ath9k: fix RSSI dummy marker value
[linux/fpc-iii.git] / tools / perf / builtin-sched.c
blobcc28b85dabd5a6d6c5cd70d92c726f1fe7fb33f6
1 #include "builtin.h"
2 #include "perf.h"
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
17 #include "util/debug.h"
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
26 #define PR_SET_NAME 15 /* Set process name */
27 #define MAX_CPUS 4096
28 #define COMM_LEN 20
29 #define SYM_LEN 129
30 #define MAX_PID 65536
32 struct sched_atom;
34 struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
43 pthread_t thread;
44 sem_t sleep_sem;
46 sem_t ready_for_work;
47 sem_t work_done_sem;
49 u64 cpu_usage;
52 enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
59 struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
71 enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
78 struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
87 struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
100 struct perf_sched;
102 struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
112 int (*fork_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 struct perf_sample *sample);
115 int (*migrate_task_event)(struct perf_sched *sched,
116 struct perf_evsel *evsel,
117 struct perf_sample *sample,
118 struct machine *machine);
121 struct perf_sched {
122 struct perf_tool tool;
123 const char *sort_order;
124 unsigned long nr_tasks;
125 struct task_desc *pid_to_task[MAX_PID];
126 struct task_desc **tasks;
127 const struct trace_sched_handler *tp_handler;
128 pthread_mutex_t start_work_mutex;
129 pthread_mutex_t work_done_wait_mutex;
130 int profile_cpu;
132 * Track the current task - that way we can know whether there's any
133 * weird events, such as a task being switched away that is not current.
135 int max_cpu;
136 u32 curr_pid[MAX_CPUS];
137 struct thread *curr_thread[MAX_CPUS];
138 char next_shortname1;
139 char next_shortname2;
140 unsigned int replay_repeat;
141 unsigned long nr_run_events;
142 unsigned long nr_sleep_events;
143 unsigned long nr_wakeup_events;
144 unsigned long nr_sleep_corrections;
145 unsigned long nr_run_events_optimized;
146 unsigned long targetless_wakeups;
147 unsigned long multitarget_wakeups;
148 unsigned long nr_runs;
149 unsigned long nr_timestamps;
150 unsigned long nr_unordered_timestamps;
151 unsigned long nr_state_machine_bugs;
152 unsigned long nr_context_switch_bugs;
153 unsigned long nr_events;
154 unsigned long nr_lost_chunks;
155 unsigned long nr_lost_events;
156 u64 run_measurement_overhead;
157 u64 sleep_measurement_overhead;
158 u64 start_time;
159 u64 cpu_usage;
160 u64 runavg_cpu_usage;
161 u64 parent_cpu_usage;
162 u64 runavg_parent_cpu_usage;
163 u64 sum_runtime;
164 u64 sum_fluct;
165 u64 run_avg;
166 u64 all_runtime;
167 u64 all_count;
168 u64 cpu_last_switched[MAX_CPUS];
169 struct rb_root atom_root, sorted_atom_root;
170 struct list_head sort_list, cmp_pid;
173 static u64 get_nsecs(void)
175 struct timespec ts;
177 clock_gettime(CLOCK_MONOTONIC, &ts);
179 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
182 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184 u64 T0 = get_nsecs(), T1;
186 do {
187 T1 = get_nsecs();
188 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
191 static void sleep_nsecs(u64 nsecs)
193 struct timespec ts;
195 ts.tv_nsec = nsecs % 999999999;
196 ts.tv_sec = nsecs / 999999999;
198 nanosleep(&ts, NULL);
201 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203 u64 T0, T1, delta, min_delta = 1000000000ULL;
204 int i;
206 for (i = 0; i < 10; i++) {
207 T0 = get_nsecs();
208 burn_nsecs(sched, 0);
209 T1 = get_nsecs();
210 delta = T1-T0;
211 min_delta = min(min_delta, delta);
213 sched->run_measurement_overhead = min_delta;
215 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
218 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220 u64 T0, T1, delta, min_delta = 1000000000ULL;
221 int i;
223 for (i = 0; i < 10; i++) {
224 T0 = get_nsecs();
225 sleep_nsecs(10000);
226 T1 = get_nsecs();
227 delta = T1-T0;
228 min_delta = min(min_delta, delta);
230 min_delta -= 10000;
231 sched->sleep_measurement_overhead = min_delta;
233 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
236 static struct sched_atom *
237 get_new_event(struct task_desc *task, u64 timestamp)
239 struct sched_atom *event = zalloc(sizeof(*event));
240 unsigned long idx = task->nr_events;
241 size_t size;
243 event->timestamp = timestamp;
244 event->nr = idx;
246 task->nr_events++;
247 size = sizeof(struct sched_atom *) * task->nr_events;
248 task->atoms = realloc(task->atoms, size);
249 BUG_ON(!task->atoms);
251 task->atoms[idx] = event;
253 return event;
256 static struct sched_atom *last_event(struct task_desc *task)
258 if (!task->nr_events)
259 return NULL;
261 return task->atoms[task->nr_events - 1];
264 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
265 u64 timestamp, u64 duration)
267 struct sched_atom *event, *curr_event = last_event(task);
270 * optimize an existing RUN event by merging this one
271 * to it:
273 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
274 sched->nr_run_events_optimized++;
275 curr_event->duration += duration;
276 return;
279 event = get_new_event(task, timestamp);
281 event->type = SCHED_EVENT_RUN;
282 event->duration = duration;
284 sched->nr_run_events++;
287 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
288 u64 timestamp, struct task_desc *wakee)
290 struct sched_atom *event, *wakee_event;
292 event = get_new_event(task, timestamp);
293 event->type = SCHED_EVENT_WAKEUP;
294 event->wakee = wakee;
296 wakee_event = last_event(wakee);
297 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
298 sched->targetless_wakeups++;
299 return;
301 if (wakee_event->wait_sem) {
302 sched->multitarget_wakeups++;
303 return;
306 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
307 sem_init(wakee_event->wait_sem, 0, 0);
308 wakee_event->specific_wait = 1;
309 event->wait_sem = wakee_event->wait_sem;
311 sched->nr_wakeup_events++;
314 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
315 u64 timestamp, u64 task_state __maybe_unused)
317 struct sched_atom *event = get_new_event(task, timestamp);
319 event->type = SCHED_EVENT_SLEEP;
321 sched->nr_sleep_events++;
324 static struct task_desc *register_pid(struct perf_sched *sched,
325 unsigned long pid, const char *comm)
327 struct task_desc *task;
329 BUG_ON(pid >= MAX_PID);
331 task = sched->pid_to_task[pid];
333 if (task)
334 return task;
336 task = zalloc(sizeof(*task));
337 task->pid = pid;
338 task->nr = sched->nr_tasks;
339 strcpy(task->comm, comm);
341 * every task starts in sleeping state - this gets ignored
342 * if there's no wakeup pointing to this sleep state:
344 add_sched_event_sleep(sched, task, 0, 0);
346 sched->pid_to_task[pid] = task;
347 sched->nr_tasks++;
348 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
349 BUG_ON(!sched->tasks);
350 sched->tasks[task->nr] = task;
352 if (verbose)
353 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355 return task;
359 static void print_task_traces(struct perf_sched *sched)
361 struct task_desc *task;
362 unsigned long i;
364 for (i = 0; i < sched->nr_tasks; i++) {
365 task = sched->tasks[i];
366 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
367 task->nr, task->comm, task->pid, task->nr_events);
371 static void add_cross_task_wakeups(struct perf_sched *sched)
373 struct task_desc *task1, *task2;
374 unsigned long i, j;
376 for (i = 0; i < sched->nr_tasks; i++) {
377 task1 = sched->tasks[i];
378 j = i + 1;
379 if (j == sched->nr_tasks)
380 j = 0;
381 task2 = sched->tasks[j];
382 add_sched_event_wakeup(sched, task1, 0, task2);
386 static void perf_sched__process_event(struct perf_sched *sched,
387 struct sched_atom *atom)
389 int ret = 0;
391 switch (atom->type) {
392 case SCHED_EVENT_RUN:
393 burn_nsecs(sched, atom->duration);
394 break;
395 case SCHED_EVENT_SLEEP:
396 if (atom->wait_sem)
397 ret = sem_wait(atom->wait_sem);
398 BUG_ON(ret);
399 break;
400 case SCHED_EVENT_WAKEUP:
401 if (atom->wait_sem)
402 ret = sem_post(atom->wait_sem);
403 BUG_ON(ret);
404 break;
405 case SCHED_EVENT_MIGRATION:
406 break;
407 default:
408 BUG_ON(1);
412 static u64 get_cpu_usage_nsec_parent(void)
414 struct rusage ru;
415 u64 sum;
416 int err;
418 err = getrusage(RUSAGE_SELF, &ru);
419 BUG_ON(err);
421 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
422 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424 return sum;
427 static int self_open_counters(void)
429 struct perf_event_attr attr;
430 int fd;
432 memset(&attr, 0, sizeof(attr));
434 attr.type = PERF_TYPE_SOFTWARE;
435 attr.config = PERF_COUNT_SW_TASK_CLOCK;
437 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439 if (fd < 0)
440 pr_err("Error: sys_perf_event_open() syscall returned "
441 "with %d (%s)\n", fd, strerror(errno));
442 return fd;
445 static u64 get_cpu_usage_nsec_self(int fd)
447 u64 runtime;
448 int ret;
450 ret = read(fd, &runtime, sizeof(runtime));
451 BUG_ON(ret != sizeof(runtime));
453 return runtime;
456 struct sched_thread_parms {
457 struct task_desc *task;
458 struct perf_sched *sched;
461 static void *thread_func(void *ctx)
463 struct sched_thread_parms *parms = ctx;
464 struct task_desc *this_task = parms->task;
465 struct perf_sched *sched = parms->sched;
466 u64 cpu_usage_0, cpu_usage_1;
467 unsigned long i, ret;
468 char comm2[22];
469 int fd;
471 free(parms);
473 sprintf(comm2, ":%s", this_task->comm);
474 prctl(PR_SET_NAME, comm2);
475 fd = self_open_counters();
476 if (fd < 0)
477 return NULL;
478 again:
479 ret = sem_post(&this_task->ready_for_work);
480 BUG_ON(ret);
481 ret = pthread_mutex_lock(&sched->start_work_mutex);
482 BUG_ON(ret);
483 ret = pthread_mutex_unlock(&sched->start_work_mutex);
484 BUG_ON(ret);
486 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488 for (i = 0; i < this_task->nr_events; i++) {
489 this_task->curr_event = i;
490 perf_sched__process_event(sched, this_task->atoms[i]);
493 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
494 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
495 ret = sem_post(&this_task->work_done_sem);
496 BUG_ON(ret);
498 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
499 BUG_ON(ret);
500 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
501 BUG_ON(ret);
503 goto again;
506 static void create_tasks(struct perf_sched *sched)
508 struct task_desc *task;
509 pthread_attr_t attr;
510 unsigned long i;
511 int err;
513 err = pthread_attr_init(&attr);
514 BUG_ON(err);
515 err = pthread_attr_setstacksize(&attr,
516 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
517 BUG_ON(err);
518 err = pthread_mutex_lock(&sched->start_work_mutex);
519 BUG_ON(err);
520 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
521 BUG_ON(err);
522 for (i = 0; i < sched->nr_tasks; i++) {
523 struct sched_thread_parms *parms = malloc(sizeof(*parms));
524 BUG_ON(parms == NULL);
525 parms->task = task = sched->tasks[i];
526 parms->sched = sched;
527 sem_init(&task->sleep_sem, 0, 0);
528 sem_init(&task->ready_for_work, 0, 0);
529 sem_init(&task->work_done_sem, 0, 0);
530 task->curr_event = 0;
531 err = pthread_create(&task->thread, &attr, thread_func, parms);
532 BUG_ON(err);
536 static void wait_for_tasks(struct perf_sched *sched)
538 u64 cpu_usage_0, cpu_usage_1;
539 struct task_desc *task;
540 unsigned long i, ret;
542 sched->start_time = get_nsecs();
543 sched->cpu_usage = 0;
544 pthread_mutex_unlock(&sched->work_done_wait_mutex);
546 for (i = 0; i < sched->nr_tasks; i++) {
547 task = sched->tasks[i];
548 ret = sem_wait(&task->ready_for_work);
549 BUG_ON(ret);
550 sem_init(&task->ready_for_work, 0, 0);
552 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
553 BUG_ON(ret);
555 cpu_usage_0 = get_cpu_usage_nsec_parent();
557 pthread_mutex_unlock(&sched->start_work_mutex);
559 for (i = 0; i < sched->nr_tasks; i++) {
560 task = sched->tasks[i];
561 ret = sem_wait(&task->work_done_sem);
562 BUG_ON(ret);
563 sem_init(&task->work_done_sem, 0, 0);
564 sched->cpu_usage += task->cpu_usage;
565 task->cpu_usage = 0;
568 cpu_usage_1 = get_cpu_usage_nsec_parent();
569 if (!sched->runavg_cpu_usage)
570 sched->runavg_cpu_usage = sched->cpu_usage;
571 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
574 if (!sched->runavg_parent_cpu_usage)
575 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
576 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
577 sched->parent_cpu_usage)/10;
579 ret = pthread_mutex_lock(&sched->start_work_mutex);
580 BUG_ON(ret);
582 for (i = 0; i < sched->nr_tasks; i++) {
583 task = sched->tasks[i];
584 sem_init(&task->sleep_sem, 0, 0);
585 task->curr_event = 0;
589 static void run_one_test(struct perf_sched *sched)
591 u64 T0, T1, delta, avg_delta, fluct;
593 T0 = get_nsecs();
594 wait_for_tasks(sched);
595 T1 = get_nsecs();
597 delta = T1 - T0;
598 sched->sum_runtime += delta;
599 sched->nr_runs++;
601 avg_delta = sched->sum_runtime / sched->nr_runs;
602 if (delta < avg_delta)
603 fluct = avg_delta - delta;
604 else
605 fluct = delta - avg_delta;
606 sched->sum_fluct += fluct;
607 if (!sched->run_avg)
608 sched->run_avg = delta;
609 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615 printf("cpu: %0.2f / %0.2f",
616 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618 #if 0
620 * rusage statistics done by the parent, these are less
621 * accurate than the sched->sum_exec_runtime based statistics:
623 printf(" [%0.2f / %0.2f]",
624 (double)sched->parent_cpu_usage/1e6,
625 (double)sched->runavg_parent_cpu_usage/1e6);
626 #endif
628 printf("\n");
630 if (sched->nr_sleep_corrections)
631 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
632 sched->nr_sleep_corrections = 0;
635 static void test_calibrations(struct perf_sched *sched)
637 u64 T0, T1;
639 T0 = get_nsecs();
640 burn_nsecs(sched, 1e6);
641 T1 = get_nsecs();
643 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645 T0 = get_nsecs();
646 sleep_nsecs(1e6);
647 T1 = get_nsecs();
649 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
652 static int
653 replay_wakeup_event(struct perf_sched *sched,
654 struct perf_evsel *evsel, struct perf_sample *sample,
655 struct machine *machine __maybe_unused)
657 const char *comm = perf_evsel__strval(evsel, sample, "comm");
658 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
659 struct task_desc *waker, *wakee;
661 if (verbose) {
662 printf("sched_wakeup event %p\n", evsel);
664 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
667 waker = register_pid(sched, sample->tid, "<unknown>");
668 wakee = register_pid(sched, pid, comm);
670 add_sched_event_wakeup(sched, waker, sample->time, wakee);
671 return 0;
674 static int replay_switch_event(struct perf_sched *sched,
675 struct perf_evsel *evsel,
676 struct perf_sample *sample,
677 struct machine *machine __maybe_unused)
679 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
680 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
681 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
682 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
683 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
684 struct task_desc *prev, __maybe_unused *next;
685 u64 timestamp0, timestamp = sample->time;
686 int cpu = sample->cpu;
687 s64 delta;
689 if (verbose)
690 printf("sched_switch event %p\n", evsel);
692 if (cpu >= MAX_CPUS || cpu < 0)
693 return 0;
695 timestamp0 = sched->cpu_last_switched[cpu];
696 if (timestamp0)
697 delta = timestamp - timestamp0;
698 else
699 delta = 0;
701 if (delta < 0) {
702 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
703 return -1;
706 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
707 prev_comm, prev_pid, next_comm, next_pid, delta);
709 prev = register_pid(sched, prev_pid, prev_comm);
710 next = register_pid(sched, next_pid, next_comm);
712 sched->cpu_last_switched[cpu] = timestamp;
714 add_sched_event_run(sched, prev, timestamp, delta);
715 add_sched_event_sleep(sched, prev, timestamp, prev_state);
717 return 0;
720 static int replay_fork_event(struct perf_sched *sched, struct perf_evsel *evsel,
721 struct perf_sample *sample)
723 const char *parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
724 *child_comm = perf_evsel__strval(evsel, sample, "child_comm");
725 const u32 parent_pid = perf_evsel__intval(evsel, sample, "parent_pid"),
726 child_pid = perf_evsel__intval(evsel, sample, "child_pid");
728 if (verbose) {
729 printf("sched_fork event %p\n", evsel);
730 printf("... parent: %s/%d\n", parent_comm, parent_pid);
731 printf("... child: %s/%d\n", child_comm, child_pid);
734 register_pid(sched, parent_pid, parent_comm);
735 register_pid(sched, child_pid, child_comm);
736 return 0;
739 struct sort_dimension {
740 const char *name;
741 sort_fn_t cmp;
742 struct list_head list;
745 static int
746 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
748 struct sort_dimension *sort;
749 int ret = 0;
751 BUG_ON(list_empty(list));
753 list_for_each_entry(sort, list, list) {
754 ret = sort->cmp(l, r);
755 if (ret)
756 return ret;
759 return ret;
762 static struct work_atoms *
763 thread_atoms_search(struct rb_root *root, struct thread *thread,
764 struct list_head *sort_list)
766 struct rb_node *node = root->rb_node;
767 struct work_atoms key = { .thread = thread };
769 while (node) {
770 struct work_atoms *atoms;
771 int cmp;
773 atoms = container_of(node, struct work_atoms, node);
775 cmp = thread_lat_cmp(sort_list, &key, atoms);
776 if (cmp > 0)
777 node = node->rb_left;
778 else if (cmp < 0)
779 node = node->rb_right;
780 else {
781 BUG_ON(thread != atoms->thread);
782 return atoms;
785 return NULL;
788 static void
789 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
790 struct list_head *sort_list)
792 struct rb_node **new = &(root->rb_node), *parent = NULL;
794 while (*new) {
795 struct work_atoms *this;
796 int cmp;
798 this = container_of(*new, struct work_atoms, node);
799 parent = *new;
801 cmp = thread_lat_cmp(sort_list, data, this);
803 if (cmp > 0)
804 new = &((*new)->rb_left);
805 else
806 new = &((*new)->rb_right);
809 rb_link_node(&data->node, parent, new);
810 rb_insert_color(&data->node, root);
813 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
815 struct work_atoms *atoms = zalloc(sizeof(*atoms));
816 if (!atoms) {
817 pr_err("No memory at %s\n", __func__);
818 return -1;
821 atoms->thread = thread;
822 INIT_LIST_HEAD(&atoms->work_list);
823 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
824 return 0;
827 static int latency_fork_event(struct perf_sched *sched __maybe_unused,
828 struct perf_evsel *evsel __maybe_unused,
829 struct perf_sample *sample __maybe_unused)
831 /* should insert the newcomer */
832 return 0;
835 static char sched_out_state(u64 prev_state)
837 const char *str = TASK_STATE_TO_CHAR_STR;
839 return str[prev_state];
842 static int
843 add_sched_out_event(struct work_atoms *atoms,
844 char run_state,
845 u64 timestamp)
847 struct work_atom *atom = zalloc(sizeof(*atom));
848 if (!atom) {
849 pr_err("Non memory at %s", __func__);
850 return -1;
853 atom->sched_out_time = timestamp;
855 if (run_state == 'R') {
856 atom->state = THREAD_WAIT_CPU;
857 atom->wake_up_time = atom->sched_out_time;
860 list_add_tail(&atom->list, &atoms->work_list);
861 return 0;
864 static void
865 add_runtime_event(struct work_atoms *atoms, u64 delta,
866 u64 timestamp __maybe_unused)
868 struct work_atom *atom;
870 BUG_ON(list_empty(&atoms->work_list));
872 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
874 atom->runtime += delta;
875 atoms->total_runtime += delta;
878 static void
879 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
881 struct work_atom *atom;
882 u64 delta;
884 if (list_empty(&atoms->work_list))
885 return;
887 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
889 if (atom->state != THREAD_WAIT_CPU)
890 return;
892 if (timestamp < atom->wake_up_time) {
893 atom->state = THREAD_IGNORE;
894 return;
897 atom->state = THREAD_SCHED_IN;
898 atom->sched_in_time = timestamp;
900 delta = atom->sched_in_time - atom->wake_up_time;
901 atoms->total_lat += delta;
902 if (delta > atoms->max_lat) {
903 atoms->max_lat = delta;
904 atoms->max_lat_at = timestamp;
906 atoms->nb_atoms++;
909 static int latency_switch_event(struct perf_sched *sched,
910 struct perf_evsel *evsel,
911 struct perf_sample *sample,
912 struct machine *machine)
914 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
915 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
916 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
917 struct work_atoms *out_events, *in_events;
918 struct thread *sched_out, *sched_in;
919 u64 timestamp0, timestamp = sample->time;
920 int cpu = sample->cpu;
921 s64 delta;
923 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
925 timestamp0 = sched->cpu_last_switched[cpu];
926 sched->cpu_last_switched[cpu] = timestamp;
927 if (timestamp0)
928 delta = timestamp - timestamp0;
929 else
930 delta = 0;
932 if (delta < 0) {
933 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
934 return -1;
937 sched_out = machine__findnew_thread(machine, prev_pid);
938 sched_in = machine__findnew_thread(machine, next_pid);
940 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
941 if (!out_events) {
942 if (thread_atoms_insert(sched, sched_out))
943 return -1;
944 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
945 if (!out_events) {
946 pr_err("out-event: Internal tree error");
947 return -1;
950 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
951 return -1;
953 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
954 if (!in_events) {
955 if (thread_atoms_insert(sched, sched_in))
956 return -1;
957 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
958 if (!in_events) {
959 pr_err("in-event: Internal tree error");
960 return -1;
963 * Take came in we have not heard about yet,
964 * add in an initial atom in runnable state:
966 if (add_sched_out_event(in_events, 'R', timestamp))
967 return -1;
969 add_sched_in_event(in_events, timestamp);
971 return 0;
974 static int latency_runtime_event(struct perf_sched *sched,
975 struct perf_evsel *evsel,
976 struct perf_sample *sample,
977 struct machine *machine)
979 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
980 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
981 struct thread *thread = machine__findnew_thread(machine, pid);
982 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
983 u64 timestamp = sample->time;
984 int cpu = sample->cpu;
986 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
987 if (!atoms) {
988 if (thread_atoms_insert(sched, thread))
989 return -1;
990 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
991 if (!atoms) {
992 pr_err("in-event: Internal tree error");
993 return -1;
995 if (add_sched_out_event(atoms, 'R', timestamp))
996 return -1;
999 add_runtime_event(atoms, runtime, timestamp);
1000 return 0;
1003 static int latency_wakeup_event(struct perf_sched *sched,
1004 struct perf_evsel *evsel,
1005 struct perf_sample *sample,
1006 struct machine *machine)
1008 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1009 success = perf_evsel__intval(evsel, sample, "success");
1010 struct work_atoms *atoms;
1011 struct work_atom *atom;
1012 struct thread *wakee;
1013 u64 timestamp = sample->time;
1015 /* Note for later, it may be interesting to observe the failing cases */
1016 if (!success)
1017 return 0;
1019 wakee = machine__findnew_thread(machine, pid);
1020 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021 if (!atoms) {
1022 if (thread_atoms_insert(sched, wakee))
1023 return -1;
1024 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1025 if (!atoms) {
1026 pr_err("wakeup-event: Internal tree error");
1027 return -1;
1029 if (add_sched_out_event(atoms, 'S', timestamp))
1030 return -1;
1033 BUG_ON(list_empty(&atoms->work_list));
1035 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038 * You WILL be missing events if you've recorded only
1039 * one CPU, or are only looking at only one, so don't
1040 * make useless noise.
1042 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1043 sched->nr_state_machine_bugs++;
1045 sched->nr_timestamps++;
1046 if (atom->sched_out_time > timestamp) {
1047 sched->nr_unordered_timestamps++;
1048 return 0;
1051 atom->state = THREAD_WAIT_CPU;
1052 atom->wake_up_time = timestamp;
1053 return 0;
1056 static int latency_migrate_task_event(struct perf_sched *sched,
1057 struct perf_evsel *evsel,
1058 struct perf_sample *sample,
1059 struct machine *machine)
1061 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1062 u64 timestamp = sample->time;
1063 struct work_atoms *atoms;
1064 struct work_atom *atom;
1065 struct thread *migrant;
1068 * Only need to worry about migration when profiling one CPU.
1070 if (sched->profile_cpu == -1)
1071 return 0;
1073 migrant = machine__findnew_thread(machine, pid);
1074 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1075 if (!atoms) {
1076 if (thread_atoms_insert(sched, migrant))
1077 return -1;
1078 register_pid(sched, migrant->pid, migrant->comm);
1079 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1080 if (!atoms) {
1081 pr_err("migration-event: Internal tree error");
1082 return -1;
1084 if (add_sched_out_event(atoms, 'R', timestamp))
1085 return -1;
1088 BUG_ON(list_empty(&atoms->work_list));
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1093 sched->nr_timestamps++;
1095 if (atom->sched_out_time > timestamp)
1096 sched->nr_unordered_timestamps++;
1098 return 0;
1101 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1103 int i;
1104 int ret;
1105 u64 avg;
1107 if (!work_list->nb_atoms)
1108 return;
1110 * Ignore idle threads:
1112 if (!strcmp(work_list->thread->comm, "swapper"))
1113 return;
1115 sched->all_runtime += work_list->total_runtime;
1116 sched->all_count += work_list->nb_atoms;
1118 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1120 for (i = 0; i < 24 - ret; i++)
1121 printf(" ");
1123 avg = work_list->total_lat / work_list->nb_atoms;
1125 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1126 (double)work_list->total_runtime / 1e6,
1127 work_list->nb_atoms, (double)avg / 1e6,
1128 (double)work_list->max_lat / 1e6,
1129 (double)work_list->max_lat_at / 1e9);
1132 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1134 if (l->thread->pid < r->thread->pid)
1135 return -1;
1136 if (l->thread->pid > r->thread->pid)
1137 return 1;
1139 return 0;
1142 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1144 u64 avgl, avgr;
1146 if (!l->nb_atoms)
1147 return -1;
1149 if (!r->nb_atoms)
1150 return 1;
1152 avgl = l->total_lat / l->nb_atoms;
1153 avgr = r->total_lat / r->nb_atoms;
1155 if (avgl < avgr)
1156 return -1;
1157 if (avgl > avgr)
1158 return 1;
1160 return 0;
1163 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1165 if (l->max_lat < r->max_lat)
1166 return -1;
1167 if (l->max_lat > r->max_lat)
1168 return 1;
1170 return 0;
1173 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1175 if (l->nb_atoms < r->nb_atoms)
1176 return -1;
1177 if (l->nb_atoms > r->nb_atoms)
1178 return 1;
1180 return 0;
1183 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1185 if (l->total_runtime < r->total_runtime)
1186 return -1;
1187 if (l->total_runtime > r->total_runtime)
1188 return 1;
1190 return 0;
1193 static int sort_dimension__add(const char *tok, struct list_head *list)
1195 size_t i;
1196 static struct sort_dimension avg_sort_dimension = {
1197 .name = "avg",
1198 .cmp = avg_cmp,
1200 static struct sort_dimension max_sort_dimension = {
1201 .name = "max",
1202 .cmp = max_cmp,
1204 static struct sort_dimension pid_sort_dimension = {
1205 .name = "pid",
1206 .cmp = pid_cmp,
1208 static struct sort_dimension runtime_sort_dimension = {
1209 .name = "runtime",
1210 .cmp = runtime_cmp,
1212 static struct sort_dimension switch_sort_dimension = {
1213 .name = "switch",
1214 .cmp = switch_cmp,
1216 struct sort_dimension *available_sorts[] = {
1217 &pid_sort_dimension,
1218 &avg_sort_dimension,
1219 &max_sort_dimension,
1220 &switch_sort_dimension,
1221 &runtime_sort_dimension,
1224 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1225 if (!strcmp(available_sorts[i]->name, tok)) {
1226 list_add_tail(&available_sorts[i]->list, list);
1228 return 0;
1232 return -1;
1235 static void perf_sched__sort_lat(struct perf_sched *sched)
1237 struct rb_node *node;
1239 for (;;) {
1240 struct work_atoms *data;
1241 node = rb_first(&sched->atom_root);
1242 if (!node)
1243 break;
1245 rb_erase(node, &sched->atom_root);
1246 data = rb_entry(node, struct work_atoms, node);
1247 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1251 static int process_sched_wakeup_event(struct perf_tool *tool,
1252 struct perf_evsel *evsel,
1253 struct perf_sample *sample,
1254 struct machine *machine)
1256 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1258 if (sched->tp_handler->wakeup_event)
1259 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1261 return 0;
1264 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1265 struct perf_sample *sample, struct machine *machine)
1267 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1268 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1269 struct thread *sched_out __maybe_unused, *sched_in;
1270 int new_shortname;
1271 u64 timestamp0, timestamp = sample->time;
1272 s64 delta;
1273 int cpu, this_cpu = sample->cpu;
1275 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1277 if (this_cpu > sched->max_cpu)
1278 sched->max_cpu = this_cpu;
1280 timestamp0 = sched->cpu_last_switched[this_cpu];
1281 sched->cpu_last_switched[this_cpu] = timestamp;
1282 if (timestamp0)
1283 delta = timestamp - timestamp0;
1284 else
1285 delta = 0;
1287 if (delta < 0) {
1288 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1289 return -1;
1292 sched_out = machine__findnew_thread(machine, prev_pid);
1293 sched_in = machine__findnew_thread(machine, next_pid);
1295 sched->curr_thread[this_cpu] = sched_in;
1297 printf(" ");
1299 new_shortname = 0;
1300 if (!sched_in->shortname[0]) {
1301 sched_in->shortname[0] = sched->next_shortname1;
1302 sched_in->shortname[1] = sched->next_shortname2;
1304 if (sched->next_shortname1 < 'Z') {
1305 sched->next_shortname1++;
1306 } else {
1307 sched->next_shortname1='A';
1308 if (sched->next_shortname2 < '9') {
1309 sched->next_shortname2++;
1310 } else {
1311 sched->next_shortname2='0';
1314 new_shortname = 1;
1317 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1318 if (cpu != this_cpu)
1319 printf(" ");
1320 else
1321 printf("*");
1323 if (sched->curr_thread[cpu]) {
1324 if (sched->curr_thread[cpu]->pid)
1325 printf("%2s ", sched->curr_thread[cpu]->shortname);
1326 else
1327 printf(". ");
1328 } else
1329 printf(" ");
1332 printf(" %12.6f secs ", (double)timestamp/1e9);
1333 if (new_shortname) {
1334 printf("%s => %s:%d\n",
1335 sched_in->shortname, sched_in->comm, sched_in->pid);
1336 } else {
1337 printf("\n");
1340 return 0;
1343 static int process_sched_switch_event(struct perf_tool *tool,
1344 struct perf_evsel *evsel,
1345 struct perf_sample *sample,
1346 struct machine *machine)
1348 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1349 int this_cpu = sample->cpu, err = 0;
1350 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1351 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1353 if (sched->curr_pid[this_cpu] != (u32)-1) {
1355 * Are we trying to switch away a PID that is
1356 * not current?
1358 if (sched->curr_pid[this_cpu] != prev_pid)
1359 sched->nr_context_switch_bugs++;
1362 if (sched->tp_handler->switch_event)
1363 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1365 sched->curr_pid[this_cpu] = next_pid;
1366 return err;
1369 static int process_sched_runtime_event(struct perf_tool *tool,
1370 struct perf_evsel *evsel,
1371 struct perf_sample *sample,
1372 struct machine *machine)
1374 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1376 if (sched->tp_handler->runtime_event)
1377 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1379 return 0;
1382 static int process_sched_fork_event(struct perf_tool *tool,
1383 struct perf_evsel *evsel,
1384 struct perf_sample *sample,
1385 struct machine *machine __maybe_unused)
1387 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1389 if (sched->tp_handler->fork_event)
1390 return sched->tp_handler->fork_event(sched, evsel, sample);
1392 return 0;
1395 static int process_sched_exit_event(struct perf_tool *tool __maybe_unused,
1396 struct perf_evsel *evsel,
1397 struct perf_sample *sample __maybe_unused,
1398 struct machine *machine __maybe_unused)
1400 pr_debug("sched_exit event %p\n", evsel);
1401 return 0;
1404 static int process_sched_migrate_task_event(struct perf_tool *tool,
1405 struct perf_evsel *evsel,
1406 struct perf_sample *sample,
1407 struct machine *machine)
1409 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1411 if (sched->tp_handler->migrate_task_event)
1412 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1414 return 0;
1417 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1418 struct perf_evsel *evsel,
1419 struct perf_sample *sample,
1420 struct machine *machine);
1422 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1423 union perf_event *event __maybe_unused,
1424 struct perf_sample *sample,
1425 struct perf_evsel *evsel,
1426 struct machine *machine)
1428 struct thread *thread = machine__findnew_thread(machine, sample->tid);
1429 int err = 0;
1431 if (thread == NULL) {
1432 pr_debug("problem processing %s event, skipping it.\n",
1433 perf_evsel__name(evsel));
1434 return -1;
1437 evsel->hists.stats.total_period += sample->period;
1438 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1440 if (evsel->handler.func != NULL) {
1441 tracepoint_handler f = evsel->handler.func;
1442 err = f(tool, evsel, sample, machine);
1445 return err;
1448 static int perf_sched__read_events(struct perf_sched *sched, bool destroy,
1449 struct perf_session **psession)
1451 const struct perf_evsel_str_handler handlers[] = {
1452 { "sched:sched_switch", process_sched_switch_event, },
1453 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1454 { "sched:sched_wakeup", process_sched_wakeup_event, },
1455 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1456 { "sched:sched_process_fork", process_sched_fork_event, },
1457 { "sched:sched_process_exit", process_sched_exit_event, },
1458 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1460 struct perf_session *session;
1462 session = perf_session__new(input_name, O_RDONLY, 0, false, &sched->tool);
1463 if (session == NULL) {
1464 pr_debug("No Memory for session\n");
1465 return -1;
1468 if (perf_session__set_tracepoints_handlers(session, handlers))
1469 goto out_delete;
1471 if (perf_session__has_traces(session, "record -R")) {
1472 int err = perf_session__process_events(session, &sched->tool);
1473 if (err) {
1474 pr_err("Failed to process events, error %d", err);
1475 goto out_delete;
1478 sched->nr_events = session->hists.stats.nr_events[0];
1479 sched->nr_lost_events = session->hists.stats.total_lost;
1480 sched->nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1483 if (destroy)
1484 perf_session__delete(session);
1486 if (psession)
1487 *psession = session;
1489 return 0;
1491 out_delete:
1492 perf_session__delete(session);
1493 return -1;
1496 static void print_bad_events(struct perf_sched *sched)
1498 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1499 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1500 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1501 sched->nr_unordered_timestamps, sched->nr_timestamps);
1503 if (sched->nr_lost_events && sched->nr_events) {
1504 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1505 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1506 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1508 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1509 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1510 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1511 sched->nr_state_machine_bugs, sched->nr_timestamps);
1512 if (sched->nr_lost_events)
1513 printf(" (due to lost events?)");
1514 printf("\n");
1516 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1517 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1518 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1519 sched->nr_context_switch_bugs, sched->nr_timestamps);
1520 if (sched->nr_lost_events)
1521 printf(" (due to lost events?)");
1522 printf("\n");
1526 static int perf_sched__lat(struct perf_sched *sched)
1528 struct rb_node *next;
1529 struct perf_session *session;
1531 setup_pager();
1532 if (perf_sched__read_events(sched, false, &session))
1533 return -1;
1534 perf_sched__sort_lat(sched);
1536 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1537 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1538 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1540 next = rb_first(&sched->sorted_atom_root);
1542 while (next) {
1543 struct work_atoms *work_list;
1545 work_list = rb_entry(next, struct work_atoms, node);
1546 output_lat_thread(sched, work_list);
1547 next = rb_next(next);
1550 printf(" -----------------------------------------------------------------------------------------\n");
1551 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1552 (double)sched->all_runtime / 1e6, sched->all_count);
1554 printf(" ---------------------------------------------------\n");
1556 print_bad_events(sched);
1557 printf("\n");
1559 perf_session__delete(session);
1560 return 0;
1563 static int perf_sched__map(struct perf_sched *sched)
1565 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1567 setup_pager();
1568 if (perf_sched__read_events(sched, true, NULL))
1569 return -1;
1570 print_bad_events(sched);
1571 return 0;
1574 static int perf_sched__replay(struct perf_sched *sched)
1576 unsigned long i;
1578 calibrate_run_measurement_overhead(sched);
1579 calibrate_sleep_measurement_overhead(sched);
1581 test_calibrations(sched);
1583 if (perf_sched__read_events(sched, true, NULL))
1584 return -1;
1586 printf("nr_run_events: %ld\n", sched->nr_run_events);
1587 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1588 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1590 if (sched->targetless_wakeups)
1591 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1592 if (sched->multitarget_wakeups)
1593 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1594 if (sched->nr_run_events_optimized)
1595 printf("run atoms optimized: %ld\n",
1596 sched->nr_run_events_optimized);
1598 print_task_traces(sched);
1599 add_cross_task_wakeups(sched);
1601 create_tasks(sched);
1602 printf("------------------------------------------------------------\n");
1603 for (i = 0; i < sched->replay_repeat; i++)
1604 run_one_test(sched);
1606 return 0;
1609 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1610 const char * const usage_msg[])
1612 char *tmp, *tok, *str = strdup(sched->sort_order);
1614 for (tok = strtok_r(str, ", ", &tmp);
1615 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1616 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1617 error("Unknown --sort key: `%s'", tok);
1618 usage_with_options(usage_msg, options);
1622 free(str);
1624 sort_dimension__add("pid", &sched->cmp_pid);
1627 static int __cmd_record(int argc, const char **argv)
1629 unsigned int rec_argc, i, j;
1630 const char **rec_argv;
1631 const char * const record_args[] = {
1632 "record",
1633 "-a",
1634 "-R",
1635 "-f",
1636 "-m", "1024",
1637 "-c", "1",
1638 "-e", "sched:sched_switch",
1639 "-e", "sched:sched_stat_wait",
1640 "-e", "sched:sched_stat_sleep",
1641 "-e", "sched:sched_stat_iowait",
1642 "-e", "sched:sched_stat_runtime",
1643 "-e", "sched:sched_process_exit",
1644 "-e", "sched:sched_process_fork",
1645 "-e", "sched:sched_wakeup",
1646 "-e", "sched:sched_migrate_task",
1649 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1650 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1652 if (rec_argv == NULL)
1653 return -ENOMEM;
1655 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1656 rec_argv[i] = strdup(record_args[i]);
1658 for (j = 1; j < (unsigned int)argc; j++, i++)
1659 rec_argv[i] = argv[j];
1661 BUG_ON(i != rec_argc);
1663 return cmd_record(i, rec_argv, NULL);
1666 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1668 const char default_sort_order[] = "avg, max, switch, runtime";
1669 struct perf_sched sched = {
1670 .tool = {
1671 .sample = perf_sched__process_tracepoint_sample,
1672 .comm = perf_event__process_comm,
1673 .lost = perf_event__process_lost,
1674 .exit = perf_event__process_exit,
1675 .fork = perf_event__process_fork,
1676 .ordered_samples = true,
1678 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1679 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1680 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1681 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1682 .curr_pid = { [0 ... MAX_CPUS - 1] = -1 },
1683 .sort_order = default_sort_order,
1684 .replay_repeat = 10,
1685 .profile_cpu = -1,
1686 .next_shortname1 = 'A',
1687 .next_shortname2 = '0',
1689 const struct option latency_options[] = {
1690 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1691 "sort by key(s): runtime, switch, avg, max"),
1692 OPT_INCR('v', "verbose", &verbose,
1693 "be more verbose (show symbol address, etc)"),
1694 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1695 "CPU to profile on"),
1696 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1697 "dump raw trace in ASCII"),
1698 OPT_END()
1700 const struct option replay_options[] = {
1701 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1702 "repeat the workload replay N times (-1: infinite)"),
1703 OPT_INCR('v', "verbose", &verbose,
1704 "be more verbose (show symbol address, etc)"),
1705 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1706 "dump raw trace in ASCII"),
1707 OPT_END()
1709 const struct option sched_options[] = {
1710 OPT_STRING('i', "input", &input_name, "file",
1711 "input file name"),
1712 OPT_INCR('v', "verbose", &verbose,
1713 "be more verbose (show symbol address, etc)"),
1714 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1715 "dump raw trace in ASCII"),
1716 OPT_END()
1718 const char * const latency_usage[] = {
1719 "perf sched latency [<options>]",
1720 NULL
1722 const char * const replay_usage[] = {
1723 "perf sched replay [<options>]",
1724 NULL
1726 const char * const sched_usage[] = {
1727 "perf sched [<options>] {record|latency|map|replay|script}",
1728 NULL
1730 struct trace_sched_handler lat_ops = {
1731 .wakeup_event = latency_wakeup_event,
1732 .switch_event = latency_switch_event,
1733 .runtime_event = latency_runtime_event,
1734 .fork_event = latency_fork_event,
1735 .migrate_task_event = latency_migrate_task_event,
1737 struct trace_sched_handler map_ops = {
1738 .switch_event = map_switch_event,
1740 struct trace_sched_handler replay_ops = {
1741 .wakeup_event = replay_wakeup_event,
1742 .switch_event = replay_switch_event,
1743 .fork_event = replay_fork_event,
1746 argc = parse_options(argc, argv, sched_options, sched_usage,
1747 PARSE_OPT_STOP_AT_NON_OPTION);
1748 if (!argc)
1749 usage_with_options(sched_usage, sched_options);
1752 * Aliased to 'perf script' for now:
1754 if (!strcmp(argv[0], "script"))
1755 return cmd_script(argc, argv, prefix);
1757 symbol__init();
1758 if (!strncmp(argv[0], "rec", 3)) {
1759 return __cmd_record(argc, argv);
1760 } else if (!strncmp(argv[0], "lat", 3)) {
1761 sched.tp_handler = &lat_ops;
1762 if (argc > 1) {
1763 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1764 if (argc)
1765 usage_with_options(latency_usage, latency_options);
1767 setup_sorting(&sched, latency_options, latency_usage);
1768 return perf_sched__lat(&sched);
1769 } else if (!strcmp(argv[0], "map")) {
1770 sched.tp_handler = &map_ops;
1771 setup_sorting(&sched, latency_options, latency_usage);
1772 return perf_sched__map(&sched);
1773 } else if (!strncmp(argv[0], "rep", 3)) {
1774 sched.tp_handler = &replay_ops;
1775 if (argc) {
1776 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1777 if (argc)
1778 usage_with_options(replay_usage, replay_options);
1780 return perf_sched__replay(&sched);
1781 } else {
1782 usage_with_options(sched_usage, sched_options);
1785 return 0;