_cmd
);
2731 static const char *data_dir_name(enum dma_data_direction d
)
2734 case DMA_BIDIRECTIONAL
: return "BIDI";
2735 case DMA_TO_DEVICE
: return "WRITE";
2736 case DMA_FROM_DEVICE
: return "READ";
2737 case DMA_NONE
: return "NONE";
2743 static const char *cmd_state_name(enum transport_state_table t
)
2746 case TRANSPORT_NO_STATE
: return "NO_STATE";
2747 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2748 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2749 case TRANSPORT_PROCESSING
: return "PROCESSING";
2750 case TRANSPORT_COMPLETE
: return "COMPLETE";
2751 case TRANSPORT_ISTATE_PROCESSING
:
2752 return "ISTATE_PROCESSING";
2753 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2754 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2755 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2761 static void target_append_str(char **str
, const char *txt
)
2765 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2766 kstrdup(txt
, GFP_ATOMIC
);
2771 * Convert a transport state bitmask into a string. The caller is
2772 * responsible for freeing the returned pointer.
2774 static char *target_ts_to_str(u32 ts
)
2778 if (ts
& CMD_T_ABORTED
)
2779 target_append_str(&str
, "aborted");
2780 if (ts
& CMD_T_ACTIVE
)
2781 target_append_str(&str
, "active");
2782 if (ts
& CMD_T_COMPLETE
)
2783 target_append_str(&str
, "complete");
2784 if (ts
& CMD_T_SENT
)
2785 target_append_str(&str
, "sent");
2786 if (ts
& CMD_T_STOP
)
2787 target_append_str(&str
, "stop");
2788 if (ts
& CMD_T_FABRIC_STOP
)
2789 target_append_str(&str
, "fabric_stop");
2794 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2797 case TMR_ABORT_TASK
: return "ABORT_TASK";
2798 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2799 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2800 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2801 case TMR_LUN_RESET
: return "LUN_RESET";
2802 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2803 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2804 case TMR_UNKNOWN
: break;
2809 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2811 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2812 const u8
*cdb
= cmd
->t_task_cdb
;
2813 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2815 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2816 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2817 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2818 data_dir_name(cmd
->data_direction
),
2819 cmd
->se_tfo
->get_cmd_state(cmd
),
2820 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2821 kref_read(&cmd
->cmd_kref
), ts_str
);
2823 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2824 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2825 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2826 cmd_state_name(cmd
->t_state
),
2827 kref_read(&cmd
->cmd_kref
), ts_str
);
2831 EXPORT_SYMBOL(target_show_cmd
);
2833 /* target_sess_cmd_list_set_waiting - Flag all commands in
2834 * sess_cmd_list to complete cmd_wait_comp. Set
2835 * sess_tearing_down so no more commands are queued.
2836 * @se_sess: session to flag
2838 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2840 struct se_cmd
*se_cmd
, *tmp_cmd
;
2841 unsigned long flags
;
2844 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2845 if (se_sess
->sess_tearing_down
) {
2846 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2849 se_sess
->sess_tearing_down
= 1;
2850 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2852 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2853 &se_sess
->sess_wait_list
, se_cmd_list
) {
2854 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2856 se_cmd
->cmd_wait_set
= 1;
2857 spin_lock(&se_cmd
->t_state_lock
);
2858 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2859 spin_unlock(&se_cmd
->t_state_lock
);
2861 list_del_init(&se_cmd
->se_cmd_list
);
2864 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2866 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2868 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2869 * @se_sess: session to wait for active I/O
2871 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2873 struct se_cmd
*se_cmd
, *tmp_cmd
;
2874 unsigned long flags
;
2877 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2878 &se_sess
->sess_wait_list
, se_cmd_list
) {
2879 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2880 " %d\n", se_cmd
, se_cmd
->t_state
,
2881 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2883 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2884 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2885 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2887 if (!target_put_sess_cmd(se_cmd
)) {
2889 target_put_sess_cmd(se_cmd
);
2892 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2893 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2894 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2895 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2897 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2900 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2901 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2902 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2905 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2907 static void target_lun_confirm(struct percpu_ref
*ref
)
2909 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2911 complete(&lun
->lun_ref_comp
);
2914 void transport_clear_lun_ref(struct se_lun
*lun
)
2917 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2918 * the initial reference and schedule confirm kill to be
2919 * executed after one full RCU grace period has completed.
2921 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2923 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2924 * to call target_lun_confirm after lun->lun_ref has been marked
2925 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2926 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2927 * fails for all new incoming I/O.
2929 wait_for_completion(&lun
->lun_ref_comp
);
2931 * The second completion waits for percpu_ref_put_many() to
2932 * invoke ->release() after lun->lun_ref has switched to
2933 * atomic_t mode, and lun->lun_ref.count has reached zero.
2935 * At this point all target-core lun->lun_ref references have
2936 * been dropped via transport_lun_remove_cmd(), and it's safe
2937 * to proceed with the remaining LUN shutdown.
2939 wait_for_completion(&lun
->lun_shutdown_comp
);
2943 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2944 bool *aborted
, bool *tas
, unsigned long *flags
)
2945 __releases(&cmd
->t_state_lock
)
2946 __acquires(&cmd
->t_state_lock
)
2949 assert_spin_locked(&cmd
->t_state_lock
);
2950 WARN_ON_ONCE(!irqs_disabled());
2953 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2955 if (cmd
->transport_state
& CMD_T_ABORTED
)
2958 if (cmd
->transport_state
& CMD_T_TAS
)
2961 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2962 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2965 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2966 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2969 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2972 if (fabric_stop
&& *aborted
)
2975 cmd
->transport_state
|= CMD_T_STOP
;
2977 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
2979 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2981 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
2983 target_show_cmd("wait for tasks: ", cmd
);
2985 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2986 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2988 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2989 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2995 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2996 * @cmd: command to wait on
2998 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3000 unsigned long flags
;
3001 bool ret
, aborted
= false, tas
= false;
3003 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3004 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3005 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3009 EXPORT_SYMBOL(transport_wait_for_tasks
);
3015 bool add_sector_info
;
3018 static const struct sense_info sense_info_table
[] = {
3022 [TCM_NON_EXISTENT_LUN
] = {
3023 .key
= ILLEGAL_REQUEST
,
3024 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3026 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3027 .key
= ILLEGAL_REQUEST
,
3028 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3030 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3031 .key
= ILLEGAL_REQUEST
,
3032 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3034 [TCM_UNKNOWN_MODE_PAGE
] = {
3035 .key
= ILLEGAL_REQUEST
,
3036 .asc
= 0x24, /* INVALID FIELD IN CDB */
3038 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3039 .key
= ABORTED_COMMAND
,
3040 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3043 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3044 .key
= ABORTED_COMMAND
,
3045 .asc
= 0x0c, /* WRITE ERROR */
3046 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3048 [TCM_INVALID_CDB_FIELD
] = {
3049 .key
= ILLEGAL_REQUEST
,
3050 .asc
= 0x24, /* INVALID FIELD IN CDB */
3052 [TCM_INVALID_PARAMETER_LIST
] = {
3053 .key
= ILLEGAL_REQUEST
,
3054 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3056 [TCM_TOO_MANY_TARGET_DESCS
] = {
3057 .key
= ILLEGAL_REQUEST
,
3059 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3061 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3062 .key
= ILLEGAL_REQUEST
,
3064 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3066 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3067 .key
= ILLEGAL_REQUEST
,
3069 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3071 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3072 .key
= ILLEGAL_REQUEST
,
3074 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3076 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3077 .key
= ILLEGAL_REQUEST
,
3078 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3080 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3081 .key
= ILLEGAL_REQUEST
,
3082 .asc
= 0x0c, /* WRITE ERROR */
3083 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3085 [TCM_SERVICE_CRC_ERROR
] = {
3086 .key
= ABORTED_COMMAND
,
3087 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3088 .ascq
= 0x05, /* N/A */
3090 [TCM_SNACK_REJECTED
] = {
3091 .key
= ABORTED_COMMAND
,
3092 .asc
= 0x11, /* READ ERROR */
3093 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3095 [TCM_WRITE_PROTECTED
] = {
3096 .key
= DATA_PROTECT
,
3097 .asc
= 0x27, /* WRITE PROTECTED */
3099 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3100 .key
= ILLEGAL_REQUEST
,
3101 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3103 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3104 .key
= UNIT_ATTENTION
,
3106 [TCM_CHECK_CONDITION_NOT_READY
] = {
3109 [TCM_MISCOMPARE_VERIFY
] = {
3111 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3114 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3115 .key
= ABORTED_COMMAND
,
3117 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3118 .add_sector_info
= true,
3120 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3121 .key
= ABORTED_COMMAND
,
3123 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3124 .add_sector_info
= true,
3126 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3127 .key
= ABORTED_COMMAND
,
3129 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3130 .add_sector_info
= true,
3132 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3133 .key
= COPY_ABORTED
,
3135 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3138 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3140 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3141 * Solaris initiators. Returning NOT READY instead means the
3142 * operations will be retried a finite number of times and we
3143 * can survive intermittent errors.
3146 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3150 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3152 const struct sense_info
*si
;
3153 u8
*buffer
= cmd
->sense_buffer
;
3154 int r
= (__force
int)reason
;
3156 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3158 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
3159 si
= &sense_info_table
[r
];
3161 si
= &sense_info_table
[(__force
int)
3162 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3164 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3165 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
3166 WARN_ON_ONCE(asc
== 0);
3167 } else if (si
->asc
== 0) {
3168 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3169 asc
= cmd
->scsi_asc
;
3170 ascq
= cmd
->scsi_ascq
;
3176 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
3177 if (si
->add_sector_info
)
3178 return scsi_set_sense_information(buffer
,
3179 cmd
->scsi_sense_length
,
3186 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3187 sense_reason_t reason
, int from_transport
)
3189 unsigned long flags
;
3191 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3192 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3193 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3196 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3197 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3199 if (!from_transport
) {
3202 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3203 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3204 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3205 rc
= translate_sense_reason(cmd
, reason
);
3210 trace_target_cmd_complete(cmd
);
3211 return cmd
->se_tfo
->queue_status(cmd
);
3213 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3215 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3216 __releases(&cmd
->t_state_lock
)
3217 __acquires(&cmd
->t_state_lock
)
3221 assert_spin_locked(&cmd
->t_state_lock
);
3222 WARN_ON_ONCE(!irqs_disabled());
3224 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3227 * If cmd has been aborted but either no status is to be sent or it has
3228 * already been sent, just return
3230 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3232 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3236 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3237 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3239 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3240 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3241 trace_target_cmd_complete(cmd
);
3243 spin_unlock_irq(&cmd
->t_state_lock
);
3244 ret
= cmd
->se_tfo
->queue_status(cmd
);
3246 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3247 spin_lock_irq(&cmd
->t_state_lock
);
3252 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3256 spin_lock_irq(&cmd
->t_state_lock
);
3257 ret
= __transport_check_aborted_status(cmd
, send_status
);
3258 spin_unlock_irq(&cmd
->t_state_lock
);
3262 EXPORT_SYMBOL(transport_check_aborted_status
);
3264 void transport_send_task_abort(struct se_cmd
*cmd
)
3266 unsigned long flags
;
3269 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3270 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3271 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3274 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3277 * If there are still expected incoming fabric WRITEs, we wait
3278 * until until they have completed before sending a TASK_ABORTED
3279 * response. This response with TASK_ABORTED status will be
3280 * queued back to fabric module by transport_check_aborted_status().
3282 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3283 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3284 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3285 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3286 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3289 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3290 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3295 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3297 transport_lun_remove_cmd(cmd
);
3299 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3300 cmd
->t_task_cdb
[0], cmd
->tag
);
3302 trace_target_cmd_complete(cmd
);
3303 ret
= cmd
->se_tfo
->queue_status(cmd
);
3305 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3308 static void target_tmr_work(struct work_struct
*work
)
3310 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3311 struct se_device
*dev
= cmd
->se_dev
;
3312 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3313 unsigned long flags
;
3316 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3317 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3318 tmr
->response
= TMR_FUNCTION_REJECTED
;
3319 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3322 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3324 switch (tmr
->function
) {
3325 case TMR_ABORT_TASK
:
3326 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3328 case TMR_ABORT_TASK_SET
:
3330 case TMR_CLEAR_TASK_SET
:
3331 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3334 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3335 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3336 TMR_FUNCTION_REJECTED
;
3337 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3338 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3339 cmd
->orig_fe_lun
, 0x29,
3340 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3343 case TMR_TARGET_WARM_RESET
:
3344 tmr
->response
= TMR_FUNCTION_REJECTED
;
3346 case TMR_TARGET_COLD_RESET
:
3347 tmr
->response
= TMR_FUNCTION_REJECTED
;
3350 pr_err("Uknown TMR function: 0x%02x.\n",
3352 tmr
->response
= TMR_FUNCTION_REJECTED
;
3356 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3357 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3358 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3361 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3363 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3366 transport_lun_remove_cmd(cmd
);
3367 transport_cmd_check_stop_to_fabric(cmd
);
3370 int transport_generic_handle_tmr(
3373 unsigned long flags
;
3374 bool aborted
= false;
3376 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3377 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3380 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3381 cmd
->transport_state
|= CMD_T_ACTIVE
;
3383 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3386 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3387 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3388 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3389 transport_lun_remove_cmd(cmd
);
3390 transport_cmd_check_stop_to_fabric(cmd
);
3394 INIT_WORK(&cmd
->work
, target_tmr_work
);
3395 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3398 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3401 target_check_wce(struct se_device
*dev
)
3405 if (dev
->transport
->get_write_cache
)
3406 wce
= dev
->transport
->get_write_cache(dev
);
3407 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3414 target_check_fua(struct se_device
*dev
)
3416 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;