1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
68 static void transport_handle_queue_full(struct se_cmd
*cmd
,
69 struct se_device
*dev
, int err
, bool write_pending
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= IS_ENABLED(CONFIG_TCM_IBLOCK
) && request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= IS_ENABLED(CONFIG_TCM_FILEIO
) && request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= IS_ENABLED(CONFIG_TCM_PSCSI
) && request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= IS_ENABLED(CONFIG_TCM_USER2
) && request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 static void target_release_sess_cmd_refcnt(struct percpu_ref
*ref
)
229 struct se_session
*sess
= container_of(ref
, typeof(*sess
), cmd_count
);
231 wake_up(&sess
->cmd_list_wq
);
235 * transport_init_session - initialize a session object
236 * @se_sess: Session object pointer.
238 * The caller must have zero-initialized @se_sess before calling this function.
240 int transport_init_session(struct se_session
*se_sess
)
242 INIT_LIST_HEAD(&se_sess
->sess_list
);
243 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
244 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
245 spin_lock_init(&se_sess
->sess_cmd_lock
);
246 init_waitqueue_head(&se_sess
->cmd_list_wq
);
247 return percpu_ref_init(&se_sess
->cmd_count
,
248 target_release_sess_cmd_refcnt
, 0, GFP_KERNEL
);
250 EXPORT_SYMBOL(transport_init_session
);
253 * transport_alloc_session - allocate a session object and initialize it
254 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
256 struct se_session
*transport_alloc_session(enum target_prot_op sup_prot_ops
)
258 struct se_session
*se_sess
;
261 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
263 pr_err("Unable to allocate struct se_session from"
265 return ERR_PTR(-ENOMEM
);
267 ret
= transport_init_session(se_sess
);
272 se_sess
->sup_prot_ops
= sup_prot_ops
;
276 EXPORT_SYMBOL(transport_alloc_session
);
279 * transport_alloc_session_tags - allocate target driver private data
280 * @se_sess: Session pointer.
281 * @tag_num: Maximum number of in-flight commands between initiator and target.
282 * @tag_size: Size in bytes of the private data a target driver associates with
285 int transport_alloc_session_tags(struct se_session
*se_sess
,
286 unsigned int tag_num
, unsigned int tag_size
)
290 se_sess
->sess_cmd_map
= kcalloc(tag_size
, tag_num
,
291 GFP_KERNEL
| __GFP_NOWARN
| __GFP_RETRY_MAYFAIL
);
292 if (!se_sess
->sess_cmd_map
) {
293 se_sess
->sess_cmd_map
= vzalloc(array_size(tag_size
, tag_num
));
294 if (!se_sess
->sess_cmd_map
) {
295 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
300 rc
= sbitmap_queue_init_node(&se_sess
->sess_tag_pool
, tag_num
, -1,
301 false, GFP_KERNEL
, NUMA_NO_NODE
);
303 pr_err("Unable to init se_sess->sess_tag_pool,"
304 " tag_num: %u\n", tag_num
);
305 kvfree(se_sess
->sess_cmd_map
);
306 se_sess
->sess_cmd_map
= NULL
;
312 EXPORT_SYMBOL(transport_alloc_session_tags
);
315 * transport_init_session_tags - allocate a session and target driver private data
316 * @tag_num: Maximum number of in-flight commands between initiator and target.
317 * @tag_size: Size in bytes of the private data a target driver associates with
319 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
321 static struct se_session
*
322 transport_init_session_tags(unsigned int tag_num
, unsigned int tag_size
,
323 enum target_prot_op sup_prot_ops
)
325 struct se_session
*se_sess
;
328 if (tag_num
!= 0 && !tag_size
) {
329 pr_err("init_session_tags called with percpu-ida tag_num:"
330 " %u, but zero tag_size\n", tag_num
);
331 return ERR_PTR(-EINVAL
);
333 if (!tag_num
&& tag_size
) {
334 pr_err("init_session_tags called with percpu-ida tag_size:"
335 " %u, but zero tag_num\n", tag_size
);
336 return ERR_PTR(-EINVAL
);
339 se_sess
= transport_alloc_session(sup_prot_ops
);
343 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
345 transport_free_session(se_sess
);
346 return ERR_PTR(-ENOMEM
);
353 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
355 void __transport_register_session(
356 struct se_portal_group
*se_tpg
,
357 struct se_node_acl
*se_nacl
,
358 struct se_session
*se_sess
,
359 void *fabric_sess_ptr
)
361 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
362 unsigned char buf
[PR_REG_ISID_LEN
];
365 se_sess
->se_tpg
= se_tpg
;
366 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
368 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
370 * Only set for struct se_session's that will actually be moving I/O.
371 * eg: *NOT* discovery sessions.
376 * Determine if fabric allows for T10-PI feature bits exposed to
377 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
379 * If so, then always save prot_type on a per se_node_acl node
380 * basis and re-instate the previous sess_prot_type to avoid
381 * disabling PI from below any previously initiator side
384 if (se_nacl
->saved_prot_type
)
385 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
386 else if (tfo
->tpg_check_prot_fabric_only
)
387 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
388 tfo
->tpg_check_prot_fabric_only(se_tpg
);
390 * If the fabric module supports an ISID based TransportID,
391 * save this value in binary from the fabric I_T Nexus now.
393 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
394 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
395 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
396 &buf
[0], PR_REG_ISID_LEN
);
397 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
400 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
402 * The se_nacl->nacl_sess pointer will be set to the
403 * last active I_T Nexus for each struct se_node_acl.
405 se_nacl
->nacl_sess
= se_sess
;
407 list_add_tail(&se_sess
->sess_acl_list
,
408 &se_nacl
->acl_sess_list
);
409 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
411 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
413 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
414 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
416 EXPORT_SYMBOL(__transport_register_session
);
418 void transport_register_session(
419 struct se_portal_group
*se_tpg
,
420 struct se_node_acl
*se_nacl
,
421 struct se_session
*se_sess
,
422 void *fabric_sess_ptr
)
426 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
427 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
428 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
430 EXPORT_SYMBOL(transport_register_session
);
433 target_setup_session(struct se_portal_group
*tpg
,
434 unsigned int tag_num
, unsigned int tag_size
,
435 enum target_prot_op prot_op
,
436 const char *initiatorname
, void *private,
437 int (*callback
)(struct se_portal_group
*,
438 struct se_session
*, void *))
440 struct se_session
*sess
;
443 * If the fabric driver is using percpu-ida based pre allocation
444 * of I/O descriptor tags, go ahead and perform that setup now..
447 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
449 sess
= transport_alloc_session(prot_op
);
454 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
455 (unsigned char *)initiatorname
);
456 if (!sess
->se_node_acl
) {
457 transport_free_session(sess
);
458 return ERR_PTR(-EACCES
);
461 * Go ahead and perform any remaining fabric setup that is
462 * required before transport_register_session().
464 if (callback
!= NULL
) {
465 int rc
= callback(tpg
, sess
, private);
467 transport_free_session(sess
);
472 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
475 EXPORT_SYMBOL(target_setup_session
);
477 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
479 struct se_session
*se_sess
;
482 spin_lock_bh(&se_tpg
->session_lock
);
483 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
484 if (!se_sess
->se_node_acl
)
486 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
488 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
491 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
492 se_sess
->se_node_acl
->initiatorname
);
493 len
+= 1; /* Include NULL terminator */
495 spin_unlock_bh(&se_tpg
->session_lock
);
499 EXPORT_SYMBOL(target_show_dynamic_sessions
);
501 static void target_complete_nacl(struct kref
*kref
)
503 struct se_node_acl
*nacl
= container_of(kref
,
504 struct se_node_acl
, acl_kref
);
505 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
507 if (!nacl
->dynamic_stop
) {
508 complete(&nacl
->acl_free_comp
);
512 mutex_lock(&se_tpg
->acl_node_mutex
);
513 list_del_init(&nacl
->acl_list
);
514 mutex_unlock(&se_tpg
->acl_node_mutex
);
516 core_tpg_wait_for_nacl_pr_ref(nacl
);
517 core_free_device_list_for_node(nacl
, se_tpg
);
521 void target_put_nacl(struct se_node_acl
*nacl
)
523 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
525 EXPORT_SYMBOL(target_put_nacl
);
527 void transport_deregister_session_configfs(struct se_session
*se_sess
)
529 struct se_node_acl
*se_nacl
;
532 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
534 se_nacl
= se_sess
->se_node_acl
;
536 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
537 if (!list_empty(&se_sess
->sess_acl_list
))
538 list_del_init(&se_sess
->sess_acl_list
);
540 * If the session list is empty, then clear the pointer.
541 * Otherwise, set the struct se_session pointer from the tail
542 * element of the per struct se_node_acl active session list.
544 if (list_empty(&se_nacl
->acl_sess_list
))
545 se_nacl
->nacl_sess
= NULL
;
547 se_nacl
->nacl_sess
= container_of(
548 se_nacl
->acl_sess_list
.prev
,
549 struct se_session
, sess_acl_list
);
551 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
554 EXPORT_SYMBOL(transport_deregister_session_configfs
);
556 void transport_free_session(struct se_session
*se_sess
)
558 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
561 * Drop the se_node_acl->nacl_kref obtained from within
562 * core_tpg_get_initiator_node_acl().
565 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
566 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
569 se_sess
->se_node_acl
= NULL
;
572 * Also determine if we need to drop the extra ->cmd_kref if
573 * it had been previously dynamically generated, and
574 * the endpoint is not caching dynamic ACLs.
576 mutex_lock(&se_tpg
->acl_node_mutex
);
577 if (se_nacl
->dynamic_node_acl
&&
578 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
579 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
580 if (list_empty(&se_nacl
->acl_sess_list
))
581 se_nacl
->dynamic_stop
= true;
582 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
584 if (se_nacl
->dynamic_stop
)
585 list_del_init(&se_nacl
->acl_list
);
587 mutex_unlock(&se_tpg
->acl_node_mutex
);
589 if (se_nacl
->dynamic_stop
)
590 target_put_nacl(se_nacl
);
592 target_put_nacl(se_nacl
);
594 if (se_sess
->sess_cmd_map
) {
595 sbitmap_queue_free(&se_sess
->sess_tag_pool
);
596 kvfree(se_sess
->sess_cmd_map
);
598 percpu_ref_exit(&se_sess
->cmd_count
);
599 kmem_cache_free(se_sess_cache
, se_sess
);
601 EXPORT_SYMBOL(transport_free_session
);
603 void transport_deregister_session(struct se_session
*se_sess
)
605 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
609 transport_free_session(se_sess
);
613 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
614 list_del(&se_sess
->sess_list
);
615 se_sess
->se_tpg
= NULL
;
616 se_sess
->fabric_sess_ptr
= NULL
;
617 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
619 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
620 se_tpg
->se_tpg_tfo
->get_fabric_name());
622 * If last kref is dropping now for an explicit NodeACL, awake sleeping
623 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
624 * removal context from within transport_free_session() code.
626 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
627 * to release all remaining generate_node_acl=1 created ACL resources.
630 transport_free_session(se_sess
);
632 EXPORT_SYMBOL(transport_deregister_session
);
634 void target_remove_session(struct se_session
*se_sess
)
636 transport_deregister_session_configfs(se_sess
);
637 transport_deregister_session(se_sess
);
639 EXPORT_SYMBOL(target_remove_session
);
641 static void target_remove_from_state_list(struct se_cmd
*cmd
)
643 struct se_device
*dev
= cmd
->se_dev
;
649 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
650 if (cmd
->state_active
) {
651 list_del(&cmd
->state_list
);
652 cmd
->state_active
= false;
654 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
658 * This function is called by the target core after the target core has
659 * finished processing a SCSI command or SCSI TMF. Both the regular command
660 * processing code and the code for aborting commands can call this
661 * function. CMD_T_STOP is set if and only if another thread is waiting
662 * inside transport_wait_for_tasks() for t_transport_stop_comp.
664 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
668 target_remove_from_state_list(cmd
);
671 * Clear struct se_cmd->se_lun before the handoff to FE.
675 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
677 * Determine if frontend context caller is requesting the stopping of
678 * this command for frontend exceptions.
680 if (cmd
->transport_state
& CMD_T_STOP
) {
681 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
682 __func__
, __LINE__
, cmd
->tag
);
684 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
686 complete_all(&cmd
->t_transport_stop_comp
);
689 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
690 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
693 * Some fabric modules like tcm_loop can release their internally
694 * allocated I/O reference and struct se_cmd now.
696 * Fabric modules are expected to return '1' here if the se_cmd being
697 * passed is released at this point, or zero if not being released.
699 return cmd
->se_tfo
->check_stop_free(cmd
);
702 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
704 struct se_lun
*lun
= cmd
->se_lun
;
709 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
710 percpu_ref_put(&lun
->lun_ref
);
713 int transport_cmd_finish_abort(struct se_cmd
*cmd
)
715 bool send_tas
= cmd
->transport_state
& CMD_T_TAS
;
716 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
720 transport_send_task_abort(cmd
);
722 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
723 transport_lun_remove_cmd(cmd
);
725 * Allow the fabric driver to unmap any resources before
726 * releasing the descriptor via TFO->release_cmd()
729 cmd
->se_tfo
->aborted_task(cmd
);
731 if (transport_cmd_check_stop_to_fabric(cmd
))
733 if (!send_tas
&& ack_kref
)
734 ret
= target_put_sess_cmd(cmd
);
739 static void target_complete_failure_work(struct work_struct
*work
)
741 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
743 transport_generic_request_failure(cmd
,
744 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
748 * Used when asking transport to copy Sense Data from the underlying
749 * Linux/SCSI struct scsi_cmnd
751 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
753 struct se_device
*dev
= cmd
->se_dev
;
755 WARN_ON(!cmd
->se_lun
);
760 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
763 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
765 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
766 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
767 return cmd
->sense_buffer
;
770 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
772 unsigned char *cmd_sense_buf
;
775 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
776 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
777 if (!cmd_sense_buf
) {
778 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
782 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
783 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
784 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
786 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
788 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
790 struct se_device
*dev
= cmd
->se_dev
;
794 cmd
->scsi_status
= scsi_status
;
796 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
797 switch (cmd
->scsi_status
) {
798 case SAM_STAT_CHECK_CONDITION
:
799 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
810 * Check for case where an explicit ABORT_TASK has been received
811 * and transport_wait_for_tasks() will be waiting for completion..
813 if (cmd
->transport_state
& CMD_T_ABORTED
||
814 cmd
->transport_state
& CMD_T_STOP
) {
815 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
817 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
818 * release se_device->caw_sem obtained by sbc_compare_and_write()
819 * since target_complete_ok_work() or target_complete_failure_work()
820 * won't be called to invoke the normal CAW completion callbacks.
822 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
825 complete_all(&cmd
->t_transport_stop_comp
);
827 } else if (!success
) {
828 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
830 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
833 cmd
->t_state
= TRANSPORT_COMPLETE
;
834 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
835 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
837 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
838 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
840 queue_work(target_completion_wq
, &cmd
->work
);
842 EXPORT_SYMBOL(target_complete_cmd
);
844 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
846 if ((scsi_status
== SAM_STAT_GOOD
||
847 cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
848 length
< cmd
->data_length
) {
849 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
850 cmd
->residual_count
+= cmd
->data_length
- length
;
852 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
853 cmd
->residual_count
= cmd
->data_length
- length
;
856 cmd
->data_length
= length
;
859 target_complete_cmd(cmd
, scsi_status
);
861 EXPORT_SYMBOL(target_complete_cmd_with_length
);
863 static void target_add_to_state_list(struct se_cmd
*cmd
)
865 struct se_device
*dev
= cmd
->se_dev
;
868 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
869 if (!cmd
->state_active
) {
870 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
871 cmd
->state_active
= true;
873 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
877 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
879 static void transport_write_pending_qf(struct se_cmd
*cmd
);
880 static void transport_complete_qf(struct se_cmd
*cmd
);
882 void target_qf_do_work(struct work_struct
*work
)
884 struct se_device
*dev
= container_of(work
, struct se_device
,
886 LIST_HEAD(qf_cmd_list
);
887 struct se_cmd
*cmd
, *cmd_tmp
;
889 spin_lock_irq(&dev
->qf_cmd_lock
);
890 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
891 spin_unlock_irq(&dev
->qf_cmd_lock
);
893 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
894 list_del(&cmd
->se_qf_node
);
895 atomic_dec_mb(&dev
->dev_qf_count
);
897 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
898 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
899 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
900 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
903 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
904 transport_write_pending_qf(cmd
);
905 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
906 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
907 transport_complete_qf(cmd
);
911 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
913 switch (cmd
->data_direction
) {
916 case DMA_FROM_DEVICE
:
920 case DMA_BIDIRECTIONAL
:
929 void transport_dump_dev_state(
930 struct se_device
*dev
,
934 *bl
+= sprintf(b
+ *bl
, "Status: ");
935 if (dev
->export_count
)
936 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
938 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
940 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
941 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
942 dev
->dev_attrib
.block_size
,
943 dev
->dev_attrib
.hw_max_sectors
);
944 *bl
+= sprintf(b
+ *bl
, " ");
947 void transport_dump_vpd_proto_id(
949 unsigned char *p_buf
,
952 unsigned char buf
[VPD_TMP_BUF_SIZE
];
955 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
956 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
958 switch (vpd
->protocol_identifier
) {
960 sprintf(buf
+len
, "Fibre Channel\n");
963 sprintf(buf
+len
, "Parallel SCSI\n");
966 sprintf(buf
+len
, "SSA\n");
969 sprintf(buf
+len
, "IEEE 1394\n");
972 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
976 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
979 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
982 sprintf(buf
+len
, "Automation/Drive Interface Transport"
986 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
989 sprintf(buf
+len
, "Unknown 0x%02x\n",
990 vpd
->protocol_identifier
);
995 strncpy(p_buf
, buf
, p_buf_len
);
1001 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1004 * Check if the Protocol Identifier Valid (PIV) bit is set..
1006 * from spc3r23.pdf section 7.5.1
1008 if (page_83
[1] & 0x80) {
1009 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1010 vpd
->protocol_identifier_set
= 1;
1011 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1014 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1016 int transport_dump_vpd_assoc(
1017 struct t10_vpd
*vpd
,
1018 unsigned char *p_buf
,
1021 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1025 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1026 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1028 switch (vpd
->association
) {
1030 sprintf(buf
+len
, "addressed logical unit\n");
1033 sprintf(buf
+len
, "target port\n");
1036 sprintf(buf
+len
, "SCSI target device\n");
1039 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1045 strncpy(p_buf
, buf
, p_buf_len
);
1047 pr_debug("%s", buf
);
1052 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1055 * The VPD identification association..
1057 * from spc3r23.pdf Section 7.6.3.1 Table 297
1059 vpd
->association
= (page_83
[1] & 0x30);
1060 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1062 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1064 int transport_dump_vpd_ident_type(
1065 struct t10_vpd
*vpd
,
1066 unsigned char *p_buf
,
1069 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1073 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1074 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1076 switch (vpd
->device_identifier_type
) {
1078 sprintf(buf
+len
, "Vendor specific\n");
1081 sprintf(buf
+len
, "T10 Vendor ID based\n");
1084 sprintf(buf
+len
, "EUI-64 based\n");
1087 sprintf(buf
+len
, "NAA\n");
1090 sprintf(buf
+len
, "Relative target port identifier\n");
1093 sprintf(buf
+len
, "SCSI name string\n");
1096 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1097 vpd
->device_identifier_type
);
1103 if (p_buf_len
< strlen(buf
)+1)
1105 strncpy(p_buf
, buf
, p_buf_len
);
1107 pr_debug("%s", buf
);
1113 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1116 * The VPD identifier type..
1118 * from spc3r23.pdf Section 7.6.3.1 Table 298
1120 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1121 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1123 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1125 int transport_dump_vpd_ident(
1126 struct t10_vpd
*vpd
,
1127 unsigned char *p_buf
,
1130 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1133 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1135 switch (vpd
->device_identifier_code_set
) {
1136 case 0x01: /* Binary */
1137 snprintf(buf
, sizeof(buf
),
1138 "T10 VPD Binary Device Identifier: %s\n",
1139 &vpd
->device_identifier
[0]);
1141 case 0x02: /* ASCII */
1142 snprintf(buf
, sizeof(buf
),
1143 "T10 VPD ASCII Device Identifier: %s\n",
1144 &vpd
->device_identifier
[0]);
1146 case 0x03: /* UTF-8 */
1147 snprintf(buf
, sizeof(buf
),
1148 "T10 VPD UTF-8 Device Identifier: %s\n",
1149 &vpd
->device_identifier
[0]);
1152 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1153 " 0x%02x", vpd
->device_identifier_code_set
);
1159 strncpy(p_buf
, buf
, p_buf_len
);
1161 pr_debug("%s", buf
);
1167 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1169 static const char hex_str
[] = "0123456789abcdef";
1170 int j
= 0, i
= 4; /* offset to start of the identifier */
1173 * The VPD Code Set (encoding)
1175 * from spc3r23.pdf Section 7.6.3.1 Table 296
1177 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1178 switch (vpd
->device_identifier_code_set
) {
1179 case 0x01: /* Binary */
1180 vpd
->device_identifier
[j
++] =
1181 hex_str
[vpd
->device_identifier_type
];
1182 while (i
< (4 + page_83
[3])) {
1183 vpd
->device_identifier
[j
++] =
1184 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1185 vpd
->device_identifier
[j
++] =
1186 hex_str
[page_83
[i
] & 0x0f];
1190 case 0x02: /* ASCII */
1191 case 0x03: /* UTF-8 */
1192 while (i
< (4 + page_83
[3]))
1193 vpd
->device_identifier
[j
++] = page_83
[i
++];
1199 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1201 EXPORT_SYMBOL(transport_set_vpd_ident
);
1203 static sense_reason_t
1204 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1209 if (!cmd
->se_tfo
->max_data_sg_nents
)
1210 return TCM_NO_SENSE
;
1212 * Check if fabric enforced maximum SGL entries per I/O descriptor
1213 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1214 * residual_count and reduce original cmd->data_length to maximum
1215 * length based on single PAGE_SIZE entry scatter-lists.
1217 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1218 if (cmd
->data_length
> mtl
) {
1220 * If an existing CDB overflow is present, calculate new residual
1221 * based on CDB size minus fabric maximum transfer length.
1223 * If an existing CDB underflow is present, calculate new residual
1224 * based on original cmd->data_length minus fabric maximum transfer
1227 * Otherwise, set the underflow residual based on cmd->data_length
1228 * minus fabric maximum transfer length.
1230 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1231 cmd
->residual_count
= (size
- mtl
);
1232 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1233 u32 orig_dl
= size
+ cmd
->residual_count
;
1234 cmd
->residual_count
= (orig_dl
- mtl
);
1236 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1237 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1239 cmd
->data_length
= mtl
;
1241 * Reset sbc_check_prot() calculated protection payload
1242 * length based upon the new smaller MTL.
1244 if (cmd
->prot_length
) {
1245 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1246 cmd
->prot_length
= dev
->prot_length
* sectors
;
1249 return TCM_NO_SENSE
;
1253 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1255 struct se_device
*dev
= cmd
->se_dev
;
1257 if (cmd
->unknown_data_length
) {
1258 cmd
->data_length
= size
;
1259 } else if (size
!= cmd
->data_length
) {
1260 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1261 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1262 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1263 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1265 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1266 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1267 pr_err_ratelimited("Rejecting underflow/overflow"
1268 " for WRITE data CDB\n");
1269 return TCM_INVALID_CDB_FIELD
;
1272 * Some fabric drivers like iscsi-target still expect to
1273 * always reject overflow writes. Reject this case until
1274 * full fabric driver level support for overflow writes
1275 * is introduced tree-wide.
1277 if (size
> cmd
->data_length
) {
1278 pr_err_ratelimited("Rejecting overflow for"
1279 " WRITE control CDB\n");
1280 return TCM_INVALID_CDB_FIELD
;
1284 * Reject READ_* or WRITE_* with overflow/underflow for
1285 * type SCF_SCSI_DATA_CDB.
1287 if (dev
->dev_attrib
.block_size
!= 512) {
1288 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1289 " CDB on non 512-byte sector setup subsystem"
1290 " plugin: %s\n", dev
->transport
->name
);
1291 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1292 return TCM_INVALID_CDB_FIELD
;
1295 * For the overflow case keep the existing fabric provided
1296 * ->data_length. Otherwise for the underflow case, reset
1297 * ->data_length to the smaller SCSI expected data transfer
1300 if (size
> cmd
->data_length
) {
1301 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1302 cmd
->residual_count
= (size
- cmd
->data_length
);
1304 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1305 cmd
->residual_count
= (cmd
->data_length
- size
);
1306 cmd
->data_length
= size
;
1310 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1315 * Used by fabric modules containing a local struct se_cmd within their
1316 * fabric dependent per I/O descriptor.
1318 * Preserves the value of @cmd->tag.
1320 void transport_init_se_cmd(
1322 const struct target_core_fabric_ops
*tfo
,
1323 struct se_session
*se_sess
,
1327 unsigned char *sense_buffer
)
1329 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1330 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1331 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1332 INIT_LIST_HEAD(&cmd
->state_list
);
1333 init_completion(&cmd
->t_transport_stop_comp
);
1335 spin_lock_init(&cmd
->t_state_lock
);
1336 INIT_WORK(&cmd
->work
, NULL
);
1337 kref_init(&cmd
->cmd_kref
);
1340 cmd
->se_sess
= se_sess
;
1341 cmd
->data_length
= data_length
;
1342 cmd
->data_direction
= data_direction
;
1343 cmd
->sam_task_attr
= task_attr
;
1344 cmd
->sense_buffer
= sense_buffer
;
1346 cmd
->state_active
= false;
1348 EXPORT_SYMBOL(transport_init_se_cmd
);
1350 static sense_reason_t
1351 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1353 struct se_device
*dev
= cmd
->se_dev
;
1356 * Check if SAM Task Attribute emulation is enabled for this
1357 * struct se_device storage object
1359 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1362 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1363 pr_debug("SAM Task Attribute ACA"
1364 " emulation is not supported\n");
1365 return TCM_INVALID_CDB_FIELD
;
1372 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1374 struct se_device
*dev
= cmd
->se_dev
;
1378 * Ensure that the received CDB is less than the max (252 + 8) bytes
1379 * for VARIABLE_LENGTH_CMD
1381 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1382 pr_err("Received SCSI CDB with command_size: %d that"
1383 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1384 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1385 return TCM_INVALID_CDB_FIELD
;
1388 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1389 * allocate the additional extended CDB buffer now.. Otherwise
1390 * setup the pointer from __t_task_cdb to t_task_cdb.
1392 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1393 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1395 if (!cmd
->t_task_cdb
) {
1396 pr_err("Unable to allocate cmd->t_task_cdb"
1397 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1398 scsi_command_size(cdb
),
1399 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1400 return TCM_OUT_OF_RESOURCES
;
1403 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1405 * Copy the original CDB into cmd->
1407 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1409 trace_target_sequencer_start(cmd
);
1411 ret
= dev
->transport
->parse_cdb(cmd
);
1412 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1413 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1414 cmd
->se_tfo
->get_fabric_name(),
1415 cmd
->se_sess
->se_node_acl
->initiatorname
,
1416 cmd
->t_task_cdb
[0]);
1420 ret
= transport_check_alloc_task_attr(cmd
);
1424 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1425 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1428 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1431 * Used by fabric module frontends to queue tasks directly.
1432 * May only be used from process context.
1434 int transport_handle_cdb_direct(
1441 pr_err("cmd->se_lun is NULL\n");
1444 if (in_interrupt()) {
1446 pr_err("transport_generic_handle_cdb cannot be called"
1447 " from interrupt context\n");
1451 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1452 * outstanding descriptors are handled correctly during shutdown via
1453 * transport_wait_for_tasks()
1455 * Also, we don't take cmd->t_state_lock here as we only expect
1456 * this to be called for initial descriptor submission.
1458 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1459 cmd
->transport_state
|= CMD_T_ACTIVE
;
1462 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1463 * so follow TRANSPORT_NEW_CMD processing thread context usage
1464 * and call transport_generic_request_failure() if necessary..
1466 ret
= transport_generic_new_cmd(cmd
);
1468 transport_generic_request_failure(cmd
, ret
);
1471 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1474 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1475 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1477 if (!sgl
|| !sgl_count
)
1481 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1482 * scatterlists already have been set to follow what the fabric
1483 * passes for the original expected data transfer length.
1485 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1486 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1487 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1488 return TCM_INVALID_CDB_FIELD
;
1491 cmd
->t_data_sg
= sgl
;
1492 cmd
->t_data_nents
= sgl_count
;
1493 cmd
->t_bidi_data_sg
= sgl_bidi
;
1494 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1496 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1501 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1502 * se_cmd + use pre-allocated SGL memory.
1504 * @se_cmd: command descriptor to submit
1505 * @se_sess: associated se_sess for endpoint
1506 * @cdb: pointer to SCSI CDB
1507 * @sense: pointer to SCSI sense buffer
1508 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1509 * @data_length: fabric expected data transfer length
1510 * @task_attr: SAM task attribute
1511 * @data_dir: DMA data direction
1512 * @flags: flags for command submission from target_sc_flags_tables
1513 * @sgl: struct scatterlist memory for unidirectional mapping
1514 * @sgl_count: scatterlist count for unidirectional mapping
1515 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1516 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1517 * @sgl_prot: struct scatterlist memory protection information
1518 * @sgl_prot_count: scatterlist count for protection information
1520 * Task tags are supported if the caller has set @se_cmd->tag.
1522 * Returns non zero to signal active I/O shutdown failure. All other
1523 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1524 * but still return zero here.
1526 * This may only be called from process context, and also currently
1527 * assumes internal allocation of fabric payload buffer by target-core.
1529 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1530 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1531 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1532 struct scatterlist
*sgl
, u32 sgl_count
,
1533 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1534 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1536 struct se_portal_group
*se_tpg
;
1540 se_tpg
= se_sess
->se_tpg
;
1542 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1543 BUG_ON(in_interrupt());
1545 * Initialize se_cmd for target operation. From this point
1546 * exceptions are handled by sending exception status via
1547 * target_core_fabric_ops->queue_status() callback
1549 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1550 data_length
, data_dir
, task_attr
, sense
);
1552 if (flags
& TARGET_SCF_USE_CPUID
)
1553 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1555 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1557 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1558 se_cmd
->unknown_data_length
= 1;
1560 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1561 * se_sess->sess_cmd_list. A second kref_get here is necessary
1562 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1563 * kref_put() to happen during fabric packet acknowledgement.
1565 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1569 * Signal bidirectional data payloads to target-core
1571 if (flags
& TARGET_SCF_BIDI_OP
)
1572 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1574 * Locate se_lun pointer and attach it to struct se_cmd
1576 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1578 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1579 target_put_sess_cmd(se_cmd
);
1583 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1585 transport_generic_request_failure(se_cmd
, rc
);
1590 * Save pointers for SGLs containing protection information,
1593 if (sgl_prot_count
) {
1594 se_cmd
->t_prot_sg
= sgl_prot
;
1595 se_cmd
->t_prot_nents
= sgl_prot_count
;
1596 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1600 * When a non zero sgl_count has been passed perform SGL passthrough
1601 * mapping for pre-allocated fabric memory instead of having target
1602 * core perform an internal SGL allocation..
1604 if (sgl_count
!= 0) {
1608 * A work-around for tcm_loop as some userspace code via
1609 * scsi-generic do not memset their associated read buffers,
1610 * so go ahead and do that here for type non-data CDBs. Also
1611 * note that this is currently guaranteed to be a single SGL
1612 * for this case by target core in target_setup_cmd_from_cdb()
1613 * -> transport_generic_cmd_sequencer().
1615 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1616 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1617 unsigned char *buf
= NULL
;
1620 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1623 memset(buf
, 0, sgl
->length
);
1624 kunmap(sg_page(sgl
));
1628 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1629 sgl_bidi
, sgl_bidi_count
);
1631 transport_generic_request_failure(se_cmd
, rc
);
1637 * Check if we need to delay processing because of ALUA
1638 * Active/NonOptimized primary access state..
1640 core_alua_check_nonop_delay(se_cmd
);
1642 transport_handle_cdb_direct(se_cmd
);
1645 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1648 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1650 * @se_cmd: command descriptor to submit
1651 * @se_sess: associated se_sess for endpoint
1652 * @cdb: pointer to SCSI CDB
1653 * @sense: pointer to SCSI sense buffer
1654 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1655 * @data_length: fabric expected data transfer length
1656 * @task_attr: SAM task attribute
1657 * @data_dir: DMA data direction
1658 * @flags: flags for command submission from target_sc_flags_tables
1660 * Task tags are supported if the caller has set @se_cmd->tag.
1662 * Returns non zero to signal active I/O shutdown failure. All other
1663 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1664 * but still return zero here.
1666 * This may only be called from process context, and also currently
1667 * assumes internal allocation of fabric payload buffer by target-core.
1669 * It also assumes interal target core SGL memory allocation.
1671 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1672 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1673 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1675 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1676 unpacked_lun
, data_length
, task_attr
, data_dir
,
1677 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1679 EXPORT_SYMBOL(target_submit_cmd
);
1681 static void target_complete_tmr_failure(struct work_struct
*work
)
1683 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1685 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1686 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1688 transport_lun_remove_cmd(se_cmd
);
1689 transport_cmd_check_stop_to_fabric(se_cmd
);
1692 static bool target_lookup_lun_from_tag(struct se_session
*se_sess
, u64 tag
,
1695 struct se_cmd
*se_cmd
;
1696 unsigned long flags
;
1699 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
1700 list_for_each_entry(se_cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
) {
1701 if (se_cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
1704 if (se_cmd
->tag
== tag
) {
1705 *unpacked_lun
= se_cmd
->orig_fe_lun
;
1710 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
1716 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1719 * @se_cmd: command descriptor to submit
1720 * @se_sess: associated se_sess for endpoint
1721 * @sense: pointer to SCSI sense buffer
1722 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1723 * @fabric_tmr_ptr: fabric context for TMR req
1724 * @tm_type: Type of TM request
1725 * @gfp: gfp type for caller
1726 * @tag: referenced task tag for TMR_ABORT_TASK
1727 * @flags: submit cmd flags
1729 * Callable from all contexts.
1732 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1733 unsigned char *sense
, u64 unpacked_lun
,
1734 void *fabric_tmr_ptr
, unsigned char tm_type
,
1735 gfp_t gfp
, u64 tag
, int flags
)
1737 struct se_portal_group
*se_tpg
;
1740 se_tpg
= se_sess
->se_tpg
;
1743 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1744 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1746 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1747 * allocation failure.
1749 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1753 if (tm_type
== TMR_ABORT_TASK
)
1754 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1756 /* See target_submit_cmd for commentary */
1757 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1759 core_tmr_release_req(se_cmd
->se_tmr_req
);
1763 * If this is ABORT_TASK with no explicit fabric provided LUN,
1764 * go ahead and search active session tags for a match to figure
1765 * out unpacked_lun for the original se_cmd.
1767 if (tm_type
== TMR_ABORT_TASK
&& (flags
& TARGET_SCF_LOOKUP_LUN_FROM_TAG
)) {
1768 if (!target_lookup_lun_from_tag(se_sess
, tag
, &unpacked_lun
))
1772 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1776 transport_generic_handle_tmr(se_cmd
);
1780 * For callback during failure handling, push this work off
1781 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1784 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1785 schedule_work(&se_cmd
->work
);
1788 EXPORT_SYMBOL(target_submit_tmr
);
1791 * Handle SAM-esque emulation for generic transport request failures.
1793 void transport_generic_request_failure(struct se_cmd
*cmd
,
1794 sense_reason_t sense_reason
)
1796 int ret
= 0, post_ret
;
1798 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1800 target_show_cmd("-----[ ", cmd
);
1803 * For SAM Task Attribute emulation for failed struct se_cmd
1805 transport_complete_task_attr(cmd
);
1807 if (cmd
->transport_complete_callback
)
1808 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1810 if (transport_check_aborted_status(cmd
, 1))
1813 switch (sense_reason
) {
1814 case TCM_NON_EXISTENT_LUN
:
1815 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1816 case TCM_INVALID_CDB_FIELD
:
1817 case TCM_INVALID_PARAMETER_LIST
:
1818 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1819 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1820 case TCM_UNKNOWN_MODE_PAGE
:
1821 case TCM_WRITE_PROTECTED
:
1822 case TCM_ADDRESS_OUT_OF_RANGE
:
1823 case TCM_CHECK_CONDITION_ABORT_CMD
:
1824 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1825 case TCM_CHECK_CONDITION_NOT_READY
:
1826 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1827 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1828 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1829 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1830 case TCM_TOO_MANY_TARGET_DESCS
:
1831 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1832 case TCM_TOO_MANY_SEGMENT_DESCS
:
1833 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1835 case TCM_OUT_OF_RESOURCES
:
1836 cmd
->scsi_status
= SAM_STAT_TASK_SET_FULL
;
1839 cmd
->scsi_status
= SAM_STAT_BUSY
;
1841 case TCM_RESERVATION_CONFLICT
:
1843 * No SENSE Data payload for this case, set SCSI Status
1844 * and queue the response to $FABRIC_MOD.
1846 * Uses linux/include/scsi/scsi.h SAM status codes defs
1848 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1850 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1851 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1854 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1857 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1858 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1859 cmd
->orig_fe_lun
, 0x2C,
1860 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1865 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1866 cmd
->t_task_cdb
[0], sense_reason
);
1867 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1871 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1876 transport_lun_remove_cmd(cmd
);
1877 transport_cmd_check_stop_to_fabric(cmd
);
1881 trace_target_cmd_complete(cmd
);
1882 ret
= cmd
->se_tfo
->queue_status(cmd
);
1886 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1888 EXPORT_SYMBOL(transport_generic_request_failure
);
1890 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1894 if (!cmd
->execute_cmd
) {
1895 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1900 * Check for an existing UNIT ATTENTION condition after
1901 * target_handle_task_attr() has done SAM task attr
1902 * checking, and possibly have already defered execution
1903 * out to target_restart_delayed_cmds() context.
1905 ret
= target_scsi3_ua_check(cmd
);
1909 ret
= target_alua_state_check(cmd
);
1913 ret
= target_check_reservation(cmd
);
1915 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1920 ret
= cmd
->execute_cmd(cmd
);
1924 spin_lock_irq(&cmd
->t_state_lock
);
1925 cmd
->transport_state
&= ~CMD_T_SENT
;
1926 spin_unlock_irq(&cmd
->t_state_lock
);
1928 transport_generic_request_failure(cmd
, ret
);
1931 static int target_write_prot_action(struct se_cmd
*cmd
)
1935 * Perform WRITE_INSERT of PI using software emulation when backend
1936 * device has PI enabled, if the transport has not already generated
1937 * PI using hardware WRITE_INSERT offload.
1939 switch (cmd
->prot_op
) {
1940 case TARGET_PROT_DOUT_INSERT
:
1941 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1942 sbc_dif_generate(cmd
);
1944 case TARGET_PROT_DOUT_STRIP
:
1945 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1948 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1949 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1950 sectors
, 0, cmd
->t_prot_sg
, 0);
1951 if (unlikely(cmd
->pi_err
)) {
1952 spin_lock_irq(&cmd
->t_state_lock
);
1953 cmd
->transport_state
&= ~CMD_T_SENT
;
1954 spin_unlock_irq(&cmd
->t_state_lock
);
1955 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1966 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1968 struct se_device
*dev
= cmd
->se_dev
;
1970 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1973 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1976 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1977 * to allow the passed struct se_cmd list of tasks to the front of the list.
1979 switch (cmd
->sam_task_attr
) {
1981 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1982 cmd
->t_task_cdb
[0]);
1984 case TCM_ORDERED_TAG
:
1985 atomic_inc_mb(&dev
->dev_ordered_sync
);
1987 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1988 cmd
->t_task_cdb
[0]);
1991 * Execute an ORDERED command if no other older commands
1992 * exist that need to be completed first.
1994 if (!atomic_read(&dev
->simple_cmds
))
1999 * For SIMPLE and UNTAGGED Task Attribute commands
2001 atomic_inc_mb(&dev
->simple_cmds
);
2005 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
2008 spin_lock(&dev
->delayed_cmd_lock
);
2009 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
2010 spin_unlock(&dev
->delayed_cmd_lock
);
2012 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2013 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
2017 static int __transport_check_aborted_status(struct se_cmd
*, int);
2019 void target_execute_cmd(struct se_cmd
*cmd
)
2022 * Determine if frontend context caller is requesting the stopping of
2023 * this command for frontend exceptions.
2025 * If the received CDB has already been aborted stop processing it here.
2027 spin_lock_irq(&cmd
->t_state_lock
);
2028 if (__transport_check_aborted_status(cmd
, 1)) {
2029 spin_unlock_irq(&cmd
->t_state_lock
);
2032 if (cmd
->transport_state
& CMD_T_STOP
) {
2033 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2034 __func__
, __LINE__
, cmd
->tag
);
2036 spin_unlock_irq(&cmd
->t_state_lock
);
2037 complete_all(&cmd
->t_transport_stop_comp
);
2041 cmd
->t_state
= TRANSPORT_PROCESSING
;
2042 cmd
->transport_state
&= ~CMD_T_PRE_EXECUTE
;
2043 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
2044 spin_unlock_irq(&cmd
->t_state_lock
);
2046 if (target_write_prot_action(cmd
))
2049 if (target_handle_task_attr(cmd
)) {
2050 spin_lock_irq(&cmd
->t_state_lock
);
2051 cmd
->transport_state
&= ~CMD_T_SENT
;
2052 spin_unlock_irq(&cmd
->t_state_lock
);
2056 __target_execute_cmd(cmd
, true);
2058 EXPORT_SYMBOL(target_execute_cmd
);
2061 * Process all commands up to the last received ORDERED task attribute which
2062 * requires another blocking boundary
2064 static void target_restart_delayed_cmds(struct se_device
*dev
)
2069 spin_lock(&dev
->delayed_cmd_lock
);
2070 if (list_empty(&dev
->delayed_cmd_list
)) {
2071 spin_unlock(&dev
->delayed_cmd_lock
);
2075 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2076 struct se_cmd
, se_delayed_node
);
2077 list_del(&cmd
->se_delayed_node
);
2078 spin_unlock(&dev
->delayed_cmd_lock
);
2080 cmd
->transport_state
|= CMD_T_SENT
;
2082 __target_execute_cmd(cmd
, true);
2084 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2090 * Called from I/O completion to determine which dormant/delayed
2091 * and ordered cmds need to have their tasks added to the execution queue.
2093 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2095 struct se_device
*dev
= cmd
->se_dev
;
2097 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2100 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2103 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2104 atomic_dec_mb(&dev
->simple_cmds
);
2105 dev
->dev_cur_ordered_id
++;
2106 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2107 dev
->dev_cur_ordered_id
++;
2108 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2109 dev
->dev_cur_ordered_id
);
2110 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2111 atomic_dec_mb(&dev
->dev_ordered_sync
);
2113 dev
->dev_cur_ordered_id
++;
2114 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2115 dev
->dev_cur_ordered_id
);
2117 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2120 target_restart_delayed_cmds(dev
);
2123 static void transport_complete_qf(struct se_cmd
*cmd
)
2127 transport_complete_task_attr(cmd
);
2129 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2130 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2131 * the same callbacks should not be retried. Return CHECK_CONDITION
2132 * if a scsi_status is not already set.
2134 * If a fabric driver ->queue_status() has returned non zero, always
2135 * keep retrying no matter what..
2137 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2138 if (cmd
->scsi_status
)
2141 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2146 * Check if we need to send a sense buffer from
2147 * the struct se_cmd in question. We do NOT want
2148 * to take this path of the IO has been marked as
2149 * needing to be treated like a "normal read". This
2150 * is the case if it's a tape read, and either the
2151 * FM, EOM, or ILI bits are set, but there is no
2154 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2155 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2158 switch (cmd
->data_direction
) {
2159 case DMA_FROM_DEVICE
:
2160 /* queue status if not treating this as a normal read */
2161 if (cmd
->scsi_status
&&
2162 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2165 trace_target_cmd_complete(cmd
);
2166 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2169 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2170 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2176 trace_target_cmd_complete(cmd
);
2177 ret
= cmd
->se_tfo
->queue_status(cmd
);
2184 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2187 transport_lun_remove_cmd(cmd
);
2188 transport_cmd_check_stop_to_fabric(cmd
);
2191 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2192 int err
, bool write_pending
)
2195 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2196 * ->queue_data_in() callbacks from new process context.
2198 * Otherwise for other errors, transport_complete_qf() will send
2199 * CHECK_CONDITION via ->queue_status() instead of attempting to
2200 * retry associated fabric driver data-transfer callbacks.
2202 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2203 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2204 TRANSPORT_COMPLETE_QF_OK
;
2206 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2207 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2210 spin_lock_irq(&dev
->qf_cmd_lock
);
2211 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2212 atomic_inc_mb(&dev
->dev_qf_count
);
2213 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2215 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2218 static bool target_read_prot_action(struct se_cmd
*cmd
)
2220 switch (cmd
->prot_op
) {
2221 case TARGET_PROT_DIN_STRIP
:
2222 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2223 u32 sectors
= cmd
->data_length
>>
2224 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2226 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2227 sectors
, 0, cmd
->t_prot_sg
,
2233 case TARGET_PROT_DIN_INSERT
:
2234 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2237 sbc_dif_generate(cmd
);
2246 static void target_complete_ok_work(struct work_struct
*work
)
2248 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2252 * Check if we need to move delayed/dormant tasks from cmds on the
2253 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2256 transport_complete_task_attr(cmd
);
2259 * Check to schedule QUEUE_FULL work, or execute an existing
2260 * cmd->transport_qf_callback()
2262 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2263 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2266 * Check if we need to send a sense buffer from
2267 * the struct se_cmd in question. We do NOT want
2268 * to take this path of the IO has been marked as
2269 * needing to be treated like a "normal read". This
2270 * is the case if it's a tape read, and either the
2271 * FM, EOM, or ILI bits are set, but there is no
2274 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2275 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2276 WARN_ON(!cmd
->scsi_status
);
2277 ret
= transport_send_check_condition_and_sense(
2282 transport_lun_remove_cmd(cmd
);
2283 transport_cmd_check_stop_to_fabric(cmd
);
2287 * Check for a callback, used by amongst other things
2288 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2290 if (cmd
->transport_complete_callback
) {
2292 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2293 bool zero_dl
= !(cmd
->data_length
);
2296 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2297 if (!rc
&& !post_ret
) {
2303 ret
= transport_send_check_condition_and_sense(cmd
,
2308 transport_lun_remove_cmd(cmd
);
2309 transport_cmd_check_stop_to_fabric(cmd
);
2315 switch (cmd
->data_direction
) {
2316 case DMA_FROM_DEVICE
:
2318 * if this is a READ-type IO, but SCSI status
2319 * is set, then skip returning data and just
2320 * return the status -- unless this IO is marked
2321 * as needing to be treated as a normal read,
2322 * in which case we want to go ahead and return
2323 * the data. This happens, for example, for tape
2324 * reads with the FM, EOM, or ILI bits set, with
2327 if (cmd
->scsi_status
&&
2328 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2331 atomic_long_add(cmd
->data_length
,
2332 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2334 * Perform READ_STRIP of PI using software emulation when
2335 * backend had PI enabled, if the transport will not be
2336 * performing hardware READ_STRIP offload.
2338 if (target_read_prot_action(cmd
)) {
2339 ret
= transport_send_check_condition_and_sense(cmd
,
2344 transport_lun_remove_cmd(cmd
);
2345 transport_cmd_check_stop_to_fabric(cmd
);
2349 trace_target_cmd_complete(cmd
);
2350 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2355 atomic_long_add(cmd
->data_length
,
2356 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2358 * Check if we need to send READ payload for BIDI-COMMAND
2360 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2361 atomic_long_add(cmd
->data_length
,
2362 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2363 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2371 trace_target_cmd_complete(cmd
);
2372 ret
= cmd
->se_tfo
->queue_status(cmd
);
2380 transport_lun_remove_cmd(cmd
);
2381 transport_cmd_check_stop_to_fabric(cmd
);
2385 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2386 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2388 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2391 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2393 sgl_free_n_order(sgl
, nents
, 0);
2395 EXPORT_SYMBOL(target_free_sgl
);
2397 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2400 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2401 * emulation, and free + reset pointers if necessary..
2403 if (!cmd
->t_data_sg_orig
)
2406 kfree(cmd
->t_data_sg
);
2407 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2408 cmd
->t_data_sg_orig
= NULL
;
2409 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2410 cmd
->t_data_nents_orig
= 0;
2413 static inline void transport_free_pages(struct se_cmd
*cmd
)
2415 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2416 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2417 cmd
->t_prot_sg
= NULL
;
2418 cmd
->t_prot_nents
= 0;
2421 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2423 * Release special case READ buffer payload required for
2424 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2426 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2427 target_free_sgl(cmd
->t_bidi_data_sg
,
2428 cmd
->t_bidi_data_nents
);
2429 cmd
->t_bidi_data_sg
= NULL
;
2430 cmd
->t_bidi_data_nents
= 0;
2432 transport_reset_sgl_orig(cmd
);
2435 transport_reset_sgl_orig(cmd
);
2437 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2438 cmd
->t_data_sg
= NULL
;
2439 cmd
->t_data_nents
= 0;
2441 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2442 cmd
->t_bidi_data_sg
= NULL
;
2443 cmd
->t_bidi_data_nents
= 0;
2446 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2448 struct scatterlist
*sg
= cmd
->t_data_sg
;
2449 struct page
**pages
;
2453 * We need to take into account a possible offset here for fabrics like
2454 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2455 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2457 if (!cmd
->t_data_nents
)
2461 if (cmd
->t_data_nents
== 1)
2462 return kmap(sg_page(sg
)) + sg
->offset
;
2464 /* >1 page. use vmap */
2465 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2469 /* convert sg[] to pages[] */
2470 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2471 pages
[i
] = sg_page(sg
);
2474 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2476 if (!cmd
->t_data_vmap
)
2479 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2481 EXPORT_SYMBOL(transport_kmap_data_sg
);
2483 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2485 if (!cmd
->t_data_nents
) {
2487 } else if (cmd
->t_data_nents
== 1) {
2488 kunmap(sg_page(cmd
->t_data_sg
));
2492 vunmap(cmd
->t_data_vmap
);
2493 cmd
->t_data_vmap
= NULL
;
2495 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2498 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2499 bool zero_page
, bool chainable
)
2501 gfp_t gfp
= GFP_KERNEL
| (zero_page
? __GFP_ZERO
: 0);
2503 *sgl
= sgl_alloc_order(length
, 0, chainable
, gfp
, nents
);
2504 return *sgl
? 0 : -ENOMEM
;
2506 EXPORT_SYMBOL(target_alloc_sgl
);
2509 * Allocate any required resources to execute the command. For writes we
2510 * might not have the payload yet, so notify the fabric via a call to
2511 * ->write_pending instead. Otherwise place it on the execution queue.
2514 transport_generic_new_cmd(struct se_cmd
*cmd
)
2516 unsigned long flags
;
2518 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2520 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2521 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2522 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2523 cmd
->prot_length
, true, false);
2525 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2529 * Determine if the TCM fabric module has already allocated physical
2530 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2533 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2536 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2537 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2540 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2541 bidi_length
= cmd
->t_task_nolb
*
2542 cmd
->se_dev
->dev_attrib
.block_size
;
2544 bidi_length
= cmd
->data_length
;
2546 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2547 &cmd
->t_bidi_data_nents
,
2548 bidi_length
, zero_flag
, false);
2550 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2553 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2554 cmd
->data_length
, zero_flag
, false);
2556 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2557 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2560 * Special case for COMPARE_AND_WRITE with fabrics
2561 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2563 u32 caw_length
= cmd
->t_task_nolb
*
2564 cmd
->se_dev
->dev_attrib
.block_size
;
2566 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2567 &cmd
->t_bidi_data_nents
,
2568 caw_length
, zero_flag
, false);
2570 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2573 * If this command is not a write we can execute it right here,
2574 * for write buffers we need to notify the fabric driver first
2575 * and let it call back once the write buffers are ready.
2577 target_add_to_state_list(cmd
);
2578 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2579 target_execute_cmd(cmd
);
2583 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2584 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2586 * Determine if frontend context caller is requesting the stopping of
2587 * this command for frontend exceptions.
2589 if (cmd
->transport_state
& CMD_T_STOP
) {
2590 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2591 __func__
, __LINE__
, cmd
->tag
);
2593 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2595 complete_all(&cmd
->t_transport_stop_comp
);
2598 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2599 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2601 ret
= cmd
->se_tfo
->write_pending(cmd
);
2608 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2609 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2612 EXPORT_SYMBOL(transport_generic_new_cmd
);
2614 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2616 unsigned long flags
;
2620 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2621 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2622 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2625 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2626 __func__
, __LINE__
, cmd
->tag
);
2627 complete_all(&cmd
->t_transport_stop_comp
);
2631 ret
= cmd
->se_tfo
->write_pending(cmd
);
2633 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2635 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2640 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2641 unsigned long *flags
);
2643 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2645 unsigned long flags
;
2647 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2648 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2649 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2653 * This function is called by frontend drivers after processing of a command
2656 * The protocol for ensuring that either the regular flow or the TMF
2657 * code drops one reference is as follows:
2658 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2659 * the frontend driver to drop one reference, synchronously or asynchronously.
2660 * - During regular command processing the target core sets CMD_T_COMPLETE
2661 * before invoking one of the .queue_*() functions.
2662 * - The code that aborts commands skips commands and TMFs for which
2663 * CMD_T_COMPLETE has been set.
2664 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2665 * commands that will be aborted.
2666 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2667 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2668 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2669 * be called and will drop a reference.
2670 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2671 * will be called. transport_cmd_finish_abort() will drop the final reference.
2673 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2675 DECLARE_COMPLETION_ONSTACK(compl);
2677 bool aborted
= false, tas
= false;
2680 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2682 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) {
2684 * Handle WRITE failure case where transport_generic_new_cmd()
2685 * has already added se_cmd to state_list, but fabric has
2686 * failed command before I/O submission.
2688 if (cmd
->state_active
)
2689 target_remove_from_state_list(cmd
);
2692 transport_lun_remove_cmd(cmd
);
2695 cmd
->compl = &compl;
2696 if (!aborted
|| tas
)
2697 ret
= target_put_sess_cmd(cmd
);
2699 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2700 wait_for_completion(&compl);
2705 EXPORT_SYMBOL(transport_generic_free_cmd
);
2708 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2709 * @se_cmd: command descriptor to add
2710 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2712 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2714 struct se_session
*se_sess
= se_cmd
->se_sess
;
2715 unsigned long flags
;
2719 * Add a second kref if the fabric caller is expecting to handle
2720 * fabric acknowledgement that requires two target_put_sess_cmd()
2721 * invocations before se_cmd descriptor release.
2724 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2727 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2730 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2731 if (se_sess
->sess_tearing_down
) {
2735 se_cmd
->transport_state
|= CMD_T_PRE_EXECUTE
;
2736 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2737 percpu_ref_get(&se_sess
->cmd_count
);
2739 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2741 if (ret
&& ack_kref
)
2742 target_put_sess_cmd(se_cmd
);
2746 EXPORT_SYMBOL(target_get_sess_cmd
);
2748 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2750 transport_free_pages(cmd
);
2752 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2753 core_tmr_release_req(cmd
->se_tmr_req
);
2754 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2755 kfree(cmd
->t_task_cdb
);
2758 static void target_release_cmd_kref(struct kref
*kref
)
2760 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2761 struct se_session
*se_sess
= se_cmd
->se_sess
;
2762 struct completion
*compl = se_cmd
->compl;
2763 unsigned long flags
;
2766 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2767 list_del_init(&se_cmd
->se_cmd_list
);
2768 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2771 target_free_cmd_mem(se_cmd
);
2772 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2776 percpu_ref_put(&se_sess
->cmd_count
);
2780 * target_put_sess_cmd - decrease the command reference count
2781 * @se_cmd: command to drop a reference from
2783 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2784 * refcount to drop to zero. Returns zero otherwise.
2786 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2788 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2790 EXPORT_SYMBOL(target_put_sess_cmd
);
2792 static const char *data_dir_name(enum dma_data_direction d
)
2795 case DMA_BIDIRECTIONAL
: return "BIDI";
2796 case DMA_TO_DEVICE
: return "WRITE";
2797 case DMA_FROM_DEVICE
: return "READ";
2798 case DMA_NONE
: return "NONE";
2804 static const char *cmd_state_name(enum transport_state_table t
)
2807 case TRANSPORT_NO_STATE
: return "NO_STATE";
2808 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2809 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2810 case TRANSPORT_PROCESSING
: return "PROCESSING";
2811 case TRANSPORT_COMPLETE
: return "COMPLETE";
2812 case TRANSPORT_ISTATE_PROCESSING
:
2813 return "ISTATE_PROCESSING";
2814 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2815 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2816 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2822 static void target_append_str(char **str
, const char *txt
)
2826 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2827 kstrdup(txt
, GFP_ATOMIC
);
2832 * Convert a transport state bitmask into a string. The caller is
2833 * responsible for freeing the returned pointer.
2835 static char *target_ts_to_str(u32 ts
)
2839 if (ts
& CMD_T_ABORTED
)
2840 target_append_str(&str
, "aborted");
2841 if (ts
& CMD_T_ACTIVE
)
2842 target_append_str(&str
, "active");
2843 if (ts
& CMD_T_COMPLETE
)
2844 target_append_str(&str
, "complete");
2845 if (ts
& CMD_T_SENT
)
2846 target_append_str(&str
, "sent");
2847 if (ts
& CMD_T_STOP
)
2848 target_append_str(&str
, "stop");
2849 if (ts
& CMD_T_FABRIC_STOP
)
2850 target_append_str(&str
, "fabric_stop");
2855 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2858 case TMR_ABORT_TASK
: return "ABORT_TASK";
2859 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2860 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2861 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2862 case TMR_LUN_RESET
: return "LUN_RESET";
2863 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2864 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2865 case TMR_UNKNOWN
: break;
2870 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2872 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2873 const u8
*cdb
= cmd
->t_task_cdb
;
2874 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2876 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2877 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2878 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2879 data_dir_name(cmd
->data_direction
),
2880 cmd
->se_tfo
->get_cmd_state(cmd
),
2881 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2882 kref_read(&cmd
->cmd_kref
), ts_str
);
2884 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2885 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2886 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2887 cmd_state_name(cmd
->t_state
),
2888 kref_read(&cmd
->cmd_kref
), ts_str
);
2892 EXPORT_SYMBOL(target_show_cmd
);
2895 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2896 * @se_sess: session to flag
2898 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2900 unsigned long flags
;
2902 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2903 se_sess
->sess_tearing_down
= 1;
2904 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2906 percpu_ref_kill(&se_sess
->cmd_count
);
2908 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2911 * target_wait_for_sess_cmds - Wait for outstanding commands
2912 * @se_sess: session to wait for active I/O
2914 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2919 WARN_ON_ONCE(!se_sess
->sess_tearing_down
);
2922 ret
= wait_event_timeout(se_sess
->cmd_list_wq
,
2923 percpu_ref_is_zero(&se_sess
->cmd_count
),
2925 list_for_each_entry(cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
)
2926 target_show_cmd("session shutdown: still waiting for ",
2930 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2932 static void target_lun_confirm(struct percpu_ref
*ref
)
2934 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2936 complete(&lun
->lun_ref_comp
);
2939 void transport_clear_lun_ref(struct se_lun
*lun
)
2942 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2943 * the initial reference and schedule confirm kill to be
2944 * executed after one full RCU grace period has completed.
2946 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2948 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2949 * to call target_lun_confirm after lun->lun_ref has been marked
2950 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2951 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2952 * fails for all new incoming I/O.
2954 wait_for_completion(&lun
->lun_ref_comp
);
2956 * The second completion waits for percpu_ref_put_many() to
2957 * invoke ->release() after lun->lun_ref has switched to
2958 * atomic_t mode, and lun->lun_ref.count has reached zero.
2960 * At this point all target-core lun->lun_ref references have
2961 * been dropped via transport_lun_remove_cmd(), and it's safe
2962 * to proceed with the remaining LUN shutdown.
2964 wait_for_completion(&lun
->lun_shutdown_comp
);
2968 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2969 bool *aborted
, bool *tas
, unsigned long *flags
)
2970 __releases(&cmd
->t_state_lock
)
2971 __acquires(&cmd
->t_state_lock
)
2974 assert_spin_locked(&cmd
->t_state_lock
);
2975 WARN_ON_ONCE(!irqs_disabled());
2978 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2980 if (cmd
->transport_state
& CMD_T_ABORTED
)
2983 if (cmd
->transport_state
& CMD_T_TAS
)
2986 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2987 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2990 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2991 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2994 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2997 if (fabric_stop
&& *aborted
)
3000 cmd
->transport_state
|= CMD_T_STOP
;
3002 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
3004 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
3006 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
3008 target_show_cmd("wait for tasks: ", cmd
);
3010 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
3011 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
3013 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3014 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
3020 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3021 * @cmd: command to wait on
3023 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3025 unsigned long flags
;
3026 bool ret
, aborted
= false, tas
= false;
3028 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3029 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3030 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3034 EXPORT_SYMBOL(transport_wait_for_tasks
);
3040 bool add_sector_info
;
3043 static const struct sense_info sense_info_table
[] = {
3047 [TCM_NON_EXISTENT_LUN
] = {
3048 .key
= ILLEGAL_REQUEST
,
3049 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3051 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3052 .key
= ILLEGAL_REQUEST
,
3053 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3055 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3056 .key
= ILLEGAL_REQUEST
,
3057 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3059 [TCM_UNKNOWN_MODE_PAGE
] = {
3060 .key
= ILLEGAL_REQUEST
,
3061 .asc
= 0x24, /* INVALID FIELD IN CDB */
3063 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3064 .key
= ABORTED_COMMAND
,
3065 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3068 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3069 .key
= ABORTED_COMMAND
,
3070 .asc
= 0x0c, /* WRITE ERROR */
3071 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3073 [TCM_INVALID_CDB_FIELD
] = {
3074 .key
= ILLEGAL_REQUEST
,
3075 .asc
= 0x24, /* INVALID FIELD IN CDB */
3077 [TCM_INVALID_PARAMETER_LIST
] = {
3078 .key
= ILLEGAL_REQUEST
,
3079 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3081 [TCM_TOO_MANY_TARGET_DESCS
] = {
3082 .key
= ILLEGAL_REQUEST
,
3084 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3086 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3087 .key
= ILLEGAL_REQUEST
,
3089 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3091 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3092 .key
= ILLEGAL_REQUEST
,
3094 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3096 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3097 .key
= ILLEGAL_REQUEST
,
3099 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3101 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3102 .key
= ILLEGAL_REQUEST
,
3103 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3105 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3106 .key
= ILLEGAL_REQUEST
,
3107 .asc
= 0x0c, /* WRITE ERROR */
3108 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3110 [TCM_SERVICE_CRC_ERROR
] = {
3111 .key
= ABORTED_COMMAND
,
3112 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3113 .ascq
= 0x05, /* N/A */
3115 [TCM_SNACK_REJECTED
] = {
3116 .key
= ABORTED_COMMAND
,
3117 .asc
= 0x11, /* READ ERROR */
3118 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3120 [TCM_WRITE_PROTECTED
] = {
3121 .key
= DATA_PROTECT
,
3122 .asc
= 0x27, /* WRITE PROTECTED */
3124 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3125 .key
= ILLEGAL_REQUEST
,
3126 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3128 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3129 .key
= UNIT_ATTENTION
,
3131 [TCM_CHECK_CONDITION_NOT_READY
] = {
3134 [TCM_MISCOMPARE_VERIFY
] = {
3136 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3139 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3140 .key
= ABORTED_COMMAND
,
3142 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3143 .add_sector_info
= true,
3145 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3146 .key
= ABORTED_COMMAND
,
3148 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3149 .add_sector_info
= true,
3151 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3152 .key
= ABORTED_COMMAND
,
3154 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3155 .add_sector_info
= true,
3157 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3158 .key
= COPY_ABORTED
,
3160 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3163 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3165 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3166 * Solaris initiators. Returning NOT READY instead means the
3167 * operations will be retried a finite number of times and we
3168 * can survive intermittent errors.
3171 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3173 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES
] = {
3175 * From spc4r22 section5.7.7,5.7.8
3176 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3177 * or a REGISTER AND IGNORE EXISTING KEY service action or
3178 * REGISTER AND MOVE service actionis attempted,
3179 * but there are insufficient device server resources to complete the
3180 * operation, then the command shall be terminated with CHECK CONDITION
3181 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3182 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3184 .key
= ILLEGAL_REQUEST
,
3186 .ascq
= 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3191 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3192 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3194 * @reason: LIO sense reason code. If this argument has the value
3195 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3196 * dequeuing a unit attention fails due to multiple commands being processed
3197 * concurrently, set the command status to BUSY.
3199 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3201 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3203 const struct sense_info
*si
;
3204 u8
*buffer
= cmd
->sense_buffer
;
3205 int r
= (__force
int)reason
;
3207 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3209 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
3210 si
= &sense_info_table
[r
];
3212 si
= &sense_info_table
[(__force
int)
3213 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3216 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3217 if (!core_scsi3_ua_for_check_condition(cmd
, &key
, &asc
,
3219 cmd
->scsi_status
= SAM_STAT_BUSY
;
3222 } else if (si
->asc
== 0) {
3223 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3224 asc
= cmd
->scsi_asc
;
3225 ascq
= cmd
->scsi_ascq
;
3231 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3232 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3233 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3234 scsi_build_sense_buffer(desc_format
, buffer
, key
, asc
, ascq
);
3235 if (si
->add_sector_info
)
3236 WARN_ON_ONCE(scsi_set_sense_information(buffer
,
3237 cmd
->scsi_sense_length
,
3238 cmd
->bad_sector
) < 0);
3242 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3243 sense_reason_t reason
, int from_transport
)
3245 unsigned long flags
;
3247 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3248 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3249 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3252 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3253 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3255 if (!from_transport
)
3256 translate_sense_reason(cmd
, reason
);
3258 trace_target_cmd_complete(cmd
);
3259 return cmd
->se_tfo
->queue_status(cmd
);
3261 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3263 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3264 __releases(&cmd
->t_state_lock
)
3265 __acquires(&cmd
->t_state_lock
)
3269 assert_spin_locked(&cmd
->t_state_lock
);
3270 WARN_ON_ONCE(!irqs_disabled());
3272 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3275 * If cmd has been aborted but either no status is to be sent or it has
3276 * already been sent, just return
3278 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3280 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3284 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3285 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3287 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3288 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3289 trace_target_cmd_complete(cmd
);
3291 spin_unlock_irq(&cmd
->t_state_lock
);
3292 ret
= cmd
->se_tfo
->queue_status(cmd
);
3294 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3295 spin_lock_irq(&cmd
->t_state_lock
);
3300 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3304 spin_lock_irq(&cmd
->t_state_lock
);
3305 ret
= __transport_check_aborted_status(cmd
, send_status
);
3306 spin_unlock_irq(&cmd
->t_state_lock
);
3310 EXPORT_SYMBOL(transport_check_aborted_status
);
3312 void transport_send_task_abort(struct se_cmd
*cmd
)
3314 unsigned long flags
;
3317 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3318 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3319 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3322 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3325 * If there are still expected incoming fabric WRITEs, we wait
3326 * until until they have completed before sending a TASK_ABORTED
3327 * response. This response with TASK_ABORTED status will be
3328 * queued back to fabric module by transport_check_aborted_status().
3330 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3331 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3332 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3333 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3334 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3337 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3338 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3343 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3345 transport_lun_remove_cmd(cmd
);
3347 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3348 cmd
->t_task_cdb
[0], cmd
->tag
);
3350 trace_target_cmd_complete(cmd
);
3351 ret
= cmd
->se_tfo
->queue_status(cmd
);
3353 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3356 static void target_tmr_work(struct work_struct
*work
)
3358 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3359 struct se_device
*dev
= cmd
->se_dev
;
3360 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3361 unsigned long flags
;
3364 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3365 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3366 tmr
->response
= TMR_FUNCTION_REJECTED
;
3367 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3370 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3372 switch (tmr
->function
) {
3373 case TMR_ABORT_TASK
:
3374 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3376 case TMR_ABORT_TASK_SET
:
3378 case TMR_CLEAR_TASK_SET
:
3379 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3382 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3383 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3384 TMR_FUNCTION_REJECTED
;
3385 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3386 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3387 cmd
->orig_fe_lun
, 0x29,
3388 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3391 case TMR_TARGET_WARM_RESET
:
3392 tmr
->response
= TMR_FUNCTION_REJECTED
;
3394 case TMR_TARGET_COLD_RESET
:
3395 tmr
->response
= TMR_FUNCTION_REJECTED
;
3398 pr_err("Unknown TMR function: 0x%02x.\n",
3400 tmr
->response
= TMR_FUNCTION_REJECTED
;
3404 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3405 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3406 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3409 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3411 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3414 transport_lun_remove_cmd(cmd
);
3415 transport_cmd_check_stop_to_fabric(cmd
);
3418 int transport_generic_handle_tmr(
3421 unsigned long flags
;
3422 bool aborted
= false;
3424 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3425 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3428 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3429 cmd
->transport_state
|= CMD_T_ACTIVE
;
3431 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3434 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3435 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3436 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3437 transport_lun_remove_cmd(cmd
);
3438 transport_cmd_check_stop_to_fabric(cmd
);
3442 INIT_WORK(&cmd
->work
, target_tmr_work
);
3443 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3446 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3449 target_check_wce(struct se_device
*dev
)
3453 if (dev
->transport
->get_write_cache
)
3454 wce
= dev
->transport
->get_write_cache(dev
);
3455 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3462 target_check_fua(struct se_device
*dev
)
3464 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;