5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
17 #include "util/debug.h"
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
22 #include <semaphore.h>
26 #define PR_SET_NAME 15 /* Set process name */
39 unsigned long nr_events
;
40 unsigned long curr_event
;
41 struct sched_atom
**atoms
;
52 enum sched_event_type
{
56 SCHED_EVENT_MIGRATION
,
60 enum sched_event_type type
;
66 struct task_desc
*wakee
;
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
79 struct list_head list
;
80 enum thread_state state
;
88 struct list_head work_list
;
89 struct thread
*thread
;
98 typedef int (*sort_fn_t
)(struct work_atoms
*, struct work_atoms
*);
102 struct trace_sched_handler
{
103 int (*switch_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
104 struct perf_sample
*sample
, struct machine
*machine
);
106 int (*runtime_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
107 struct perf_sample
*sample
, struct machine
*machine
);
109 int (*wakeup_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
110 struct perf_sample
*sample
, struct machine
*machine
);
112 int (*fork_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
113 struct perf_sample
*sample
);
115 int (*migrate_task_event
)(struct perf_sched
*sched
,
116 struct perf_evsel
*evsel
,
117 struct perf_sample
*sample
,
118 struct machine
*machine
);
122 struct perf_tool tool
;
123 const char *sort_order
;
124 unsigned long nr_tasks
;
125 struct task_desc
*pid_to_task
[MAX_PID
];
126 struct task_desc
**tasks
;
127 const struct trace_sched_handler
*tp_handler
;
128 pthread_mutex_t start_work_mutex
;
129 pthread_mutex_t work_done_wait_mutex
;
132 * Track the current task - that way we can know whether there's any
133 * weird events, such as a task being switched away that is not current.
136 u32 curr_pid
[MAX_CPUS
];
137 struct thread
*curr_thread
[MAX_CPUS
];
138 char next_shortname1
;
139 char next_shortname2
;
140 unsigned int replay_repeat
;
141 unsigned long nr_run_events
;
142 unsigned long nr_sleep_events
;
143 unsigned long nr_wakeup_events
;
144 unsigned long nr_sleep_corrections
;
145 unsigned long nr_run_events_optimized
;
146 unsigned long targetless_wakeups
;
147 unsigned long multitarget_wakeups
;
148 unsigned long nr_runs
;
149 unsigned long nr_timestamps
;
150 unsigned long nr_unordered_timestamps
;
151 unsigned long nr_state_machine_bugs
;
152 unsigned long nr_context_switch_bugs
;
153 unsigned long nr_events
;
154 unsigned long nr_lost_chunks
;
155 unsigned long nr_lost_events
;
156 u64 run_measurement_overhead
;
157 u64 sleep_measurement_overhead
;
160 u64 runavg_cpu_usage
;
161 u64 parent_cpu_usage
;
162 u64 runavg_parent_cpu_usage
;
168 u64 cpu_last_switched
[MAX_CPUS
];
169 struct rb_root atom_root
, sorted_atom_root
;
170 struct list_head sort_list
, cmp_pid
;
173 static u64
get_nsecs(void)
177 clock_gettime(CLOCK_MONOTONIC
, &ts
);
179 return ts
.tv_sec
* 1000000000ULL + ts
.tv_nsec
;
182 static void burn_nsecs(struct perf_sched
*sched
, u64 nsecs
)
184 u64 T0
= get_nsecs(), T1
;
188 } while (T1
+ sched
->run_measurement_overhead
< T0
+ nsecs
);
191 static void sleep_nsecs(u64 nsecs
)
195 ts
.tv_nsec
= nsecs
% 999999999;
196 ts
.tv_sec
= nsecs
/ 999999999;
198 nanosleep(&ts
, NULL
);
201 static void calibrate_run_measurement_overhead(struct perf_sched
*sched
)
203 u64 T0
, T1
, delta
, min_delta
= 1000000000ULL;
206 for (i
= 0; i
< 10; i
++) {
208 burn_nsecs(sched
, 0);
211 min_delta
= min(min_delta
, delta
);
213 sched
->run_measurement_overhead
= min_delta
;
215 printf("run measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
218 static void calibrate_sleep_measurement_overhead(struct perf_sched
*sched
)
220 u64 T0
, T1
, delta
, min_delta
= 1000000000ULL;
223 for (i
= 0; i
< 10; i
++) {
228 min_delta
= min(min_delta
, delta
);
231 sched
->sleep_measurement_overhead
= min_delta
;
233 printf("sleep measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
236 static struct sched_atom
*
237 get_new_event(struct task_desc
*task
, u64 timestamp
)
239 struct sched_atom
*event
= zalloc(sizeof(*event
));
240 unsigned long idx
= task
->nr_events
;
243 event
->timestamp
= timestamp
;
247 size
= sizeof(struct sched_atom
*) * task
->nr_events
;
248 task
->atoms
= realloc(task
->atoms
, size
);
249 BUG_ON(!task
->atoms
);
251 task
->atoms
[idx
] = event
;
256 static struct sched_atom
*last_event(struct task_desc
*task
)
258 if (!task
->nr_events
)
261 return task
->atoms
[task
->nr_events
- 1];
264 static void add_sched_event_run(struct perf_sched
*sched
, struct task_desc
*task
,
265 u64 timestamp
, u64 duration
)
267 struct sched_atom
*event
, *curr_event
= last_event(task
);
270 * optimize an existing RUN event by merging this one
273 if (curr_event
&& curr_event
->type
== SCHED_EVENT_RUN
) {
274 sched
->nr_run_events_optimized
++;
275 curr_event
->duration
+= duration
;
279 event
= get_new_event(task
, timestamp
);
281 event
->type
= SCHED_EVENT_RUN
;
282 event
->duration
= duration
;
284 sched
->nr_run_events
++;
287 static void add_sched_event_wakeup(struct perf_sched
*sched
, struct task_desc
*task
,
288 u64 timestamp
, struct task_desc
*wakee
)
290 struct sched_atom
*event
, *wakee_event
;
292 event
= get_new_event(task
, timestamp
);
293 event
->type
= SCHED_EVENT_WAKEUP
;
294 event
->wakee
= wakee
;
296 wakee_event
= last_event(wakee
);
297 if (!wakee_event
|| wakee_event
->type
!= SCHED_EVENT_SLEEP
) {
298 sched
->targetless_wakeups
++;
301 if (wakee_event
->wait_sem
) {
302 sched
->multitarget_wakeups
++;
306 wakee_event
->wait_sem
= zalloc(sizeof(*wakee_event
->wait_sem
));
307 sem_init(wakee_event
->wait_sem
, 0, 0);
308 wakee_event
->specific_wait
= 1;
309 event
->wait_sem
= wakee_event
->wait_sem
;
311 sched
->nr_wakeup_events
++;
314 static void add_sched_event_sleep(struct perf_sched
*sched
, struct task_desc
*task
,
315 u64 timestamp
, u64 task_state __maybe_unused
)
317 struct sched_atom
*event
= get_new_event(task
, timestamp
);
319 event
->type
= SCHED_EVENT_SLEEP
;
321 sched
->nr_sleep_events
++;
324 static struct task_desc
*register_pid(struct perf_sched
*sched
,
325 unsigned long pid
, const char *comm
)
327 struct task_desc
*task
;
329 BUG_ON(pid
>= MAX_PID
);
331 task
= sched
->pid_to_task
[pid
];
336 task
= zalloc(sizeof(*task
));
338 task
->nr
= sched
->nr_tasks
;
339 strcpy(task
->comm
, comm
);
341 * every task starts in sleeping state - this gets ignored
342 * if there's no wakeup pointing to this sleep state:
344 add_sched_event_sleep(sched
, task
, 0, 0);
346 sched
->pid_to_task
[pid
] = task
;
348 sched
->tasks
= realloc(sched
->tasks
, sched
->nr_tasks
* sizeof(struct task_task
*));
349 BUG_ON(!sched
->tasks
);
350 sched
->tasks
[task
->nr
] = task
;
353 printf("registered task #%ld, PID %ld (%s)\n", sched
->nr_tasks
, pid
, comm
);
359 static void print_task_traces(struct perf_sched
*sched
)
361 struct task_desc
*task
;
364 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
365 task
= sched
->tasks
[i
];
366 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
367 task
->nr
, task
->comm
, task
->pid
, task
->nr_events
);
371 static void add_cross_task_wakeups(struct perf_sched
*sched
)
373 struct task_desc
*task1
, *task2
;
376 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
377 task1
= sched
->tasks
[i
];
379 if (j
== sched
->nr_tasks
)
381 task2
= sched
->tasks
[j
];
382 add_sched_event_wakeup(sched
, task1
, 0, task2
);
386 static void perf_sched__process_event(struct perf_sched
*sched
,
387 struct sched_atom
*atom
)
391 switch (atom
->type
) {
392 case SCHED_EVENT_RUN
:
393 burn_nsecs(sched
, atom
->duration
);
395 case SCHED_EVENT_SLEEP
:
397 ret
= sem_wait(atom
->wait_sem
);
400 case SCHED_EVENT_WAKEUP
:
402 ret
= sem_post(atom
->wait_sem
);
405 case SCHED_EVENT_MIGRATION
:
412 static u64
get_cpu_usage_nsec_parent(void)
418 err
= getrusage(RUSAGE_SELF
, &ru
);
421 sum
= ru
.ru_utime
.tv_sec
*1e9
+ ru
.ru_utime
.tv_usec
*1e3
;
422 sum
+= ru
.ru_stime
.tv_sec
*1e9
+ ru
.ru_stime
.tv_usec
*1e3
;
427 static int self_open_counters(void)
429 struct perf_event_attr attr
;
432 memset(&attr
, 0, sizeof(attr
));
434 attr
.type
= PERF_TYPE_SOFTWARE
;
435 attr
.config
= PERF_COUNT_SW_TASK_CLOCK
;
437 fd
= sys_perf_event_open(&attr
, 0, -1, -1, 0);
440 pr_err("Error: sys_perf_event_open() syscall returned "
441 "with %d (%s)\n", fd
, strerror(errno
));
445 static u64
get_cpu_usage_nsec_self(int fd
)
450 ret
= read(fd
, &runtime
, sizeof(runtime
));
451 BUG_ON(ret
!= sizeof(runtime
));
456 struct sched_thread_parms
{
457 struct task_desc
*task
;
458 struct perf_sched
*sched
;
461 static void *thread_func(void *ctx
)
463 struct sched_thread_parms
*parms
= ctx
;
464 struct task_desc
*this_task
= parms
->task
;
465 struct perf_sched
*sched
= parms
->sched
;
466 u64 cpu_usage_0
, cpu_usage_1
;
467 unsigned long i
, ret
;
473 sprintf(comm2
, ":%s", this_task
->comm
);
474 prctl(PR_SET_NAME
, comm2
);
475 fd
= self_open_counters();
479 ret
= sem_post(&this_task
->ready_for_work
);
481 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
483 ret
= pthread_mutex_unlock(&sched
->start_work_mutex
);
486 cpu_usage_0
= get_cpu_usage_nsec_self(fd
);
488 for (i
= 0; i
< this_task
->nr_events
; i
++) {
489 this_task
->curr_event
= i
;
490 perf_sched__process_event(sched
, this_task
->atoms
[i
]);
493 cpu_usage_1
= get_cpu_usage_nsec_self(fd
);
494 this_task
->cpu_usage
= cpu_usage_1
- cpu_usage_0
;
495 ret
= sem_post(&this_task
->work_done_sem
);
498 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
500 ret
= pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
506 static void create_tasks(struct perf_sched
*sched
)
508 struct task_desc
*task
;
513 err
= pthread_attr_init(&attr
);
515 err
= pthread_attr_setstacksize(&attr
,
516 (size_t) max(16 * 1024, PTHREAD_STACK_MIN
));
518 err
= pthread_mutex_lock(&sched
->start_work_mutex
);
520 err
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
522 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
523 struct sched_thread_parms
*parms
= malloc(sizeof(*parms
));
524 BUG_ON(parms
== NULL
);
525 parms
->task
= task
= sched
->tasks
[i
];
526 parms
->sched
= sched
;
527 sem_init(&task
->sleep_sem
, 0, 0);
528 sem_init(&task
->ready_for_work
, 0, 0);
529 sem_init(&task
->work_done_sem
, 0, 0);
530 task
->curr_event
= 0;
531 err
= pthread_create(&task
->thread
, &attr
, thread_func
, parms
);
536 static void wait_for_tasks(struct perf_sched
*sched
)
538 u64 cpu_usage_0
, cpu_usage_1
;
539 struct task_desc
*task
;
540 unsigned long i
, ret
;
542 sched
->start_time
= get_nsecs();
543 sched
->cpu_usage
= 0;
544 pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
546 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
547 task
= sched
->tasks
[i
];
548 ret
= sem_wait(&task
->ready_for_work
);
550 sem_init(&task
->ready_for_work
, 0, 0);
552 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
555 cpu_usage_0
= get_cpu_usage_nsec_parent();
557 pthread_mutex_unlock(&sched
->start_work_mutex
);
559 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
560 task
= sched
->tasks
[i
];
561 ret
= sem_wait(&task
->work_done_sem
);
563 sem_init(&task
->work_done_sem
, 0, 0);
564 sched
->cpu_usage
+= task
->cpu_usage
;
568 cpu_usage_1
= get_cpu_usage_nsec_parent();
569 if (!sched
->runavg_cpu_usage
)
570 sched
->runavg_cpu_usage
= sched
->cpu_usage
;
571 sched
->runavg_cpu_usage
= (sched
->runavg_cpu_usage
* 9 + sched
->cpu_usage
) / 10;
573 sched
->parent_cpu_usage
= cpu_usage_1
- cpu_usage_0
;
574 if (!sched
->runavg_parent_cpu_usage
)
575 sched
->runavg_parent_cpu_usage
= sched
->parent_cpu_usage
;
576 sched
->runavg_parent_cpu_usage
= (sched
->runavg_parent_cpu_usage
* 9 +
577 sched
->parent_cpu_usage
)/10;
579 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
582 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
583 task
= sched
->tasks
[i
];
584 sem_init(&task
->sleep_sem
, 0, 0);
585 task
->curr_event
= 0;
589 static void run_one_test(struct perf_sched
*sched
)
591 u64 T0
, T1
, delta
, avg_delta
, fluct
;
594 wait_for_tasks(sched
);
598 sched
->sum_runtime
+= delta
;
601 avg_delta
= sched
->sum_runtime
/ sched
->nr_runs
;
602 if (delta
< avg_delta
)
603 fluct
= avg_delta
- delta
;
605 fluct
= delta
- avg_delta
;
606 sched
->sum_fluct
+= fluct
;
608 sched
->run_avg
= delta
;
609 sched
->run_avg
= (sched
->run_avg
* 9 + delta
) / 10;
611 printf("#%-3ld: %0.3f, ", sched
->nr_runs
, (double)delta
/ 1000000.0);
613 printf("ravg: %0.2f, ", (double)sched
->run_avg
/ 1e6
);
615 printf("cpu: %0.2f / %0.2f",
616 (double)sched
->cpu_usage
/ 1e6
, (double)sched
->runavg_cpu_usage
/ 1e6
);
620 * rusage statistics done by the parent, these are less
621 * accurate than the sched->sum_exec_runtime based statistics:
623 printf(" [%0.2f / %0.2f]",
624 (double)sched
->parent_cpu_usage
/1e6
,
625 (double)sched
->runavg_parent_cpu_usage
/1e6
);
630 if (sched
->nr_sleep_corrections
)
631 printf(" (%ld sleep corrections)\n", sched
->nr_sleep_corrections
);
632 sched
->nr_sleep_corrections
= 0;
635 static void test_calibrations(struct perf_sched
*sched
)
640 burn_nsecs(sched
, 1e6
);
643 printf("the run test took %" PRIu64
" nsecs\n", T1
- T0
);
649 printf("the sleep test took %" PRIu64
" nsecs\n", T1
- T0
);
653 replay_wakeup_event(struct perf_sched
*sched
,
654 struct perf_evsel
*evsel
, struct perf_sample
*sample
,
655 struct machine
*machine __maybe_unused
)
657 const char *comm
= perf_evsel__strval(evsel
, sample
, "comm");
658 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
659 struct task_desc
*waker
, *wakee
;
662 printf("sched_wakeup event %p\n", evsel
);
664 printf(" ... pid %d woke up %s/%d\n", sample
->tid
, comm
, pid
);
667 waker
= register_pid(sched
, sample
->tid
, "<unknown>");
668 wakee
= register_pid(sched
, pid
, comm
);
670 add_sched_event_wakeup(sched
, waker
, sample
->time
, wakee
);
674 static int replay_switch_event(struct perf_sched
*sched
,
675 struct perf_evsel
*evsel
,
676 struct perf_sample
*sample
,
677 struct machine
*machine __maybe_unused
)
679 const char *prev_comm
= perf_evsel__strval(evsel
, sample
, "prev_comm"),
680 *next_comm
= perf_evsel__strval(evsel
, sample
, "next_comm");
681 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
682 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
683 const u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
684 struct task_desc
*prev
, __maybe_unused
*next
;
685 u64 timestamp0
, timestamp
= sample
->time
;
686 int cpu
= sample
->cpu
;
690 printf("sched_switch event %p\n", evsel
);
692 if (cpu
>= MAX_CPUS
|| cpu
< 0)
695 timestamp0
= sched
->cpu_last_switched
[cpu
];
697 delta
= timestamp
- timestamp0
;
702 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
706 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64
" nsecs]\n",
707 prev_comm
, prev_pid
, next_comm
, next_pid
, delta
);
709 prev
= register_pid(sched
, prev_pid
, prev_comm
);
710 next
= register_pid(sched
, next_pid
, next_comm
);
712 sched
->cpu_last_switched
[cpu
] = timestamp
;
714 add_sched_event_run(sched
, prev
, timestamp
, delta
);
715 add_sched_event_sleep(sched
, prev
, timestamp
, prev_state
);
720 static int replay_fork_event(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
721 struct perf_sample
*sample
)
723 const char *parent_comm
= perf_evsel__strval(evsel
, sample
, "parent_comm"),
724 *child_comm
= perf_evsel__strval(evsel
, sample
, "child_comm");
725 const u32 parent_pid
= perf_evsel__intval(evsel
, sample
, "parent_pid"),
726 child_pid
= perf_evsel__intval(evsel
, sample
, "child_pid");
729 printf("sched_fork event %p\n", evsel
);
730 printf("... parent: %s/%d\n", parent_comm
, parent_pid
);
731 printf("... child: %s/%d\n", child_comm
, child_pid
);
734 register_pid(sched
, parent_pid
, parent_comm
);
735 register_pid(sched
, child_pid
, child_comm
);
739 struct sort_dimension
{
742 struct list_head list
;
746 thread_lat_cmp(struct list_head
*list
, struct work_atoms
*l
, struct work_atoms
*r
)
748 struct sort_dimension
*sort
;
751 BUG_ON(list_empty(list
));
753 list_for_each_entry(sort
, list
, list
) {
754 ret
= sort
->cmp(l
, r
);
762 static struct work_atoms
*
763 thread_atoms_search(struct rb_root
*root
, struct thread
*thread
,
764 struct list_head
*sort_list
)
766 struct rb_node
*node
= root
->rb_node
;
767 struct work_atoms key
= { .thread
= thread
};
770 struct work_atoms
*atoms
;
773 atoms
= container_of(node
, struct work_atoms
, node
);
775 cmp
= thread_lat_cmp(sort_list
, &key
, atoms
);
777 node
= node
->rb_left
;
779 node
= node
->rb_right
;
781 BUG_ON(thread
!= atoms
->thread
);
789 __thread_latency_insert(struct rb_root
*root
, struct work_atoms
*data
,
790 struct list_head
*sort_list
)
792 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
795 struct work_atoms
*this;
798 this = container_of(*new, struct work_atoms
, node
);
801 cmp
= thread_lat_cmp(sort_list
, data
, this);
804 new = &((*new)->rb_left
);
806 new = &((*new)->rb_right
);
809 rb_link_node(&data
->node
, parent
, new);
810 rb_insert_color(&data
->node
, root
);
813 static int thread_atoms_insert(struct perf_sched
*sched
, struct thread
*thread
)
815 struct work_atoms
*atoms
= zalloc(sizeof(*atoms
));
817 pr_err("No memory at %s\n", __func__
);
821 atoms
->thread
= thread
;
822 INIT_LIST_HEAD(&atoms
->work_list
);
823 __thread_latency_insert(&sched
->atom_root
, atoms
, &sched
->cmp_pid
);
827 static int latency_fork_event(struct perf_sched
*sched __maybe_unused
,
828 struct perf_evsel
*evsel __maybe_unused
,
829 struct perf_sample
*sample __maybe_unused
)
831 /* should insert the newcomer */
835 static char sched_out_state(u64 prev_state
)
837 const char *str
= TASK_STATE_TO_CHAR_STR
;
839 return str
[prev_state
];
843 add_sched_out_event(struct work_atoms
*atoms
,
847 struct work_atom
*atom
= zalloc(sizeof(*atom
));
849 pr_err("Non memory at %s", __func__
);
853 atom
->sched_out_time
= timestamp
;
855 if (run_state
== 'R') {
856 atom
->state
= THREAD_WAIT_CPU
;
857 atom
->wake_up_time
= atom
->sched_out_time
;
860 list_add_tail(&atom
->list
, &atoms
->work_list
);
865 add_runtime_event(struct work_atoms
*atoms
, u64 delta
,
866 u64 timestamp __maybe_unused
)
868 struct work_atom
*atom
;
870 BUG_ON(list_empty(&atoms
->work_list
));
872 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
874 atom
->runtime
+= delta
;
875 atoms
->total_runtime
+= delta
;
879 add_sched_in_event(struct work_atoms
*atoms
, u64 timestamp
)
881 struct work_atom
*atom
;
884 if (list_empty(&atoms
->work_list
))
887 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
889 if (atom
->state
!= THREAD_WAIT_CPU
)
892 if (timestamp
< atom
->wake_up_time
) {
893 atom
->state
= THREAD_IGNORE
;
897 atom
->state
= THREAD_SCHED_IN
;
898 atom
->sched_in_time
= timestamp
;
900 delta
= atom
->sched_in_time
- atom
->wake_up_time
;
901 atoms
->total_lat
+= delta
;
902 if (delta
> atoms
->max_lat
) {
903 atoms
->max_lat
= delta
;
904 atoms
->max_lat_at
= timestamp
;
909 static int latency_switch_event(struct perf_sched
*sched
,
910 struct perf_evsel
*evsel
,
911 struct perf_sample
*sample
,
912 struct machine
*machine
)
914 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
915 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
916 const u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
917 struct work_atoms
*out_events
, *in_events
;
918 struct thread
*sched_out
, *sched_in
;
919 u64 timestamp0
, timestamp
= sample
->time
;
920 int cpu
= sample
->cpu
;
923 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
925 timestamp0
= sched
->cpu_last_switched
[cpu
];
926 sched
->cpu_last_switched
[cpu
] = timestamp
;
928 delta
= timestamp
- timestamp0
;
933 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
937 sched_out
= machine__findnew_thread(machine
, prev_pid
);
938 sched_in
= machine__findnew_thread(machine
, next_pid
);
940 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
942 if (thread_atoms_insert(sched
, sched_out
))
944 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
946 pr_err("out-event: Internal tree error");
950 if (add_sched_out_event(out_events
, sched_out_state(prev_state
), timestamp
))
953 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
955 if (thread_atoms_insert(sched
, sched_in
))
957 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
959 pr_err("in-event: Internal tree error");
963 * Take came in we have not heard about yet,
964 * add in an initial atom in runnable state:
966 if (add_sched_out_event(in_events
, 'R', timestamp
))
969 add_sched_in_event(in_events
, timestamp
);
974 static int latency_runtime_event(struct perf_sched
*sched
,
975 struct perf_evsel
*evsel
,
976 struct perf_sample
*sample
,
977 struct machine
*machine
)
979 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
980 const u64 runtime
= perf_evsel__intval(evsel
, sample
, "runtime");
981 struct thread
*thread
= machine__findnew_thread(machine
, pid
);
982 struct work_atoms
*atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
983 u64 timestamp
= sample
->time
;
984 int cpu
= sample
->cpu
;
986 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
988 if (thread_atoms_insert(sched
, thread
))
990 atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
992 pr_err("in-event: Internal tree error");
995 if (add_sched_out_event(atoms
, 'R', timestamp
))
999 add_runtime_event(atoms
, runtime
, timestamp
);
1003 static int latency_wakeup_event(struct perf_sched
*sched
,
1004 struct perf_evsel
*evsel
,
1005 struct perf_sample
*sample
,
1006 struct machine
*machine
)
1008 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid"),
1009 success
= perf_evsel__intval(evsel
, sample
, "success");
1010 struct work_atoms
*atoms
;
1011 struct work_atom
*atom
;
1012 struct thread
*wakee
;
1013 u64 timestamp
= sample
->time
;
1015 /* Note for later, it may be interesting to observe the failing cases */
1019 wakee
= machine__findnew_thread(machine
, pid
);
1020 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1022 if (thread_atoms_insert(sched
, wakee
))
1024 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1026 pr_err("wakeup-event: Internal tree error");
1029 if (add_sched_out_event(atoms
, 'S', timestamp
))
1033 BUG_ON(list_empty(&atoms
->work_list
));
1035 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1038 * You WILL be missing events if you've recorded only
1039 * one CPU, or are only looking at only one, so don't
1040 * make useless noise.
1042 if (sched
->profile_cpu
== -1 && atom
->state
!= THREAD_SLEEPING
)
1043 sched
->nr_state_machine_bugs
++;
1045 sched
->nr_timestamps
++;
1046 if (atom
->sched_out_time
> timestamp
) {
1047 sched
->nr_unordered_timestamps
++;
1051 atom
->state
= THREAD_WAIT_CPU
;
1052 atom
->wake_up_time
= timestamp
;
1056 static int latency_migrate_task_event(struct perf_sched
*sched
,
1057 struct perf_evsel
*evsel
,
1058 struct perf_sample
*sample
,
1059 struct machine
*machine
)
1061 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
1062 u64 timestamp
= sample
->time
;
1063 struct work_atoms
*atoms
;
1064 struct work_atom
*atom
;
1065 struct thread
*migrant
;
1068 * Only need to worry about migration when profiling one CPU.
1070 if (sched
->profile_cpu
== -1)
1073 migrant
= machine__findnew_thread(machine
, pid
);
1074 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1076 if (thread_atoms_insert(sched
, migrant
))
1078 register_pid(sched
, migrant
->pid
, migrant
->comm
);
1079 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1081 pr_err("migration-event: Internal tree error");
1084 if (add_sched_out_event(atoms
, 'R', timestamp
))
1088 BUG_ON(list_empty(&atoms
->work_list
));
1090 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1091 atom
->sched_in_time
= atom
->sched_out_time
= atom
->wake_up_time
= timestamp
;
1093 sched
->nr_timestamps
++;
1095 if (atom
->sched_out_time
> timestamp
)
1096 sched
->nr_unordered_timestamps
++;
1101 static void output_lat_thread(struct perf_sched
*sched
, struct work_atoms
*work_list
)
1107 if (!work_list
->nb_atoms
)
1110 * Ignore idle threads:
1112 if (!strcmp(work_list
->thread
->comm
, "swapper"))
1115 sched
->all_runtime
+= work_list
->total_runtime
;
1116 sched
->all_count
+= work_list
->nb_atoms
;
1118 ret
= printf(" %s:%d ", work_list
->thread
->comm
, work_list
->thread
->pid
);
1120 for (i
= 0; i
< 24 - ret
; i
++)
1123 avg
= work_list
->total_lat
/ work_list
->nb_atoms
;
1125 printf("|%11.3f ms |%9" PRIu64
" | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1126 (double)work_list
->total_runtime
/ 1e6
,
1127 work_list
->nb_atoms
, (double)avg
/ 1e6
,
1128 (double)work_list
->max_lat
/ 1e6
,
1129 (double)work_list
->max_lat_at
/ 1e9
);
1132 static int pid_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1134 if (l
->thread
->pid
< r
->thread
->pid
)
1136 if (l
->thread
->pid
> r
->thread
->pid
)
1142 static int avg_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1152 avgl
= l
->total_lat
/ l
->nb_atoms
;
1153 avgr
= r
->total_lat
/ r
->nb_atoms
;
1163 static int max_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1165 if (l
->max_lat
< r
->max_lat
)
1167 if (l
->max_lat
> r
->max_lat
)
1173 static int switch_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1175 if (l
->nb_atoms
< r
->nb_atoms
)
1177 if (l
->nb_atoms
> r
->nb_atoms
)
1183 static int runtime_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1185 if (l
->total_runtime
< r
->total_runtime
)
1187 if (l
->total_runtime
> r
->total_runtime
)
1193 static int sort_dimension__add(const char *tok
, struct list_head
*list
)
1196 static struct sort_dimension avg_sort_dimension
= {
1200 static struct sort_dimension max_sort_dimension
= {
1204 static struct sort_dimension pid_sort_dimension
= {
1208 static struct sort_dimension runtime_sort_dimension
= {
1212 static struct sort_dimension switch_sort_dimension
= {
1216 struct sort_dimension
*available_sorts
[] = {
1217 &pid_sort_dimension
,
1218 &avg_sort_dimension
,
1219 &max_sort_dimension
,
1220 &switch_sort_dimension
,
1221 &runtime_sort_dimension
,
1224 for (i
= 0; i
< ARRAY_SIZE(available_sorts
); i
++) {
1225 if (!strcmp(available_sorts
[i
]->name
, tok
)) {
1226 list_add_tail(&available_sorts
[i
]->list
, list
);
1235 static void perf_sched__sort_lat(struct perf_sched
*sched
)
1237 struct rb_node
*node
;
1240 struct work_atoms
*data
;
1241 node
= rb_first(&sched
->atom_root
);
1245 rb_erase(node
, &sched
->atom_root
);
1246 data
= rb_entry(node
, struct work_atoms
, node
);
1247 __thread_latency_insert(&sched
->sorted_atom_root
, data
, &sched
->sort_list
);
1251 static int process_sched_wakeup_event(struct perf_tool
*tool
,
1252 struct perf_evsel
*evsel
,
1253 struct perf_sample
*sample
,
1254 struct machine
*machine
)
1256 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1258 if (sched
->tp_handler
->wakeup_event
)
1259 return sched
->tp_handler
->wakeup_event(sched
, evsel
, sample
, machine
);
1264 static int map_switch_event(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
1265 struct perf_sample
*sample
, struct machine
*machine
)
1267 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
1268 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1269 struct thread
*sched_out __maybe_unused
, *sched_in
;
1271 u64 timestamp0
, timestamp
= sample
->time
;
1273 int cpu
, this_cpu
= sample
->cpu
;
1275 BUG_ON(this_cpu
>= MAX_CPUS
|| this_cpu
< 0);
1277 if (this_cpu
> sched
->max_cpu
)
1278 sched
->max_cpu
= this_cpu
;
1280 timestamp0
= sched
->cpu_last_switched
[this_cpu
];
1281 sched
->cpu_last_switched
[this_cpu
] = timestamp
;
1283 delta
= timestamp
- timestamp0
;
1288 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
1292 sched_out
= machine__findnew_thread(machine
, prev_pid
);
1293 sched_in
= machine__findnew_thread(machine
, next_pid
);
1295 sched
->curr_thread
[this_cpu
] = sched_in
;
1300 if (!sched_in
->shortname
[0]) {
1301 sched_in
->shortname
[0] = sched
->next_shortname1
;
1302 sched_in
->shortname
[1] = sched
->next_shortname2
;
1304 if (sched
->next_shortname1
< 'Z') {
1305 sched
->next_shortname1
++;
1307 sched
->next_shortname1
='A';
1308 if (sched
->next_shortname2
< '9') {
1309 sched
->next_shortname2
++;
1311 sched
->next_shortname2
='0';
1317 for (cpu
= 0; cpu
<= sched
->max_cpu
; cpu
++) {
1318 if (cpu
!= this_cpu
)
1323 if (sched
->curr_thread
[cpu
]) {
1324 if (sched
->curr_thread
[cpu
]->pid
)
1325 printf("%2s ", sched
->curr_thread
[cpu
]->shortname
);
1332 printf(" %12.6f secs ", (double)timestamp
/1e9
);
1333 if (new_shortname
) {
1334 printf("%s => %s:%d\n",
1335 sched_in
->shortname
, sched_in
->comm
, sched_in
->pid
);
1343 static int process_sched_switch_event(struct perf_tool
*tool
,
1344 struct perf_evsel
*evsel
,
1345 struct perf_sample
*sample
,
1346 struct machine
*machine
)
1348 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1349 int this_cpu
= sample
->cpu
, err
= 0;
1350 u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
1351 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1353 if (sched
->curr_pid
[this_cpu
] != (u32
)-1) {
1355 * Are we trying to switch away a PID that is
1358 if (sched
->curr_pid
[this_cpu
] != prev_pid
)
1359 sched
->nr_context_switch_bugs
++;
1362 if (sched
->tp_handler
->switch_event
)
1363 err
= sched
->tp_handler
->switch_event(sched
, evsel
, sample
, machine
);
1365 sched
->curr_pid
[this_cpu
] = next_pid
;
1369 static int process_sched_runtime_event(struct perf_tool
*tool
,
1370 struct perf_evsel
*evsel
,
1371 struct perf_sample
*sample
,
1372 struct machine
*machine
)
1374 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1376 if (sched
->tp_handler
->runtime_event
)
1377 return sched
->tp_handler
->runtime_event(sched
, evsel
, sample
, machine
);
1382 static int process_sched_fork_event(struct perf_tool
*tool
,
1383 struct perf_evsel
*evsel
,
1384 struct perf_sample
*sample
,
1385 struct machine
*machine __maybe_unused
)
1387 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1389 if (sched
->tp_handler
->fork_event
)
1390 return sched
->tp_handler
->fork_event(sched
, evsel
, sample
);
1395 static int process_sched_exit_event(struct perf_tool
*tool __maybe_unused
,
1396 struct perf_evsel
*evsel
,
1397 struct perf_sample
*sample __maybe_unused
,
1398 struct machine
*machine __maybe_unused
)
1400 pr_debug("sched_exit event %p\n", evsel
);
1404 static int process_sched_migrate_task_event(struct perf_tool
*tool
,
1405 struct perf_evsel
*evsel
,
1406 struct perf_sample
*sample
,
1407 struct machine
*machine
)
1409 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1411 if (sched
->tp_handler
->migrate_task_event
)
1412 return sched
->tp_handler
->migrate_task_event(sched
, evsel
, sample
, machine
);
1417 typedef int (*tracepoint_handler
)(struct perf_tool
*tool
,
1418 struct perf_evsel
*evsel
,
1419 struct perf_sample
*sample
,
1420 struct machine
*machine
);
1422 static int perf_sched__process_tracepoint_sample(struct perf_tool
*tool __maybe_unused
,
1423 union perf_event
*event __maybe_unused
,
1424 struct perf_sample
*sample
,
1425 struct perf_evsel
*evsel
,
1426 struct machine
*machine
)
1428 struct thread
*thread
= machine__findnew_thread(machine
, sample
->tid
);
1431 if (thread
== NULL
) {
1432 pr_debug("problem processing %s event, skipping it.\n",
1433 perf_evsel__name(evsel
));
1437 evsel
->hists
.stats
.total_period
+= sample
->period
;
1438 hists__inc_nr_events(&evsel
->hists
, PERF_RECORD_SAMPLE
);
1440 if (evsel
->handler
.func
!= NULL
) {
1441 tracepoint_handler f
= evsel
->handler
.func
;
1442 err
= f(tool
, evsel
, sample
, machine
);
1448 static int perf_sched__read_events(struct perf_sched
*sched
, bool destroy
,
1449 struct perf_session
**psession
)
1451 const struct perf_evsel_str_handler handlers
[] = {
1452 { "sched:sched_switch", process_sched_switch_event
, },
1453 { "sched:sched_stat_runtime", process_sched_runtime_event
, },
1454 { "sched:sched_wakeup", process_sched_wakeup_event
, },
1455 { "sched:sched_wakeup_new", process_sched_wakeup_event
, },
1456 { "sched:sched_process_fork", process_sched_fork_event
, },
1457 { "sched:sched_process_exit", process_sched_exit_event
, },
1458 { "sched:sched_migrate_task", process_sched_migrate_task_event
, },
1460 struct perf_session
*session
;
1462 session
= perf_session__new(input_name
, O_RDONLY
, 0, false, &sched
->tool
);
1463 if (session
== NULL
) {
1464 pr_debug("No Memory for session\n");
1468 if (perf_session__set_tracepoints_handlers(session
, handlers
))
1471 if (perf_session__has_traces(session
, "record -R")) {
1472 int err
= perf_session__process_events(session
, &sched
->tool
);
1474 pr_err("Failed to process events, error %d", err
);
1478 sched
->nr_events
= session
->hists
.stats
.nr_events
[0];
1479 sched
->nr_lost_events
= session
->hists
.stats
.total_lost
;
1480 sched
->nr_lost_chunks
= session
->hists
.stats
.nr_events
[PERF_RECORD_LOST
];
1484 perf_session__delete(session
);
1487 *psession
= session
;
1492 perf_session__delete(session
);
1496 static void print_bad_events(struct perf_sched
*sched
)
1498 if (sched
->nr_unordered_timestamps
&& sched
->nr_timestamps
) {
1499 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1500 (double)sched
->nr_unordered_timestamps
/(double)sched
->nr_timestamps
*100.0,
1501 sched
->nr_unordered_timestamps
, sched
->nr_timestamps
);
1503 if (sched
->nr_lost_events
&& sched
->nr_events
) {
1504 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1505 (double)sched
->nr_lost_events
/(double)sched
->nr_events
* 100.0,
1506 sched
->nr_lost_events
, sched
->nr_events
, sched
->nr_lost_chunks
);
1508 if (sched
->nr_state_machine_bugs
&& sched
->nr_timestamps
) {
1509 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1510 (double)sched
->nr_state_machine_bugs
/(double)sched
->nr_timestamps
*100.0,
1511 sched
->nr_state_machine_bugs
, sched
->nr_timestamps
);
1512 if (sched
->nr_lost_events
)
1513 printf(" (due to lost events?)");
1516 if (sched
->nr_context_switch_bugs
&& sched
->nr_timestamps
) {
1517 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1518 (double)sched
->nr_context_switch_bugs
/(double)sched
->nr_timestamps
*100.0,
1519 sched
->nr_context_switch_bugs
, sched
->nr_timestamps
);
1520 if (sched
->nr_lost_events
)
1521 printf(" (due to lost events?)");
1526 static int perf_sched__lat(struct perf_sched
*sched
)
1528 struct rb_node
*next
;
1529 struct perf_session
*session
;
1532 if (perf_sched__read_events(sched
, false, &session
))
1534 perf_sched__sort_lat(sched
);
1536 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1537 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1538 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1540 next
= rb_first(&sched
->sorted_atom_root
);
1543 struct work_atoms
*work_list
;
1545 work_list
= rb_entry(next
, struct work_atoms
, node
);
1546 output_lat_thread(sched
, work_list
);
1547 next
= rb_next(next
);
1550 printf(" -----------------------------------------------------------------------------------------\n");
1551 printf(" TOTAL: |%11.3f ms |%9" PRIu64
" |\n",
1552 (double)sched
->all_runtime
/ 1e6
, sched
->all_count
);
1554 printf(" ---------------------------------------------------\n");
1556 print_bad_events(sched
);
1559 perf_session__delete(session
);
1563 static int perf_sched__map(struct perf_sched
*sched
)
1565 sched
->max_cpu
= sysconf(_SC_NPROCESSORS_CONF
);
1568 if (perf_sched__read_events(sched
, true, NULL
))
1570 print_bad_events(sched
);
1574 static int perf_sched__replay(struct perf_sched
*sched
)
1578 calibrate_run_measurement_overhead(sched
);
1579 calibrate_sleep_measurement_overhead(sched
);
1581 test_calibrations(sched
);
1583 if (perf_sched__read_events(sched
, true, NULL
))
1586 printf("nr_run_events: %ld\n", sched
->nr_run_events
);
1587 printf("nr_sleep_events: %ld\n", sched
->nr_sleep_events
);
1588 printf("nr_wakeup_events: %ld\n", sched
->nr_wakeup_events
);
1590 if (sched
->targetless_wakeups
)
1591 printf("target-less wakeups: %ld\n", sched
->targetless_wakeups
);
1592 if (sched
->multitarget_wakeups
)
1593 printf("multi-target wakeups: %ld\n", sched
->multitarget_wakeups
);
1594 if (sched
->nr_run_events_optimized
)
1595 printf("run atoms optimized: %ld\n",
1596 sched
->nr_run_events_optimized
);
1598 print_task_traces(sched
);
1599 add_cross_task_wakeups(sched
);
1601 create_tasks(sched
);
1602 printf("------------------------------------------------------------\n");
1603 for (i
= 0; i
< sched
->replay_repeat
; i
++)
1604 run_one_test(sched
);
1609 static void setup_sorting(struct perf_sched
*sched
, const struct option
*options
,
1610 const char * const usage_msg
[])
1612 char *tmp
, *tok
, *str
= strdup(sched
->sort_order
);
1614 for (tok
= strtok_r(str
, ", ", &tmp
);
1615 tok
; tok
= strtok_r(NULL
, ", ", &tmp
)) {
1616 if (sort_dimension__add(tok
, &sched
->sort_list
) < 0) {
1617 error("Unknown --sort key: `%s'", tok
);
1618 usage_with_options(usage_msg
, options
);
1624 sort_dimension__add("pid", &sched
->cmp_pid
);
1627 static int __cmd_record(int argc
, const char **argv
)
1629 unsigned int rec_argc
, i
, j
;
1630 const char **rec_argv
;
1631 const char * const record_args
[] = {
1638 "-e", "sched:sched_switch",
1639 "-e", "sched:sched_stat_wait",
1640 "-e", "sched:sched_stat_sleep",
1641 "-e", "sched:sched_stat_iowait",
1642 "-e", "sched:sched_stat_runtime",
1643 "-e", "sched:sched_process_exit",
1644 "-e", "sched:sched_process_fork",
1645 "-e", "sched:sched_wakeup",
1646 "-e", "sched:sched_migrate_task",
1649 rec_argc
= ARRAY_SIZE(record_args
) + argc
- 1;
1650 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1652 if (rec_argv
== NULL
)
1655 for (i
= 0; i
< ARRAY_SIZE(record_args
); i
++)
1656 rec_argv
[i
] = strdup(record_args
[i
]);
1658 for (j
= 1; j
< (unsigned int)argc
; j
++, i
++)
1659 rec_argv
[i
] = argv
[j
];
1661 BUG_ON(i
!= rec_argc
);
1663 return cmd_record(i
, rec_argv
, NULL
);
1666 int cmd_sched(int argc
, const char **argv
, const char *prefix __maybe_unused
)
1668 const char default_sort_order
[] = "avg, max, switch, runtime";
1669 struct perf_sched sched
= {
1671 .sample
= perf_sched__process_tracepoint_sample
,
1672 .comm
= perf_event__process_comm
,
1673 .lost
= perf_event__process_lost
,
1674 .exit
= perf_event__process_exit
,
1675 .fork
= perf_event__process_fork
,
1676 .ordered_samples
= true,
1678 .cmp_pid
= LIST_HEAD_INIT(sched
.cmp_pid
),
1679 .sort_list
= LIST_HEAD_INIT(sched
.sort_list
),
1680 .start_work_mutex
= PTHREAD_MUTEX_INITIALIZER
,
1681 .work_done_wait_mutex
= PTHREAD_MUTEX_INITIALIZER
,
1682 .curr_pid
= { [0 ... MAX_CPUS
- 1] = -1 },
1683 .sort_order
= default_sort_order
,
1684 .replay_repeat
= 10,
1686 .next_shortname1
= 'A',
1687 .next_shortname2
= '0',
1689 const struct option latency_options
[] = {
1690 OPT_STRING('s', "sort", &sched
.sort_order
, "key[,key2...]",
1691 "sort by key(s): runtime, switch, avg, max"),
1692 OPT_INCR('v', "verbose", &verbose
,
1693 "be more verbose (show symbol address, etc)"),
1694 OPT_INTEGER('C', "CPU", &sched
.profile_cpu
,
1695 "CPU to profile on"),
1696 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
1697 "dump raw trace in ASCII"),
1700 const struct option replay_options
[] = {
1701 OPT_UINTEGER('r', "repeat", &sched
.replay_repeat
,
1702 "repeat the workload replay N times (-1: infinite)"),
1703 OPT_INCR('v', "verbose", &verbose
,
1704 "be more verbose (show symbol address, etc)"),
1705 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
1706 "dump raw trace in ASCII"),
1709 const struct option sched_options
[] = {
1710 OPT_STRING('i', "input", &input_name
, "file",
1712 OPT_INCR('v', "verbose", &verbose
,
1713 "be more verbose (show symbol address, etc)"),
1714 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
1715 "dump raw trace in ASCII"),
1718 const char * const latency_usage
[] = {
1719 "perf sched latency [<options>]",
1722 const char * const replay_usage
[] = {
1723 "perf sched replay [<options>]",
1726 const char * const sched_usage
[] = {
1727 "perf sched [<options>] {record|latency|map|replay|script}",
1730 struct trace_sched_handler lat_ops
= {
1731 .wakeup_event
= latency_wakeup_event
,
1732 .switch_event
= latency_switch_event
,
1733 .runtime_event
= latency_runtime_event
,
1734 .fork_event
= latency_fork_event
,
1735 .migrate_task_event
= latency_migrate_task_event
,
1737 struct trace_sched_handler map_ops
= {
1738 .switch_event
= map_switch_event
,
1740 struct trace_sched_handler replay_ops
= {
1741 .wakeup_event
= replay_wakeup_event
,
1742 .switch_event
= replay_switch_event
,
1743 .fork_event
= replay_fork_event
,
1746 argc
= parse_options(argc
, argv
, sched_options
, sched_usage
,
1747 PARSE_OPT_STOP_AT_NON_OPTION
);
1749 usage_with_options(sched_usage
, sched_options
);
1752 * Aliased to 'perf script' for now:
1754 if (!strcmp(argv
[0], "script"))
1755 return cmd_script(argc
, argv
, prefix
);
1758 if (!strncmp(argv
[0], "rec", 3)) {
1759 return __cmd_record(argc
, argv
);
1760 } else if (!strncmp(argv
[0], "lat", 3)) {
1761 sched
.tp_handler
= &lat_ops
;
1763 argc
= parse_options(argc
, argv
, latency_options
, latency_usage
, 0);
1765 usage_with_options(latency_usage
, latency_options
);
1767 setup_sorting(&sched
, latency_options
, latency_usage
);
1768 return perf_sched__lat(&sched
);
1769 } else if (!strcmp(argv
[0], "map")) {
1770 sched
.tp_handler
= &map_ops
;
1771 setup_sorting(&sched
, latency_options
, latency_usage
);
1772 return perf_sched__map(&sched
);
1773 } else if (!strncmp(argv
[0], "rep", 3)) {
1774 sched
.tp_handler
= &replay_ops
;
1776 argc
= parse_options(argc
, argv
, replay_options
, replay_usage
, 0);
1778 usage_with_options(replay_usage
, replay_options
);
1780 return perf_sched__replay(&sched
);
1782 usage_with_options(sched_usage
, sched_options
);